Sergeants-and-soldiers principle in chiral columnar stacks of disc-shaped molecules with C3 symmetry

Citation for published version (APA):

DOI:
10.1002/anie.199726481

Document status and date:
Published: 01/01/1997

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
The BalSiO2 glass was made under argon atmosphere by melting a mixture of BaCO3, SiO2, and SiC in a high frequency furnace in a BN crucible placed in a carbon crucible to ensure inductive coupling. The melt was held at 1650°C for 30 min and after switching off the furnace cooled down in a strong stream of argon. The average cooling rate from maximum temperature to around 300°C was about 10 K s−1. The cation ratio Ba:Si in the starting mixture was 37:63 with 3 atomic% carbon in form of SiC.

A fragment of this sample was clamped to the sample holder with a small vise. The images were obtained under ultrahigh vacuum after an outgassing procedure of several hours at about 400 K with a combined atomic force/scanning tunneling microscope (Omicron Vakuumphysik GmbH). The AFM measurements were carried out in the contact mode immediately after transfer with single crystal silicon cantilevers (Nanosensors) and constant loading forces in the range 25 nN–50 nN.[17]

Received: June 5, 1997 \[Z = 105111E \]

German version: Angew. Chem. 1997, 109, 2760–2762

Keywords: amorphous materials • atomic force microscopy • glasses • structure elucidation

Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-Shaped Molecules with C3 Symmetry**

Anja R. A. Palmans, Jef A. J. M. Vekemans, Edsko E. Havinga, and E. W. Meijer*

Seminal studies by Green and co-workers to understand the underlying principles of chirality in stiff helical polymers such as the polysaccharides have led to observations referred to as the “Majority Rule” and the “Sergeants-and-Soldiers Principle.” Poly(r-alkyl isocyanates) adopt an extended helical conformation in which long stretches of one helical sense, P or M, are separated by high-energy reversals. To favor one

[*] Prof. Dr. E. W. Meijer, A. R. A. Palmans, Dr. J. A. J. M. Vekemans, Dr. E. E. Havinga Laboratory of Organic Chemistry Eindhoven University of Technology P.O. Box 513, NL-5600 MB Eindhoven (The Netherlands) Fax: Int. code + (40) 245-1036 e-mail: tgiobm@chem.tue.nl

[**] We would like to thank Dr. H. Fischer and Dr. R. Hikmet for stimulating discussions. Unrestricted research grants from Phillips Research and DSM Research are gratefully acknowledged.

Table 1. Comparison of interatomic distances [nm] and their assignment extracted from pair distribution functions of the Ba/Si/O/C glass with those in crystalline BaSiO3 and amorphous barium disilicate.

<table>
<thead>
<tr>
<th>From AFM of Ba/Si/O/C glass</th>
<th>From electron diffraction of Ba/Si/O/C glass</th>
<th>From neutron and X-ray diffraction of a BaSiO3</th>
<th>In crystalline BaSiO3 [14]</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.16</td>
<td>0.16</td>
<td>Si–O</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>0.27</td>
<td>0.26</td>
<td>O–O (?)</td>
<td></td>
</tr>
<tr>
<td>0.34</td>
<td>0.34</td>
<td>0.30</td>
<td>Si–Si</td>
<td></td>
</tr>
<tr>
<td>0.41</td>
<td>0.424</td>
<td>0.415</td>
<td>Ba–O</td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>0.50</td>
<td>0.494</td>
<td>Ba–Ba</td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td>0.53</td>
<td>mro</td>
<td>Si–O</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>mro</td>
<td>mro</td>
<td>Si–O</td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>0.78</td>
<td>0.78</td>
<td>mro</td>
<td></td>
</tr>
</tbody>
</table>

[a] Distances above 0.45 nm are not assigned to a certain atomic distance pair and are attributed to medium range order effects (mro).

situated perpendicular (with respect to the surface) to a Si atom and a neighboring atom.

At larger distances further peaks clearly indicate a medium-range order in the investigated glass. However, a definite assignment has yet to be done. The appearance of the 0.77 nm peak both in AFM and diffraction measurements is particularly remarkable, since this is a lattice constant of crystalline barium disilicate.

Two possible problems arise with the direct imaging of fracture surfaces of amorphous solids by atomic force microscopy, if one wants to resolve the bulk structure of glasses. First, the structures on the fracture surface might undergo a relaxation and therefore not correspond exactly to the position of the atoms in the bulk. Second, as the fracture will take place predominantly at the weaker bonds in the glass, these areas will dominate the images. However, since the relaxation in glasses with a highly developed network and low crystallization tendency will only result in displacements and not in reconstructions one can expect that the principles (repetition of structures, ring dimension, residues of translational symmetry) of medium- and long-range order will be preserved and reproduced in the image. In the case of the Ba/Si/O/C glass the justification for this assumption is proved by the good agreement of the AFM results with data obtained from completely independent measurements.

Atomic force microscopy is superior to all other methods of studying solids without translational symmetry in that it allows direct imaging of the atomic structure and therefore can be used to develop a reliable model of the structure of glasses. In the present case the classical controversy concerning the structure of glass between the hypothesis of Zachariasen (“network hypothesis”)[12] and that of Lebedew (“crystallite theory”)[11] can be settled. The AFM images show unambiguously that the barium silicate glass consists of a tetrahedral network.

Experimental Section

The Ba/Si/O/C glass was made under argon atmosphere by melting a mixture of BaCO3, SiO2, and SiC in a high frequency furnace in a BN crucible placed in a...
helical sense, it is only required to add a small portion of chiral units (sergeants) to the achiral units (soldiers) or to have a slight majority of R over S units in the polymer. Recently, it was shown that these effects are operative in other polymers with stiff helical backbones.$[2]$ This is in sharp contrast to the behavior in small molecules where, for example, the optical rotation of a mixture of two enantiomers varies linearly with their ratio. Also in liquid crystals the induction of chirality is complex but seems to be predominantly linear or additive.$[3]$ The more chiral molecules added to a nematic liquid crystal, the shorter the helical pitch of the induced cholesteric phase.$[3b]$ In this communication we describe our results on the stereochemical issues of the associates of disc-shaped molecules in diluted alkane solutions ($10^{-4} - 10^{-6}$ mol L$^{-1}$).

The molecules are stacked in highly ordered chiral columns, with a strong, cooperative response to chiral information. This amplification in chirality furnishes the first example in which the sergeants-and-soldiers principle is operative in dynamic structures of molecular aggregates.

Extended-core disc-shaped molecules are of interest, because they show liquid-crystalline properties within a broad temperature regime, and the stability of the molecular stacks is guaranteed by many secondary interactions.$[4]$ We have studied in detail the synthesis and properties of achiral compounds 1, in which the extended core is based on a concerted conformational preference owing to intramolecular H-bonding in the three acylated 3,3'-diamino-2,2'-bipyridine moieties.$[5]$ Chiral analogue $1a$ is synthesized starting from S-citronellol, which was successively hydrogenated, brominated, coupled to methyl 3,4,5-trihydroxybenzoate and transformed by established procedures$[5]$ into the desired disc-shaped compound $1a$. Both $1a$ and $1b$ show a thermotropic liquid crystalline D_{h0} phase, and X-ray diffraction suggests the presence of a helical superstructure. In concentrations greater than or equal to 7% w/w in apolar solvents like hexane, dodecane, and cyclohexane, molecules $1b$ are organized in a columnar phase in which the 3.5 Å disc-disc distance within the columns is preserved.$[6]$

![Diagram of molecular structures](image)

UV spectra of $1a,b$ in different solvents show distinct differences in the $\pi-\pi^*$ transition of the bipyridine moiety (Figure 1). In CHCl$_3$, λ_{max} amounts to 351 nm ($\epsilon = 5.3 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), whereas in dodecane a significant red shift of 13 nm is observed for λ_{max} to 364 nm ($\epsilon = 3.2 \times 10^4$ L mol$^{-1}$ cm$^{-1}$), and a shoulder in the spectrum in CHCl$_3$ has developed into a peak at 384 nm ($\epsilon = 2.3 \times 10^4$ L mol$^{-1}$ cm$^{-1}$) in dodecane. The spectrum in dodecane resembles the UV spectrum of a sheared film of pure $1a$, which is in a D_{h0} phase at room temperature. Heating the dodecane solution to 100°C leads to a blue shift of the λ_{max} to 357 nm and the disappearance of the fine structure. These results imply that $1a$ is dissolved in CHCl$_3$ as individual molecules (and in dodecane at 100°C), while aggregation occurs in dodecane (and related achiral solvents) at room temperature in which the packing of the molecules in columns is similar to that in neat $1a$.

In CHCl$_3$, compounds $1a,b$ do not exhibit Cotton effects in the UV/Vis range of the circular dichroism (CD) spectrum. In dodecane, however, $1a$ shows a very strong, negative Cotton effect associated with the $\pi-\pi^*$ absorption band of the bipyridine moiety at $\lambda = 387$ ($\Delta\epsilon = -35.6$ L mol$^{-1}$ cm$^{-1}$) and 369 nm ($\Delta\epsilon = -23.6$ L mol$^{-1}$ cm$^{-1}$) with chiral anisotropy factors$[3]$ g of -1.5×10^{-3} and -7.4×10^{-4}, respectively. Heating the sample leads to a gradual decrease of the Cotton effects and a complete loss at 100°C. Subsequent cooling to room temperature restores the original Cotton effects. Most remarkably, the UV and CD spectra of the achiral compound $1b$ in optically active (R)-(-)-2,6-dimethylcyclohexane$[8]$ as solvent are almost identical to the spectra of chiral compound $1a$ in dodecane in the $\pi-\pi^*$ absorption band of the bipyridine moiety (Figure 2). The anisotropy factors g, however, are slightly lower (-8.5×10^{-4} at $\lambda = 386$ nm and -5.3×10^{-4} at $\lambda = 367$ nm). Again, heating of this sample leads to a decrease of the Cotton effects, showing the dynamics in chiral solvation.$[9]$

These results on chiral solvation indicate strong cooperative effects, suggesting a tendency of the stacks to take on a helical arrangement. We therefore attempted to apply the sergeants-and-soldiers principle to mixtures of $1a$ and $1b$ in hexane. As expected $1b$ does not show any Cotton effect in hexane. However, addition of only 2.5% of chiral $1a$ to achiral $1b$ in hexane generates a strong Cotton effect, especially in the bipyridine transition band, which was similar in magnitude as for pure $1a$ in hexane. The remarkable observation that the
Cotton effects of the mixtures of about 10% 1a and 90% 1b are larger than for pure 1a is tentatively explained by a more effective packing between achiral molecules 1b than between chiral molecules 1a.

The mixing experiment was repeated with solutions of different concentrations of compounds 1a and 1b in hexane. The dependence of the g values on the amount of chiral 1a added to a solution of achiral 1b is depicted in Figure 3. The curves show the same trend, although the effect is smaller for the lowest concentration (1.9×10^{-8} mol L$^{-1}$). We also found that the Cotton effect in the bipyridine band is almost independent of the concentration of pure 1a in hexane within the range 10^{-6} to 10^{-3} mol L$^{-1}$, with a slight deviation at the low concentration end (Figure 3, inset).

The fitted lines represent the theoretically predicted development of $\Delta r/L$ mol$^{-1}$ cm$^{-1}$ with a cooperative length L_c of one helical sense between helix reversals—can be varied. We assume that the contributions to the Cotton effect in the bipyridine band of a stack is proportional to the number of monomeric units in the stack, and remaining nonassociated species do not contribute to the Cotton effect. Furthermore, the association constants K of chiral and achiral monomers are equal, and if a stack contains a chiral monomer, the latter will induce chirality in other molecules in the stack not further away than unit. For mixed stacks in equilibrium we can then deduce an equation to fit the experimental data points with K and s as variables.$^{[10]}$

A fit of this model to the experimental data leads to $K = (1.0 \pm 0.5) \times 10^6$ L mol$^{-1}$ and $s = (40 \pm 2)$ which yields $L_c = 2.5 \pm 1 \approx 80$.

We propose the following hypothesis to explain the cooperative response of compound 1 on external chiral information. The C_i-symmetrical molecules of type 1 adopt a propeller-like conformation in which the bipyridine wedges are tilted with respect to the central trimesic core.$^{[11]}$ In hexane molecules 1 are aggregated in columnar stacks, and the packing between subsequent molecules will be optimal when all bipyridine wedges are tilted in the same direction, which results in a preferred stable chiral conformation of each disc-shaped molecule.$^{[12]}$ This can be compared with propellers piled on top of each other. Rotating the first with respect to the second will improve the packing but will also give rise to a helix. Equal amounts of P and M helices are present within the stacks of achiral 1b.

The stack length is concentration-dependent and corresponds with $K = 10^6$ L mol$^{-1}$, while the cooperative length L_c of one helical sense between helical reversals is not concentration-dependent and has the value $L_c \approx 80$. On the other hand, the stacks of 1a are assumed to have only one helical sense P or M. The instantaneous Cotton effect in the bipyridine band upon addition of chiral 1a to a solution of achiral 1b points to dynamic processes and an exchange of the molecules between different columns. By introducing on average one molecule of chiral 1a per 80 molecules of 1b into the stacks of 1b, the chiral component (the sergeants) will dictate the helical sense of the total stack (of soldiers) for steric reasons. That a chiral alkane solvent can also dictate the sense of helicity of a stack of achiral molecules presumably means that the first layer of solvent organizes itself along the peripheral alkoy chains of the molecules with precision. Again, steric factors will dictate which helical sense will lead to the most favorable interactions between subsequent molecules.

In conclusion, it is shown that the sergeants-and-soldiers principle and chiral solvation are operative in dynamic, columnar stacks of molecules 1 in alkane solvents.

Received: July 10, 1997 [Z10651IE]

German version: Angew. Chem. 1997, 109, 2763–2765

Keywords: chirality · circular dichroism · helical structures · stacking interactions · supramolecular

The synthesis of BaNd5Si11N23 produced the first nitridosilicate with a zeolite-analogous Si–N network structure. The new nitridosilicate was synthesized in a high-frequency furnace by reaction of stoichiometric amounts of barium and neodymium with silicon disilicide under nitrogen atmosphere. By this procedure BaNd5Si11N23 is formed as a coarse crystalline, dark blue solid. Like all other nitridosilicates synthesized in our group, BaNd5Si11N23 is stable up to 1600°C and insensitive to hydrolysis.

\[
2\text{Ba} + 7\text{Nd} + 11\text{Si(NH)}_2 + 1/2\text{N}_2 \xrightarrow{900-1650°C, 40 h, HF furnace} \text{BaNd}_{5}\text{Si}_{11}\text{N}_{23} + 11\text{H}_2
\]

This ratio should also hold for zeolite-analogous nitridosilicates. All nitridosilicates obtained so far by high-temperature synthesis possess Si–N substructures in the range 0.5 ≤ T/X ≤ 0.75 having no open channels or large cavities.

The synthesis of BaNd5Si11N23 produced the first nitridosilicate with a zeolite-analogous Si–N network structure. The new nitridosilicate was synthesized in a high-frequency furnace by reaction of stoichiometric amounts of barium and neodymium with silicon disilicide under nitrogen atmosphere. By this procedure BaNd5Si11N23 is formed as a coarse crystalline, dark blue solid. Like all other nitridosilicates synthesized in our group, BaNd5Si11N23 is stable up to 1600°C and insensitive to hydrolysis.

\[
2\text{Ba} + 7\text{Nd} + 11\text{Si(NH)}_2 + 1/2\text{N}_2 \xrightarrow{900-1650°C, 40 h, HF furnace} \text{BaNd}_{5}\text{Si}_{11}\text{N}_{23} + 11\text{H}_2
\]

The X-ray structure analysis on single crystals of BaNd5Si11N23 shows a three-dimensional network structure of corner-sharing SiN4 tetrahedra according to \[\frac{1}{3}(\text{Si}^{1}N^{2})_{3}(\text{N}^{3})_{2}^{2-}\]. With a molar ratio of Si:N = 11:23, the degree of condensation is smaller than in most of the oxidic zeolites (Al/Si:O = 1:2). Accordingly besides bridging atoms N[2], terminal atoms are connected to Si (N[3]). The superscript in square brackets in N[4] defines the number of Si atoms covalently bound to N, and vice versa for Si[4]. The ratio of Q4 and Q2 tetrahedra in the Si–N network structure is 10:1. Thus BaNd5Si11N23 shows the lowest degree of condensation amongst the Si–N network structures obtained so far. The network of corner-sharing SiN4 tetrahedra in BaNd5Si11N23 can be characterized by the specific distribution of SiN4 ring sizes. In BaNd5Si11N23 all ring sizes appear with the exception of n = 2 and 5.

Characteristic for the structure of BaNd5Si11N23 (Figure 1) are channels along [001]. The Ba4+ ions are centered in the SiN4 ring channels and in the SiN4 ring channels along [100]. The Nd4+ ions are positioned in the smaller voids. The metal ions are coordinated by seven and eight nitrogen atoms of the Si–N network (Ba2+: N = 273(1)–316(2) pm; Nd4+: N = 229(2)–312(1) pm). The Ba4+ ions in the wider SiN4 ring channels (Figure 2) have a markedly higher coordination number of 16 and corresponding longer distances to the nitrogen atoms (Ba2+: N = 337(1)–441(2) pm).

A measure for the microporosity of a zeolite-analogous structure is the framework density (FD), which indicates the number of tetrahedral centers (T) in a volume of 1000 Å3. With a FD of 18.5, BaNd5Si11N23 is similar to typical zeolites (framework densities of some zeolites in T/1000 Å3): 175 (AlPO4-5), 179 (ZSM-5), 19.3 (Nonnasil) [6].

The successful synthesis of BaNd5Si11N23 is the first proof that not only highly condensed Si–N network structures but also open, zeolite-like networks of corner-sharing SiN4 tetrahedra can be realized. In contrast to conventional zeolites, which are synthesized by solvothermal procedures using templates, the nitridosilicates are only accessible by high-temperature synthesis. The next aim of our efforts will be the exchange of the bulky metal ions for hydrogen atoms.