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Chapter 1 

Introduction 

In engineering practice, there is a great need for efficient, powerful, and ac
curate methods to predict the long term dynamic behaviour of nonlinear 
mechanical structures. As important examples, one can think of rotordy
namic systems, such as pumps and generators, or systems with nonlinear 
supports. In this thesis, a promising dynamic system investigation method 
is d.iscllssed in detaiL 

A theoretical approach in the prediction of dynamic behaviour is given 
by the procedure of mathematical modelling of the mechanical structure one 
is investigating. In this thesis) mechanical systems are considered which are 
discretized with respect to space. This approach results in a set of second 
order ordinary differential equations (ODE's): 

q == F(q, q, t, IL). (1.1 ) 

Here, q == [ql(t) .. qdt)jT is the column containing the system's generalized 
coordinates, with l the number of degrees of freedom (DOF) of the system. 
Further, it and q are the columns containing the velocities 4i and the accel
erations qi, respectively (i = 1, .. , l)- The column IL = [ttl .. ttkjT contains the 
system parameters, such as the system frequency, the system damping, and 
so on. Finally, (') stands for differentiation with respect to time t. Defining 
the state of the system as x = [qI .. ql 41 .. 4!]T, (1.1) can be written as a set 
of N first order ODE's: 

(1.2) 

Here) N = 2l is the dimension of the state space. Both (1.1) and (1.2) are 
used in this thesis for the mathematical description of dynamic systems. 
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Figure 2,7: ICM grid for a two-dimensional state space. 

Here, Pj : lR N ---* [0,1] is an interpolation function satisfying 

23 

where bij is the Kronecker delta. In Appendix B, general expressions are 
given for the interpolation point indices and the interpolation func.tions. For 
N =: 2, the following holds; 

¢i,2 (1 - 6)(1- 6)yll + 6(1- 6)y12 

+ (1 - 6)6y 1
3 + 66yl\ i = 1, '" M, (2.12) 

with, 

and hk given by (2,10). In Fig. 2.8, the integration and first interpolation 
step are illustrated for a two· dimensional state space. 

The trajectory points ¢i,n, n = 3,1, '" are obtained by application of 
the interpolation formula (2.11) replacing yi by 4>i,n-l, for i = 1, '" M. By 
repeated application of (2.11), an approximate trajectory of desired length 
is obtained. 









Cell Mapping Methods 27 

• The interpolation grid can be chosen finer than the integration grid: 
For instance, when tackling a problem with 101 :x 101 integration 
points, afterwards a 1001 X 100l interpolation resolution may be used 
to obtain the bMins of attraction. This is an interesting aspect of 
ICM, keeping in mind that the interpolation part requires much less 
CPU·time than the integration part. Here, it should be noted that the 
a.ccuracy of the results is defined by the integration grid. Use of an 
extended interpolation grid only produces a higher resolution plot of 
the basins of attraction. 

However, the following critical remarks have to be made as well: 

• Rcpcllors and saddle solutions will not be found in generaL 

• When a trajectory is found not to repeat itself within the maximum 
number of interpolation steps, it is regarded as being chaotic. The ini
t.i<'ll values of all chaotic trajectories are now asrmrncd to form the ba.sin 
of attraction of a chaotic attractor. This however, may not always be 
trw', for instance when more than one chaotic at tractor exist. Plotting 
the end points of all chaotic trajectories gives an idea of the form of 
the chaotic attractor, and also (the only) information with respect to 
its uniqueness. 

• When the maximum number of interpolation steps is chosen too small, 
a spurious chaotic attractor will be found. In general, the choice of the 
criteria rnaoy be of great influence on the results. It is not very obvious 
which criteria are the optimal ones; this may depend on the system 
characteristics. 

• A pplication of IeM is not very suited for systems with large state space 
dimension N. For one interpolation step? 2N interpolation points have 
to be determined and 2N interpolation functions have to be evaluated. 
For large N, the CPU . profit with respect to regular numerical integra
tion will vanish. 

Concluding, the ICM method may be considered as an efficient addition 
to SCM j takingonly a small amount of additional CPU-time- The method's 
drawbacks require some improvisation and ad-hoc thinking of the user. 
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