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Abstract

In this paper we describe a class of non�convolution type integral operators� where

the integration is with respect to parameters of special functions� This class includes the

famous Kontorovich�Lebedev� Mehler�Fock� Olevskii� Fourier�Jacobi transformations�

which are quite important� for instance� in the solutions of boundary value problems

in the mathematical theory of elasticity� Our techniques involve Mellin�Barnes type rep�

resentations of the kernels� and the Mellin transform� General boundedness conditions

and Parseval equalities are established� A series of examples are presented�

Key words� Index Transforms� Kontorovich	Lebedev transform� Fourier	Jacobi trans	
form� Mehler	Fock transform� Parseval equality�

AMS subject classi�cation� 

A��� 

A��� ��C��� ��C
��

� Introduction and Preliminary Results

We study a special class of integral operators of the form

����
 �GHf
�x
 �
Z �

�
H�x� � 
�f�� 
d��

�



� S�Yakubovich and J� de Graaf

where the kernel H is given as a Mellin integral ����� i�e�

����
 H�x� � 
 �
�

��i

Z ��i�

��i�
H�s� � 
x�sds� s � � � it� x � ��

Note that if H�x� � 
 � k�x� 
 then H�s� � 
 � kM�s
��s� where kM�s
 denotes the Mellin
transform of k

kM�s
 �
Z �

�
k�x
xs��dx�

Such operators are called Mellin convolution type operators or general transformations of
Fourier type� They were investigated in ���� Chapter VIII�� To obtain boundedness properties
and inversion properties for such operators it is natural to use L�	Mellin transform theory�
However� when H�x� � 
 is essentially a function of two variables the theory of such opera	

tors� which we call index transformations� still has some gaps�
If we look at the table of the Mellin transforms for hypergeometric functions in ���� most

examples there contain � as a parameter in gamma	functions and they lead to integral trans	
form operators of non	convolution type� Among them one can �nd the Kontorovich	Lebedev�
the Mehler	Fock� the Olevskii and other transformations� An example is

����

�


�i

Z ��i�

��i�
�
�
s�

i�

�

�
�
�
s� i�

�

�
x�sds � Ki� ��

p
x
� � � ��

where H�s� � 
 is equal to the product of two gamma	functions� It de�nes the Macdonald
function ��� and in turn the following Kontorovich	Lebedev type operator ������
���������
�	�����
����	����


���

 �KLf ��x
 � �
Z �

�
�Ki� ��

p
x
f�� 
d��

In order to derive some generalities �rst� we impose the following general conditions on H�
C�� For all � � � the function s �� H�s� � 
 is analytic on a strip �A � Res � A� A � �� with
possible exception of a �nite number of simple poles on the imaginary axis�
C�� For all � � � and all �A � a � b � A

lim
jtj��

max
a���b

jH�� � it� � 
j � ��

C�� For all � � ��A�A
� � �� � the Hilbert	Schmidt condition holdsZ �

��

Z �

�
jH�� � it� � 
j� d�dt �	�

Because of the Plancherel theorem for the Mellin transform ���� and the Fubini theorem the
latter condition is equivalent to

�

��

Z �

�
d�
Z �

��
jH�k � it� � 
j� dt �

Z �

�

Z �

�
jH�x� � 
j� x�k��dxd� �	
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for arbitrary � � k � A� This means that for � � k � A the operator GH � L��R�� � �d� 
 ��
L��R��x�k��dx
 is a Hilbert	Schmidtmapping� Hence GH is a bounded and compact operator�
For special classes of functions H we want to know the best possible weight functions in

both L� 	spaces� For us the perfect set of weight functions is such that a Parseval relation
holds� In this case a candidate kernel for the inverse transform is immediately available�
Next� let ��s
 be a function which is analytic in the strip �A � Res � A� again with

the possible exception of a �nite number of �	th order poles of the imaginary axis� We will
call � a multiplier for H if the product H�s� � 
��s
 has again the properties C�	C�� Let �
be� in addition� the Mellin transform of some function 	 on R� ���s
 � 	M�s

� Then due
to the Mellin	 Parseval equality ���� under suitable conditions the kernel from ����
 for the
corresponding operator ����
 �GH�
 �x
 becomes

H��x� � 
 �
�

��i

Z ��i�

��i�
H�s� � 
��s
x�sds �

Z �

�
H�
� � 
	

�
x




�
d




�

Hence� by formally changing the order of integration and invoking the de�nition ����
 we have
the following Mellin convolution representation for the operator �GH�
 �x
�

����
 �GH�
 �x
 �
Z �

�
H��x� � 
�f�� 
d� �

Z �

�
�GHf
 �

	

�
x




�
d




�

A variety of examples of the operator transform ����
 can be obtained as generalizations of
the Kontorovich	Lebedev type operator ���

� The kernel functions will be of hypergeometric
type and they are conveniently de�ned using the Mellin transform� Those Mellin transforms
are the ratio of products of shifted Euler gamma	functions� Integral representations like ����

for them are called Mellin	Barnes integrals� Particular examples are the Meijer G	function
and Fox H	function ����� The relevant tables of Mellin transforms are given in �����
Before we will give a number of such examples� let us �rst consider a simple illustration of

the operator ����
 by taking

Hs�s� � 
 �
��

s� i�
�

� �
s� i�

�

� �

In this case calculation of the integral ����
 leads to the result

Hs�x� � 
 �

�
� �

�
sin

�
�
�
log x

�
� � � x � ��

� � x � ��
A Parseval equality can be obtained directly by contour integration� It corresponds to the
Fourier sine transform� viz�

Z �

�
j�GHsf
�x
j�

dx

x
�
Z �

�

			�GHsf
�e
�x


			� dx � 
� Z �

�
jf�� 
j�d��




 S�Yakubovich and J� de Graaf

Now� as a more serious example� consider

����
 H�s� � 
 � �
�
s�

i�

�

�
�
�
s� i�

�

�
�

Via ����
 we haveH�x� � 
 � �Ki� ��
p
x
 and according to the values of the integrals �����������


and ����������
 from ��� for any � � k � ��
 one can evaluate the following iterated integral



Z �

�

sinh��� 


�

Z �

�
K�

i� ��
p
x
x�k��dxd� � ���

���k
��� � 
k

����� �k
 �

This implies that for any � � k � ��
 the Kontorovich	Lebedev transform ���

 is a Hilbert	

Schmidt mapping L�

�
R��

��d�
sinh����

�
�� L�

�
R��x�k��dx

�
� Ultimately� we will show that ���



is an isometric isomorphism between the space L�

�
R��

�d�
sinh����

�
and L� �R��x��dx
� With

suitable modi�cations the isometric properties remain true for the operator GH��
As we observe� the Kontorovich	Lebedev transform ���

 arises from the kernel ����
 with

multiplier ��s
 
 �� In applications the Kontorovich	Lebedev transform is used to solve
boundary value problems formulated in cylindrical coordinates �cf� ����
�
If we put ��s
 � ����� � � � s
������ � s
� � � R� then using the relation ���
�
����


in ���� under the condition � � � � ��� � �� we obtain the integral representation for the
generalized Legendre function ���� namely

j���� � i� 
��� �
j�x������ � x
���P �
�i������

�
�

x
� �

�

����
 �
�

��i

Z ��i�

��i�
�
�
s�

i�

�

�
�
�
s� i�

�

�
����� � �� s


����� � s

x�sds�

The corresponding transform ����
 is the generalized Mehler	Fock operator ����

����
 �MFf ��x
 � x������ � x
���
Z �

�
� j���� � i� 
��� �
j�P �

�i������

�
�

x
� �

�
f�� 
d��

The classical Mehler	Fock transform ���� is the one with � � �� The Mehler	Fock transform is
quite important in the theory of elasticity� in particular in the analysis of stress in the vicinity
of an external crack �see ���� Chapter ��
�
All integral operators of this type are realized by integrals over parameters of special

functions� They may properly be called index transforms� see �����
As known� cf� ���	���� �
�� ���� ����	����� the Mehler	Fock transform can be generalized by

taking the Gauss hypergeometric function �F� ��� as a kernel� For jzj � � one has the power
series

����
 �F��a� b� c� z
 �
�X
n��

�a
n�b
n
�c
n

zn

n�
�
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where �a
n denotes the Pochammer symbol ���� Note that in the case jzj � � we should add
the condition Re�c � a� b
 � � and for jzj � �� z �� � we have �� � Re�c � a� b
 � �� For
jzj � � the Gauss function is de�ned by the unique analytic continuation of this series into
the plane with a cut along the semi	axis � � x � 	� This continuation can be obtained if
instead of the series ����
 we consider an equivalent de�nition of the Gauss function in terms
of the Mellin	Barnes integral� namely

�����

��a
��b


��c

�F��a� b� c� z
 �

�

��i

Z i�

�i�
��s
��a� s
��b� s


��c � s

��z
�sds�

where jzj � �� j arg��z
j � �� The series ����
 can be found back if we evaluate the integral
�����
 as the sum of residues of poles of the integrand� which involve the left	hand ones
s � �������� � � � being separated from the right	hand poles s � a�n� s � b�n� n � �� �� �� � � �
by the contour of integration� This is possible if we assume� that these poles do not coincide�
that is� both a and b are di�erent from �������� � � �� Hence for jzj � � we can regard the
integral �����
 as a sum of the residues of the right	hand simple poles �when a� b �� n
 of the
integrand� Then we obtain�

�F��a� b� c� z
 �
��c
��b� a


��b
��c� a

��z
�a�F�

�
a� �� c� a� �� b� a�

�

z

�

�����
 �
��c
��a � b


��a
��c � b

��z
�b�F�

�
b� � � c� b� �� a� b�

�

z

�
�

where a� b �� n� n � �������� � � � � j arg��z
j � ��
Now consider the product H�s� � 
��s
� where we let ��s
 � ��c � a� s
���s � a
� a �

c� � � Res � � � c�a� c �� �������� � � � � Then by means of the relation ���
�
����
 from ����
we obtain the kernel of the Olevskii transformation ���� ��� as

�����
 H�x� � 
 �
j��c � a� i���
j�

��c

x�a�� � x
�a�c�F�

�
a�

i�

�
� a� i�

�
� c���

x

�
� x � ��

By changing the variable x � sinh�� t� a � �
 � � � �
��� c � � � 
 we easily obtain the
Jacobi function 	��	� �t
 as the kernel of the Fourier	Jacobi transform ���� �
�� Putting a � ���
we immediately obtain the generalized Mehler	Fock transform ����
� Note here� that one more
strict generalization of the Olevskii transform was considered in ���� where the kernel ����

involves the Appell F�	function �see ���� vol��
�
Below we list some other examples of the kernel ����
 as the inverse Mellin transform of

the kernel ����
 with multiplier �� i�e� H�s� � 
��s
 for special choices of the function ��s
�
For this we use the table of the Mellin transform from ����� Note that all these kernels are
real	valued functions for real parameters�
We arrive at the following table�

����s
 
 �� H��x� � 
 � �Ki� ��
p
x
�
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�� ��s
 � 	�������s�
	�����s� � H��x� � 
 � j���� � i� 
��� �
j�x������ � x
���P �

�i������
�
�
x
� �

�
�

�� ��s
 � ������ � s
���� H��x� � 
 �
�p
�
e�x��Ki���

�
x
�

�
�


� ��s
 � ����� � s
� H��x� � 
 �
p
�

cosh������
ex��Ki���

�
x
�

�
�

�� ��s
 � ��s
����� � s
� H��x� � 
 �
����

�cosh������

h
J�
i����

p
x
 � Y �

i����
p
x

i
�

�� ��s
 � 	�s�
	�����s�

� H��x� � 
 �
�p
�
K�

i����
p
x
�

�� ��s
 � ���s� ���
��� � s
���� H��x� � 
 �
p
�

�i sinh������

h
J�
�i����

p
x
� J�

i����
p
x

i
�

�� ��s
 � 	�����s�
	���s� � H��x� � 
 �

p
�

cosh������
Ki����

p
x

h
Ii����

p
x
 � I�i����

p
x

i
�

�� ��s
 � 	�c�a�s�
	�s�a� � H��x� � 
 �

j	�c�a�i����j�
	�c� x�a�� � x
�a�c�F�

�
a� i�

� � a� i�
� � c�� �

x

�
�

��� ��s
 � ������ � �� s
���� H��x� � 
 � x����e�x��W��i����x
�

��� ��s
 � ����� � � � s
� H��x� � 
 � j���� � i� 
��� �
j�x����ex��W��i����x
�

Remark �� The de�nitions of the special functions� which are mentioned in this table can
be found in ���� ���� We deal here� for example� with Bessel�s functions of the �rst� second and
third kind J
�z
� Y
�z
� I
�z
 respectively and the Whittaker function W��
�x
�

� The Kontorovich�Lebedev transform

In this section we will study the Kontorovich	Lebedev type operator ���

 between two weighted
L�	spaces� We will show it to be bijective� For the time being assume that f is a function from
the space C�c �R�
 of in�nitely smooth functions with a compact support� First let us check
the Hilbert	Schmidt condition C� for the kernel ����
�
From ����������
 in ��� we obtain

Z �

�

Z �

�
K�

i� ��
p
x
x�k��dxd� �

�

���
k

Z �

�
K���

p
x
x�k��dx �

�

���
k
����k
 �	

for any k � �� It fails when k � � and as we will see below one can arrive at the operator
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�KL� of ���

 acting on L��R��x��dx
� as a suitable limit of a sequence of Hilbert	Schmidt
operators�
For each � � � consider the integral

����
 I��
 �
Z �

�
x���j�KLf ��x
j� dx�

For f � C�c �R�
 in view of ���

 we have

I��
 � 

Z �

�

Z �

�
�yf�� 
f�y
d�dy

Z �

�
x���Ki� ��

p
x
Kiy��

p
x
dx

����
 �
�

����


Z �

�

Z �

�
�y

					�
�
��

i�� � y


�

�
�

�
��

i�� � y


�

�					
�

f�� 
f�y
d�dy�

where the integral over x is calculated� for example� in ���� p�
��� Hence

I��
 �
��

��� � ��


Z �

�

Z �

�

f�� 
f�y



�� � �� � y
�

					�
�
� � ��

i�� � y


�

�
�

�
� � ��

i�� � y


�

�					
�

d�dy

� ��

��� � ��


Z �

�

Z �

�

f�� 
f�y



�� � �� � y
�

					�
�
� � ��

i�� � y


�

�
�

�
� � ��

i�� � y


�

�					
�

d�dy

� I���
� I���
�

Change the variable � � y � ��t in the integral I� and rewrite it as follows

����
 I���
 �



��� � ��


Z �

�
f�y
���� y
dy�

where

���� y
 �
Z �

� y
��

j��� � iy � ��� � it

��� � ��� � it

j�f�y � ��t
dt
� � t�

�

The integral ����
 is uniformly convergent for � � �� Indeed� with f � C�c �R
 we have

j���� y
j � C
Z �

� y
��

dt

� � t�
� �C

and therefore
jI���
j � �C

Z �

�
jf�y
jdy �	�

So this enables us to pass to the limit under sign of the integral over y for � � � in view of
the Lebesgue theorem and to obtain

lim
���

I���
 � 
�
�
Z �

�

y

sinh��y

jf�y
j�dy�
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In the same manner change the variable � � �y � ��t in the integral I� and it becomes

I���
 �



��� � ��


Z �

�
f�y
 ����� y
dy�

where
����� y
 �

Z �
y
��

j��� � iy � ��� � it

��� � ��� � it

j�f��y � ��t
dt
� � t�

�

Hence

j����� y
j � C
Z �

y
��

dt

� � t�
� C



�

�
� arctan y

��

�
� C��

where C� � � does not depend on �� y � �� Consequently�

lim
���

I���
 � 

Z �

�
f�y
 lim

���
����� y
dy � ��

Combining now these results we arrive at the desired equality

���

 lim
���

Z �

�
x���j�KLf ��x
j� dx � 
��

Z �

�

�

sinh��� 

jf�� 
j�d��

The integral in the left	hand side in ���

� with � replaced by �� is convergent because of
Fatou�s lemma� Further� for all �� � � � � �� the integral is less than or equal to the majorant

Z �

�

h
I������x
 � xI������x


i
j�KLf ��x
j� dx

x
�	�

and therefore the limit can be taken inder the integral sign because of the Lebesgue dominated
convergence theorem�
Thus we obtain a Parseval equality for the Kontorovich	Lebedev transform of the type

����

Z �

�
j�KLf ��x
j� dx

x
� 
��

Z �

�

�

sinh��� 

jf�� 
j�d��

where both integrals are �nite� Now if fn�� 
� n � �� � � � � is some sequence of C�c �R�
 functions

which converges to an arbitrary function f�� 
 from the space L�

�
R��

�d�
sinh����

�
then via ����


it follows that �KLfn��x
 converges in mean over L��R��x��dx
	 norm to F �x
 say and ����

remains true� We call F �x
 the Kontorovich	Lebedev transform of f � We show that apart from
sets of measure zero� there is a one	to	one correspondence between F �x
 and f�� 
� Indeed�
for fn�� 
 the integral ���

 has �nite range of integration and we have

Z �

�
�KLfn��x
dx � �

Z �

�
�fn�� 
K�
� � 
d��

where

K�
� � 
 �
Z �

�
Ki� ��

p
x
dx�
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If we prove that for each 
 � �� K�
� � 
 � L��R�� � sinh��� 

� then making n�	 for almost
all x � � we obtain

����
 F �x
 � �
d

dx

Z �

�
�f�� 
K�x� � 
d��

which is unique in L�	sense� For su�ciently large �xed � � � we have

Z �

�
� sinh��� 


					
Z �

�
Ki� ��

p
x
dx

					
�

d� �

�Z 


�
�
Z �




�
� sinh��� 
jK�
� � 
j�d��

The integral over ����� is �nite because of the estimate jKi� ��
p
x
j � K���

p
x
� For the

integral over ���	
 and �nite range of the variable x apply the asymptotic formula for the
Macdonald function with respect to the index �see� for example ���� p� ���


����
 Ki� �x
 �

s
��

�
e����� sin

�
� log

��

x
� � �

�



�
x�


�

�
�� �O���� 
��

where � � �	 and � � x � �
p

� So it becomes

O

�
B
Z �



d�

						
Z �
p

�

�
x sin�� log x
dx

						
�
�
CA � O

�Z �




d�

� �

�
�	�

Consequently� the Kontorovich	Lebedev transform is represented by the formula ����
� If we

take f � L�

�
R��

�d�
sinh����

�
which is zero for � �� ���N�N �� then by the Parseval equality ����


we �nd

����
 �KLf ��x
 � � lim
N��

Z N

��N
�Ki���

p
x
f�� 
d��

where the limit is taken in the norm of the space L��R��x��dx
�
Next� for two functions f� h we have� as a consequence from ����
 and the parallelogram

identity� Z �

�
�KLf ��x
�KLh��x


dx

x
� 
��

Z �

�

y

sinh��y

f�y
h�y
dy�

Putting

h�y
 �
�
�� � � y � ��
�� y � �

for almost all � � R� we �nd that the adjoint operator �KL�� of �KL� is a left inverse� viz�

����
 f�� 
 �
�

���

sinh��� 


�

d

d�

Z �

�

�K��� x
�KLf ��x

dx

x
�
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where

�����
 �K��� x
 �
Z �

�
yKiy��

p
x
dy�

First� let us show now that for each � � � �K��� x
 � L��R��x��dx
� Indeed� it is su�cient to
show that �K��� x
 � L����� �
�x��dx
� For this appeal to the representation of the Macdonald
function ��� Vol���

Kiy�x
 �
�

�

I�iy�x
� Iiy�x


i sinh��y

�

and the series representations for the modi�ed Bessel functions I�iy�x
 �see ��� Vol� ��
�
Substitute them in �����
� interchange the order of integration and summation using the
uniform convergence of the series� Then for x � � we deduce the following asymptotic
behavior of the kernel �����


�K��� x
 � �Im

Z �

�
��� � iy
xiy��dy

�
� o�x


� O

�
�

log x

�
� o�x
�

The wanted estimate follows from integration by parts in the latter integral with the gamma	
function and using the boundedness of ��� � iy
��� � iy
� where � is the psi	function ���
Vol�I��
Consequently� resuming the obtained results we observe that the left inverse operator takes

the form

�����
 f�� 
 �
�

���
lim
N��

sinh��� 

Z N

��N
Ki� ��

p
x
�KLf ��x


dx

x
�

However� in the samemanner from the Parseval equality ����
 for an arbitrary g � L��R��x��dx

we prove that �KL��� is the right inverse� i�e� �����
 is the inverse operator� We summarize
our discussion of this section in the following Plancherel theorem for the Kontorovich	Lebedev
transform�

Theorem �� The Kontorovich�Lebedev operator ����
 is an isometric isomorphism between

the Hilbert spaces L�

�
R��

�d�
sinh����

�
and L��R��x��dx
� The Kontorovich � Lebedev operator

and its inverse are represented by the formulas ����
� ����
� respectively�
Remark �� Other types of Parseval formulas for the Kontorovich	Lebedev transform can

be found in ���� ���� ����� ����	�����

� The Parseval theorem for the transform �����

In this section we generalize the Parseval equality ����
 to the operator GH�� As examples we
will exhibit both known and new equalities for particular cases of the transform ����
�
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Let us consider two transforms �GH�f
� �GH
f
 of the function f for two di�erent multi	
pliers �� �� We assume f to be from C�c �R�
�
We start with the investigation of the integral

����
 I�
 �
Z �

�
�GH�f
�x
�GH
f
�x


dx

x
�

If GH�� GH
 � L��R��x��dx
 then by the Parseval theorem for the Mellin transform we
immediately obtain the equality

����

Z �

�
�GH�f
�x
�GH
f
�x


dx

x
�
�

��

Z �

��
�GH�f


M�it
�GH
f
M�it
dt�

where M denotes the Mellin transform of the functions �GH�f
� �GH
f
 being evaluated at
the point s � it� As we required above the kernel H��x� � 
 is a L��R��x����dx
	function for
all � � Therefore the Plancherel theorem for the Mellin transform gives

����
 lim
a��

Z a

��a
H��x� � 
x

s��dx � �
�
s�

i�

�

�
�
�
s� i�

�

�
��s
�

where s � ��it� Further� since f � C�c �R�
 one can multiply ����
 by xs�� and integrate over
x � ���a� a�� After changing the order in the integral on the right� we arrive at the equality

���


Z a

��a
�GH�f
�x
x

s��dx �
Z �

�
�f�� 


Z a

��a
H��x� � 
x

s��dxd��

The left	hand side of the equality ���

 tends to �GH�f
M�s
 in the mean square over �� �
i	� � � i	
 when a � 	� Applying the generalized Minkowski inequality we motivate the
limit passage in mean square over �� � i	� � � i	
 under the sign of the integral in the
right	hand side of ���

� Indeed� we have

					
					
Z �

�
�f�� 


�
H��s� � 
��s
�

Z a

��a
H��x� � 
x

s��dx

�
d�

					
					
�

�
Z �

�
j�f�� 
j

					
					H�s� � 
��s
�

Z a

��a
H��x� � 
x

s��dx

					
					
�

d�

����
 �
Z
suppf

j�f�� 
j
					
					H�s� � 
��s
�

Z a

��a
H��x� � 
x

s��dx

					
					
�

d� � ��

when a�	� Thus we �nd that

����
 �GH�f

M�s
 � ��s


Z �

�
�f�� 
�

�
s�

i�

�

�
�
�
s� i�

�

�
d� � L��� � i	� � � i	
�
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Furthermore� from the integral ����
 we immediately obtain the Mellin dual formula for the
product of gamma	functions

����
 �
�
s�

i�

�

�
�
�
s� i�

�

�
� �

Z �

�
Ki� ��

p
x
xs��dx� � � ��

So ����
 can be written in multiplier form

����
 �GH�f

M�s
 � ��s
�KLf �M�s
� � � ��

where �KLf �M�s
 is the Mellin transform of the Kontorovich 	Lebedev transform ���

� Fur	
ther� from Theorem � and the Mellin	Parseval equality �see ����

 it follows that �KLf �M�it
 �
L��R
 �� � �
� To establish regularity properties of GH�� we now prove

Lemma� �i� For any f � C�c �R�
 the Mellin transform �GH�f
M�it
 can be written in
the form

����
 �GH�f

M�it
 � ����it���� � �it
��it
� f
�t
�

with

� f
�x
 �
�p
��

Z �

�
e�i�x �fs�arccosh e���
d
�

where �fs is the Fourier sine transform of f � We have�
�ii�  � L��R�
 �� L��R�
 is a bounded operator�
�iii� for any 
 � �  � H��R�
 �� H��R�
 is a bounded operator in Sobolev spaces� In

particular� if f � H��R�
 then � f
�t
 is a bounded function�
�iv� the function t �� � f
�t
 can be extended to an analytic function in the lower half�

plane�
Proof� Substitute the integral representation� cf� �����

 from �����

�
�
s�

i�

�

�
�
�
s� i�

�

�
�
���s


���s���

Z �

�

cos��y
dy

cosh�s y

in ����
� Change the order of integration�

�GH�f

M�s
 �

p
�

��s����
���s
��s


Z �

�

�

cosh�s y

�
s
�

�

d

dy

Z �

�
f�� 
 sin��y
d�dy�

After integration by parts� using ���s
�s � �����s
� s � it and the substitution e� � cosh� y
we arrive at the desired representation ����
� Propositions �ii
 and �iv
 follow from the L�	
theory and analytic continuation of Fourier integrals�
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Let us estimate the norm in the Sobolev space H�� 
 � �� We have�

jj f jj�H� �
Z �

�
j �fs�arccosh e���
j��� � 
�
�d


� �
Z �

�
j �f�y
j��� � �� log�cosh y

�
� tanh ydy

� �
Z �

�
j �fs�y
j��� � 
y�
�dy

� �����
Z �

�
j �fs�y
j��� � y�
�dy � �����jjf jj�H��

Thus we obtained �iii
� Now Sobolev�s lemma says�  f � H� implies that � f
�t
 is a
bounded and continuous function� This completes the proof�

Corollary� Let the function ��t
 � ��� � �it
��it
 be uniformly bounded on R� Then
�GH�f
M�it
 � L��R
 for any f � L��R�
�
Indeed� this statement follows from the estimate

jj�GH�f

MjjL��R� � �� sup

t�R
j��t
j jj f jjL��R� � Cjjf jjL��R���

in view of the fact that the representation ����
 can be continuously extended to the whole of
L��
Suppose now

���
�t
 � ��it
��it
� t � R
to be a positive function on the whole real axis� Substitute the expressions of �GH�f
M�it
�
�GH
f
M�it
 from ����
 in the right	hand side of ����
� where the integral ����
 for �KLf �M�it

�� � �
 is to be understood in the principal value sense near � � ��t� As the result we obtain

�����
 I�
 �
Z �

�
�GH�f
�x
�GH
f
�x


dx

x
�
�

��

Z �

��
���
�t
j�KLf �M�it
j�dt�

Note that also

�����
	 I�
�f� h
 �
Z �

�
�GH�f
�x
�GH
h
�x


dx

x
�
�

��

Z �

��
���
�t
�KLf �M�it
�KLh�M�it
dt�

which is the key formula for Section 
�
Now we are ready to prove the following Parseval theorem for the general transformation

�GH�f
�
Theorem �� Let the multiplier � satisfy the conditions of the Corollary� Then GH� is a

bounded operator from L��R�
 into L��R��x��dx
�
Moreover� if j��it
j � C� where C � � is a constant� then GH� is bounded from L�

�
R��

�d�
sinh����

�
into L��R��x��dx
�
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Next� if ���
�t
 � C� t � R�then for f � L�

�
R��

�d�
sinh����

�
the integral ����
 is 	nite and

�����

Z �

�
�GH�f
�x
�GH
f
�x


dx

x
� 
��C

Z �

�

�

sinh��� 

jf�� 
j�d�

where equality is achieved when ���
 is a constant� Finally� if j��it
j � C �� �� the operator GH�

forms an isomorphism between spaces L�

�
R��

�d�
sinh����

�
and L��R��x��dx
 with the Parseval

equality

�����

Z �

�
j�GH�f
�x
j� dx

x
� 
��C
�

Z �

�

�

sinh��� 

jf�� 
j�d��

In the latter case the inverse operator is given by the following expression in mean square sense

�����
 �G��H�g
�� 
 �
�


��C
�
lim
N��

sinh��� 

Z N

��N
H��x� � 
g�x


dx

x
�

Proof� Indeed� the boundedness of the operator GH� from L��R�
 into L��R��x��dx

follows from the Corollary to the Lemma� If� in addition� j��it
j is bounded we use the
representation ����
 and the Parseval equalities for the Mellin and the Kontorovich	Lebedev
transforms �see ����
� �����

� This gives the estimate

Z �

�
j�GH�f
�x
j� dx

x
�
�

��

Z �

��
j��it
j�j�KLf �M�it
j�dt

� C

��

Z �

��
j�KLf �M�it
j�dtdt � C

Z �

�
j�KLf ��x
j� dx

x
� 
��C

Z �

�

�

sinh��� 

jf�� 
j�d� �	�

If ���
 is bounded then in a similar way one can deduce relations �����
	�����
 from the equality
�����
� It remains to prove that whenever j��it
j � C the operator GH� is an isomorphic
mapping of the Hilbert spaces mentioned just before �����
 and also that the inverse operator
is given by �����
�
From the equality �����
 it follows analogous to ����
 that the sequence fGH�fng is a

Cauchy sequence and it converges in mean to some limit function G�x
 whenever the sequence

ffng from C�c is a Cauchy sequence in L�

�
R��

�d�
sinh����

�
�

Further we have

����


Z �

�
�GH�fn
�x
dx �

Z �

�
�fn�� 


Z �

�
H��x� � 
dxd��

According to Schwarz�s inequality the right	hand side of the equality ����

 is uniformly con	
vergent in n � �� �� � � � if we show that the integral

�����

Z �

�

sinh��� 


�

					
Z �

�
�H��x� � 
dx

					
�

d� �	
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for each 
 � �� But
�����


�
Z �

�
H��x� � 
dx �




��i

d

d�

Z ��i�

��i�

Z �

�
y�

�
s�

iy

�

�
�
�
s� iy

�

�
��s

�s

�� s
dyds� � � � � ��

From ����
 and �����


� �KM��� � � it
 �
Z �

�
y�

�
� � it�

iy

�

�
�
�
� � it� iy

�

�
dy� � � ��

Since �K��� x
 � L��R��x��dx
 we immediately arrive at

�KM��� it
 � lim
���

�KM��� � � it
 � L��R
�

We assumed j��it
j � C and this implies that ��it�
��it � L��R
 too� Consequently� in the

contour integral over s in �����
 we can take � � �� Via the Mellin	Parseval identity we �nd

�
Z �

�
H��x� � 
dx �




�

d

d�

Z �

��
�KM��� it


��it

�it

�� it
dt

� �

d

d�

Z �

�

�K��� x
�	�x


dx

x
�

where �	�x
 � L��R��x��dx
 and �	M�it
 �
���it�
��it � From Theorem � it follows that the latter

integral belongs to L�

�
R��

sinh����d�
�

�
� Hence the integral �����
 is �nite� Making n � 	 in

����

 we arrive at the equality

Z �

�
G�x
dx �

Z �

�
�f�� 


Z �

�
H��x� � 
dxd�

and for almost all x � �

G�x
 �
d

dx

Z �

�
�f�� 


Z x

�
H��u� � 
dud��

Put fN �� 
 � f�� 
� � � ���N�N � and fN � � outside� Then one can perform the di�erentiation
under the sign of the latter integral and obtain

GN �x
 �
Z N

��N
�f�� 
H��x� � 
d� � �GH�fN 
�x
�

Via the Parseval equality �����


Z �

�
jG�x
� �GH�fN 
�x
j�dx

x
� 
��C
�

�Z ��N

�
�
Z �

N

�
�

sinh��� 

jf�� 
j�d��
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which tends to � as N �	� Hence the transform ����


�����
 G�x
 � �GH�f
�x
 � lim
N��

Z N

��N
�f�� 
H��x� � 
d�

makes sense in L��R��x��dx
� As in Section �� from the equality �����
 we deduce an inversion
formula

f�� 
 �
�


��C
�
sinh��� 


�

d

d�

Z �

�

Z �

�
yH��x� y
�GH�f
�x


dydx

x
�

which is equivalent to the form of the inversion operator �����
 if we prove that for each � � �

�����
 G�x� � 
 �
Z �

�
yH��x� y
dy � L��R��x

��dx
�

Similar to �����
 for almost all x � � we have the representation

G�x� � 
 �
�

��

d

dx

Z �

��

Z �

�
y�

�
� � it�

iy

�

�
�
�
� � it� iy

�

�
��� � it
x����it

�� � � it
dydt�

and the Parseval equality of type

�����

Z �

�
jG�x� � 
j�x����dx � �

�

Z �

��
j �KM��� � � it
��� � it
j�dt�

where � � � � A�A � � and to obtain the property �����
 we let � � � in �����
� as in Section
�� Accordingly we arrive at the equality

Z �

�
jG�x� � 
j�dx

x
�
�C�

�

Z �

��
j �KM��� it
j�dt �	�

Analogously we �nd the form of the inversion operator for the transform GH�� This �nishes
the proof of Theorem ��

	 Examples

In this section we give some examples of the general transform �GH�f
�x
 and the Parseval
equalities for them� where H�s� � 
 is de�ned by the formula ����
� As we will see below they
may lead to di�erent isometries of Hilbert spaces�

�� The Kontorovich�Lebedev transform� The simplest basic example leads to the
Parseval equality �Section �
 for the Kontorovich	Lebedev transform ���

 when we let ��s
 �
��s
 � ��

�� The generalized Mehler�Fock transform� Let�s follow our table in the Section �
and take line � which corresponds to the generalized Mehler	Fock transform ����
� We look
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for the kernel H
�x� � 
 for this case with ��s
 � ����� � s
������ � � � s
� Then appealing
to the formula ���
�
����
 from ���� we evaluate the corresponding integral ����
 and obtain

�
��
 H
�x� � 
 �
�

cosh�����

x������ � x
����P �

�i������

�
�

x
� �

�
�

In our case �cf� ����

 �GH�f
�x
 � �MFf ��x
 and the multiplier ��s
 is de�ned by line � of
the Table in section �� Consider the Mehler	Fock transform in the form

�
��
 �GH
h
�x
 � �x������ � x
���
Z �

�

�

cosh�����

P �
�i������

�
�

x
� �

�
h�� 
d��

where we set h�� 
 � ��� cosh�����
j���� � i� 
�� � �
j�f�� 
� Observe that for the classical
Mehler	Fock transform �� � �
 we have h 
 f � Then comparing with ����
 we immediately
�nd that �GH
h
�x
 � �MFf ��x
� Hence similar to the equality �����
� applying the Parseval
equalities for the Mellin and the Kontorovich	Lebedev transforms �cf� ����

� we deduce the
following Parseval relation for the generalized Mehler	Fock transformation ����


�
��

Z �

�
j�MFf �j�dx

x
� ��

Z �

�

� j���� � i� 
��� �
j�
sinh�����


jf�� 
j�d��

�� The Olevskii�Fourier�Jacobi transform� Take the kernel �����
 and put ��s
 �
��a�s
���c�a�s
 to �nd the kernelH
�x� � 
� The corresponding integral ����
 is evaluated
in ���� �formula ���
�
���


 which gives

�
�

 H
�x� � 
 �

			� �a� i �
�

�			�
��c


x�a�F�

�
a�

i�

�
� a� i�

�
� c���

x

�
� x � ��

Note that the Gauss function �
�

 is represented by the series ����
 for the respective pa	
rameters and x � �� For � � x � � one can understand it as an analytic continuation� cf�
�����
�
If we write

�
��
 ��F�f ��x
 �
x�a�� � x
�a�c

��c


Z �

�
�

				�
�
c� a� i

�

�

�				� �F�

�
a�

i�

�
� a� i�

�
� c���

x

�
f�� 
d��

�
��
 �� �F�h��x
 �
x�a

��c


Z �

�
� j��a� i���
j��F�

�
a�

i�

�
� a� i�

�
� c���

x

�
h�� 
d��

and take

h�� 
 � f�� 


					��c� a� i���


��a � i���


					
�
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we get ��F�f ��x
 � �� � x
�a�c�� �F�h��x
 and as a consequence a Parseval equality of type

�
��

Z �

�
j��F�f ��x
j��� � x
c��a

dx

x
� 
��

Z �

�

�

sinh��� 


					��c � a� i���


��a� i���


					
�

jf�� 
j�d��

�� The transform with the Whittaker function� Starting from line �� of the Table
in Section � introduce the following transformation over the index of the Whittaker function
�� � R


�
��
 �W�f ��x
 � x����e�x��
Z �

�
�W��i����x
f�� 
d��

The related transform � �W�h��x
 with the kernel from line �� takes the form

�
��
 � �W�h��x
 � x����ex��
Z �

�
� j���� � i� 
��� �
j�W��i����x
h�� 
d��

Hence as a consequence for h�� 
 � f�� 
�j���� � i� 
��� �
j� we obtain the following Parseval
equality

�
���

Z �

�
exj�W�f ��x
j�dx

x
� 
��

Z �

�

�

sinh��� 
j���� � i� 
��
� �
j� jf�� 
j
�d��

	� Integral transformations over parameters of the hypergeometric �F�� func�

tion� As a �nal example consider a generalization of the Olevskii	Fourier	Jacobi transforms
�
��
	�
��
� which involves as its kernel the hypergeometric function �F�� which is de�ned by
the series

�
���
 �F��a�� a�� a�� b�� b�� z
 �
�X
n��

�a�
n�a�
n�a�
n
�b�
n�b�
n

zn

n�
� jzj � ��

Put a� � a� i���� a� � a� i���� a� � b� b� � c� b� � d� If

��s
 �
��a� s
��b� a� s


��c � a� s
��d � a� s

�

then in view of the formula ���
�����
 from ���� we obtain

H��x� � 
 �
j��a� i���
j���b


��c
��d

x�a�F�

�
a�

i�

�
� a� i�

�
� b� c� d���

x

�
�

where this kernel is the series like �
���
 for x � � and for � � x � � it is an analytic
continuation of the corresponding power series for the �F�	function� It can be deduced by
calculation the Mellin	Barnes integral ���
�����
 in ���� through the sum of residues in the left	
hand poles of the gamma	functions� Thus we arrived at the generalization of the transform
�
��
 for b �� d� namely

��F�f ��x
 �
x�a��b

��c
��d


Z �

�
� j��a� i���
j�
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�
���
 ��F�

�
a�

i�

�
� a� i�

�
� b� c� d���

x

�
f�� 
d��

The corresponding kernel will be found from the integral like ����
 for

�
���
 ��s
 �
��c � a� s
��d � a� s


��a� s
��b� a� s

�

It is more convenient to calculate the integral explicitly as the sum of residues at the left	hand
poles of gamma	functions and � � x � �� As a result we obtain

H
�x� � 
 �
��c� a� i���
��d � i���
���i� 


��b� i���
��a� i���

xi���

��F�

�
c� a�

i�

�
� d�

i�

�
� �� a�

i�

�
� b�

i�

�
� � � i� ��x

�

�
��c � a� i���
��d � i���
��i� 


��b� i���
��a� i���

x�i���

�
��

 ��F�

�
c� a� i�

�
� d� i�

�
� �� a� i�

�
� b� i�

�
� � � i� ��x

�
�

For x � � the kernel �
��

 is analytically continued as a sum of residues of the corre	
sponding integrand in the right	hand poles series s � c� a�n� s � d� n� n � �������� � � �
of the function � �
���
 similar �����
 for the Gauss function�
Hence making use of the evenness of the integrand one can introduce the transform as

follows

�� �F�f ��x
 �
Z �

��
�
��c � a� i���
��d � i���
��i� 


��b� i���
��a� i���

x�i���

��F�

�
c� a� i�

�
� d � i�

�
� �� a� i�

�
� b� i�

�
� �� i� ��x

�
f�� 
d��

The Parseval equality will be the following

Z �

�
��F�f ��x
�� �F�f ��x


dx

x
� 
��

Z �

�

�

sinh��� 

jf�� 
j�d��
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