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Foreword 

Thirty years ago, at the time that N.G. de Bruijn began the Automath project here at 
Eindhoven University of Technology, computer technology was far less advanced than it is 
now. It was still not unknown, for example, for computer programs to be prepared on paper 
tape, punch cards being the preserve of the more affluent establishments. It is not surprising, 
therefore, that the early computer systems were for experts only, and systems offering support 
for De Bruijn's dream of automating mathematics paid no attention to the interface with the 
hunlan user. 

The technological advances that have been made since then are mind-boggling. Most 
recently, the technology of human-computer interaction (HCI, for short) has progressed in 
leaps and bounds, bringing everyday computer usage at long last to the man on the street. 
Systems for automating mathematics have also made substantial progress, but the interfaces 
with the user have not kept pace and are most often still based on teletype technology. Thanks 
to the Internet, the world may be at your feet, but ergonomic interaction with automated 
mathematics is still way up in the clouds! 

The workshop on User Interfaces and Theorem Provers was begun in 1995 in recognition 
of the fact that the difficulty in using powerful theorem proving software frequently lies with 
a poor user interface. There are gaps between the knowledge required by designers of such 
interfaces and present state of the art in general interface design technology. Effective solutions 
require the collaboration of HCI practitioners and the authors and users of existing theorem 
proving software. The increased level of interest, judged by the number of submissions, in this, 
the fourth in the series, is evidence that more and more implementors of theorem provers are 
becoming aware of the importance of good interface design, and the possibilities that modern 
technology offers. 

In keeping with the nature of a workshop, this volume contains a number of working 
papers describing ongoing research at various stages of completion. The immediate goal of 
the workshop is to stimulate discussion based on actual experimentation with real-life systems 
and to feed that discnssion back into further development. The long-term goal is to make the 
workshop defunct as a result of the improvements that have been effected. I look forward to 
a lively, enjoyable and memorable workshop. 

Roland Backhouse 
2nd June, 1998. 
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Overview and Rationale of an Industrial Prover 

J.-R. Abrial 

Consultant* 
26, rue des Plantes 75014 Paris 

abrialOsteria.fr 

In this document, we briefly present a program called the Predicate Prover (for short PP). 
This program essentially offers four functionalities, which are the following: 

A decision procedure for Propositional Calculus. 
A partial semi-decision procedure for First-Order Predicate Calculus. 
A systematic translation of Set-Theoretic Predicates. 
A coherent treatment of Linear Arithmetic statements. 

In what follows, we shall quickly present these features in turn. We then show how PP 
is integrated within the B-Technology' [1] [2], as implemented by Atelier B' [3]. In the last 
section, we comment on a number of rationales and concepts that have been used in the 
design of PP. Finally, an appendix contains some problems solved by PP and shown in a 
demo. 

A Propositional Calculus Decision Procedure. 

PP essentially first contains an implementation of the decision procedure of Propositional 
Calculus, which is presented in the B-Book [1]. This procedure is very close to what is 
elsewhere proposed under the technical name of Semantic Tableaux [4]. It is a Sequent 
Calculus. Next is a sample of a classical proposition proved by PP: 

I- ((a <0> b) <0> c) <0> (a <0> (b <0> c)) 

The proof procedure gradually transforms an original sequent with no hypotheses into some 
sequents with atomic hypotheses only (either positive or negative). Such a sequent is dis
charged as soon as its collection of hypotheses contain a certain atomic formula together 
with its negation. 

A demo is available showing the step by step behaviour of PP. The following items are 
presented at each step: (1) the sequent at hand, (2) the inference rule that is applied to 
it, (3) the newly generated sequent (if any), and (4) the tree structure of the proof (this 
is done by means of proper indentations). A less verbose trace only presents the successive 
sequents (still with the indentation but without the rules). A completely silent execution is 
also proposed that makes the prover a genuine little "pocket prover". 

* Supported by STERIA, SNCF, RATP and INRETS. 
1 B is a model oriented method used in industry to develop safety critical (and other) software 

systems. 
2 Atelier B is the set of industrial tools associated with the B Method. 





ments, where complex set memberships have disappeared, the remaining set membership 
operators being left uninterpreted. For instance, a set-theoretic predicate such as s E IP'(t) 
is transformed into \lx.(x E s => x E t). The translator then just performs the translation 
of the various instances of set membership. They correspond to the classical set operators 
(U, n, etc), to the generalization of such operators, to the binary relation operators, to the 
functional operators (including functional abstraction and functional application), and so on. 

A demo is available that presents set-theoretic lemmas together with the corresponding 
translations. It then shows the corresponding proofs using the above macro-step traces. Next 
is such a lemma with its translation (where r[aJ and r[bJ respectively denote the images of 
the sets a and b under the relation r): 

LEMMA 
r<;sxt 1\ 

a<;bl\ 
b <; s 

=> 
r[aJ <; r[bJ 

TRANSLATION 
\I(x,y).((x,Y)Er => xEs) 1\ 

\I(x,y) .((x,Y)Er => yEt) 1\ 

\Ix . (x E a => x E b) 1\ 

\Ix . (x E b => xES) 
=> 
\ly. (3x. (x E al\ (x,y) E r) => 3x. (x E bl\ (x,y) E r)) 

The Treatment of Linear Arithmetic. 

The Predicate Prover is then once again extended in order to handle Linear Arithmetic. For 
this, we introduce new predicates involving the classical order operators between integers 
«, :S, etc). Such predicates are treated when it is time to discover of a contradiction in 
the collection of hypotheses (see above). Such arithmetic hypotheses are first normalized, 
then a straightforward linear technique is used in order to search for a possible contradiction 
between them. As a very simple example, the prover is able to prove statements like this: 

a :s b 1\ c:s d => a+c :s b+d 

The Set Translator is also extended accordingly so as to treat sets that are related to 
arithmetic as well, namely intervals and sequences. It also translates predicates involving 
the minima and maxima of non-empty finite sets of integers. Next is an example of a simple 
lemma that is proven very easily after such a translation: 

cE(a .. b) 1\ bE(c .. d) => (c .. b)=(a .. b)n(c .. d) 



The Integration of the Predicate Prover within the B- Technology. 

In this section, we present the genesis of PP, we show how it has become one of the pieces 
of the B-Technology, and we explain how it is integrated within Atelier B. The Prover of 
Atelier B (for short PB), which constitutes a distinct project from that of PP presented 
above, works according to two modes: automatic and interactive (the interactive mode be
ing just, in first approximation, a way of manually pulling the various strings offered by PB). 

We remind the reader that a typical B development resulting in n lines of code, demands 
the proof of approximatively n/2 lemmas. At the moment, the behavior of PB corresponds 
to the following typical figure, which is valid for an entirely proved industrial project (say, 
50,000 lines of ADA code): 80% of the proofs is discharged automatically by PB, versus 20% 
interactively. In this case then, approximately 5,000 lemmas have been proved interactively 
(less, in fact, because the user of PB can take advantage of the systematic discovery of cer
tain proof sequences, which can then be incorporated into some tactics able to be called 
automatically). This figure has oriented the way PB has been designed. Automatization is 
indeed indispensable but, as the interactive part of the proof effort is also not negligible, 
both aspects of the proof technology must be implemented with great care. 

The main part of PB is based on a number of rules (more than 2,000) that have been 
introduced gradually during the multi-year construction of this prover. It also contains cer
tain proof mechanisms that may be handled by the user in an automatic or interactive way. 
Finally, the user might himself introduce some new rules and new tactics that may also be 
handled automatically or interactively. As can be seen, the process by which PB has been 
constructed is essentially a pragmatic one. 

As time passes, we were confronted (under the pressure of some industrial users) with 
the problem of the correctness of the rules of PB. This is indeed a very serious problem 
that cannot be treated by means of some reassuring (hand-waving kind of) discourses. This 
is how PP has started, essentially as an extraneous project to be used in order to validate 
PB. The result has been more or less what we feared: a number of rules of PB were slightly 
erroneous (less than 5% however, but still not 0%). 

In order to keep the construction of PP under control, we choose an incremental design 
that followed the incremental construction of Mathematics that is presented in the B-Book. 
This allowed us to use PP to validate PB in an incremental fashion. In other words, as soon 
as some stage of PP were finished, we used it to validate the corresponding rules of PP. The 
incremental design of PP resulted in an incremental validation of PB. 

More serious even than the possibility of erroneous rules in PB is the possibility of the 
user introducing some erroneous rules during the proof of a B design. In order to cope with 
this problem we had no choice but to integrate PP within PB. Thanks to this integration, a 
user-defined rule can thus be validated (proved) before being used. 

The practice of proving user-defined rules within PB pretty soon induced the idea of 
sometimes using PP directly on the problem at hand rather than first proving a necessarily 
ad-hoc rule and then instructing PB to use it. This results in a deeper integration of PP 
within PB. This process is still under way. 

o. 



Of course, this direct usage of PP has its limitations. It is essentially due to the fact that 
a typical B lemma may have many hypotheses (more than one hundred is a not an excep
tion). Clearly, among these hypotheses, a few of them only are relevant to prove the lemma 
at hand. As PP is very sensitive to noisy (useless) hypotheses, it may sometimes fail (or run 
for too long a period of time) on problems on which it is normally due to succeed very easily. 

In order to cope with this problem, we introduced the possibility to choose the hypothe
ses to be kept before launching PP on a certain lemma. As this choice, however, differs 
from one lemma to the other, it is not easily generalizable. In order to circumvent this diffi
culty, we introduced some heuristics, whose intended effect is to automatically remove some 
apparently useless hypotheses. This has given some interesting results. Consequently, the 
possibility was given to incorporate these heuristics in some automatic tactics expanding 
the standard one. Note that the problem is complicated by the fact that, sometimes, the 
validity of the lemma is simply due to the presence of some contradictory hypotheses that 
have thus nothing to do with the main part of the problem. In such circumstances, as one 
can imagine, the hypotheses removing heuristics might fail. 

This integration of PP within PB has significantly modified the user practice. At present, 
a typical interactive proof session with Atelier B first starts by invoking some classical fea
tures of PB: adding an hypothesis, transforming the goal by means of some assumed equality, 
proposing some existential witness, and so on. \Vhen the goal and the hypotheses seem to 
be ripe enough, a simple invocation of PP (with an automatically reduced set of hypotheses) 
then quite often discharges the goal without any further intervention. In case such a protocol 
seems to repeat itself on other proofs, it can then be proposed as a new automatic tactics. 

Some Rationale Behind the Construction of PP. 

In this section, we present some ideas and concepts that have driven us in the construc
tion of PP. We have already explained above how PP has been developed incrementally on 
the basis of a hierarchy of provers. Although important, this strategy is, after all, nothing 
else but a good design practice. 

The most important idea, we think, behind the construction of PP, lies in the fact that 
it has been designed around a fixed wired-in logic, which is the most classical of all, namely 
First-Order Predicate Calculus with Equality (used as the internal engine), and Set Theory 
(used as the external vehicle). 

In no way is PP constructed from a meta-prover able to be parameterized by a variety 
of distinct logics. This contrasts with what can be seen in academic circles where extremely 
powerful general purpose Proof Systems are usually offered. Our approach is quite different, 
it is rather similar to that used in the development of some "industrial" programs handling 
symbolic data. For instance, a good C compiler is not a meta-compiler specialized to C; 
likewise, a good chess-playing program is not a general purpose game-playing program spe
cialized by the rules and strategies of the chess game. 

In our case, we have internalized classical logic because it is clearly that very logic that 
is to be used in order to handle the usually (mathematically) simple lemmas that are to be 
proved in order to validate software developments. This is not to say, however, that classical 





A concept that is clearly missing in the ones listed above is that of induction/recursion. 
Such a negative aspect is, in general, not very interesting to mention. But, in this case, 
because of its massive presence in other similar work and, more generally, in computing 
science, its absence, as a founding concept, obviously deserves some explanations. This is 
not to say, of course, that proofs by induction should be excluded from PP: although it is not 
implemented at the moment, it shortly will, since we clearly deal with inductive structures, 
namely numbers and sequences. 

Our view is that inductive structures have been overemphasized in computing, perhaps 
because such structures are immediately computable. One should look a little more at com
puting from a non-computable world. Mathematics is full of examples where a point of view 
taken from the "complement" of a certain field helps studying it: infinity is used to study 
finiteness, the complex numbers to study the reals, more recently non-standard analysis 
provides a very interesting view point on classical analysis, etc. We think that the art of 
program development is precisely that of extracting the computable from richer not (nec
essarily) computable worlds. To do this, one should build abstract mathematical models of 
such worlds, models that are thus certainly not computable (at least in their more abstract 
versions). In order to validate our reasoning on such models, we might need some mechanical 
aids which are thus perhaps not necessarily tailored to work on computable models. 

Some Concluding Remarks. 

A prover technology, like the compiler technology more than three decades ago, is starting to 
emerge. The question of the automation and power of such provers becomes central. Hence 
old techniques should be applied and new techniques discovered in order to optimize them. 

Such provers will certainly be integrated into some tools associated with certain methods 
of software development. But they should also constitute, in my opinion, some independant 
tools at the disposal of the designers, not only the software designers, but also, perhaps, the 
system designers. 

At the moment, the initial analysis and architectural design of complex systems is done 
in a rather manual way. People perform some simulations to convince themselves that a 
certain architecture that they have in mind is viable. With a powerful prover it is, I think, 
possible to transform such simulations into genuine proofs. In very much the same way as 
the civil engineer is using its pocket calculator to quickly compute some order of magnitude, 
we could think of a future where the system designer will use also very often its "pocket 
prover" to validate some sketchy architecture he has in mind. 

Acknowledgments. 

I like to thank Nicolas Carre very much. He is the person in charge of integrating my 
numerous versions of PP within PB. He makes a number of very useful remarks and com
ments. As usual, discussions with and comments from Louis Mussat are very welcome and 
pertinent. Many thanks to him. 
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APPENDIX, Sample Problems Solved by PP. 

The formulae presented below are written with a certain classical mathematical set
ting through LATEX. Of course, they are not entered as such in PP. However, the general 
structure of the formulae given to PP is almost exactly the same, the operators being con
ventionally represented in ASCII by means of one or more symbols. 

Propositional Calculus. 

(P V Q V R) {o? (P V (Q V R)) 

(P II (Q V R)) {o? ((P II Q) V (P II R)) 

((P {o? Q) {o? R) {o? (P {o? (Q {o? R)) 

First-Order Predicate Calculus. 

V(x,y)· (P(x) II Q(y) =} R(x)) II 
:3z.(.R(z) II P(z)) II 

=} 

Vt· ',Q(t) 

:3x.A(x) 
:3y . B(y) 
Vz· (A(z) 

=} 

II 
II 

=} Vt· (B(t) =} C(z,t))) 

:3 (u, v). C(u, v) 

V(x,y,z). (R(x,y) II R(y,z) =} R(x,z)) II 

V(u,v). (R(u,v) =} R(v,u)) II 
Va·:3b· R(a,b) 

=} 

Vt . R(t, t) 

Vx.(P(x) =} x=a V x=b) II 
Vx· (R(x) =} P(x)) II 
.R(a) II 

=} 

Vx·(R(x) =} x=b) 

It"> 





pEs H t 1\ q E t H U 1\ r E u H v => ((p; q) ; r) = (p; (q ; r)) 

Operations on Functions. 

fEs-<+t 1\ aCt 1\ br:;;t => f-l[anb] 

Injections and Surjections. 

f E s >H t 1\ gEt >H U => (f; g) E S >-H U 

f E a ;-, b 1\ rEa H b 1\ sEa H b 1\ (r; f) = (s ; f) => r = 8 

f E a --+ b 1\ ran (f) = b 1\ rEb H C 1\ s E b H C 1\ (f; r) = (f ; 8) => r = S 

Equivalence relations. 

rEsBs 1\ 

id (8) r:;; r 1\ 
r = r- 1 1\ 

(r;r)r:;;r 1\ 

xEs 1\ 

yE8 

=> 
(x,y) E r ¢} r[{x}] r[{y}] 

fE8--+t 1\ 
r=(f;f-l) 

=> 
id (8) r:;; r 1\ 
r=,-l 1\ 

(r;r)r:;;r 

'L. . 







The detection and elimination of spurious complexity 

Harold Thimbleby 
Computing Science 
Middlesex University 
London, Nll 2NQ, GB 

Abstract 
Computer science develops complex systems that demand all our attention to just begin to 
understand. Critical thinking is overwhelmed, that might otherwise have been directed at 
rhetoric blocking and hubris detection. This paper shows that there is much unchecked 
hyperbole in computing, which affects our own standards and ability to design well. The paper 
explains why such bullshit comes about, how people collude in its propagation, and proposes 
ways of reducing the problem. Furthermore, we show that detecting and ellminating it is a high 
calling, and must be seen as engaging in justice and fighting hypocrisy (even in ourselves), and 
is an extremely worthwhile, if daunting, task. 

"Learning how to not fool ourselves is, I'm sorry to say, something that we 
haven't specifically included in any particular course that I know of. We just 
hope you've caught it by osmosis." Richard Feynman 

Introduction 
When computers work well, they work very well. Handheld calculators would have been 
miracles a few years ago; fly by wire aircraft are very impressive ". there are many other 
examples. But when things go wrong, as they do from time to time, they can go brain dead in 
ways we would rather quickly forget than think about. 

I was told recently of a frustrated user who jumped up and down on his electronic personal 
organiser, until there was broken plastic and glass around on the floor. I am sure it was a 
satisfying experience! But can you imagine someone jumping up and down on their paper 
diary? You'd have to be mad to get much satisfaction from destroying one. 

There is something special about computer systems, which personal organisers in the story 
. represent. They are complex, unreliable - and yet we depend on them, and buy upgrades to go 
even faster. 

So what uniquely identifies computing? We could start with an approach like Turing's, but 
this defines an object of study, not what characterises it. What is unique is the impact of 
spurious, man-made complexity. Most computing is not based on elegant programs, or even 
ones that work, but consists of hugely complex systems like Windows 98, the World Wide Web 
(and all its browser software), aerospace systems, financial systems, nuclear control systems, 
video recorders, and a host of consumer gadgets, from toasters to tamagotchis. Indeed, 
tamagotchis represent computing rather well: 

• 

• 

• 

• 

• 

• 
• 
• 
• 

They are promoted as fashion accessories. Tamagotchis are available in a wide variety 
of distinctive packaging. 

They appear to be very simple (so simple that they are children's toys, and children 
can do better with them than adults). 

They have a life of their own. (famagotchis run animal simulations, such as dogs, and 
they require virtual feeding, training, virtual cleaning, exercise, and so on.) 

Their purpose in life is to be difficult to use. They have to be cared for. Cults of experts 
gain esteem from becoming knowledgeable about them. 

They are badly engineered. They have reset buttons, which indicates that their 
designers antiCipated that the internal firmware could fail. 

Despite these problems, people consume them eagerly. 

Even though they fail, this does not put off hope in a new one working even better. 

They are mass produced, and have very little intrinsic value. 

They are not difficult to design. 



I know a 12 year old who has written a Visual Basic program to behave like her (now defunct) 
tamagotchi. The complexity of tamagotchis is reasonable for a 12 year old to construct, yet what 
they are is complex enough to challenge the skills of someone like myself, with postgraduate 
qualifications in computing! 

We could make many more observations - e.g., computing systems can fail but not stop 
working (a broken bridge doesn't bridge a river, but a financial program that fails is still a 
financial program). Without over-philosophising, computing concerns objects that 

• have enormous potential for autonomy, creativity, control, and performing chores. 

• are easy to construct, and to replicate once constructed. 

• but whose behaviour is hard to identify or comprehend. 

and, in consequence, they: 

• are unlikely to achieve all intended goals (but they achieve 'enough' intended goals 
most of the time). 

• support and are promoted by a social structure that rationalises their continued 
production and consumption. 

The conspicuous feature is the difference of construction complexity versus comprehension 
complexity. We can view this difference from 'inside,' examining the programming process, or 
from' outside' examining the assessment process. 

From inside, the programming effort is effectively linear. If a program is a string of bits, 
programs grow sub-linearly with the typing the programmer does (some typing may be 
deletions). The number of things a program can do, however, grows exponentially with the 
number of interactions it performs while executing - the programmer does not know what the 
outcome of interactions will be, so each interaction bit doubles the space. So, a program has a 
complexity of behaviour that grows faster than its complexity of construction. If humans have a 
bounded rationality, it follows that there are programs people can write whose model they 
cannot understand. Indeed, routinely people who are sufficiently skilled to build objects achieve 
behaviour that is incomprehensible to them - though they may have techniques to deny it. (As 
an aside, this is why formal methods are necessary: to compress the behaviour into something 
manageable.) 

From outside, interesting things happen. A person watches the execution of a program 
mediated through its peripherals, such as a window on a screen. Any observation records a 
trace, which the person generalises into a model of what the program should be able to do in 
principle. Unfortunately, there are no guarantees to this generalisation, yet evolution has 
endowed us with over-powerful mechanisms to generalise. The so-called "media equation" 
(Reeves & Nass, 1996) says we take media as reality - evolutionarily speaking, media are so 
recent that we tend to treat everything our senses perceive as real. A real program behaving like 
one demonstrated would work everywhere else in its domain; yet the demonstration has only 
shown us a single trace, and in a demonstration one cannot distinguish between a simulation 
(which need be no more than a "film") and the real thing. 

We regularly exploit the media equation for enjoyment - for the willing suspension of our 
critical faculties. Theatre is the projection of a story through the window of a stage, and typically 
the audience gets immersed in the story as if it was real. This is deliberate. We willingly suspend 
asking questions about the story that is not projected, such as we don't worry about 
unrepresented details of King Lear's life. However, if the theatre represented a real model, such 
questions would have answers. In computing, the power and technique of the theatre is 
recruited to demonstrations - there is a literature urging the exploitation of dramatic technique 
to enhance interactive systems (Laurel, 1991). It is very hard to watch a demonstration and to 
enquire about the off-stage issues: it is as if one is breaking the cultural taboos of interacting 
with actors. It is therefore tempting to come away from a demonstration believing (or not 
knowing otherwise) that the trace was typical of the general behaviour of the program.' 

There would be no problem except we require systems to meet certain prior requirements, 
and for most systems (apart from games) these requirements are hard to meet. The people who 
design and build computing systems need certain skills . 

• Theory and theatre have similar Greek roots, derived from SEa: theory is about objects of study, 
and theatre presents objects to view or study (Knuth, 1996). 

(6. 



The issue is how to eliminate spurious complexity (that is the consequence of inadequate 
skill applied to the task of constructing objects of particular behaviour) when we are not 
disposed to see it, whether we are users or designers. 

Brief examples of problems 
Casio calculators 
Calculators are an example of a mature technology. Basic calculators have well-defined 
requirements, of accuracy and performance and so on. There have been many generations of 
calculator designs, and the manufacturers have had many opportunities to 'step' their 
production to fix known problems. The only limitations on calculators are the manufacturers' 
imagination and skill. I want to devote some space to this example because so few people see 
any problem at all. 

Casio is the leading manufacturer of handheld calculators. Two of their basic models are the 
SL-300LC and the MC-IOO. 

• Pressing the buttons AC 1 + 5 % leaves the MC-IOO displaying 1.0526315 and the SL-
300LC displaying 1.05. Yet these calculators look very similar. 

• Both calculators have memories, which (so far as I can tell) are identical. The button 
MRC recalls the stored number and displays it, but pressed twice in succession sets it 
to zero. The button M+ adds the displayed number to memory, and M- subtracts from 
the memory. Given that the calculators have a memory, how can a number displayed 
be stored in memory? (Pressing M+ presupposes the memory contains zero. And to 
make the memory zero, you have to press MRC twice, but doing that sets the display 
to the memory -losing the number we wanted to store!) 

Thus a market leader, Casio, makes two similar calculators that work in subtly different ways, 
and both proclaim features that are ironic. Memory should save paper and help the users do 
sums more reliably. Yet most users (especially those that need calculators) would need a scrap of 
paper to work out how to avoid using paper to write down the number! 

Casio has been making calculators for a long time, and the two calculators are not "new" in 
any way. It is not obvious how Casio can justify either the differences or the curious features 
shared by both calculators. Neither comes with user manuals or other information that reveal 
any problems. 

Any calculator, and the Casio ones in particular, can be demonstrated. They are impressive, 
especially if a salesman shows you them going through some typical (but unsophisticated) 
calculations. It is possible to demonstrate the memory in action, and only some critical thought 
would determine that it is a very weak feature. 

Canon cameras 
The Canon EOS500 is one of the most popular automatic SLR (single lens reflex) cameras, and is 
a more complex device, with more complex requirements, than a calculator. 

In the Casio calculator examples, despite Casio's undisputed ability to make calculators, we 
might query their ability to design them. In the Canon camera example, we have more evidence. 
The EOSSOO camera manual warns users that leaving the camera switched on is a problem. 
Canon evidently know that the lack of an automatic switch-off is a problem! There is an explicit 
warning in the manual on page 10: 

"When the camera is not in use, please set the command dial to [L J • When the 
camera is placed in a bag, this prevents the possibility of objects hitting the 
shutter button, continually activating the shutter and draining the battery." 

So Canon knows about the problem, and they ask the user to set the camera off - rather than 
designing it so that it switches itself off. A cynic might suppose that Canon make money selling 
batteries or film; the next example is another case of Canon apparently trying to sell more film: 

"If you remove a film part-way, the next film loaded will continue to rewind. To 
prevent this press the shutter button before loading a new film." 

There are many other admissions of flaws. Thus Canon is aware of design problems, but 
somehow fail to improve (the EOSSOON is a new version of the EOSSOO, with similar problems). 

Java 
Java is promoted as a programming language with a buzzword list of virtues. We will look at 
one problem: it's very easy to confuse the different behaviour of fields and methods. This is a 
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point made in the book The Java Programming Language (Arnold & Gosling, 1998), written by 
some of Java's designers: 

"You've already seen that method overriding enables you to extend existing code 
by reusing it with objects of expanded, specialized functionality not forseen by 
the inventor of the original code. But where fields are concerned, one is hard 
pressed to think of cases where hiding them is a useful feature." 

"Hiding fields is allowed in Java because implementors of existing super-classes 
must be free to add new public or protected fields without breaking 
subclasses." 

"Purists might well argue that classes should only have pri vate data, but Java 
lets you decide on your style." 

Purists may define all fields to be pr iva te, and will provide accessor functions if the field 
values are needed outside a class body. Unfortunately, this safer programming has efficiency 
implications, which is probably the reason Java is designed the way it is. 

Like the Canon camera, we see the English description of a system admitting avoidable 
problems with the system. 

Collusion 
We've shown that commonplace systems are badly designed, and we argued that bad design is 
a consequence of unmanageable complexity. Ideally, systems should be better engineered, but 
they aren't. 

There are many reasons why we collude with bad system design, whether as consumers of 
attractive gadgets that promise to do wonderful things; whether as programmers who make a 
living from developing systems; or as academics who can make a living solving the problems. 
The reasons are deep and varied psycho-social mechanisms (e.g., Baudrillard, 1998; Postman, 
1992). 

Lottery effect: computers seem to be more successful than they are 
Lottery winners are reported in the media, and we become familiar with success. But success is 
infrequent - just sampled with bias by the media! In technologies that depend on media (e.g., 
the Web) it isn't possible to sample failures anyway. Companies that experience computer 
failures and hence go out of business don't exist. 

Realism-reality gap: designers are under pressure to deliver because it is "so easy" 
Realism is easy: a look at any arcade game will show the sophisticated realism that is possible. 
The media equation implies we tend to treat realism as reality - good design is easy to fake, 
especially when you can't assess the mechanism. 

Most people therefore think programming is trivia!. (Even if it is hard, the scale of 
production means the marginal cost of design is trivia!.) So, designers are put under pressure 
from marketing, management, and everyone else, to deliver complex products faster than is 
possible consistent with doing a good design. 

Oracle effect: experts under-estimate complexity 
Experts (particularly programmers) know how complex systems should be used ("press the 
twiddle key when you do that!"), and often the reason why a user cannot operate a system is 
because they do not know some apparently trivial fact. The expert tells the user, and the user is 
impressed with the skill. The expert thinks the user is stupid, because the fact is trivia!. 

One way to use computers 
Because oracles are so successful, there "must be" a right way to use computers. It is useful to 
have a word for deliberately avoiding their narrow-mindedness. A system is permissive if it 
permits itself to be successfully used in more than one way. One that is not permissive is 
restrictive. For example, my to get my VCR from record-pause mode to record mode, I must 
press Play: yet both Pause and Record do nothing - this is both odd and restrictive. (It 
probably comes about because programmers write straight-line imperative programs, rather 
than declarative programs.) 

Even human factors experts may assume there is one right design, and that users must know 
it. Nielsen (1993) describes a permissive system, yet users were classified as "erroneous" if they 
knew only one of the alternatives! 
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we ought to use all the tools of computing to make user manuals better (e.g., declarative, if we 
think declarative programming is good). 

It is self-evident, and borne out by experiment (Carroll, 1990), that short manuals are better 
than long manuals. Combining this idea with the previous gives a design approach to make 
better things: 

QJI Construct the initial user manual. This step should be automated. 

, Find problems. Clearly, good technical authors are able to do this. It is likely that the 
act of explaining clearly how to use a system helps uncover problems with it. Some 
aspect of a design that cannot be explained briefly and clearly is likely to be hard to 
understand. 

(j;) Fix the design: the user manual, along with its warnings, lengthy explanations and 
invocations of oracles, is a direct indicator of the design areas that need attention. 

@ Fix the manual, having fixed the specification. (This step should be automatic if step 1 
is automatic.) 

And repeat, while each step improves the design and the product. Many 
manufacturers have the luxury of producing a range of products, and of updating 
them regularly. In such cases, one might manufacture a design before the 
improvement cycle is complete, leaving further improvements for future products. 
Thus, the method not only improves design, but gives marketing a method for 
continually enticing consumers. It ought to be easy to justify! 

To the extent that this is a good method, then systems should be designed so that user manuals 
can more easily be generated from them or their specifications (ct. literate programming: 
Thirnbleby, 1990). While at it, we can also generate other sorts of "manual" (paper, interactive, 
diagnostic, and so on) with little additional effort. 

If the user manual is written (or partly written: see Thirnbleby & Ladkin, 1995) by automatic 
tools, there is little delay in this cycle; it could be fully concurrent. If manuals have to be written 
by people without help from the formal specifications (help!), then at least in manufacturing, 
last year's manuals can be fed into this year's products. 

It is easy to write manuals that are vague, inexact and misleading. To be effective, manuals 
need to be complete and sound. Perhaps there could be internal documents that are used in the 
design process, and actual user manuals that are derived from the internal manuals, made more 
readable for users. 

More generally, for "manual" substitute any view. The formal specification of a design 
(whether as a logical formula or a circuit diagram or computer program) is "just" another way 
of explaining the design - but to a different sort of user (a mathematician, an electronic 
engineer, a programmer). These "manuals" can give the "technical author" opportunities to 
explain and help the "user." Different sorts of design problems will be brought to 
consciousness, and fixes will be suggested. Thimbleby and Ladkin (1997) use a logic 
specification of an Airbus subsystem to show that quite complex system manuals can be 
improved (and that minimisation algorithms can be used to reduce their size). 

Justice 
What do we mean by designing better things? What is good anyway, what is this goal of getting 
better? These are questions of ethics (or moral philosophy), the study of what is right. Ethics has 
a long history, going back to Aristotle (384-322BC) and earlier. 

Aristotle defines justice as the act of giving a person good. This is what designers who strive 
to design better things do. They design "good" which is embedded in the things they design. 
This good is then passed on to the users of the things. To do good design, then, is to be engaged 
in acts of justice. 

There are different sorts of justice. A user of a gadget is typically unable to negotiate over 
details of the design: in a sense, the designer has authority over the user, at least in so far as the 
product constrains the user. Justice as an act of authority is the maintenance of rights: the user 
of gadgets have rights, and just design is to maintain those rights. And there is contributive 
justice, which is the obligation to enable individuals to achieve good. In contributive justice, the 
designer contributes to the users' ability to make good use of the gadgets. Clearly, good manual 
writers contribute to a just world. 
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If design is justice, can we make use of this fact? A few thousand years of philosophising on 
justice has had little effect on the world. John Rawls wrote the classic book (1971) A Theory of 
Justice, where he promoted the idea of justice as fairness. Rawls defined justice as a system of 
rules that would be designed by people under a "veil of ignorance" of whether and to what 
extent those rules apply to themselves. By this he meant the designers do not know how they 
might be affected, so they will build a world that treats them fairly. For example, one might 
imagine that the planners of a just system are as-yet unborn. They might be brought into the 
world at any age; they do not know whether they will be rich or poor, black or white, 
handicapped or athletic, male or female, blue-eyed or green. Under this veil of ignorance they 
would be foolish to behave other than as fairly as they possibly could. They might be brought 
into the world too old to operate a video recorder" The scope of the fairness applies to the 
designers themselves as well as to the users. 

Do designers of things act justly by Rawls' definition? Mostly not. They design things they 
know they will not use, and even if they did use, they would have oracular knowledge. 
Designers are never in a veil of ignorance. Many programmers build systems that they have no 
intention of using. If, instead, they worked under the Rawls veil of ignorance, they might try 
harder - in case they ended up being a user of their system. If they were programming a tax 
program, they might end up "born as" accountants, tax-payers, civil servants designing tax law, 
tax evaders, auditors, managers, as their own colleagues having to maintain their system at a 
later date, or even as the manual writers ... they would have to design their tax program 
carefully and well from all points of view, including making manual writing easy (which gains 
the advantages described above). They might prefer to contain complexity rather than risk it 
being unmanageable. 

This idea is anyway enshrined in conventional good practice: "know the user" (d. 
Thimbleby, 1990; Landauer, 1995). Rather than merely "know" one's way into all the other 
possible roles, one might more easily, and more reliably, do some experiments and surveys with 
other people (though to do this requires the product, or perhaps an earlier version of it, to exist). 
It is pleasing that accepted design practice is also just (who wants to be called unjust?) 

To summarise: good design is engagement with justice, and we have seen two ways to do 
this. First, to stand back and be conscious of the ways in which others (users) will operate the 
product - use concurrent engineering with user manuals; secondly, to put oneseIf into the 
many different roles of usage. A consequence is that designing systems to support easier 
manual generation becomes a higher priority, and this in turn helps improve the systems 
themselves. 

Design by accident? 
Aristotle claims justice is the only virtue that can be achieved by accident. You can't have 
integrity (another virtue) by accident: integrity has to be intentional. Someone who claims to 
have integrity but does not is faking, and has no integrity. But acts of justice do not depend on 
the judge, they are outcomes and are just or unjust to the extent that they fairly affect others. 
The point for designing better things is that some designs will be good by accident. 

The market helps ensure (but unfortunately does not guarantee) that good design thrives, 
and conversely, poor design gets less market share in the face of better competition. The market 
is a force of "natural selection." Designers are the evolutionary equivalent of mutagens - they 
create mutations: they produce new designs and new variations. By Aristotle's argument, in 
design we can have a successful blind watch maker. That some blind watch makers may be 
successful by chance is no reason to copy them. If we want to design deliberately, we need a 
commitment to justice in design. This cannot be done by accident. 

Conclusions 
The argument of this paper is that computing systems are so complex and unreliable that they 
are really a different kind of thing that requires a different kind of thinking. In particular, they 
are so complex that we are no longer able to assess them for quality, and so we take them as 
objects for uncritical consumption. Our entire culture is taken up in this game: it suits almost 

, There are difficulties with taking Rawls too seriously. There are duties of just action to non
contracting parties, such as to the environment. How we design things to take their 'responsible' 
place in a larger ecosystem beyond other users, say to be recyclable, is beyond the scope of this 
paper - but that is not to imply such issues are optional; see Borenstein (1998). 
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everyone in different ways - manufacturers make lots of money (selling systems to fix 
problems that should not have been there), book publishers sell "dummies" books, marketing 
people have lots to advertise, and we all seem to swallow it whole. Indeed, it is fun to have a 
fancy device! 

If we are designing systems, we are caught up in the culture, and design over-complex 
systems that we are over-proud of. This paper suggested an approach to help design better; 
moreover, a method that can be used to help direct the design so that automatic user manual 
generation is easier. To try to escape from the cultural forces is not easy, but it may help to see 
that the effort is engagement in justice, and therefore a noble cause. 
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For our purposes, we can assume that Op is a sequence of one or more strings, numbers, etc. 
Usually the Op of a term is just a single identifier. 

There are no further restrictions on term structure. How terms are displayed in Nuprl is not 
inherent in either the structure of terms or the definitions of constants and operators; display is 
specified separately. Operations for term editing act directly on these structures3 ) modulated 
by the display forms in force at the time. 

When we can't think of a better way to display a term, we usually just write the Op followed 
by the subterms, if any, and prefix each sub term by the binding variables for that place, if any. 
So, Op(tl; u.t2) would be the Term < op, 2, t, k, x >, where kl = 0, k2 = I, and X2,1 = u. 

For example, all(A; x. B (x» is used in the standard Nuprllibraries to represent instances 
of the universal quantifier, where A is the domain of quantification, and B(x) is the formula 
being quantified; the standard display is Vx:A. B(x) . 

Sometimes other values are included in the operator as a way of getting those values into 
the term structure as literals. When we don't have a better way of displaying them, these extra 
values are usually just written directly after the first identifier, in braces. For example, the 
basic numeric literals used in Nuprl are exen1plified by "natural..number{2} ", which has no 
immediate subterms, and is normally displayed simply as 2. 

Normally, such a discussion of term structure would lead to a description of operator defini
tions, and indeed we'll see some examples below, but our concern here is really with how such 
terms are displayed. 

Displaying Terms 

At any point during a Nuprl session, there is a set of named objects of various kinds, mostly 
loaded from library files. In addition to proofs, operator definitions, inference rules, program 
code, and documentation objects, Nuprllibraries contain objects that specify how to display 
terms. 

A specification includes a term such as derive <x>. <e>; <a» , called the "display model," 
which may contain schematic variables such as <e>, in place of various parts. The display 
spec is applied by matching for these schematic variables, then instantiating into a "formatting 
command" that is also part of the specification; formatting commands specify what characters 
to display, as well as break/margin control similar to Oppen's pretty printer methods[14]. 

Here are the display specifications used above to display the derivative. The main things to 
observe are the display models; the reader need not really understand the rest of the specifica
tion, but we show it simply to demonstrate that it is a fairly simple schematic method. Here 
is the display specification that generates the non-d/dx display form used above: 

Model: deriv«x>.<e>; <a» 
Deriv«x:var>. <e:real> 

<--MARGIN ; [ J 
<a:real» 
<--MARGIN<--SOFT 

Given a particular term, there may be several ways to display it - there may be several 
specifications having display models which match the term. In addition to this display spec, 
we have added another one for our special case: 

3Structure editing of terms, via. granunars for those terms, wa.s pioneered by Teitelbaum[16, 15] 



Model: deriv«x>.<e> ; <x» 
Attrs: *Open form*; ;apply.standard 

d<e:real:«self), AddIparms«x»> 
+-MARGIN[] 

/d<x:var> 
+-MARGIN+-SOFT 

Notice how the display model indicates t.he special circumstance of applicability, namely, 
that the same variable name must be used both as the binding variable, and as the second argu
ment to the operator. (During substitution, Nuprl usually attempts to retain variable names, 
as well as identity and difference between variables bound by the same operator occurrence.) 
The "AddIparms" element will become significant for our discussion, and will be addressed 
below. 

When a term is displayed, it runs through the display forms in a specific order trying to 
find one that may be applied to the term in question. As a result, the term d(x·x+b·x)/dx 
is normally displayed as such rather than as Deriv(x. x·x+b·x ; x) , although the user 
may temporarily disqualify the djdx form for whatever motive, such as finding the notation 
mysterious or ambiguous. The term Deriv(x. x'x+b'x ; a) , however, is simply ineligible 
for the d/dx form, and so the long form is used. Indeed, if "a" is substituted for free "x" 
in d(x·x+b·x)/dx , say in the course of a proof, then the djdx form will be automatically 
abandoned in favor of Deriv(x. x·x+b'x ; a) . Or, utilizing a simple substitution operator 
defined by e(x) ix;a ;; e(a) , 

d(x·x+b·x)/dxix;a rewrites by definition to Deriv(x. x·x+b·x ; a) . 

Let us return to the "Ad dIp arm" element in the display spec above, which has been attached 
to the formatting command for a subterm. It is rather common in informal practice to elide 
certain variables from expressions which nevertheless depend upon them, such as when the 
same variable is used repeatedly throughout a long argument or other discourse. Nuprl terms 
must include any variables they depend on, so these implicit parameters must be elided merely 
as as matter of display. 

The recursive descent display algorithm has as one argument a set of variables considered 
to be implicit parameters. The display form in question stipulates that whatever variable of 
the instance matches the schematic variable <x> will be added to the implicit parameter set 
when the sub term is displayed. 

It is possible to stipulate that a given display form is usable only if certain variables are 
in the implicit parameter set. To continue with our d/dx example, suppose we wish to work 
with functions that will normally depend on the variable x. We may define a special function
application form that is intended for use mainly with x as its argument, and whose display 
elides x when it's an implicit parameter, but shows it otherwise. Here's an example of using 
this apply form with function y. 

Vb:lP!,y:lP!-->IPL (Vx:lP!. y(x) ; x·x+b·x) =:> Vx:lP!. dy/dx ; 2'x+b 

(Note the abbreviation of the iterated quantifier. The display system has several iteration
related capabilities.) If we alpha-convert Vx:lP!. dy/dx ; 2'x+b ,changing all binding x's to 
v, say, we get 'v'v:IPL dy(v)/dv = 2'v+b , in which the argument to y now stands revealed 
because it is not x. There is further discussion of calculus notation in [13]. 

To summarize, N uprl has been used to explain certain d/ dx notations, not by extending the 
basic term structure and altering concepts of binding, but rather by construing them simply as 
notational abbreviations for certain forms of notation having the more 'commonly understood 
binding conventions) and explicitly containing the variables upon which they depend. In search 
of other applications for this device, let us turn our attention to the notations of Modal Logic. 
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