
https://research.tue.nl/en/publications/user-interfaces-for-theorem-provers--informal-proceedings-of-the-workshop-eindhoven-university-of-technology-1315-july-1998(ba068583-5423-4b32-a591-d7e530371637).html

ISSN 0926-4515

AI! rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

Informal proceedings of the Workshop on

User Interfaces
for

Theorem Provers

Eindhoven University of Technology
13 - 15 July 1998

edited by R.C. Backhouse
98/08

editors: prof.dr. R.C. Backhouse
prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

Computing Science Reports 98/08
Eindhoven, July 1998

Infonnal proceedings of the Workshop on

98-'{)8

User Interfaces
for

Theorem Provers

Eindhoven University of Technology
13-15 July 1998

edited by R.C. Backhouse

Workshop on

User Interfaces
for

Theorem Provers

Eindhoven University of Technology
13 - 15 July 1998

Informal Proceedings

Foreword

Thirty years ago, at the time that N.G. de Bruijn began the Automath project here at
Eindhoven University of Technology, computer technology was far less advanced than it is
now. It was still not unknown, for example, for computer programs to be prepared on paper
tape, punch cards being the preserve of the more affluent establishments. It is not surprising,
therefore, that the early computer systems were for experts only, and systems offering support
for De Bruijn's dream of automating mathematics paid no attention to the interface with the
hunlan user.

The technological advances that have been made since then are mind-boggling. Most
recently, the technology of human-computer interaction (HCI, for short) has progressed in
leaps and bounds, bringing everyday computer usage at long last to the man on the street.
Systems for automating mathematics have also made substantial progress, but the interfaces
with the user have not kept pace and are most often still based on teletype technology. Thanks
to the Internet, the world may be at your feet, but ergonomic interaction with automated
mathematics is still way up in the clouds!

The workshop on User Interfaces and Theorem Provers was begun in 1995 in recognition
of the fact that the difficulty in using powerful theorem proving software frequently lies with
a poor user interface. There are gaps between the knowledge required by designers of such
interfaces and present state of the art in general interface design technology. Effective solutions
require the collaboration of HCI practitioners and the authors and users of existing theorem
proving software. The increased level of interest, judged by the number of submissions, in this,
the fourth in the series, is evidence that more and more implementors of theorem provers are
becoming aware of the importance of good interface design, and the possibilities that modern
technology offers.

In keeping with the nature of a workshop, this volume contains a number of working
papers describing ongoing research at various stages of completion. The immediate goal of
the workshop is to stimulate discussion based on actual experimentation with real-life systems
and to feed that discnssion back into further development. The long-term goal is to make the
workshop defunct as a result of the improvements that have been effected. I look forward to
a lively, enjoyable and memorable workshop.

Roland Backhouse
2nd June, 1998.

Contents

Invited lectures 1

1 J .-R. Abrial - Overview and Rationale of an Industrial Prover 3

2 Harold Thimbleby - The detection and elimination of spurious complexity 15

Submitted papers 23

1 Stuart F. Allen - From dy/dx to liP: a Matter of Notation 25

2 James H. Andrews - On the Spreadsheet Presentation of Proof Obligations 34

3 Myla Archer, Constance Heitmeyer, and Steve Sims - TAME: A PVS Inter-
face to Simplify Proofs for Automata Models 42

4 Roland Backhouse and Richard Verhoeven - Extracting proofs from docu-
lIlCnts 50

5 Richard Bornat and Bernard Sufrin - Using gestures to disambiguate unifica-
tion 59

6 Paul Callaghan and Zhaohui Luo - Mathematical Vernacular in Type Theory-
based Proof Assistants 67

7 Ingo Dahn - Using ILF as a User Interface for Many Theorem Provers 75

8 Hans van Ditmarsch - User interfaces in natural deduction programs 87

9 Katherine Eastaughffe - Support for Interactive Theorem Proving: Some Design
Principles and Their Application 96

10 Mike Jackson, David Benyon and Helen Lowe - Using ERMIA for the Evalu-
;ttion of a Theorem Prover Interface 104

11 Nicholas Merriam and Michael Harrison - Making Design Decisions to Support
Diversity in Interactive Theorem Proving 112

12 Richard Moot - Grail: An automated proof assistant for categorial grammar logics 120

III

lV

13 Olivier Pons,
proof assistants

CONTENTS

Yves Bertot and Laurence Rideau - Notions of dependency in
130

14 Joerg Siekmann, Stephan Hess, Christoph Benzmueller, Lassaad Chheikhrouhou,
Detlef Fehrer, Armin Fiedler, Helmut Horacek, Michael Kohlhase, Karsten
Konrad, Andreas Meier, Erica Melis, Volker Sorge - A Distributed Graphical
User Interface for the Interactive Proof System OMEGA 139

15 Bernard Sufrin and Richard Bornat - User Interfaces for Generic Proof Assis-
tants. Part II: Displaying Proofs 147

16 Koichi Takahashi and Masami Hagiya - Proving as Editing HOL Tactics 157

17 Patrick Viry - A user-interface for Knuth-Bendix completion 165

18 Jan Zwanenburg - Aspects of the Proof-assistant Yarrow 173

Programme commitee

Stuart Aitken,
Roland Backhouse (chairman),
David Benyon,
Yves Bertot,
Richard Bornat,
Herman Geuvers,
Joseph Goguen,
Masami Hagiya,
Gilles Kahn,
Helen Lowe,
Tom Melham,
Nick Merriam,
T. Nakagawa,
Steve Reeves,
Bernard Sufrin,
Laurent TMry

Local organisation

Roland Backhouse,
Olga Caprotti,
Arjeh Cohen,
Herman Geuvers,
Marianne Jonker,
Martijn Oostdijk,
Elize Russell,
Richard Verhoeven

v

Part I

Invited lectures

/.

Overview and Rationale of an Industrial Prover

J.-R. Abrial

Consultant*
26, rue des Plantes 75014 Paris

abrialOsteria.fr

In this document, we briefly present a program called the Predicate Prover (for short PP).
This program essentially offers four functionalities, which are the following:

A decision procedure for Propositional Calculus.
A partial semi-decision procedure for First-Order Predicate Calculus.
A systematic translation of Set-Theoretic Predicates.
A coherent treatment of Linear Arithmetic statements.

In what follows, we shall quickly present these features in turn. We then show how PP
is integrated within the B-Technology' [1] [2], as implemented by Atelier B' [3]. In the last
section, we comment on a number of rationales and concepts that have been used in the
design of PP. Finally, an appendix contains some problems solved by PP and shown in a
demo.

A Propositional Calculus Decision Procedure.

PP essentially first contains an implementation of the decision procedure of Propositional
Calculus, which is presented in the B-Book [1]. This procedure is very close to what is
elsewhere proposed under the technical name of Semantic Tableaux [4]. It is a Sequent
Calculus. Next is a sample of a classical proposition proved by PP:

I- ((a <0> b) <0> c) <0> (a <0> (b <0> c))

The proof procedure gradually transforms an original sequent with no hypotheses into some
sequents with atomic hypotheses only (either positive or negative). Such a sequent is dis
charged as soon as its collection of hypotheses contain a certain atomic formula together
with its negation.

A demo is available showing the step by step behaviour of PP. The following items are
presented at each step: (1) the sequent at hand, (2) the inference rule that is applied to
it, (3) the newly generated sequent (if any), and (4) the tree structure of the proof (this
is done by means of proper indentations). A less verbose trace only presents the successive
sequents (still with the indentation but without the rules). A completely silent execution is
also proposed that makes the prover a genuine little "pocket prover".

* Supported by STERIA, SNCF, RATP and INRETS.
1 B is a model oriented method used in industry to develop safety critical (and other) software

systems.
2 Atelier B is the set of industrial tools associated with the B Method.

ments, where complex set memberships have disappeared, the remaining set membership
operators being left uninterpreted. For instance, a set-theoretic predicate such as s E IP'(t)
is transformed into \lx.(x E s => x E t). The translator then just performs the translation
of the various instances of set membership. They correspond to the classical set operators
(U, n, etc), to the generalization of such operators, to the binary relation operators, to the
functional operators (including functional abstraction and functional application), and so on.

A demo is available that presents set-theoretic lemmas together with the corresponding
translations. It then shows the corresponding proofs using the above macro-step traces. Next
is such a lemma with its translation (where r[aJ and r[bJ respectively denote the images of
the sets a and b under the relation r):

LEMMA
r<;sxt 1\

a<;bl\
b <; s

=>
r[aJ <; r[bJ

TRANSLATION
\I(x,y).((x,Y)Er => xEs) 1\

\I(x,y) .((x,Y)Er => yEt) 1\

\Ix . (x E a => x E b) 1\

\Ix . (x E b => xES)
=>
\ly. (3x. (x E al\ (x,y) E r) => 3x. (x E bl\ (x,y) E r))

The Treatment of Linear Arithmetic.

The Predicate Prover is then once again extended in order to handle Linear Arithmetic. For
this, we introduce new predicates involving the classical order operators between integers
«, :S, etc). Such predicates are treated when it is time to discover of a contradiction in
the collection of hypotheses (see above). Such arithmetic hypotheses are first normalized,
then a straightforward linear technique is used in order to search for a possible contradiction
between them. As a very simple example, the prover is able to prove statements like this:

a :s b 1\ c:s d => a+c :s b+d

The Set Translator is also extended accordingly so as to treat sets that are related to
arithmetic as well, namely intervals and sequences. It also translates predicates involving
the minima and maxima of non-empty finite sets of integers. Next is an example of a simple
lemma that is proven very easily after such a translation:

cE(a .. b) 1\ bE(c .. d) => (c .. b)=(a .. b)n(c .. d)

The Integration of the Predicate Prover within the B- Technology.

In this section, we present the genesis of PP, we show how it has become one of the pieces
of the B-Technology, and we explain how it is integrated within Atelier B. The Prover of
Atelier B (for short PB), which constitutes a distinct project from that of PP presented
above, works according to two modes: automatic and interactive (the interactive mode be
ing just, in first approximation, a way of manually pulling the various strings offered by PB).

We remind the reader that a typical B development resulting in n lines of code, demands
the proof of approximatively n/2 lemmas. At the moment, the behavior of PB corresponds
to the following typical figure, which is valid for an entirely proved industrial project (say,
50,000 lines of ADA code): 80% of the proofs is discharged automatically by PB, versus 20%
interactively. In this case then, approximately 5,000 lemmas have been proved interactively
(less, in fact, because the user of PB can take advantage of the systematic discovery of cer
tain proof sequences, which can then be incorporated into some tactics able to be called
automatically). This figure has oriented the way PB has been designed. Automatization is
indeed indispensable but, as the interactive part of the proof effort is also not negligible,
both aspects of the proof technology must be implemented with great care.

The main part of PB is based on a number of rules (more than 2,000) that have been
introduced gradually during the multi-year construction of this prover. It also contains cer
tain proof mechanisms that may be handled by the user in an automatic or interactive way.
Finally, the user might himself introduce some new rules and new tactics that may also be
handled automatically or interactively. As can be seen, the process by which PB has been
constructed is essentially a pragmatic one.

As time passes, we were confronted (under the pressure of some industrial users) with
the problem of the correctness of the rules of PB. This is indeed a very serious problem
that cannot be treated by means of some reassuring (hand-waving kind of) discourses. This
is how PP has started, essentially as an extraneous project to be used in order to validate
PB. The result has been more or less what we feared: a number of rules of PB were slightly
erroneous (less than 5% however, but still not 0%).

In order to keep the construction of PP under control, we choose an incremental design
that followed the incremental construction of Mathematics that is presented in the B-Book.
This allowed us to use PP to validate PB in an incremental fashion. In other words, as soon
as some stage of PP were finished, we used it to validate the corresponding rules of PP. The
incremental design of PP resulted in an incremental validation of PB.

More serious even than the possibility of erroneous rules in PB is the possibility of the
user introducing some erroneous rules during the proof of a B design. In order to cope with
this problem we had no choice but to integrate PP within PB. Thanks to this integration, a
user-defined rule can thus be validated (proved) before being used.

The practice of proving user-defined rules within PB pretty soon induced the idea of
sometimes using PP directly on the problem at hand rather than first proving a necessarily
ad-hoc rule and then instructing PB to use it. This results in a deeper integration of PP
within PB. This process is still under way.

o.

Of course, this direct usage of PP has its limitations. It is essentially due to the fact that
a typical B lemma may have many hypotheses (more than one hundred is a not an excep
tion). Clearly, among these hypotheses, a few of them only are relevant to prove the lemma
at hand. As PP is very sensitive to noisy (useless) hypotheses, it may sometimes fail (or run
for too long a period of time) on problems on which it is normally due to succeed very easily.

In order to cope with this problem, we introduced the possibility to choose the hypothe
ses to be kept before launching PP on a certain lemma. As this choice, however, differs
from one lemma to the other, it is not easily generalizable. In order to circumvent this diffi
culty, we introduced some heuristics, whose intended effect is to automatically remove some
apparently useless hypotheses. This has given some interesting results. Consequently, the
possibility was given to incorporate these heuristics in some automatic tactics expanding
the standard one. Note that the problem is complicated by the fact that, sometimes, the
validity of the lemma is simply due to the presence of some contradictory hypotheses that
have thus nothing to do with the main part of the problem. In such circumstances, as one
can imagine, the hypotheses removing heuristics might fail.

This integration of PP within PB has significantly modified the user practice. At present,
a typical interactive proof session with Atelier B first starts by invoking some classical fea
tures of PB: adding an hypothesis, transforming the goal by means of some assumed equality,
proposing some existential witness, and so on. \Vhen the goal and the hypotheses seem to
be ripe enough, a simple invocation of PP (with an automatically reduced set of hypotheses)
then quite often discharges the goal without any further intervention. In case such a protocol
seems to repeat itself on other proofs, it can then be proposed as a new automatic tactics.

Some Rationale Behind the Construction of PP.

In this section, we present some ideas and concepts that have driven us in the construc
tion of PP. We have already explained above how PP has been developed incrementally on
the basis of a hierarchy of provers. Although important, this strategy is, after all, nothing
else but a good design practice.

The most important idea, we think, behind the construction of PP, lies in the fact that
it has been designed around a fixed wired-in logic, which is the most classical of all, namely
First-Order Predicate Calculus with Equality (used as the internal engine), and Set Theory
(used as the external vehicle).

In no way is PP constructed from a meta-prover able to be parameterized by a variety
of distinct logics. This contrasts with what can be seen in academic circles where extremely
powerful general purpose Proof Systems are usually offered. Our approach is quite different,
it is rather similar to that used in the development of some "industrial" programs handling
symbolic data. For instance, a good C compiler is not a meta-compiler specialized to C;
likewise, a good chess-playing program is not a general purpose game-playing program spe
cialized by the rules and strategies of the chess game.

In our case, we have internalized classical logic because it is clearly that very logic that
is to be used in order to handle the usually (mathematically) simple lemmas that are to be
proved in order to validate software developments. This is not to say, however, that classical

A concept that is clearly missing in the ones listed above is that of induction/recursion.
Such a negative aspect is, in general, not very interesting to mention. But, in this case,
because of its massive presence in other similar work and, more generally, in computing
science, its absence, as a founding concept, obviously deserves some explanations. This is
not to say, of course, that proofs by induction should be excluded from PP: although it is not
implemented at the moment, it shortly will, since we clearly deal with inductive structures,
namely numbers and sequences.

Our view is that inductive structures have been overemphasized in computing, perhaps
because such structures are immediately computable. One should look a little more at com
puting from a non-computable world. Mathematics is full of examples where a point of view
taken from the "complement" of a certain field helps studying it: infinity is used to study
finiteness, the complex numbers to study the reals, more recently non-standard analysis
provides a very interesting view point on classical analysis, etc. We think that the art of
program development is precisely that of extracting the computable from richer not (nec
essarily) computable worlds. To do this, one should build abstract mathematical models of
such worlds, models that are thus certainly not computable (at least in their more abstract
versions). In order to validate our reasoning on such models, we might need some mechanical
aids which are thus perhaps not necessarily tailored to work on computable models.

Some Concluding Remarks.

A prover technology, like the compiler technology more than three decades ago, is starting to
emerge. The question of the automation and power of such provers becomes central. Hence
old techniques should be applied and new techniques discovered in order to optimize them.

Such provers will certainly be integrated into some tools associated with certain methods
of software development. But they should also constitute, in my opinion, some independant
tools at the disposal of the designers, not only the software designers, but also, perhaps, the
system designers.

At the moment, the initial analysis and architectural design of complex systems is done
in a rather manual way. People perform some simulations to convince themselves that a
certain architecture that they have in mind is viable. With a powerful prover it is, I think,
possible to transform such simulations into genuine proofs. In very much the same way as
the civil engineer is using its pocket calculator to quickly compute some order of magnitude,
we could think of a future where the system designer will use also very often its "pocket
prover" to validate some sketchy architecture he has in mind.

Acknowledgments.

I like to thank Nicolas Carre very much. He is the person in charge of integrating my
numerous versions of PP within PB. He makes a number of very useful remarks and com
ments. As usual, discussions with and comments from Louis Mussat are very welcome and
pertinent. Many thanks to him.

'1.

APPENDIX, Sample Problems Solved by PP.

The formulae presented below are written with a certain classical mathematical set
ting through LATEX. Of course, they are not entered as such in PP. However, the general
structure of the formulae given to PP is almost exactly the same, the operators being con
ventionally represented in ASCII by means of one or more symbols.

Propositional Calculus.

(P V Q V R) {o? (P V (Q V R))

(P II (Q V R)) {o? ((P II Q) V (P II R))

((P {o? Q) {o? R) {o? (P {o? (Q {o? R))

First-Order Predicate Calculus.

V(x,y)· (P(x) II Q(y) =} R(x)) II
:3z.(.R(z) II P(z)) II

=}

Vt· ',Q(t)

:3x.A(x)
:3y . B(y)
Vz· (A(z)

=}

II
II

=} Vt· (B(t) =} C(z,t)))

:3 (u, v). C(u, v)

V(x,y,z). (R(x,y) II R(y,z) =} R(x,z)) II

V(u,v). (R(u,v) =} R(v,u)) II
Va·:3b· R(a,b)

=}

Vt . R(t, t)

Vx.(P(x) =} x=a V x=b) II
Vx· (R(x) =} P(x)) II
.R(a) II

=}

Vx·(R(x) =} x=b)

It">

pEs H t 1\ q E t H U 1\ r E u H v => ((p; q) ; r) = (p; (q ; r))

Operations on Functions.

fEs-<+t 1\ aCt 1\ br:;;t => f-l[anb]

Injections and Surjections.

f E s >H t 1\ gEt >H U => (f; g) E S >-H U

f E a ;-, b 1\ rEa H b 1\ sEa H b 1\ (r; f) = (s ; f) => r = 8

f E a --+ b 1\ ran (f) = b 1\ rEb H C 1\ s E b H C 1\ (f; r) = (f ; 8) => r = S

Equivalence relations.

rEsBs 1\

id (8) r:;; r 1\
r = r- 1 1\

(r;r)r:;;r 1\

xEs 1\

yE8

=>
(x,y) E r ¢} r[{x}] r[{y}]

fE8--+t 1\
r=(f;f-l)

=>
id (8) r:;; r 1\
r=,-l 1\

(r;r)r:;;r

'L. .

The detection and elimination of spurious complexity

Harold Thimbleby
Computing Science
Middlesex University
London, Nll 2NQ, GB

Abstract
Computer science develops complex systems that demand all our attention to just begin to
understand. Critical thinking is overwhelmed, that might otherwise have been directed at
rhetoric blocking and hubris detection. This paper shows that there is much unchecked
hyperbole in computing, which affects our own standards and ability to design well. The paper
explains why such bullshit comes about, how people collude in its propagation, and proposes
ways of reducing the problem. Furthermore, we show that detecting and ellminating it is a high
calling, and must be seen as engaging in justice and fighting hypocrisy (even in ourselves), and
is an extremely worthwhile, if daunting, task.

"Learning how to not fool ourselves is, I'm sorry to say, something that we
haven't specifically included in any particular course that I know of. We just
hope you've caught it by osmosis." Richard Feynman

Introduction
When computers work well, they work very well. Handheld calculators would have been
miracles a few years ago; fly by wire aircraft are very impressive ". there are many other
examples. But when things go wrong, as they do from time to time, they can go brain dead in
ways we would rather quickly forget than think about.

I was told recently of a frustrated user who jumped up and down on his electronic personal
organiser, until there was broken plastic and glass around on the floor. I am sure it was a
satisfying experience! But can you imagine someone jumping up and down on their paper
diary? You'd have to be mad to get much satisfaction from destroying one.

There is something special about computer systems, which personal organisers in the story
. represent. They are complex, unreliable - and yet we depend on them, and buy upgrades to go
even faster.

So what uniquely identifies computing? We could start with an approach like Turing's, but
this defines an object of study, not what characterises it. What is unique is the impact of
spurious, man-made complexity. Most computing is not based on elegant programs, or even
ones that work, but consists of hugely complex systems like Windows 98, the World Wide Web
(and all its browser software), aerospace systems, financial systems, nuclear control systems,
video recorders, and a host of consumer gadgets, from toasters to tamagotchis. Indeed,
tamagotchis represent computing rather well:

•

•

•

•

•

•
•
•
•

They are promoted as fashion accessories. Tamagotchis are available in a wide variety
of distinctive packaging.

They appear to be very simple (so simple that they are children's toys, and children
can do better with them than adults).

They have a life of their own. (famagotchis run animal simulations, such as dogs, and
they require virtual feeding, training, virtual cleaning, exercise, and so on.)

Their purpose in life is to be difficult to use. They have to be cared for. Cults of experts
gain esteem from becoming knowledgeable about them.

They are badly engineered. They have reset buttons, which indicates that their
designers antiCipated that the internal firmware could fail.

Despite these problems, people consume them eagerly.

Even though they fail, this does not put off hope in a new one working even better.

They are mass produced, and have very little intrinsic value.

They are not difficult to design.

I know a 12 year old who has written a Visual Basic program to behave like her (now defunct)
tamagotchi. The complexity of tamagotchis is reasonable for a 12 year old to construct, yet what
they are is complex enough to challenge the skills of someone like myself, with postgraduate
qualifications in computing!

We could make many more observations - e.g., computing systems can fail but not stop
working (a broken bridge doesn't bridge a river, but a financial program that fails is still a
financial program). Without over-philosophising, computing concerns objects that

• have enormous potential for autonomy, creativity, control, and performing chores.

• are easy to construct, and to replicate once constructed.

• but whose behaviour is hard to identify or comprehend.

and, in consequence, they:

• are unlikely to achieve all intended goals (but they achieve 'enough' intended goals
most of the time).

• support and are promoted by a social structure that rationalises their continued
production and consumption.

The conspicuous feature is the difference of construction complexity versus comprehension
complexity. We can view this difference from 'inside,' examining the programming process, or
from' outside' examining the assessment process.

From inside, the programming effort is effectively linear. If a program is a string of bits,
programs grow sub-linearly with the typing the programmer does (some typing may be
deletions). The number of things a program can do, however, grows exponentially with the
number of interactions it performs while executing - the programmer does not know what the
outcome of interactions will be, so each interaction bit doubles the space. So, a program has a
complexity of behaviour that grows faster than its complexity of construction. If humans have a
bounded rationality, it follows that there are programs people can write whose model they
cannot understand. Indeed, routinely people who are sufficiently skilled to build objects achieve
behaviour that is incomprehensible to them - though they may have techniques to deny it. (As
an aside, this is why formal methods are necessary: to compress the behaviour into something
manageable.)

From outside, interesting things happen. A person watches the execution of a program
mediated through its peripherals, such as a window on a screen. Any observation records a
trace, which the person generalises into a model of what the program should be able to do in
principle. Unfortunately, there are no guarantees to this generalisation, yet evolution has
endowed us with over-powerful mechanisms to generalise. The so-called "media equation"
(Reeves & Nass, 1996) says we take media as reality - evolutionarily speaking, media are so
recent that we tend to treat everything our senses perceive as real. A real program behaving like
one demonstrated would work everywhere else in its domain; yet the demonstration has only
shown us a single trace, and in a demonstration one cannot distinguish between a simulation
(which need be no more than a "film") and the real thing.

We regularly exploit the media equation for enjoyment - for the willing suspension of our
critical faculties. Theatre is the projection of a story through the window of a stage, and typically
the audience gets immersed in the story as if it was real. This is deliberate. We willingly suspend
asking questions about the story that is not projected, such as we don't worry about
unrepresented details of King Lear's life. However, if the theatre represented a real model, such
questions would have answers. In computing, the power and technique of the theatre is
recruited to demonstrations - there is a literature urging the exploitation of dramatic technique
to enhance interactive systems (Laurel, 1991). It is very hard to watch a demonstration and to
enquire about the off-stage issues: it is as if one is breaking the cultural taboos of interacting
with actors. It is therefore tempting to come away from a demonstration believing (or not
knowing otherwise) that the trace was typical of the general behaviour of the program.'

There would be no problem except we require systems to meet certain prior requirements,
and for most systems (apart from games) these requirements are hard to meet. The people who
design and build computing systems need certain skills .

• Theory and theatre have similar Greek roots, derived from SEa: theory is about objects of study,
and theatre presents objects to view or study (Knuth, 1996).

(6.

The issue is how to eliminate spurious complexity (that is the consequence of inadequate
skill applied to the task of constructing objects of particular behaviour) when we are not
disposed to see it, whether we are users or designers.

Brief examples of problems
Casio calculators
Calculators are an example of a mature technology. Basic calculators have well-defined
requirements, of accuracy and performance and so on. There have been many generations of
calculator designs, and the manufacturers have had many opportunities to 'step' their
production to fix known problems. The only limitations on calculators are the manufacturers'
imagination and skill. I want to devote some space to this example because so few people see
any problem at all.

Casio is the leading manufacturer of handheld calculators. Two of their basic models are the
SL-300LC and the MC-IOO.

• Pressing the buttons AC 1 + 5 % leaves the MC-IOO displaying 1.0526315 and the SL-
300LC displaying 1.05. Yet these calculators look very similar.

• Both calculators have memories, which (so far as I can tell) are identical. The button
MRC recalls the stored number and displays it, but pressed twice in succession sets it
to zero. The button M+ adds the displayed number to memory, and M- subtracts from
the memory. Given that the calculators have a memory, how can a number displayed
be stored in memory? (Pressing M+ presupposes the memory contains zero. And to
make the memory zero, you have to press MRC twice, but doing that sets the display
to the memory -losing the number we wanted to store!)

Thus a market leader, Casio, makes two similar calculators that work in subtly different ways,
and both proclaim features that are ironic. Memory should save paper and help the users do
sums more reliably. Yet most users (especially those that need calculators) would need a scrap of
paper to work out how to avoid using paper to write down the number!

Casio has been making calculators for a long time, and the two calculators are not "new" in
any way. It is not obvious how Casio can justify either the differences or the curious features
shared by both calculators. Neither comes with user manuals or other information that reveal
any problems.

Any calculator, and the Casio ones in particular, can be demonstrated. They are impressive,
especially if a salesman shows you them going through some typical (but unsophisticated)
calculations. It is possible to demonstrate the memory in action, and only some critical thought
would determine that it is a very weak feature.

Canon cameras
The Canon EOS500 is one of the most popular automatic SLR (single lens reflex) cameras, and is
a more complex device, with more complex requirements, than a calculator.

In the Casio calculator examples, despite Casio's undisputed ability to make calculators, we
might query their ability to design them. In the Canon camera example, we have more evidence.
The EOSSOO camera manual warns users that leaving the camera switched on is a problem.
Canon evidently know that the lack of an automatic switch-off is a problem! There is an explicit
warning in the manual on page 10:

"When the camera is not in use, please set the command dial to [L J • When the
camera is placed in a bag, this prevents the possibility of objects hitting the
shutter button, continually activating the shutter and draining the battery."

So Canon knows about the problem, and they ask the user to set the camera off - rather than
designing it so that it switches itself off. A cynic might suppose that Canon make money selling
batteries or film; the next example is another case of Canon apparently trying to sell more film:

"If you remove a film part-way, the next film loaded will continue to rewind. To
prevent this press the shutter button before loading a new film."

There are many other admissions of flaws. Thus Canon is aware of design problems, but
somehow fail to improve (the EOSSOON is a new version of the EOSSOO, with similar problems).

Java
Java is promoted as a programming language with a buzzword list of virtues. We will look at
one problem: it's very easy to confuse the different behaviour of fields and methods. This is a

lY.

point made in the book The Java Programming Language (Arnold & Gosling, 1998), written by
some of Java's designers:

"You've already seen that method overriding enables you to extend existing code
by reusing it with objects of expanded, specialized functionality not forseen by
the inventor of the original code. But where fields are concerned, one is hard
pressed to think of cases where hiding them is a useful feature."

"Hiding fields is allowed in Java because implementors of existing super-classes
must be free to add new public or protected fields without breaking
subclasses."

"Purists might well argue that classes should only have pri vate data, but Java
lets you decide on your style."

Purists may define all fields to be pr iva te, and will provide accessor functions if the field
values are needed outside a class body. Unfortunately, this safer programming has efficiency
implications, which is probably the reason Java is designed the way it is.

Like the Canon camera, we see the English description of a system admitting avoidable
problems with the system.

Collusion
We've shown that commonplace systems are badly designed, and we argued that bad design is
a consequence of unmanageable complexity. Ideally, systems should be better engineered, but
they aren't.

There are many reasons why we collude with bad system design, whether as consumers of
attractive gadgets that promise to do wonderful things; whether as programmers who make a
living from developing systems; or as academics who can make a living solving the problems.
The reasons are deep and varied psycho-social mechanisms (e.g., Baudrillard, 1998; Postman,
1992).

Lottery effect: computers seem to be more successful than they are
Lottery winners are reported in the media, and we become familiar with success. But success is
infrequent - just sampled with bias by the media! In technologies that depend on media (e.g.,
the Web) it isn't possible to sample failures anyway. Companies that experience computer
failures and hence go out of business don't exist.

Realism-reality gap: designers are under pressure to deliver because it is "so easy"
Realism is easy: a look at any arcade game will show the sophisticated realism that is possible.
The media equation implies we tend to treat realism as reality - good design is easy to fake,
especially when you can't assess the mechanism.

Most people therefore think programming is trivia!. (Even if it is hard, the scale of
production means the marginal cost of design is trivia!.) So, designers are put under pressure
from marketing, management, and everyone else, to deliver complex products faster than is
possible consistent with doing a good design.

Oracle effect: experts under-estimate complexity
Experts (particularly programmers) know how complex systems should be used ("press the
twiddle key when you do that!"), and often the reason why a user cannot operate a system is
because they do not know some apparently trivial fact. The expert tells the user, and the user is
impressed with the skill. The expert thinks the user is stupid, because the fact is trivia!.

One way to use computers
Because oracles are so successful, there "must be" a right way to use computers. It is useful to
have a word for deliberately avoiding their narrow-mindedness. A system is permissive if it
permits itself to be successfully used in more than one way. One that is not permissive is
restrictive. For example, my to get my VCR from record-pause mode to record mode, I must
press Play: yet both Pause and Record do nothing - this is both odd and restrictive. (It
probably comes about because programmers write straight-line imperative programs, rather
than declarative programs.)

Even human factors experts may assume there is one right design, and that users must know
it. Nielsen (1993) describes a permissive system, yet users were classified as "erroneous" if they
knew only one of the alternatives!

/8.

we ought to use all the tools of computing to make user manuals better (e.g., declarative, if we
think declarative programming is good).

It is self-evident, and borne out by experiment (Carroll, 1990), that short manuals are better
than long manuals. Combining this idea with the previous gives a design approach to make
better things:

QJI Construct the initial user manual. This step should be automated.

, Find problems. Clearly, good technical authors are able to do this. It is likely that the
act of explaining clearly how to use a system helps uncover problems with it. Some
aspect of a design that cannot be explained briefly and clearly is likely to be hard to
understand.

(j;) Fix the design: the user manual, along with its warnings, lengthy explanations and
invocations of oracles, is a direct indicator of the design areas that need attention.

@ Fix the manual, having fixed the specification. (This step should be automatic if step 1
is automatic.)

And repeat, while each step improves the design and the product. Many
manufacturers have the luxury of producing a range of products, and of updating
them regularly. In such cases, one might manufacture a design before the
improvement cycle is complete, leaving further improvements for future products.
Thus, the method not only improves design, but gives marketing a method for
continually enticing consumers. It ought to be easy to justify!

To the extent that this is a good method, then systems should be designed so that user manuals
can more easily be generated from them or their specifications (ct. literate programming:
Thirnbleby, 1990). While at it, we can also generate other sorts of "manual" (paper, interactive,
diagnostic, and so on) with little additional effort.

If the user manual is written (or partly written: see Thirnbleby & Ladkin, 1995) by automatic
tools, there is little delay in this cycle; it could be fully concurrent. If manuals have to be written
by people without help from the formal specifications (help!), then at least in manufacturing,
last year's manuals can be fed into this year's products.

It is easy to write manuals that are vague, inexact and misleading. To be effective, manuals
need to be complete and sound. Perhaps there could be internal documents that are used in the
design process, and actual user manuals that are derived from the internal manuals, made more
readable for users.

More generally, for "manual" substitute any view. The formal specification of a design
(whether as a logical formula or a circuit diagram or computer program) is "just" another way
of explaining the design - but to a different sort of user (a mathematician, an electronic
engineer, a programmer). These "manuals" can give the "technical author" opportunities to
explain and help the "user." Different sorts of design problems will be brought to
consciousness, and fixes will be suggested. Thimbleby and Ladkin (1997) use a logic
specification of an Airbus subsystem to show that quite complex system manuals can be
improved (and that minimisation algorithms can be used to reduce their size).

Justice
What do we mean by designing better things? What is good anyway, what is this goal of getting
better? These are questions of ethics (or moral philosophy), the study of what is right. Ethics has
a long history, going back to Aristotle (384-322BC) and earlier.

Aristotle defines justice as the act of giving a person good. This is what designers who strive
to design better things do. They design "good" which is embedded in the things they design.
This good is then passed on to the users of the things. To do good design, then, is to be engaged
in acts of justice.

There are different sorts of justice. A user of a gadget is typically unable to negotiate over
details of the design: in a sense, the designer has authority over the user, at least in so far as the
product constrains the user. Justice as an act of authority is the maintenance of rights: the user
of gadgets have rights, and just design is to maintain those rights. And there is contributive
justice, which is the obligation to enable individuals to achieve good. In contributive justice, the
designer contributes to the users' ability to make good use of the gadgets. Clearly, good manual
writers contribute to a just world.

'2..0.

If design is justice, can we make use of this fact? A few thousand years of philosophising on
justice has had little effect on the world. John Rawls wrote the classic book (1971) A Theory of
Justice, where he promoted the idea of justice as fairness. Rawls defined justice as a system of
rules that would be designed by people under a "veil of ignorance" of whether and to what
extent those rules apply to themselves. By this he meant the designers do not know how they
might be affected, so they will build a world that treats them fairly. For example, one might
imagine that the planners of a just system are as-yet unborn. They might be brought into the
world at any age; they do not know whether they will be rich or poor, black or white,
handicapped or athletic, male or female, blue-eyed or green. Under this veil of ignorance they
would be foolish to behave other than as fairly as they possibly could. They might be brought
into the world too old to operate a video recorder" The scope of the fairness applies to the
designers themselves as well as to the users.

Do designers of things act justly by Rawls' definition? Mostly not. They design things they
know they will not use, and even if they did use, they would have oracular knowledge.
Designers are never in a veil of ignorance. Many programmers build systems that they have no
intention of using. If, instead, they worked under the Rawls veil of ignorance, they might try
harder - in case they ended up being a user of their system. If they were programming a tax
program, they might end up "born as" accountants, tax-payers, civil servants designing tax law,
tax evaders, auditors, managers, as their own colleagues having to maintain their system at a
later date, or even as the manual writers ... they would have to design their tax program
carefully and well from all points of view, including making manual writing easy (which gains
the advantages described above). They might prefer to contain complexity rather than risk it
being unmanageable.

This idea is anyway enshrined in conventional good practice: "know the user" (d.
Thimbleby, 1990; Landauer, 1995). Rather than merely "know" one's way into all the other
possible roles, one might more easily, and more reliably, do some experiments and surveys with
other people (though to do this requires the product, or perhaps an earlier version of it, to exist).
It is pleasing that accepted design practice is also just (who wants to be called unjust?)

To summarise: good design is engagement with justice, and we have seen two ways to do
this. First, to stand back and be conscious of the ways in which others (users) will operate the
product - use concurrent engineering with user manuals; secondly, to put oneseIf into the
many different roles of usage. A consequence is that designing systems to support easier
manual generation becomes a higher priority, and this in turn helps improve the systems
themselves.

Design by accident?
Aristotle claims justice is the only virtue that can be achieved by accident. You can't have
integrity (another virtue) by accident: integrity has to be intentional. Someone who claims to
have integrity but does not is faking, and has no integrity. But acts of justice do not depend on
the judge, they are outcomes and are just or unjust to the extent that they fairly affect others.
The point for designing better things is that some designs will be good by accident.

The market helps ensure (but unfortunately does not guarantee) that good design thrives,
and conversely, poor design gets less market share in the face of better competition. The market
is a force of "natural selection." Designers are the evolutionary equivalent of mutagens - they
create mutations: they produce new designs and new variations. By Aristotle's argument, in
design we can have a successful blind watch maker. That some blind watch makers may be
successful by chance is no reason to copy them. If we want to design deliberately, we need a
commitment to justice in design. This cannot be done by accident.

Conclusions
The argument of this paper is that computing systems are so complex and unreliable that they
are really a different kind of thing that requires a different kind of thinking. In particular, they
are so complex that we are no longer able to assess them for quality, and so we take them as
objects for uncritical consumption. Our entire culture is taken up in this game: it suits almost

, There are difficulties with taking Rawls too seriously. There are duties of just action to non
contracting parties, such as to the environment. How we design things to take their 'responsible'
place in a larger ecosystem beyond other users, say to be recyclable, is beyond the scope of this
paper - but that is not to imply such issues are optional; see Borenstein (1998).

? I.

everyone in different ways - manufacturers make lots of money (selling systems to fix
problems that should not have been there), book publishers sell "dummies" books, marketing
people have lots to advertise, and we all seem to swallow it whole. Indeed, it is fun to have a
fancy device!

If we are designing systems, we are caught up in the culture, and design over-complex
systems that we are over-proud of. This paper suggested an approach to help design better;
moreover, a method that can be used to help direct the design so that automatic user manual
generation is easier. To try to escape from the cultural forces is not easy, but it may help to see
that the effort is engagement in justice, and therefore a noble cause.

References
Aristotle, Nicomachean Ethics, in Great Books of the Western World, 8, Encycopredia Britannica, 2nd

ed., 1990.
K. Arnold & J. Gosling, The Java Programming Language, Addison-Wesley, 2nd. ed., 1998.
J. Baudrillard, The Consumer Society, SAGE Publications, 1998.
N. S. Borenstein, "Whose Net is it Anyway?" Communications of the ACM, 41(4), p19, 1998.
Canon Inc., EOS500/500QD Instructions, part no. CTl-ll02-006, 1993.
J. M. CarrolI (1990), The Nurberg Funnel, MIT Press.
D. E. Knuth, Selected Papers on Computer Science, p143 Cambridge University Press, 1996.
T. Landauer, The Trouble with Computers, MIT Press, 1995.
B. Laurel, Computers as Theatre, Addison-Wesley, 1991.
R. Nader, Unsafe at Any Speed, Pocket Books, 1965.
J. Nielsen, Usability Engineering, Academic Press, 1993, p61.
N. Postman, Technopoly, Vintage, 1992.
B. Reeves & c. Nass, 1996, The Media Equation, Cambridge University Press.
M. Rettig, "Interface Design When You Don't Know How," Communications of the ACM, 35(1),

pp29-34,1992.
J. Rawls, A Theory of Justice, Oxford University Press, 1972.
H. W. Thimbleby, User Interface Design, Addison-Wesley, 1990.
H. W. Thimbleby, "A New Calculator and Why it is Necessary," Computer Journal, 38(6), pp418-

433,1996.
H. W. Thimbleby, "Design Aloud: A Designer-Centred Design (DCD) Method," HCI Letters,

1(1), pp45--50, 1998.
H. W. Thimbleby & P. B. Ladkin, "A Proper Explanation When You Need One," in M. A. R.

Kirby, A. J. Dix & J. E. Finlay (eds), BCS Conference HCI'95, People and Computers, X,
ppl07-118, Cambridge University Press, 1995.

H. W. Thimbleby & P. B. Ladkin, "From Logic to Manuals Again," lEE Proceedings Software
Engineering, 144(3), ppI85-192, 1997.

"Engineering is the art of moulding materials we do not wholly understand ... in
such a way that the community at large has no reason to suspect the extent of
our ignorance." A. R. Dykes.

Part II

Submitted papers

2.'5.

For our purposes, we can assume that Op is a sequence of one or more strings, numbers, etc.
Usually the Op of a term is just a single identifier.

There are no further restrictions on term structure. How terms are displayed in Nuprl is not
inherent in either the structure of terms or the definitions of constants and operators; display is
specified separately. Operations for term editing act directly on these structures3) modulated
by the display forms in force at the time.

When we can't think of a better way to display a term, we usually just write the Op followed
by the subterms, if any, and prefix each sub term by the binding variables for that place, if any.
So, Op(tl; u.t2) would be the Term < op, 2, t, k, x >, where kl = 0, k2 = I, and X2,1 = u.

For example, all(A; x. B (x» is used in the standard Nuprllibraries to represent instances
of the universal quantifier, where A is the domain of quantification, and B(x) is the formula
being quantified; the standard display is Vx:A. B(x) .

Sometimes other values are included in the operator as a way of getting those values into
the term structure as literals. When we don't have a better way of displaying them, these extra
values are usually just written directly after the first identifier, in braces. For example, the
basic numeric literals used in Nuprl are exen1plified by "natural..number{2} ", which has no
immediate subterms, and is normally displayed simply as 2.

Normally, such a discussion of term structure would lead to a description of operator defini
tions, and indeed we'll see some examples below, but our concern here is really with how such
terms are displayed.

Displaying Terms

At any point during a Nuprl session, there is a set of named objects of various kinds, mostly
loaded from library files. In addition to proofs, operator definitions, inference rules, program
code, and documentation objects, Nuprllibraries contain objects that specify how to display
terms.

A specification includes a term such as derive <x>. <e>; <a» , called the "display model,"
which may contain schematic variables such as <e>, in place of various parts. The display
spec is applied by matching for these schematic variables, then instantiating into a "formatting
command" that is also part of the specification; formatting commands specify what characters
to display, as well as break/margin control similar to Oppen's pretty printer methods[14].

Here are the display specifications used above to display the derivative. The main things to
observe are the display models; the reader need not really understand the rest of the specifica
tion, but we show it simply to demonstrate that it is a fairly simple schematic method. Here
is the display specification that generates the non-d/dx display form used above:

Model: deriv«x>.<e>; <a»
Deriv«x:var>. <e:real>

<--MARGIN ; [J
<a:real»
<--MARGIN<--SOFT

Given a particular term, there may be several ways to display it - there may be several
specifications having display models which match the term. In addition to this display spec,
we have added another one for our special case:

3Structure editing of terms, via. granunars for those terms, wa.s pioneered by Teitelbaum[16, 15]

Model: deriv«x>.<e> ; <x»
Attrs: *Open form*; ;apply.standard

d<e:real:«self), AddIparms«x»>
+-MARGIN[]

/d<x:var>
+-MARGIN+-SOFT

Notice how the display model indicates t.he special circumstance of applicability, namely,
that the same variable name must be used both as the binding variable, and as the second argu
ment to the operator. (During substitution, Nuprl usually attempts to retain variable names,
as well as identity and difference between variables bound by the same operator occurrence.)
The "AddIparms" element will become significant for our discussion, and will be addressed
below.

When a term is displayed, it runs through the display forms in a specific order trying to
find one that may be applied to the term in question. As a result, the term d(x·x+b·x)/dx
is normally displayed as such rather than as Deriv(x. x·x+b·x ; x) , although the user
may temporarily disqualify the djdx form for whatever motive, such as finding the notation
mysterious or ambiguous. The term Deriv(x. x'x+b'x ; a) , however, is simply ineligible
for the d/dx form, and so the long form is used. Indeed, if "a" is substituted for free "x"
in d(x·x+b·x)/dx , say in the course of a proof, then the djdx form will be automatically
abandoned in favor of Deriv(x. x·x+b'x ; a) . Or, utilizing a simple substitution operator
defined by e(x) ix;a ;; e(a) ,

d(x·x+b·x)/dxix;a rewrites by definition to Deriv(x. x·x+b·x ; a) .

Let us return to the "Ad dIp arm" element in the display spec above, which has been attached
to the formatting command for a subterm. It is rather common in informal practice to elide
certain variables from expressions which nevertheless depend upon them, such as when the
same variable is used repeatedly throughout a long argument or other discourse. Nuprl terms
must include any variables they depend on, so these implicit parameters must be elided merely
as as matter of display.

The recursive descent display algorithm has as one argument a set of variables considered
to be implicit parameters. The display form in question stipulates that whatever variable of
the instance matches the schematic variable <x> will be added to the implicit parameter set
when the sub term is displayed.

It is possible to stipulate that a given display form is usable only if certain variables are
in the implicit parameter set. To continue with our d/dx example, suppose we wish to work
with functions that will normally depend on the variable x. We may define a special function
application form that is intended for use mainly with x as its argument, and whose display
elides x when it's an implicit parameter, but shows it otherwise. Here's an example of using
this apply form with function y.

Vb:lP!,y:lP!-->IPL (Vx:lP!. y(x) ; x·x+b·x) =:> Vx:lP!. dy/dx ; 2'x+b

(Note the abbreviation of the iterated quantifier. The display system has several iteration
related capabilities.) If we alpha-convert Vx:lP!. dy/dx ; 2'x+b ,changing all binding x's to
v, say, we get 'v'v:IPL dy(v)/dv = 2'v+b , in which the argument to y now stands revealed
because it is not x. There is further discussion of calculus notation in [13].

To summarize, N uprl has been used to explain certain d/ dx notations, not by extending the
basic term structure and altering concepts of binding, but rather by construing them simply as
notational abbreviations for certain forms of notation having the more 'commonly understood
binding conventions) and explicitly containing the variables upon which they depend. In search
of other applications for this device, let us turn our attention to the notations of Modal Logic.

'LB.

Acknowledgements

Many thanks to Kees Hemerik for his stimulation and help in writing this paper, and to Eric
Raijrnakers for implementing the graphical user interface. The author also thanks the anonymous
referees for their useful suggestions.

Note

This is an extended abstract of an article submitted to the Journal of Functional Programming.

References

[Bar92] H. Barendregt. Lambda calculi with types. In D. M. Gabbai, S. Abramsky, and T. S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Oxford University
Press, 1992.

[CKT95] Yann Cos coy, Gilles Kahn, and Laurent Thery. Extracting text from proofs. In Typed
Lambda Calculi and Applications: Proceedings of the Second International Conference,
volume 902 of LNCS, pages 109-123. Springer-Verlag, Berlin, New York, 1995.

[Coq97] Coq. The Coq proof assistant. In URL: http://pauillac . inria. fr/coq, 1997.

[Cos96] Yann Coscoy. A natural language explantation for formal proofs. In Logical Aspects of
Computational Linguistics: Proceedings of the First International Conference, volume
1328 of LNAI. Springer-Verlag, Berlin, New York, 1996.

[Ha197] Thomas Hallgren. Alfa home page. In URL: http://''ww.cs. chalmers. se;-hallgrenl
Alfa/, 1997.

[HC95] Thomas Hallgren and Magnus Carlsson. Programming with Fudgets. In Spring School
on A dvanced Functional Programming in Bastad. Springer-Verlag, 1995. LNCS 925, see
also [H C97].

[HC97] Thomas Hallgren and Magnus Carlsson. The Fudgets home page. In URL: http://
www.cs.chalmers.se/Cs/Research/Functional!Fudgets/. 1997.

[LP92] Zhaohui Luo and Randy Pollack. Lego proof development system: User's manual. Tech
nical Report ECS-LFCS-92-211, Laboratory for Foundation of Computer Science, 1992.

[Ned90] R.P. Nederpelt. Presentation of natural deduction. In Symposium: Set theory, founda
tions of mathematics) Recueil des travaux de I'Institut Mathematique, NOllv. serie, tome
2 (10), Beograd, pages 115-125, 1990.

[Pet97] John Peterson. The Haskell home page. In URL: http://haskell.org/, 1997.

[Po193] Erik Poll. A typechecker for bijective pure type systems. Technical Report 93-22,
Eindhoven University of Technology, 1993.

[Rai97] Eric Raijmakers. A graphical user interface for the proof assistant Yarrow. Master's
thesis, Eindhoven University of Technology, 1997.

[SB96] Bernard Sufrin and Richard Bornat. Jape - a framework for building interactive
proof editors. In URL: http://www.comlab.ox.ac . uk/oucl/users/bernard. sufrin
IUNIXJAPEDOCHTML/jape.html,1996.

[Th096] Simon Thompson. Haskell, The Craft of Functional Programming. Addison-Wesley,
1996.

[Zwa97] Jan Zwanenburg. The Yarrow home page. In URL: http://w .. w.win.tue.nl/cs/pa/
janz/yarrow/, 1997.

180.

	Foreword
	Contents
	Overview and Rationele of an Inductrial Prover
	The detection and elimination of spurious complexity

