
https://doi.org/10.6100/IR461604
https://doi.org/10.6100/IR461604
https://research.tue.nl/en/publications/c7ae42fc-e945-4b67-88a0-a007adbe1887

Reductivity Argurnents and Program Construction

Reductivity Arguments

and
Program Construction

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

maandag 24 juni 1996 om 16.00 uur

door

Hendrik Doornbos
geboren te Ten Post

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. R. C. Backhouse

en
prof.dr. E. W. Dijkstra

Acknowledgements'

Many people have contributed in making the research reported in this thesis possible and
enjoyable. I would like to mention:

• My Ph.D. supervisor Roland Backhouse, for accepting me as a Ph.D. student, show
ing me bis good taste, teaching me that it is always possible to make things better
and helping me in doing so.

• My fellow Ph.D. students Paul Hoogendijk and Ed Voermans, for their enthusiasm
and interest.

• The other memhers and former memhers of the Eindhoven Mathernaties of Program
Construction Group: Chritiene Aarts, Eerke Boiten, Joop van den Eijnde , Netty
van Gasteren, Rik van Geldrop, Frans Rietman, and Jaap van der Woude.

• The external memhers of the Ph.D. committee: Edsger W. Dijkstra, Wim Hesselink
and Anne Kaldewaij, for reviewing this thesis and giving detailed comments.

• Ronald Bulterman, Care! Scholten, and other memhers of the Eindhoven Tuesday
Afternoon Club, and Rutger Dijkstra and Burghard von Karger for their interest in
my work on well-foundedness.

• Wim Feijen, who taught me many things and gave me the final kick; I owe him a lot.

• Netty van Gasteren, who helped me writing in spite of local circumstances.

• Oege de Moor, for the inspiration for the notion of reductivity.

• Laurens de Vries and Judith Masthoff, for the many pleasant and fruitful conversa
tions.

• Richard Verhoeven, for implementing the Mathfpad system, and providing !}'lEX help
and other assistance.

• My family and friends, to whom I apologise for not wanting to teil them about my
work.

1

1

1

ii
1

1

1

1

1

1

1

1

1

I
11

11

11

11

11

I 1

I 1

I 1

I 1

I 1
I I

Contents

1 Introduetion
1.1 Aims and motivation

1.1.1 Precision and concision
1.1.2 Specifications
1.1.3 Programs '•
1.1.4 Design criteriafora model of programs
1.1.5 Datatypes
1.1.6 Relation calculus in programming ..
1.1. 7 Termina ti on
1.1.8 Reductivity arguments and termination

1.2 Related work
1.2.1 Algorithmics ...
1.2.2 Refinement calculi .
1.2.3 Our contribution

1.3 Overview of the thesis

2 Basic N otions
2.1 Introduetion
2.2 Galois connections

2.2.1 Galois connections and fixed points
2.3 Relation calculus: the basic operators

2.3.1 The lattice structure
2.3.2 Composition . . .
2.3.3 Factors
2.3.4 Relation converse
2.3.5 Other axioms .

2.4 The transitive dosure . .
2.5 Sets as relations

2.5.1 The isomorphism formalised
2.5.2 Some other properties of monotypes and domains

2.6 Functionality and totality
2. 7 The monotype factor .
2.8 Relators and datatypes . .

iii

1
1
1
2
3
3
3
4
4
5
6
6
6
7
7

11
11
12
13
15
15
17
17
18
19
20
21
23
24
26
27
32

iv

2.8.1
2.8.2
2.8.3
2.8.4

Datatypes defined without reenrsion . . .
Recursive datatypes and initia! algebras .
Natural transformations for monotypes
Some properties of relators

3 Mathematica! lnduction Made Calculational
3.1 Well-foundedness•....
3.2 Well-foundedness of the transitive ciosure . . .
3.3 The induetion principle
3.4 "Admits induetion" and the transitive dosure
3.5 Admits-induetion implies well-founded
3.6 Bound functions . . .
3.7 The lexica! eoupling

4 Example Reductivity Arguments
4.1 The uep of regular algebra
4.2 A fact from graph theory
4.3 Newman's lemma
4.4 Modularity of well-foundedness.

5 lmplementing Relations using Repetitions
5.1 The input-output relation of the repetition
5.2 Programming with invariants

5.2.1 Introduetion
5.2.2 Relational programming with invariant,s .
5.2.3 The repet.it.ion theorem
5.2.4 Examples

6 lnduction on Datatypes
6.1 Introduetion
6.2 Structural induction . .
6.3 F-reductivity
6.4 Towards a calculus of reductive relations

6.4.1 Basic F-reductive relations
6.4.2 New F-reductive relations from old .
6.4.3 Bound functions

6.5 Reductivity and coatgebras
6.6 Connections between inductive and reductive
6. 7 Well-foundedness generalised .
6.8 Initia! algebras
6.9 Lambek's lemma
6.10 Initiality implies reductivity
6.11 Factorisations of initiality ..

CONTENTS

34
37
38
39

41
42
44
45
49
51
52
53

55
56
59
62
65

71
72
77
77
78
79
81

87
87
88
89
92
93
94
96
98
99

101
105
107
110
112

CONTENTS

6.12 Reductivity and well-foundedness

7 Recursion on Datatypes
7.1 Introduetion
7.2 Structural reenrsion .
7.3 Primitive recursion .
7.4 Hylo programs
7.5 Reductivity and termination
7.6 Proofs of termination: reductivity arguments
7.7 Intermediate data structures
7.8 A programming paradigm
7.9 Concluding remarks

8 The (R,A)-calculus
8.1 Introduetion
8.2 Programs and monotype transfarmers
8.3 The straightline constructs . .

8.3.1 Extrema! programs ..
8.3.2 Guards and assertions
8.3.3 Sequentia! composition
8.3.4 The choice operators

8.4 Partial orders on programs . .
8.5 Reenrsion
8.6 The restrietion to Egli-Milner-monotony
8. 7 Summary and conclusions

9 Epilogue

References

Index

Samenvatting

Curriculum Vitae

V

113

115
115
116
119
121
124
127
133
135
136

139
139
141
143 --
144
144
145
146
148
150
154
157

159

161

169

173

177

vi CONTENTS

Chapter 1

Introduetion

1.1 Aims and motivation

We are programmers, in the sense that it is our concern to improve the process of program
construction. Therefore we want to answer questions like: What is programming, why is
it so difficult and error-prone, and how can we learn what is needed to make the process
more manageable?

The contribution of this thesis to the improverneut of programming is that it tries to
identify some of the concepts that play an important role in the construction of programs
and seeks to formalise them in such a way that they can be used in practice. Two such
concepts are, of course, specifications and programs.

We limit our attention to just one phase of the programming process: for us program
ming is the construction of programs from specifications. Of course, that does not mean
that we consider other aspects of programming unimportant. For instanee the phase of
obtaining a specification from a vague description is well-known to be a major souree of
errors in the "final" product. lt is not easy to obtain a "valid" specification, that is, one
that captures exactly what the elient bas in mind and that does not contain any inconsîs
tencies. Therefore, an important property of specifications is that they can be validated
effectively. In this thesis however, it is assumed that valid specifications can be obtained
and the question of what their properties should be such that they can be validated is
ignored.

Instead, we seek an answer to the following question. How should one model specifica
tions and programs in such a way that the program can be obtained from the specification
by means of formal reasoning?

1.1.1 Precision and concision

The idea of formal reasoning by which we mean the manipulation of uninterpreted
formulae according to prescribed syntactic rules seems to split the computing community
into two distinct and opposing schools. There are the enthusiasts who fervently advocate
its use, arguing its effectiveness and reliability, and there are the sceptica who dismiss it,

1

1.1. AIMS AND MOTIVATION 3

1.1.3 Programs

We also need to model programs. This topic belongs to the field known as semantics. We
do not study semantics principally in order to prove compilers correct or to verify that
programs do what they should do, let alone to show that roodels of programs do exist.
Our interest is in how semantics can help in program construction. That this is, indeed,
possible is evidenced by the work clone in the field called axiomatic semantics.

Traditionally, in semantics programs are modelled and one concentratea on the mapping
between programs and their models. Another issue that is considered to be important in
semantics is whether or not appropriate roodels do exist. As said before, we do not address
these issues; instead we concentrate on the properties of the model. This is motivated by the
following. ldeally the model should contain only those aspects of programs that are relevant
in the process of programming. It should abstract from the features of programming
languages that are irrelevant for this (for instanee the partienlar syntax). Furthermore,
the model should have properties that support programming. Of course that does not mean
that the mapping between concrete and abstract programs is not important. Requirement
number one is that it be simple.

1.1.4 Design criteriafora model of programs

What then should such a model of programs be like? Programs and specifications have
much in common and indeed there are a lot of formalisros in which programs are viewed
as special cases of specifications. However, the two are not really the same. One aspect of
a program is its input-output behaviour, the responsibility of the computer being to con
struct this. However a program also has properties like efficiency -which is connected with
its syntactic form- and termination, which make no sense for specifications (although a
specification can mention tertnination this does not give us a specification with the property
termination). In this thesis we will in the first place study programs that terminate. It will
turn out that all three aspectsof programs mentioned above (input-output behaviour, ter
mination and efficiency) can be assigned to equations in relations. Therefore, we advocate
the view that programs are equat.ions in relations.

1.1.5 Datatypes

A third concept to be discussed besides programs and specifications are datatypes. In
programming they play an important role. First, it has long been observed that data
structure infiuences program structure. Second, efficient implementation of programs often
requires the design of ingenious datatypes.

Traditionally a datatype is a set with a number of operations on it -an algebra in
mathematica! terminology. In this thesis we concentrate on the class of datatypes known
as initia! algebras because primarily these are known to infiuence program structure. The
class is rather wide: it encompasses the natural numbers, lists, and also various tree-like

4 CHAPTER 1. INTRODUCTION

structures. A set can be modelled as arelation and, of course, so can the operations on it,
and that is how we do it in this thesis: datatypes are, like specifications, relations.

1.1.6 Relation calculus in programming

Now that we have identified three concepts · that play an important role in programming,
(specifications, programs, and datatypes) the question remains if this is enough to study
at least part of the programming process. For us an important way of obtaining programs
from specifications is by calculation, because calculation offers the possibility of isolating
the straightforward parts of the programming· process. Programming can be· viewed as
calculating an equation (the program) that is satisfied by arelation (the specification). In
other words programming is calculating with relations. Therefore, the relation calculus is
potentially a useful tooi in programming and this is the motivation why the thesis uses
this calculus as the theoretical framework.

An advantage of the relation calculus over, .for instance, the predicate calculus is that
it is point-free: it is not necessary to mention the points between which the relation holds.
As a consequence formulae expressed in relation calculus tend to be very compact. And
this in turn greatly facilitates effective calculational reasoning. But of course somatimes
the points, which are the input and output of the program, do play a role. An important
topic of investigation is therefore when point-free reasoning, using the relation calculus, is
appropriate and when it is not and another calculus should be used. This question will be
discussed briefly but is nota central one.

1.1. 7 Termination

As we have argued before, the central topic of this thesis is the search for compact formu
lations of relevant concepts we use in our everyday work as programmers. In the previous
sections we identified a number of these concepts, but of course there are more. Two
stuclied in this thesis are termination and induction. To prove termination, and also other
desirabie properties, of a program typically an inductive argument is used, soit seerns good
to try to formalise these too.

It may seem obvious to formalise the concept termination, but in related work one has
concentrated on another property of programs, namely that they have unique solutions.
(Recall that in our view programs are equations and it therefore makes sense to talk about
solutions of a program.) This was inspired by categorical approaches to semantics and
the observation that in that framework unicity of solutions coincides with termination. A
drawback of that approach is, however, that it only allows the study of a very limited class of
programs, basically ouly those that can be defined by structural induction over their input.
Such programs have been dubbed catamorphisms [62]. An example of such a program is
the one that computes the sum of a list. But many functions do not fit comfortably into
this class -the factorial function for example. It is even the case that there are algorithms
that do not fit into the class at all. Programs defined by structural recursion are necessarily
terminating. It is well-known that, consequently, there exist algorithms that are outside the

1.1. AIMS AND MOTIVATION 5

class. (Martin-Löf's theory of types [64] has the same drawback. It allows only programs
defined by primitive recursion, and also all those programs are necessarily terminating.)

To overcome the limitations of structural recursion there was an explosion of so called
morphisms: apart from catamorphisms we got paramorphisms [68], anamorphisms [69j,
zygomorphisms [62], hylomorphisms, prepromorphisms, postpromorphisms [42] and so on.
All of these are classes of equations representing certain reenrsion schemes. One could then
show that all these equations had unique solutions. However the technique to do so still
relied on the categorical approach and the class of programs that could be tackled was still
considerably smaller than the one a programmer has to work with.

This is an indication that unicity of solution is not the right concept to formalise and a
contri bution of this thesis is to formalise the notion of termination instead. This allows us
to considerably extend the class of programs that can be dealt with, while simultaneously
reducing the class of morphisms toa single member: the hylomorphism. The class of pro
grams seems now large enough to tackle most, if not all, programming problems because it
also contains the repetition. For instance, the linear search program which poses difficulties
in the categorical approach fits comfortably in our approach.

1.1.8 Reductivity arguments and termination

At this point it is appropriate to explain the term "reductivity arguments" from the title
of the thesis. What we mean by a reductivity argument could also be called an inductive
argument. In this thesis we generalise what it means for a relation to admit induction,
that is, when arelation can be used in an inductive argument. This is clone by introducing
a datatype in the definition. The generalisation is, however, not the same as the existing
notion of "inductive relation" and therefore apother term had to be invented.

It is well-known that a relation can be used in an inductive argument if and only if .
it is well-founded. Our generalisation is exemplified by the following. A relation between
natural numbers and lists of natural numbers is reductive with respect to the datatype of
lists if it is such that whenever it holds between a natural number n and a list m all the
elements of list m are smaller than the number n. In this sense the relatión reduces its
argument and this is the reason why the term "reductive" was chosen.

This new concept of reductivity is used to define what it means for a program to
terminate and a proof of termination is therefore by a reductivity argument. But also all
kinds of other argumentsin which well-founded (or inductive) relations play a role can now
be called reductivity arguments.

A major topic of this thesis is to develop a calculus of reductive relations. We do this by
first giving a base class of reductive relations and then a number of methods to construct
new reductive relations from old ones. This calculus then gives the possibility to reduce
the proofs of termination to simple calculations led by syntactic criteria. It should also be
possible to use the calculus for the construction of terminating programs.

6 CHAPTER 1. INTRODUCTION

1.2 Related work

1.2.1 Algorithmics

The idea of transforming specifications into programs, or transformational programming is
actually quite old. For instanee it was already mentioned in 1969 by Burstall and Landin
[27]. Other, more well-known, raferences are Backus's Turing Award Lecture [13] and the
"fold-unfold" metbod of Burstall and Dadington [26]. It is also the idea bebind Iverson's
workon the programming language APL [56], which also emphasises concision.

Transformational programming in the sense of algebraic manipulation of formulae, was
further developed in the so-called Bird-Meertens formalism [21, 22]. Meertens calls the
programming metbod algorithmics [67] to stress the fact that it is calculating with algo
rithms (like arithmetic, which is calculating with numbers). The original Bird-Meertens
formalism was restricted to functions on the datatype of lists. Maleolm (63] subsequently
showed how category theory could be used to introduce other datatypes. This line of
research was further followed and developed by Fokkinga [42].

The introduetion of non-determinacy is due to Backhouse et al [9, 8]. They proposed
modelling programs (and also datatypes) as relations and to use relation calculus as the
tooi to transfarm programs. This calculus of binary relations was developed in the 19th
century by Schröder and De Morgan and stuclied again in the 1940's and 50's by Tarski
and bis collaborators [82]. (See [60] for an account of the history of the relation calculus.)
The contribution of Backhouse was to introduce datatypes in this calculus.

A comparable line of research has been set out by De Moor and Bird [i 7, 19, 18, 20].
However their approach differs from Backbonse's in that they choose to workin a categorical
framework, basedon Freyd's theory of allegories [44]. Although different in the underlying
theory, the results of Bird and De Moor, and their way of calculating programs, are nearly
the same as Backbonse's method. Because we are mainly interestad in those aspects we
choose to use the relation calculus, instead of a categorical approach, because it is somewhat
simpler.

1.2.2 Reflnement calculi

A separate line of research in transformational programming is based on the predicate
transfarmer approach to semantics [35, 52]. In this approach programs are not viewed as
functions from an initia! statetoa final state but as predicate transfarmers or, equivalently,
transfarmers from sets of final states to sets of initial states. This metbod of semantics bas
proven to be very useful in the construction of programs [46, 36, 7, 57, 30]. A drawback
could be that it is not customary to calculate with the programs themselves. Instead, one
calculates with the programs applied to a predicate, i.e. with predicates. To overcome
this, Back and von Wright [5] and Morgan [71] define arefinement relation on programs,
expressing that one program is an implementation of another. Also, a new class of pro
grams is introduced to model specifications. This way it becomes possible to transform a
specification into a program by means of a calculation with programs.

1.3. OVERVIEW OF THE THESIS 7

It is well-known that the predicate transfarmer approach toprogram semantica is equiv
alent to a relational semantics. Therefore, the work of Backhouse et al. on a relational
approach to algorithmics can he viewed as a bridge between algorithmics and refinement
calculi.

1.2.3 Our contribution

The work in this thesis can he seen as a further contribution to the unification of the two
streams of research on transformational programming. We extend the work of Backhouse
et al. by explicitly introducing the notion of termination in the calculus, sarnething which is
also present in the refinement calculi. Another new feature of our approach to algorithmics
is that programs are not considered as essentially the same as specifications. A further
new extension is the introduetion of set transfarmers into the relation calculus. This way,
it becomes possible to incorporat.e the work done on predicate transfarmer semantics and
refinement calculi.

Algorithmics has concentrated on the calculation of functional programs, whereas the
various refinement calculi are meant to derive imperative programs. Because we try to
integrate the two approaches to transformational programming, some of the work clone
in this thesis can also he seen as a step towards the integration of the functional and
imperative styles of programming

1.3 Overview of the thesis

Although the relation calculus bas a long history one can not assume that readers are
familiar with it. Therefore, Chapter 2 contains an introduetion to this calculus. The
axioms of the calculus are given and we present a carefully selected set of properties that
are needed in the remainder of the text. To help readers who are not familiar with the
calculus we relate the introduced operators to the programming concepts which they are
intended to model. This way the reader can convince bimself of the validity of the given
properties and judge whether or not they are useful for him. In doing so, the chapter also
explains our view on specifications, programs and datatypes.

An important part of our approach is the use of so-called "Galois connections". Tliey
allow the introduetion of new operators in such a way that a number of their properties is
obtained simultaneously -for free in a manner of speaking. The chapter also contains a
short introduetion to the theory of Galois connections.

There are no new results in the chapter, but it contains the introduetion (by a Galois
connection) of a novel operator which is in essence the (weakest) liberal precondition. In
later chapters this operator is used to formalise reductivity and termination.

Chapter 3 is organised around several different but equivalent formalisations of "is
well-founded" and "admits induction". Although it is well known that well-founded and
admitting induction are equivalent, proofs of that fact invariably entail the use of comple
mentation. Our goal is to see what can be learnt by studying the two notions individually

8 CHAPTER 1. INTRODUeTION

and with respect to each other in the context of a relation algebra in which complementa
tion is not permitted. This is not only to play a nice formal game: in a later chapter the
two notions are generalised. And the generalised notions are not equivalent anymore, not
even when complementation is allowed.

For each of the two notions we first reeall one of the usual pointwise definitions and
then reformulate these definitions more concisely in the point-free style of relation algebra.
To show the advantages of concision we prove some (well-known) facts such as that admits
induction implies well-foundedness (even in the absence of negation), and that the transitive
dosure of a relation is as well-founded as the relation itself.

With the understanding thus gained we praeeed in Chapter 4 to tackle the construction
of a number of proofs of less straightforward facts such as Newman's lemma [74], a lemma
that is much exploited in the construction of term rewriting systems but is regarcled as
difficult to prove. We demonstrate that the proof of the lemma becomes straightforward by
reducing it to purely syntactic considerations. As another example a sufHeient condition
for the well-foundedness of the union of two well-founded relations is calculated. The result
generalises the known condition: "the union of two well-founded relations is well-founded
if the two relations quasi-commute" [3]. This generalisation more or less comes out of
the calculation, showing one advantage of the calculational method. It is even the case
that we were not able to prove this result using the standard methods such as deriving
a contradiction by constructing infinite chains. (Inevitably, such a proof was found by
several of our colleagues when this thesis was almost complete.)

Chapter 5 is the first one to address programming. The chapter concentratea on how to
implement relational specifications using repetitions. First the question of what the input
output relation of a repetition (while program) should be is answered. Then we proceed
to express termination. An immediate consequence of our approach, as we demonstrate, is
that it is not necessary to define the input-output relation of a repetition as a least salution
(the standard approach) as long as attention is restricted to terminating programs. Any
solution will do because, for a terminating repetition, there is only one solution. This
seems to be a new result: it is not necessary to define the input-output behaviour of a
terminating program as an extreme salution of an equation.

Tbe, by now standard, way to construct repetitions is by using invariants, guards
and bound functions. To relate this metbod of programming to tbe point-free relational
approach tbe invariance tbeorem is formulated and proved.

In addition, some simple programming exercises are solved. This is done in such a way
tbat it becomes clear that the metbod of using invariants is not necessarily restricted to
imperative programming: it could also be exploited in tbe construction of functional (and
possibly logic) programs.

In Chapter 6 tbe notions well-founded and admitting induction from Cbapter 3 are
generalised by introducing a datatype in tbe definitions. We prove that althougb "well
founded" and "admitting induction" are equivalent the obvious generalisations are not,
the generalisation of "admitting induction" being the stronger of the two. We call the
generalisation of admitting induction reductivity. The chapter also contains t:he result tbat
reductivity is a generalisation of the categodeal notion known as initiality and argues why,

10 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Notions

2.1 Introduetion

This chapter introduces the basic notions that are used throughout the text. It starts with
a brief introduetion to the theory of Galois connections. Then the basics of the relation
calculus are presented. Although the axionis of this calculus are given, the treatment is
rather informal. For instance, we do not supply proofs for all öf the properties. Only a few'
proofs are provided and these are mainly meant to give an illustration of the techniques
used in the rest of the text. The reason why we do not present all proofs is that it is
not our intention to provide an axiomatic introduetion to the relation calculus. We just
want is to make the reader familiar with the rules of the calculus and with the pointfree
formulation of some of the facts that will be used in later chapters. Once these rules and
facts are known, they can (and will) be used in formal proofs. In this sense all of them can
be considered as axioms.

In this chapter we do not discuss termination of programs: the only aspect of a program
that is considered to be of interest is its input-output relation. To familiarise the reader with
the calculus, we therefore often interpret relations as programs and, conversely, programs
as relations. We sametimes even identify these and discuss relations in an operational way.
It is hoped that in this way it becomes apparent that the rules of the relation calculus can
be seen as useful laws of programming.

In the same informal vein, we present an introduetion to our way of treating datatypes
in the frameworkof the relation calculus. Specifically, the various ways of representing sets
as relatious are discussed. Then we introduce the cartesian product and disjoint sum of
two sets. Also, it is explained how recursive datatypes like the natura! numbers and the
lists can be constructed in the relation calculus.

This chapter contains a discussion of the transitive dosure of a relation, a concept that
will be relevant for the relational approach to the semantics of the repetition. The main
reason for including it is, however, to be able to give some typical examples of proofs in
the relation calculus.

It is assumed that the reader is familiar with the predicate calculus and the very

11

12 CHAPTER 2. BASIC NOTIONS

beginning of lattice theory. For instance, we assume the fixed point theorem of Knaster
and Tarski [83] to be known. It will also help if the reader bas some knowledge of imperative
and functional programming.

2.2 Galois connections

The concept of Galois conneetion is well-known, see e.g. [23, 78, 33], but perhaps not as
well known as it deserves to be. Given two preorders :5 and Ç, two functions, f and g say,
form a Galois conneetion if the following formula holds for all x and y.

f.x:5y xÇ g.y . (2.1)

Function f will be called the lower adjoint and function g the upper adjoint. (These narnes
are chosen because (2.1) is a special case of the categorical notion of adjoint situation.)
Galois connections are interesting because as' soon as we reeognise one we get a large
number of properties of the adjoints for "free", in a manner of speaking. First of all, we
have the two cancellation properties

x Ç g.(f.x) and f.(g.y) :5 y

These are obtained by instantiating (2.1) in such a way that either the lefthand or the
righthand side becomes true. Furthermore we have that both f and g are monotone. To
demonstrate how nicely calculations with Galois connections proceed we show this for f.

f.x :5 f.y

{ shunting: (2.1) }

xÇ g.(f.y)

{ cancellation: yÇg.{f.y); transitivity of Ç }

xÇy

This calculation, albeit short, demonstrates the style of working with Galois connections:
the use of the "shunting" rule (2.1) combined with the cancellation rule. Of course, in
more substantial examples there is typically a number of additionalsteps after the shunting
to make the cancellation possible.

If the two orders are complete lattices (which is, for instance, the case for the stan
dard inclusion order on relations) something more can be said. Then the lower adjoint
distributes over arbitrary joins and the upper adjoint distributes over arbitrary meets. As
a consequence, the lower adjoint is bottorn-strict and the upper adjoint top-strict.

Another fact, that is at least as important for our purposes, is that if a function on a
complete lattice distributes over arbitrary joins then it bas a unique upper adjoint and,
conversely, if it distributes over arbitrary meets then it bas a unique lower adjoint. This
fact is of major importance because it allows us to introduce new operators: e.g. if we

2.2. GALGIS CONNECTIONS 13

have a function f on a complete lattice that distributes over arbitrary joins then we know
that there is a unique function fi with the shunting and cancellation properties:

f.x!;;;y;: xç;fd.y and f.(fi.x)!;x. (2.2)

As an example of the introduetion of such a function consider a complete, completely
distributive lattice. Let n denote the meet operator of the lattice and y be an element of
the lattice. That the lattice is completely distributive means that the function defined by
f.x = ynx distributes over arbitrary joins. The theory of Galois connections then allows
to introduce the upper adjoint function fU which in this case is denoted by y--+ . And we
get immediately some properties:

ynxç;z

In the first property we recognise the familiar shunting property of the predicate calcu
lus. The secoud (cancellation) corresponds to the rule of "modus ponens". Readers with
knowledge of Heyting algebras may appreciate this as a concise way of introducing them:
a Heyting algebra is a lattice such that all "sections" yn of the meet operator have an
upper adjoint. (Given a binary operator E9 and an element y the functions (xHxE9y) and
(xHyE9x), also written shortly as E9y and yEB, àre called "sections" of E9 .)

In later sections of this chapter a number of operators on relations will be defined in
the same way, Le. as adjoints of more familiar ones. An advantage of this metbod is that
it is not necessary to search for closed forms. (By a closed form we mean an expression in
termsof the standard operators.) This is an advantage iudeed because these closed forms
tend to he rather complicated. Furthermore, if an operator is introduced as a closed form
it is often not at all clear from the resulting formulae that the shunting and cancellation
properties are valid. In summary: the recognition of the fact that an operator can he
introduced via a Galois conneetion is often vital to effective calculation with the operator.

2.2.1, Galois connections and fixed points

In the previous section it was remarked that the typical pattern of a calculation with Galois
connections consists of a combination of shunting and cancellation steps. In this section
one such pattern is "canned" in a lemma. The reasou is that the pattern occurs so often
in calculations that it would be remiss not to do so.

The lemma concerns the relationship between Galois connections and fixed points.
Suppose h is an endofunction on some set partially ordered by the relation A tixed
point of h is an element x of the domain of h such that x = h.x . A prefix point of h is
an element x of the domain of h such that h.x ::5 x . A logica! question to ask is whether
there are any general theorems relating the prefix points of two functions.

For the purposes of this thesis it suillees to restriet our attention to the consideration of
complete lattices. In such a context we may apply the Knaster-Tarski fixed point theorem
with which we assume familiarity. (We use the theorem in the following form: every
monotone endofunction on a complete lattice has a least prefix point and a greatest postfix
point, and bothof these are fixed points of the function.)

