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Abstract-Mathematical models of left ventricular (LV) wall mechanics show that fiber stress depends heavily on 
the choice of muscle fiber orientation in the wall. This finding brought us to the hypothesis that fiber orientation 
may be such that mechanical load in the wall is homogeneous. Aim of this study was to use the hypothesis to 
compute a distribution of fiber orientation within the wall. 

In a finite element mode1 of LV wall mechanics, fiber stresses and strains were calculated at beginning of ejection 
(BE). Local fiber orientation was quantified by helix (HA) and transverse (TA) fiber angles using a coordinate 
system with local r-, c-. and I- directions perpendicular to the wall, along the circumference and along the meridian. 
respectively. The angle between the c-direction and the projection of the fiber direction on the cl-plane (HA) varied 
linearly with transmural position in the w-all. The angle between the c-direction and the projection of the fiber 
direction on the cr-plane (TA) was zero at the epicardial and endocardial surfaces. MidwalI TA increased with 
distance from the equator. Fiber orientation was optimized so that fiber strains at BE were as homogeneous as 
possible. 

By optimization with TA = 0’. HA was found to vary from 81.0 at the endocardium to - 35.8 at the 
epicardium. Inclusion of TA in the optimization changed these angles to respectively 90.1’ and - 48.2’ while 
maximum TA was 15.3 Then the standard deviation of fiber strain (or) at BE decreased from f 12.5% of mean cf 
to + 9.5%. The root mean square (RMS) difference between computed HA and experimental data reported in 
literature was 15.0 compared to an RMS difference of 11.6’ for a linear regression line through the latter data. 
I(: 1997 Elsevier Science Ltd 

Kyr~~rl.c: Left ventricle; Fibers; Optimization: Finite element analysis. 

INTRODUCTION 

Within the cardiac wall, stress and strain are important 
determinants of the distributions over the cardiac wall of 
blood flow, oxygen consumption (Delhaas et al., 1994) 
and tissue adaptation effects (Arts et al., 1994). Experi- 
mental assessment of the stress and strain distributions 
over the wall is difficult. Strain can be accurately mea- 
sured at only a limited number of sites in the wall (Prin- 
zen et al., 1986; Waldman et al., 1988) . The reliability of 
the measurement of wall stress is limited, because inser- 
tion of a force transducer damages the tissue at the site of 
measurement (Huisman et al., 1980). In the assessment of 
cardiac function, stress and strain expressed with respect 
to muscle fiber orientation is most relevant. However, 
accurate knowledge of regional muscle fiber orientation 
is often not available. 

Because of these experimental limitations, mathemat- 
ical models have been developed to facilitate assessment 
of the distributions of stress and strain. Advances in 
computer hardware and numerical methods have en- 
abled an increasing number of aspects of cardiac mech- 
anics to be simulated. The more recent models generally 
consider the fibrous nature of cardiac tissue, increasingly 
accurate descriptions of wall shape, nonlinear stress- 
strain relationships and finite deformations (Arts and 
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Reneman, 1989; Bovendeerd et al., 1992; Huyghe et al., 
1992; Guccione et al., 1995). Unfortunately the pre- 
dicted distributions of fiber stress and strain disagree. 
Guccione et al. (1995) used a measured wall geometry 
and distribution of fiber orientation and calculated an 
inhomogeneous distribution of fiber stress and strain. 
Bovendeerd et al. (1992) and Huyghe et ul. (1992) adapted 
fiber orientation heuristically so that the distribution of 
fiber stress was more even. The thus determined fiber 
orientation appeared not to be significantly different 
from what has been measured in experiments (Nielsen 
et al., 1991; Streeter, 1979). The latter models indicate 
that the distribution of fiber stress is sensitive to the 
distribution of fiber orientation, even within the limits of 
biological variance. Combining this finding with the fact 
that muscle fiber contraction is most efficient for a par- 
ticular combination of fiber shortening and fiber stress, 
we came to the hypothesis that mechanical load may be 
distributed evenly over the wall by proper adjustment of 
local fiber orientation. Various experimental findings are 
in compliance with homogeneous mechanical loading of 
the LV wall. If the distribution of mechanical load is 
disturbed, adaptation effects, such as growth (Cooper IV 
et al., 1985; Grossman et al., 1975; Prinzen et al., 1995) or 
changes in fiber orientation (Carew and Covell. 1979; 
Pearlman et al., 1982) result in at least partial recovery to 
the original loading level. 

In this study we predicted the orientation of muscle 
fibers using the hypothesis that mechanical load in the 
cardiac wall is homogeneous. In a finite element model of 
LV wall mechanics the distribution of fiber stress and 
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strain over the wall was calculated at a single moment 
during the cardiac cycle for given fiber orientation and 
given stiffness of the fibers. In the reference state 
of deformation left ventricular cavity pressure was zero 
and wall stress was zero everywhere. The stress state at 
beginning of ejection was obtained by stiffening of the 
fibers while pressurizing the cavity. In an optimization 
procedure inhomogeneity of mechanical load, defined as 
the variance of fiber strain at the beginning of ejection, 
was minimized by proper adjustment of the fiber orienta- 
tion. The thus predicted fiber orientation was compared 
with anatomical findings. 

METHODS transmural 

Finite element model of left ventricular wall mechanics 

Reference state. To calculate fiber stresses and strains 
with a finite element model a reference state must be 
defined. We used as a reference the state in which trans- 
mural pressure across the LV wall and the stresses in the 
wall were 0 kPa. 

Fig. 1. Illustration of the helix (ah) and transverse (a,) fiber angles in the 
rotationally symmetric LV. The fiber angles at a point P are defined 
with respect to the local transmural. longitudinal and circumferential 

directions. 

Geometry. In the reference state the LV wall is con- 
sidered thick-walled and rotationally symmetric around 
the long axis. The center of the equatorial plane is a point 
of symmetry. Consequently, only the mechanics of the 
region between the apex and equator was considered. 
The shape of the LV wall in the reference state was 
defined by a prolate spheroidal midwall surface with 
a wall thickness perpendicular to the midwall. The wall 
shape was defined by five parameters (Appendix) whose 
values were chosen so that the LV had given values for: 
cavity volume, ratio of cavity-to-wall volume, ratio of 
equatorial-to-apical-wall thickness, and ratio of midwall- 
long-to-short-axes. The geometry parameters were also 
such that wall thickness decreased smoothly from equa- 
tor to apex. For the evaluation of cavity and wall vol- 
umes it was assumed that the base extended vertically 
above the equatorial plane by a distance equal to half the 
semi-major axis of the midwall surface (Streeter and 
Hanna, 1973). The choice of parameter values of the finite 
element model, including LV wall geometry, are de- 
scribed in a separate section below. 

(4 03 

Fig. 2. Diagram showing rotationally symmetric LV geometry and 
coordinate systems: (a) Cartesian coordinate system (x, y, z) and (b) 
wall-bound coordinate system (u, u): point P has coordinates (up,up). 

Both u and o vary linearly with distance. 

Fiber orientation. Fiber orientation in the reference 
state was quantified by the helix and transverse fiber 
angles (Streeter, 1979) measured with respect to the local 
transmural, circumferential and longitudinal directions 
(Fig. 1). To be able to define the local transmural, cir- 
cumferential and longitudinal directions, we first define 
a wall-bound coordinate system (u, u) (Fig. 2); the coordi- 
nate u decreases from 0 at the equator to - 1 at the apex 
in direct proportion with distance along the midwall 
surface in the equator-to-apex direction; the coordinate 
u increases from - 1 at the endocardium to + 1 at the 
epicardium in direct proportion with distance in the 
direction perpendicular to the midwall surface. The local 
transmural direction was then defined as the outward 
normal to a surface of constant v. The local longitudinal 
direction is orthogonal to both the transmural and cir- 
cumferential directions. The helix fiber angle was defined 
as the angle between the local circumferential direction 

and the projection of the fiber direction on the plane 
perpendicular to the local transmural direction. The 
transverse fiber angle determines the degree to which 
fibers cross over between inner and outer wall surfaces. It 
was defined as the angle between the local circumferen- 
tial direction and the projection of the fiber direction on 
the plane perpendicular to the local longitudinal direc- 
tion. The spatial distributions of the helix and transverse 
fiber angles are specified with respect to the wall-bound 
coordinate system (u, v). The helix fiber angle, ah, varies 
with v according to (Fig. 3): 

%(V) = Pl + PZL’, (1) 
where p1 and pZ are parameters whose optimal values are 
to be determined. The transverse fiber angle, clt, is zero at 
the wall boundaries, i.e. fibers are assumed not to end 
here. Because the equatorial plane is a plane of sym- 
metry, a, is an odd function in coordinate u (Streeter 
et al., 1978) . To satisfy the latter conditions, we used the 
following equation (Fig. 3): 

a,(~, v) = p3 (1 - ~1’) sin(7cu/2), 

where parameter p3 has to be optimized 
(2) 
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Fig. 3. Variation of the fiber angles over the LV wall: (a) the helix fiber 
angle, c(~, changes linearly between inner and outer walls with intercept 
pr and slope p2; (b) the transverse fiber angle, a,, changes quadratically 
in transmural direction and sinusoidally in equator-to-apex direction. 

Parameter p3, the depth of the valley, is used to optimize a,. 

Constitutive behavior. The aim of this section is the 
development of a mathematical relation between the 
second Piola-Kirchhoff stress and the Green-Lagrange 
strain for cardiac tissue. Myocardial tissue is a mixture of 
several components. Interlacing networks of branching 
muscle fibers and blood vessels are tethered by collagen 
fibers and surrounded by intercellular fluids. The muscle 
fibers contain sarcomeres, protein units capable of 
generating contractile force under the influence of cal- 
cium ions. In the model, myocardial tissue is assumed to 
consist of stiff elastic muscle fibers embedded in a soft 
elastic tissue matrix. 

The deformation of the tissue is described by the defor- 
mation gradient tensor, F, which maps an infinitesimal 
material vector in the reference state, dx,, to a material 
vector. dx, in the deformed state (Malvern, 1969): 

dx = F.dxo. (3) 

The Green-Lagrange strain, E, is related to F by 

E=+(FT.F-I), (4) 

where I is the identity tensor and superscript T stands for 
transpose. Strains are expressed with respect to a local 
coordinate system: one of the coordinate axes points in 
the fiber direction, e, and the other two are perpendicu- 
lar to it. With respect to this fiber-bound coordinate 
system the Green-Lagrange strain tensor, E, has compo- 
nents Eij. El1 is the strain in the fiber direction. The 
sarcomeres are aligned with the fiber direction (McLean 
and Prothero, 1992). Sarcomere length, t, (jlrn), is related 
to strain in the fiber direction, Eli, by 

I, = 4,om11 + 1P2, (5) 

where Is,0 (pm) is sarcomere length in the reference state. 
The total second Piola-Kirchhoff stress, S, in the tissue 

is the sum of a passive component, S,, that arises from 
deformation of passive myocardial tissue and a uniaxial 
first Piola-Kirchhoff stress, Tz, along the fiber direction, 
ef, arising from muscle fiber contraction: 

S = S, + Tz efef . (F - l)T. (6) 

The passive myocardial tissue was assumed to be elas- 
tic and transversely isotropic. The strain energy density, 
W(E), of the passive tissue is related to the strain 

components Eij (adapted from Bovendeerd et al. (1992)): 

W(E) = aO(exp(a,(lg + a2ZZE + a3e,.E.ef) - 1) 

where 

+ a4 (det(2E + I) - 1)” (7) 

IE = trace(E), 

ZZE = i (trace(E * ET) - I%), 

and ao, al, a2, a3, and a4 are material parameters. The 
second Piola-Kirchhoff stress in the passive tissue, S, is 
obtained by differentiation of equation (7) with respect to 
E: 

S, = SV(E)/?E. (8) 

The passive second Piola-Kirchhoff stress, S,, is zero in 
the unstrained state and increases exponentially with 
strain. 

Muscle fiber contraction in the real LV depends on 
sarcomere length, sarcomere velocity of shortening, time 
and extracellular calcium concentration (de Tombe and 
ter Keurs, 1991). In the finite element simulations the first 
Piola-Kirchhoff fiber stress, T: (kpa) depended linearly 
on sarcomere length, I, (pm). and active stiffness, 
K (kPa pm-‘): 

Tf = K (I, - I,,o). (9) 

For physiological circumstances such a linear relation- 
ship is quite an accurate description throughout the 
cardiac cycle (Sagawa, 1978). In the reference state sar- 
comeres have a uniform length, Is,o (urn), while cavity 
pressure is zero and cavity-to-wall-volume ratio corres- 
ponds to mid-diastole. In this state the left ventricular 
wall is stress-free, regardless of active stiffness, K. To 
obtain the stress state at beginning of ejection, the stiff- 
ness, K, was estimated such that at the cavity pressure of 
beginning of ejection a physiologically realistic cavity- 
to-wall-volume ratio resulted. 

Equations solved. Calculations of fiber stresses and 
strains in the LV wall were based on the law of conserva- 
tion of momentum (Malvern, 1969). Neglecting inertial 
(Moskowitz, 1981; Peskin, 1989) and gravitational effects, 
conservation of momentum expresses the static equilib- 
rium of forces in the wall due to blood pressure in the 
cavity and internal stresses in the wall: 

V .(S*FT) = 0. (10) 

Solution method. In principle the solution to the equa- 
tions can be expressed in terms of the displacements of all 
points in the wall. A Galerkin-based finite element 
method, implemented in the package DIANA-5.1 (Diana 
Analysis B.V., Delft, The Netherlands), was used to calcu- 
late the displacements of a finite number of points, 
so-called nodes. Quadratic interpolation was used to 
determine the displacements of points in between the 
nodes. Nodes are grouped into elements which constitute 
the building blocks of the LV wall. To reduce the com- 
putational effort, we used the rotational symmetry of the 
LV wall in the model. The LV wall mesh comprised only 
the 1/8th-section of the LV in the region (x 2 0, y >, 0, 
z d 0) (Fig. 2). The mesh consisted of 27 twenty-node 
brick elements with 3 element layers in the transmural 



direction and 5 in the equator-to-apex direction. Kin- 
cmatic boundary conditions on the through-wall 
faces of the mesh allowed cavity volume changes and 
torsion to occur. The LV inner wall surface was loaded 
perpendicularly by cavity pressure while the outer wall 
surface experienced no external forces. 

Desigrl of finite element simulutions. Finite element 
simulations started in the reference state of deformation, 
corresponding to approximately mid-diastole. The state 
of deformation and stress at the beginning of ejection was 
obtained by applying a cavity pressure of 10.64 kPa 
(80 mm Hg). The stiffness, K, was chosen such that after 
application of the cavity pressure loading, the cavity-to- 
wall-volume ratio was about 0.6. This volume ratio and 
pressure were considered representative for the beginning 
of ejection (Douglas et al., 1991) 

Quclnt(ficc~tion c!f’ mechanical load. Regional mechan- 
ical load was quantified as fiber strain at the beginning of 
ejection. The LV wall mesh was divided into 729 regions 
with similar volumes. Sarcomere length at the central 
point of a region was considered representative for that 
region. For region i, fiber strain, e,.i is given by 

where /,,i is the instantaneous sarcomere length in the 
region and Is,0 is the sarcomere length in the reference 
state. 

Optimization procedure 
Fiber orientation was optimized to make regional dif- 

ferences in mechanical load as small as possible. The 
optimization consists of minimizing an objective func- 
tion, G, defined as the variance of fiber strain at begin- 
ning of ejection normalized to the average fiber strain at 
beginning of ejection: 

(12) 

G depends on the fiber orientation parameters pl, p2, and 
p3 which are stored in the vector p. Region i, representing 
a fraction wi of the total wall volume, has a representative 
fiber strain at beginning of ejection, Q, i. The average fiber 
strain at beginning of ejection, ~r,~” is the wall volume- 
weighted sum of the regional fiber strains. 

Most optimization methods require many evaluations 
of the objective function. Since evaluation of G with the 
finite element model is computationally expensive, the 
concept of sequential approximate optimization was 
used (Barthelemy and Haftka, 1993). For a given set of 
fiber orientation parameters, Pk, a finite element analysis 
was performed to evaluate regional fiber strains, Ef,i, at 
beginning of ejection. By perturbing the fiber orientation 
parameters one at a time by 1” and using the already 
available state of deformation and stress as a first esti- 
mate, the regional fiber strains for the perturbed set of 
fiber orientation parameters were computed, with little 
additional computational effort. Hence, finite difference 
derivatives of regional fiber strains with respect to p at 
Pk were obtained. Regional fiber strains, .?f,i, were esti- 
mated for arbitrary p by performing a first order Taylor 

series expansion on I:, i around the value p*: 

i=l7 ,I. , N II?) 

where P~,,~ and pj are the jth components of pk and 
p respectively. The partial derivatives c’i~pj were cal- 
culated as finite difference derivatives. The numbers 
n and N refer to the number of fiber orientation para- 
meters, and to the number of regions in the LV wall mesh 
(N = 729) respectively. By substitution of equation (13) 
in equation (12), an approximation model, e is obtained 
which gives an estimate of the objective function. G. for 
an arbitrary set of fiber orientation parameters: 

(14) 

Repeated evaluation of (? is very eficient due to the 
explicit dependence on p. The function, G , is minimized 
by a sequential quadratic programming algorithm (Schit- 
tkowski, 1986) . This algorithm requires limits on the 
parameter values. The parameters pl. p2, and p3 were 
allowed to vary in the range ( -9O”, + 900), ( - 90”,0”) 
and ( -9O’, +90”) respectively. The result of the optim- 
ization of the approximation model is a new set of fiber 
orientation parameters, Pk + 1. Two checks are performed 
to evaluate whether convergence has occurred. The finite 
element evaluations of the objective function of the cur- 
rent and previous iterations, G(p,) and G(p,- 1), should 
agree to within a tolerance of 6: 

I(G(P,) - G(Pl,m,))/G(P,)t 6 ~3, (15) 

where 6 = 0.0001. Furthermore, the optimum of the ap- 
proximation model based on parameters Pk, GOP,.p should 
coincide with the finite element evaluation of thi objec- 
tive function at Pk, to the same tolerance of 6: 

1 (G(Pk) - &t.p,)/G(Pk)l d (5. (16) 

If convergence has not occurred a new approximation 
model is set up around the parameters Pk+ 1 and the 
process is repeated. Because the optimization results may 
depend on the starting values, it is expedient to perform 
optimizations with several starting values. 

Applied parameter values in @ire rIemenr model 

Wall geometry in reftirence state. In potassium- 
arrested canine left ventricles cavity volume and wall 
mass were reported to be 40 3 9 ml and 145 + 19 g 
(McCulloch et al., 1989). Assuming a tissue density of 
1.05g crnp3 measured wall volume is 138 ml. In the 
model we have used a cavity volume of 42 ml, and a cav-- 
ity-to-wall volume ratio of 0.3. The ratio of midwall 
long-to-short axes was set to 2.08 (Streeter and Hanna, 
1973). From preliminary calculations of fiber stress 
and strain we found that fiber stress was most homogene- 
ous if we chose the ratio of equatorial-to-apical wall 
thickness to be 3.0. Parameter values are summarized in 
Table 1. 

Sarcomere length in reference state. In rat LVs that 
were formalin-fixed at zero transmural pressure, sar- 
comere lengths have been measured as 2.04 i 0.02 pm 
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Table 1. Parameter values for model of left ventricular (LV) wall 
mechanics 

40 ml 
0.3 
3.0 
2.08 

0.5 kPa 
3 
6 
3 

500 kPa 

I \.I, 1.95 pm 
K 77.0 kPa/pm 

Wall geometry in the reference state was chosen so that the following 
parameters had given values: cavity volume (V,,), ratio of cavity-to- 
wall-volume (VR). ratio of equatorial-to-apical-wall thickness (WTR). 
and ratio of midwall-long-to-short-axis (MAR). Passive material prop- 
erties are described by parameters au, a,, LIP. uj, u4 (equation (7)). 
Sarcomere length in the reference state is denoted by I,.+ Active fiber 
stiffness at beginning of ejection is denoted by K [equation (9)] 

(mean f sd) (Grimm et al., 1980, after correction for 
4.2% shrinkage) and as 1.83 + 0.06 pm (Rodriguez et al., 
1993). In formalin-fixed dog LVs at zero transmural 
pressure, sarcomere lengths have been measured as 2.00 
pm (Spotnitz et a/., 1966, corrected for shrinkage) . In the 
model. sarcomere length in the reference state, 1,. 0 was set 
to 1.95 pm for all sarcomeres in the LV wall. 

Constirutive behavior. The values of passive material 
parameters ao, nl, n2 and a3 were taken from Bovendeerd 
et crl. (1992) (Table 1). Equibiaxial stretching experiments 
on sheets of passive canine myocardium (Yin et al., 1987) 
indicate that the ratio of fiber to cross-fiber stress ranges 
from 1.10 to 2.95. In the present model the values of 
parameters a ,, u2 and u3 were set such that the ratio is 2.0 
under equibiaxial loading. The absolute values of a, and 
a1 were chosen so that calculated passive pressure- 
volume curves agreed with experiments on canine hearts 
(Nikolic et al., 1988). The volume of the myocardium may 
change by a few percent as a result of changes in coron- 
ary inflow and outflow during the cardiac cycle (Judd 
et nl., 1991: Yin et ul., 1996). For simplicity, we have 
assumed that the LV wall is near-incompressible. The 
value of ~1~ was chosen large enough so that in the 
simulations numerical stability was maintained and LV 
wall volume changed by less than 2%. 

In experiments (ter Keurs et al., 1980), the sarcomere 
length at which no contractile force can be generated has 
been measured as about 1.6 pm. For simplicity of calcu- 
lation we have chosen a zero-force length equal to ls.o so 
that the reference state is stress free, regardless of the 
instantaneous active stiffness, K. Using the finite element 
model, the stiffness of the fibers was chosen so that fiber 
stress at beginning of ejection was physiological. This 
resulted in a value of 77.0 kPa pm- ’ for K. 

Finite element mesh. The size of the elements was not 
changed to investigate their influence on the computed 

stress and strain distributions. However, for a given dis- 
tribution of fiber orientation the predicted stress and 
strain distributions were similar to those predicted by an 
independently developed finite element model of LV wall 
mechanics by Huyghe et al. (1992). 

Perf?wmed optimizutioils 

Two sets of optimizations, optiml and optim2, were 
carried out. In optiml regional differences in mechanical 
loading were minimized by optimizing only the helix 
fiber angle parameters p1 and p3 for the case without 
any fiber cross-over (p3 = 0”). Three optimizations were 
performed in which the starting values in degrees for (pl, 
p2) were (O,O), (0, -9O), and (90,O). In optim2 the fiber 
cross-over parameter p3 was included. Seven different 
sets of starting values were tried for (p,, pz. p3): 
(0, 0, 01, (0, -9O,O), (90, 0, O), (0.0, 901, (0. -90, -901, 
(0, -90,90), and (0, 0, -90). The optimizations required 
between 5 and 16 finite element evaluations of mechan- 
ical load. Each finite element analysis required about one 
CPU-hour on a Sun SPARC-ELC workstation with 24 
MB RAM. 

RESULTS 

In optiml a single minimum in inhomogeneity of 
mechanical load was found, with optimized values of 
p1 and pz of respectively 22.57’ and - 58.41”. For a wide 
range of starting values a fiber orientation resulted in 
which subendocardial fiber paths resembled a right- 
handed and subepicardial fiber paths a left-handed helix. 
At the optimum, fiber strain, Q, at the beginning of 
ejection was 0.103 & 0.013 (mean + sd), if 6% of the LV 
wall volume near the apex was excluded (information 
from the three elements in the mesh adjoining the apex). 
The coefficient of variation of fiber strain at beginning of 
ejection, defined as the standard deviation divided by the 
mean, was 12.5 %. For the whole LV wall, fiber strain at 
the beginning of ejection was 0.102 ir 0.020 and the coef- 
ficient of variation 20.0 %. 

In optim2 a single optimum was also found: p, = 20.96’., 
pz = -69.21’. and p3 = 15.33”. For the computed 
optimum, fiber strain at the beginning of ejection was 
0.111 & 0.011 and the coefficient of variation 9.5 %, 
if 6 % of the wall volume near the apex was excluded. 
For the whole LV the fiber strain at the beginning of 
ejection (Fig. 4) was 0.111 + 0.016 and the coefficient of 
variation 14.4 %. 

DISCUSSION 

A finite element model of LV wall mechanics has been 
developed in which regional mechanical load can be 
calculated for given fiber orientation, LV cavity pressure, 
wall geometry and material properties. Regional mech- 
anical load was quantified as fiber strain at the beginning 
of ejection. Regional differences in mechanical load have 
been successfully minimized by proper adjustment of 
fiber orientation. A helical arrangement of fibers in the 
LV wall formed automatically for a wide range of start- 
ing values of the parameters describing the distribution 










