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Abstract

TNO developed the so called ‘meta-instrument’. This instrument is a high speed positioning
and tracking platform for near-�eld optical imaging microscopes. A sub-nanometer positional
precision with an expected 670 kHz bandwidth is achieved by a MEMS stage. The design
of the MEMS stage is based on a radio frequency capacitive switch. A top electrode is
suspended by eight identical L -shaped leafsprings above a ground electrode. To improve the
performance, the dynamical behavior of the MEMS stage is analyzed. Therefore, as a tool,
a coupled analytical model is derived. It is assumed that the MEMS stage is described by a
single degree of freedom model. The coupled analytical model consists of analytical models
to determine the leafspring sti�ness, the electrostatic actuation and the squeeze �lm damping
of the MEMS stage The analytical model for the leafsprings is valid for L-shaped, two layered
leafsprings which satisfy Euler-Bernoulli conditions. This model also accounts for shear and
includes a constraint against warping. The analytical model of the capacitor includes the
capacitance of the direct electric �eld, the fringing �elds and the electrode thickness. For
application of this analytical model, a mapping of the complex geometry of the MEMS
stage to a simpli�ed rectangular geometry is proposed. The analytical model for squeeze
�lm damping describes the squeeze �lm damping on a perforated, rigid plate. Also here, a
mapping of the complex geometry of the MEMS stage to a simpli�ed, perforated rectangular
plate is proposed. The three analytical models are coupled into an equation of motion which
describes the dynamical behavior of the MEMS stage. The dynamical behavior predicted by
the coupled analytical model is comparable to results from �nite element packages. Using
a sensitivity analysis of the eigenfrequency to the dimensions of the leafspring, an adjusted
design of the MEMS stage is proposed. An increase of 200 kHz in bandwidth is obtained by
the �nite element model, where an increase of at least 350 kHz was expected according to
the analytical model. For the adjusted design the assumption of a rigid top plate is not valid
anymore since the sti�ness of the leafsprings is increased and the sti�ness of the top plate is
the same. Now, in the �rst eigenmode, the deformation is for 50% in the leafsprings and for
50% in the top plate. A thorough study of the bending sti�ness of the top plate is needed.
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Chapter 1

Introduction

This chapter �rst discusses motivation and the relevance of this project. Next the project
objectives are formulated. In Section 1.3 a literature review is presented to know the current
state of research. The chapter is ended by the project plan and the outline of this report.

1.1 Motivation and Relevance

A report by Transparency Market Research [1] forecasts a steady growth of the global market
for nano-positioning in 2017-2025. Nano-positioning is applied to position, measure and
process objects in a wide range of �elds, like microelectronics/mechanics, optics, molecular
biology and microsystem engineering. This rises the demand for technological improvement
and makes it a highly interesting topic.

TNO developed the so called ‘meta-instrument’ [2,3]. This instrument is a high speed po-
sitioning and tracking platform for near-�eld optical imaging microscopes. A sub-nanometer
positioning precision with a 500kHz bandwidth is achieved. The meta-instrument moves to
the sample in three stages: course stage (mm scale), piezo stage (micrometer scale), and
MEMS stage (nano-scale). The high bandwidth is obtained by the MEMS stage. During
scanning the MEMS provides the necessary motion to focus the lens at the sample. From a
control point of view, scanning samples can be done up to frequencies below the bandwidth.
Increasing the bandwidth o�ers the opportunity to increase the scanning speed and so the
throughput. The throughput is a major criterion for industrial applications. This bandwidth
is measured for a �rst generation of MEMS stages. For the actual (second) generation there
is no measurement data available yet.

1.2 Project objectives

For increasing throughput while maintaining the same precision the design of the MEMS
stage has to be optimized. Therefore, experiments are needed to analyze the dynamical
behavior of the MEMS stage. A (semi-) analytical model will be developed and compared to
the experimental results of the �rst generation MEMS stages. Alternatively ,validation of the
analytical model will also be done using �nite element models. Using the analytical model,
improvements regarding the design of the MEMS can be suggested. The improvements will
be based on the current design to avoid altering of the fabrication process. Regarding this,
the project goal is formulated:
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1.3. STATE OF THE ART AND LITERATURE REVIEW

This project aims to characterize and analyze the dynamic behavior of the MEMS by de-
veloping a lumped parameter model which will be validated by a FEM model. Subsequently
design improvements of the MEMS stage will be proposed based on a sensitivity analysis.

An optimized design means that an increased �rst eigenfrequency must be realized. The
required bandwidth for industrial application is around 100 kHz [3], which is already achieved.
However, the ultimate goal is to obtain a bandwidth around 10 MHz. Another functionality
that could be desirable is a larger range of operation, which enables analyzing coarser sur-
faces. The MEMS stage is meant to be a 6 degree of freedom (DOF) actuator. However, as
proof of principle, the currently designed MEMS stage is used as an 1 DOF actuator. Hence,
motion in perpendicular directions is undesirable and should be suppressed. Constraints on
the design improvements are that stresses should be kept low to avoid fracture and that the
required voltages should be kept low.

1.3 State of the art and literature review

1.3.1 Modeling and analyzing MEMS

The speci�c designed MEMS stage is based on an RF MEMS capacitive switch [4]. Often
those kinds of MEMS are modeled as a cantilever or a clamped-clamped beam. Since this
speci�c MEMS is a (rigid) plate connected to two identical L-shaped leafsprings at each of
the four sides, a clamped-clamped beam approach may be applicable to the leafsprings. A
�rst step is to derive the spring constants of the clamped-clamped beam. The sti�ness of the
beam can be modelled in two parts, a part related to the material characteristics and a part
related to residual stresses (see 1.3.4) [4]. Since the movable plate behaves as a rigid body
for the �rst mode, initially a model will be used of a rigid mass connected to a linear spring.
The spring constant of this spring is determined by the total sti�ness of the eight leafsprings.
This means that the sti�ness of the leaf springs in the out-of-plane direction determines the
sti�ness of the movable plate. The leaf springs are designed as L-shaped leafsprings. An
analytical model of those L-shaped beams can be found in [5]. Structures supported by
four L-shaped beams are known as ‘Crab-leg 
exures’ [6]. The sti�ness analysis of such a

exure can be used and extended to the speci�c MEMS stage in this project. The Finite
Element Method (FEM) or experiments can be used to validate the analytically derived
spring constants.

Sources for non-linearities in MEMS are mid-plane stretching, electrostatic actuation
and squeeze �lm damping. The latter two are addressed in the Subsections 1.3.2 and 1.3.3
respectively.

For the considered MEMS stage the movable plate is modeled as a rigid body. Hence an
appropriate choice of analysis depend on the initial gap between the movable plate and the
bottom plate g and the lengths of the leafspring l. Due to the pull-in phenomena as adressed
in Subsection 1.3.2 the range of operation is only one third of the intial gap height. For the
speci�c MEMS stage the ratio

1
3g
l � 0:005 which means that deformations are very small

compared to the length of the leafsprings. This means that an Euler-Bernoulli approach is
applicable e.g. there is no (very little) mid-plane stretching.

The dynamical behavior of the MEMS stage is mainly determined by the sti�ness of the
leafsprings, the electrostatic actuation, and the squeeze �lm damping. Since the top plate
of the MEMS stage will be considered as a rigid body, the MEMS stage is described by a
non-autonomous, non-linear mass-spring-damper system. The steady state behavior of this
non-linear system will be studied using the shooting method [7]. In the shooting method,

2



1.3. STATE OF THE ART AND LITERATURE REVIEW

one is searching (shooting) for initial conditions that will give a periodic motion of the
system. The initial conditions and one period of simulation are shot to the state one period
later. Some other (numerical) methods to solve non-linear di�erential and non-linear integro-
di�erential equations are long time standard numerical integration [7], the �nite di�erence
method [8], and the collocation method [9].

1.3.2 Electrostatic actuation

Actuation of micro-systems can be done in di�erent ways. Some of them are electrothermal,
electromagnetic, piezoelectric, and electrostatic actuation [7]. The speci�c MEMS stage
analyzed uses electrostatic actuation. For the proposed goal, alternative actuation using
electrothermal actuation will be too slow. Electromagnetic and piezoelectric actuation will
imply additional material and so additional mass, which is not preferred. Hence this project
will not focus on di�erent actuation mechanisms. However, the actual electrostatic actuation
will be analyzed and tuned to improve performance of the MEMS.

The electrostatic actuation of this speci�c RF MEMS capacitive switch can be considered
as two parallel plate electrodes, where the upper electrode is movable and the lower electrode
is �xed on the silicon carbide substrate. An introduction to micro electrostatic actuation
can be found in [7, 10].

The tuning range of the MEMS is limited by the moment where pull-in occurs. Pull-in
is the unstable situation where the electrostatic force surpasses the restoring forces of the
leafsprings. As a result, the top electrode will collapse to the bottom electrode. For rigid
electrodes, static pull-in occurs when the air gap is reduced to 2/3 of the initial air gap [4,11].
Also dynamic pull-in should be considered, since the dynamic pull-in voltage is somewhat
lower than the static pull-in voltage [11]. For the purpose of this speci�c MEMS stage, one
should avoid pull-in. So this project will focus on the stable dynamic behavior of the MEMS
stage, however one should be aware of the existence of the pull-in phenomena.

The electric �eld does not only exist between the plates, but there are also ‘fringing �elds’.
These �elds also contribute to the capacitive force. The �rst order fringing �eld correction
for an in�nitely long strip can be found in [12,13]. Based on the model of Palmer [14], a two
dimensional fringing �eld correction is derived in [15].

Often the top plate of MEMS stages is perforated. Perforation improves the etching
of sacri�cial layers between the plates and reduces the sti�ness e�ect of the squeeze �lm.
The later one will be addressed in Subsection 1.3.3. The perforation holes also in
uence
the capacitance between the electrodes. When the diameter of the perforation holes is less
than 3-4 times the air gap, it has (almost) no in
uence on the up-state capacitance since
the fringing �elds ‘�ll’ the area of the holes [4]. However, in the speci�c MEMS stage the
diameter of the holes is about 8 times the air gap height. A mapping of the complex geometry
of the actual top plate to a simpli�ed geometry will be introduced to account for the e�ect
of the perforation holes.

Next to, the MEMS electrodes can also be used for position determination of the movable
plate, using radio frequency capacitive measurements [16]. Sending signals in the order of
1 GHz to the electrodes will not result in any movement of the plate, since it is far above
the �rst eigenfrequency. The aluminium interconnects act as a waveguide to the gigahertz
frequencies. The high frequency wave will re
ect at the end of the interconnect with a certain
phase shift and amplitude depending on the capacitance. Comparing the re
ecting wave to
the ingoing wave the position of the plate can be determined [3] [16].

3



1.3. STATE OF THE ART AND LITERATURE REVIEW

1.3.3 Squeeze �lm damping

Another important phenomenon introducing non-linear behavior is squeeze �lm damping.
When the two plates move to each other, the 
uid (air) in between is pushed away. The

uid 
ow induces a damping force on the plates. For high vibration frequencies the air is
compressed before it can escape. This introduces additional sti�ness between the plates.
Preliminary experiments show a highly damped �rst eigenmode of the MEMS with a quality
factor of 2-2.5 [2]. It is believed that squeeze �lm damping is the cause of this. From a
control point of view squeeze �lm damping is bene�cial to avoid (undesired) resonances in
the MEMS stage during operation.

To indicate the squeeze �lm damping the non-dimensional, frequency dependent squeeze-
number � is used [4, 10]. A squeeze number smaller than 3 means that air escapes from
the boundaries. For larger squeeze-numbers some amount of air will be compressed, which
results in mixed e�ects of damping and sti�ness. The larger the squeeze-number the larger
the sti�ness e�ect and the lower the damping e�ect [4].

There are at least three di�erent approaches to model squeeze �lm damping [7]. What
they all have in common is that the squeeze �lm damping is proportional to the inverse of
the air gap cubed. The �rst approach uses a regime of low pressure (molecular regime),
whereas the second and thrid approach use the viscously damped regime. The viscously
damped regime is the regime of interest, since the MEMS operates at atmospheric pressure.
The second and third approach are based on the Reynolds equation, which is derived from
the more complex Navier-Stokes equation under the assumption of small Reynolds numbers.
In the second approach is the Reynolds equation is simpli�ed assuming an incompressible
gas, for example in [17]. In the third approach the full Reynolds equation is used. Bao and
Yang use this form of the Reynolds equation to study the squeeze �lm damping of parallel
plates in [18]. The behavior of a squeeze �lm is often described by both viscous and inertial
e�ect within the 
uid. Due to small sizes of MEMS the inertial e�ect can often be neglected.

Often in literature, analytical models for squeeze �lm damping assume ambient pressure
at the boundaries. This is only a valid assumption for plates which are large with respect
to the �lm thickness. In [19], it is shown that the 
ow escaping at the borders increases
the damping force even for a ratio in �lm width/thickness of 20. In the case of the speci�c
MEMS this ratio is much larger, however, due to the relatively large square center hole in the
MEMS device, the ’border e�ect’ could contribute to the total damping force. To include
this ‘border e�ect’ an e�ective length and width of the plate has to be considered. This
means an enlarged plate has to be considered with trivial boundary conditions such that
the total damping of the enlarged plate is equal to the damping force of the actual MEMS
including border e�ects. Bao and Yang [18] review an anlaytical and numerical method to
�nd the required additional length and width of the plate.

Perforation of the top plate introduces an additional damping e�ect, as air also escapes
trough the perforation holes. The 
ow along the walls increases the damping force. The
sti�ness force will be reduced by perforation since the air can escape more easily. In [18],
the Reynold equation is expanded with an additional term to account for the perforation
e�ect. In [20], an analytical solution is presented for this expanded Reynolds equation. Also
for squeeze �lm damping a mapping is needed to be able to apply analytical expressions to
the complex geometry of the MEMS stage.

1.3.4 MEMS fabrication

Detailed descriptions of possible micro-machining methods can be found in textbooks as [10].
A detailed description of the fabrication of the speci�c MEMS considered in this project is
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given in [2]. Although the fabrication process is out of the scope of this project, it is still a
relevant aspect when (re-)designing the MEMS. A possible suggestion of an improved MEMS
design should be producible and realistic. Another important aspect related to surface micro-
machining techniques is the presence of residual stress. This could be a result of materials
exposed to heating and chemical reactions during production. Also a di�erence between the
thermal coe�cients of the �lm and of the substrate will cause residual stress. In [4, 12], an
expression is given for the biaxial residual force of RF MEMS switches (only valid for tensile
stresses). Also an expression for the reduction of residual stresses due to holes in a plate is
given in [4].

1.4 Project approach and report outline

In order to realize the project objectives, the project will start with analytical modeling the
leafspring sti�ness, the electrostatic actuation and the squeeze �lm damping. Then those
three analytical model will be validate separately using FEM models in Ansys and Comsol.
When the three analytical models are �nished and found to be properly derived, the models
will be coupled into an equation of motion which describes the dynamical behavior of the
MEMS stage. The shooting method will be used to solve the analytical model. Initially
it was proposed to validate the coupled analytical model using radio frequency capacitive
measurements. However, it appeared that the top-plate of the second generation MEMS
stages is not properly released. Hence it was not possible to obtain useful measurement
data and it is decided to validate the analytical model using (simpli�ed) multi-physical
simulations in Comsol. More information on the proposed experiments and the problems
faced is given in Appendix C. The results of the analytical model will be compared to the
preliminary experimental results of the �rst generation MEMS stages to �nd whether results
from the analytical model are reasonable or not. However, it should be noted that the realized
�rst generation MEMS stages is slightly di�erent than the proposed MEMS devices. After
validation of the analytical model of the MEMS stage, a sensitivity analysis will be carried
out of the eigenfrequency to the leafspring dimensions. Based on the sensitivity analysis, the
design of the MEMS stage will be adjusted to obtain a better performance of the MEMS
stage.

The outline of the report is closely following the project approach. In Chapter 2, a
description of the currently relealized MEMS stage will be given and modeling assumptions
will be listened. In Chapter 3, an analytical model of the sti�ness of the leafsprings will be
derived and validated for three directions, including shear stresses and a constraint against
warping. Subsequently, in Chapter 4 an analytical model to determine the capacitance of
the MEMS stage will be derived and validated. An analytical model the determine the
squeeze �lm damping and sti�ness of the MEMS stage is described and validated in Chapter
5. Chapter 6 describes the nonlinear dynamic behavior of the coupled electro-mechanical
model and compares the results to results from �nite element analysis. An adjusted design
based on the sensitivity analysis is given in Chapter 7. Finally, this report closes with
conclusions and recommendations in Chapter 8.
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Chapter 2

Original design of the MEMS stage
and modeling assumptions

2.1 Description and speci�cations of the MEMS stage

The MEMS stage studied in this project is a part of the meta-instrument designed by TNO.
Since the meta-instrument itself is not in the scope of this project, but only an example of
an instrument using a nano-positioning MEMS stage, a detailed description is left out and
can be found in [3]. The description of the MEMS stage given in this section is mainly based
on [2].

Figure 2.1: a) Top view of the MEMS, b) Cross-section c)Scanning-electron micrograph. 1) Optical
payload, 2) Aluminium interconnect, 3) Electrodes, 4) Moving plate, 5) Air gap, 6) Leaf
springs [2]

Figure 2.1 shows several views of the MEMS stage. The left picture is a top view of the
MEMS stage, the middle picture a cross-section and the right picture a scanning-electron
micrograph of the realized device. As can be seen the MEMS stage consist of six main
components [2]:

1. The optical payload. In this case this is a metamaterials lens. However, this payload
can be replaced by a di�erent object depending on the application.

2. Aluminium interconnect. The interconnects guide the actuation voltages.
3. Electrodes. The electrodes are used for electrostatic actuation. Applying a voltage will

generate a pulling force on the movable top plate.
4. Moving top plate. A sti� designed plate of Silicon carbide (SiC). The plate exists of

two layers of SiC. The �rst layer has a thickness of 1:5 µm. On spots with high stresses
under modal vibrations a second layer is added of 2:0 µm thickness.
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2.1. DESCRIPTION AND SPECIFICATIONS OF THE MEMS STAGE

5. Air gap. Designed to have an initial height of 500 nm. Due to the pull-in phenomena
(see Subsection 1.3.2) the actuation range is about 166 nm.

6. Leaf springs. When the voltage is released the leaf springs create a restoring force to
bring the device in original position.

The designed MEMS structure is similar to a radio frequency (RF) MEMS capacitive
switch. For functionality of the meta-instrument, there is a hole below the optical payload
passing through light from the sample to be collected. Initially the MEMS stage of the
meta-instrument was proposed as a high speed accurate positioning object in 6 degrees of
freedom (DOFs). However, as a ’proof of principle’ the currently designed MEMS stage is
tuned to perform a 1DOF, out of plane motion. Using a laser Doppler vibrometer a �rst
eigenfrequency of about 500 kHz is measured, where a frequency of 670 kHz was expected.
Possible reasons for this lower than expected frequency can be a di�erence in Young’s modules
of the simulation versus the Young’s modules of the MEMS stage, geometry di�erences
between the designed and fabricated MEMS stage and the softening e�ect of the electrostatic
actuation [2]. It seems the �rst eigenmode is highly damped (quality factor about 2-2.5) [2].
The expected natural frequency is determined by a �nite element model build in COMSOL.
A harmonic force of 0:1 µN is applied to the top electrode and the displacements are analyzed
at the center of the top plate, (squeeze �lm damping was not considered). Figure 2.2 shows
both the expected natural frequency of a perforated and a non-perforated top plate. The
amplitude is normalized by the maximum calculated deformation.

Figure 2.2: A simulated frequency amplitude diagram of the top plate of the MEMS stage from
Comsol. For each frequency the amplitude of the center of the top plate due to a har-
monic force of 0:1 µN is determined. The displacements are normalized by the maximum
displacement.

The electrodes of the MEMS stage form the parallel-plate electrostatic actuation and can
also be used for position measurement using the capacitance between the plates [16]. Radio
frequency signals are sent to the MEMS stage and re
ected with a phase di�erence depending
on the capacitance between the plates. Using interferometry of the ingoing signal and the
re
ecting signal the capacitance, and so the position of the top plate can be determined.

The fabrication process is out of the scope of this project. A more detailed description of
the MEMS stage and the fabrication process can be found in [2].
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2.2. SPECIFICATIONS, DEFINITIONS AND ASSUMPTIONS

2.2 Speci�cations, de�nitions and assumptions

For consistency this section lists some speci�cations and de�nitions that will be used through-
out this project report. The global coordinate system with coordinates (x; y; z) is located
at the center of the top plate, as shown in Figure 2.3 and 2.4. The positive z-direction is
chosen to be downwards, so a movement of the top plate in positive z-direction yields a
decreasing gap height.

The top plate has roughly dimensions L�W and is square. The square hole at the center
of the plate has a width of wh. The radius of the perforation holes is indicated by rp. Figure
2.4 is a half cross-section of the MEMS stage. The top plate consist of 2 di�erent materials:
the aluminium (Al) electrode and the Silicon Carbide (SiC) structural layer. The electrode
thickness is tAl and the thicknesses of the structural layers are indicated by tSiC;1 and tSiC;2.
The initial gap height between the electrodes is indicated by h.

Figure 2.3: A top view of the MEMS stage, including the assigned coordinate system.

Figure 2.4: A cross-section of half the MEMS stage. The layers are from bottom to top: 1) Substrate,
2) Bottom electrode, 3) Gap, 4)Top electrode, 5) Structural layer 1, 6) Structural layer
2 and 7) Lens.

2.2.1 1-DOF approximation of the MEMS stage

The second structural layer of Silicon Carbide is patterned at places with relative large
stresses in the top plate due to deformation. This considerably increases the sti�ness of the

9
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Table 2.1: Speci�cations of the designed MEMS [2]

Speci�cation Parameter Value
Length � Width top-plate L�W 150 µm � 150 µm
Electrode area Ae 18 800 µm2

Thickness aluminium top electrode tAl 400 nm
Thickness SiC layer 1 top plate tSiC;1 1:5 µm
Thickness SiC layer 2 top plate tSiC;2 2:0 µm
Initial air gap h 500 nm
Width center hole wh 50 µm
Radius perforation holes rp 2 µm
First eigenfrequency (measured) f1 500 kHz � 25 Hz
First eigenfrequency (expected) f1 �670 kHz

plate. By tuning the connection location of the leafpsrings to the top plate the so called

apping modes are prevented as much as possible. The deformation of a quarter of the
top plate in the �rst eigenmode is shown in Figure 2.5 and 2.6. As can be seen in the
�rst eigenmode, approximately 70% of the deformation is in the leafsprings, whereas the
remaining deformation is the bending of the top plate. The operating purpose of the MEMS
stage is to accurately position the lens. From a control point of view one has to operate
at freqcuencies considerably smaller than the �rst eigenfrequency. The deformation at a
frequency of 100 kHz is about 80-90% performed by the leafsprings. Considering the sti�
plate relative to the leafsprings and due to symmetry (see Figure 2.3) the MEMS stage
could be approximated by an one dimensional model. Therefore the top plate is considered
as a rigid mass, suspended by a spring with spring constant k. This spring constant is a
summation of the spring constants kz of the eight leafsprings in the global z�direction and
the sti�ness due to squeeze �lm sti�ness. The motion of the rigid mass is damped by a
viscous damper due to squeeze �lm damping. All in all the 1DOF-model can be depicted as
shown in Figure 2.7.

Figure 2.5: A 3D view of the �rst mode of a
quarter of the MEMS top plate re-
sulting from Comsol. The dis-
placements are normalized with re-
spect to the maximum displacement.

Figure 2.6: A 2D view of the �rst mode of a
quarter of the MEMS top plate re-
sulting from Comsol.The displace-
ments are normalized with respect to
the maximum displacement.
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Figure 2.7: The 1 DOF representation of the MEMS stage

The general assumptions made for this 1DOF model and some additional assumptions
are:

1. The top plate of the MEMS stage can be considered as a rigid mass. Consequently all
deformation is in the leafsprings;

2. Due to the purpose of the MEMS stage, only small displacements are considered.
Consequently the leafsprings can be considered to be linear springs;

3. The rigid body performs only a purely vertical motion in z�direction;
4. The MEMS stage operates in a thermal stable environment. So the sensitivity of the

MEMS stage to temperature changes is not investigated.

Moreover the material properties are assumed to be as listed in Table 2.2. Although
the bulk material of SiC is anisotropic, the �lm material is considered to be isotropic. The
material is deposited at high temperature to the substrate. Due to this, it is believed that
the single crystals in the �nal �lm have a random orientation. Hence the global behavior of
the SiC-�lm could be considered as isotropic. However, the global property of the MEMS
top-plate is anisotropic since the top plate consist of the two isotropic materials. The listed
material properties are copied from a �nite element model build by Bert Dekker (TNO) in
Ansys.

Table 2.2: The material properties of SiC and Al

Property Value
ESiC 4� 1011 Pa
�SiC 0.16
�SiC 3351 kg m�3

EAl 71� 109 Pa
�Al 0.30
�Al 2700 kg m�3
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Chapter 3

Analytical modeling and validation
of the sti�ness of the MEMS stage

3.1 Introduction

The sti�ness of the MEMS structure is composed in three parts: a mechanical sti�ness,
sti�ness due to residual stresses as a result of fabrication processes and external sti�ness due
to compressed air at large frequencies. The latter one will be addressed in Chapter 5. Since
the top plate is considered as a rigid body, the mechanical sti�ness of the structure is the
sti�ness of the leafsprings. The rigid mass performs an (almost) purely vertical motion. This
means the sti�ness of the leafsprings in global z-direction is the total mechanical sti�ness of
the structure for movement. The leafspring sti�ness in z-direction is derived in Subsection
3.2.2. Normally the residual stresses contribute signi�cantly in the total sti�ness of the
MEMS structure. In a �rst generation of MEMS stages, a buckling of 2:3 µm was measured
at the center of the top plate due to this residual stress. However, after optimizing the
fabrication process this is reduced to approximately 145 nm. Besides, the leafspings are
folded which gives a certain degree of freedom in plane. Considering this and the assumption
of a rigid mass, it is assumed that the residual stresses can be neglected for this MEMS
stage. However, when it appears in the future that residual stresses should be considered,
some ideas on how to implement the residual stress into the analytical model are presented
in Appendix A.4. The leafsprings consist of two di�erent layers: the electrode layer of
Aluminum (Al) and the structural layer of Silicon Carbide (SiC). This means that bending
and torsion of composite beams should be considered for accurate modeling of the leafsprings.
Subsection 3.3.1 gives an extension to multilayer beams. In Section 3.4 the expressions for
the homogeneous and composite leafspring sti�ness are validated using a �nite element model
in Ansys.

3.2 Homogeneous L-shaped leafspring

3.2.1 De�nition of coordinate system and parameters

The top plate of the MEMS stage is suspended by eight identical leafsprings. The leafsprings
have a homogeneous thickness t. The leafsprings consist of two connected parts: part A with
dimensions La�wa� t and part B with dimensions Lb�wb� t. Since each leafspring has a
di�erent orientation with respect to the global coordinate system (as de�ned in Section 2.2)
a new coordinate system is introduced for each leafspring. Figure 3.1 shows one leafspring
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3.2. HOMOGENEOUS L-SHAPED LEAFSPRING

Figure 3.1: The leafspring with assigned coordinate system and relevant parameters

with the assigned coordinate system and relevant parameters. At the anchor points the
leafsprings are �xed to the substrate. The anchor points are modeled as �xed ends. The tip
of the leafspring is connected to the plate. Due to symmetry the tip end can be considered
as a guided end. In this section �rst the leafspring sti�ness in z1-direction is derived and
after that the sti�ness in the x1- and y1-direction. For this derivation mainly the work of
Fedder [6] is followed. That work is based on Euler-Bernoulli beam theory. Only relevant
mathematical results will be presented in this section. The more elaborated derivation of
the sti�nesses can be found in Appendices A.1 and A.2.

3.2.2 Leafspring sti�ness in z1-direction

To �nd the sti�ness in z1-direction a point force in that direction is applied at the tip of the
leafspring. The guided tip end introduces a reaction torque T0 and moment M0. For more
clari�cation free body diagrams are given in Figure 3.2. Picture 1 of Figure 3.2 gives the
total leafspring. The leafspring consists of two connected beams, part A and part B. Picture
2 shows the free body diagram of part A and picture 3 shows the free-body diagram of part
B.

Figure 3.2: 1) Top view of a leaf spring indicating dimension parameters. 2)Front view of a leaf
spring including forces, moments and torques of a free body diagram of part A. 3) Side
view of a leaf spring including forces, moments and torques of a free body diagram of
part B. 4) Internal moments in part A and B.

The moment and torque in both part A and B can be written as
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3.2. HOMOGENEOUS L-SHAPED LEAFSPRING

Ma = T0 � Fzy1; (3.1)
Ta = M0 � FzLb; (3.2)
Mb = M0 � Fzx1; (3.3)
Tb = T0: (3.4)

These moments and torques are shown in picture 4 of Figure 3.2. The strain energy from
moment and torsion can be determined using [21]

U =
Z La

0
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M2
a

2EIx1;a
+

T 2
a

2GJa

�
dy1 +

Z Lb

0

�
M2
b

2EIy1;b
+

T 2
b

2GJb

�
dx1; (3.5)

where E is the Young’s modules of the material, I the area moment of inertia, G the shear
modulus and J the torsion constant. Assuming a rectangular cross-section of the leafsprings
the bending moment of area can be determined using

Ix1;a =
wat3

12
; (3.6)

Iy1;b =
wbt3

12
: (3.7)

The shear modulus is related to E and Poisson’s ration � via [21]

G =
E

2(1 + �)
: (3.8)

The torsion constant for a beam with rectangular cross-section, where the fraction width
over thickness w

t !1 is [22]

J1 =
1
3
wt3: (3.9)

The torsion constant for a beam of rectangular cross-section with �nite w
t is expressed as [22]
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. The subscript a=b refers to part A

or part B.
Now using that tilt �1 and twist �1 are zero at the tip end, by applying Castigliano’s

second theorem [6,21] and using (3.5) it follows that
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3.2. HOMOGENEOUS L-SHAPED LEAFSPRING

The derivatives are written into the integral to simplify the equations. Equations (3.11) and
(3.12) can be rewritten by integration and substituting (3.1) - (3.4) and the derivatives of
(3.1) - (3.4). Then solving for the reaction moment M0 and the reaction torque T0 gives

M0 =
FzEIy;bLaLb + 1

2FzGJaL
2
b

EIy;bLa +GJaLb
= Fz
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2
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!

; (3.13)
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: (3.14)

Using Castigliano’s theorem again the vertical displacement can be determined using
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(3.15)
By Substituting (3.13) and (3.14) into (3.1) - (3.4), then substituting the result into (3.15)
and rewriting this gives
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By assuming small displacements the sti�ness of the leafspring is now found by

kz1 =
Fz
�z1

= f(La; Lb; wa; wb; t; E; �): (3.17)

As is trivial the global sti�ness of the MEMS stage is de�ned as kz = 8kz1. As can be seen in
(3.17), the sti�ness of the MEMS structure is a function of the dimensions of the leaf springs
and the material properties. So this sti�ness expression can be used to analyze the dynamic
behavior of the MEMS stage as well as for re-designing the leafsprings.

By considering a length of Lb = 0 or La = 0 a �xed-guided beam is left. Equation (3.16)
simpli�es to
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The sti�ness of the �xed-guided beam is then found by
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=
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a
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=
12EIy;b
L3
b

: (3.20)

This sti�ness is the same as is found in other works for a �xed-guided beam, for example
in [6]. Figure 3.3 shows the normalized sti�ness as a function of Lb. The length La = 100 µm
and wa = wb = t = 2 µm. Of course for a �xed length of Lb and varying length of La the
sti�ness shows the same behavior. The sti�ness is normalized using

k̂z =
kz

8kz;a
=

L3
a

96EIx;a
kz: (3.21)

Figure 3.3: The sti�ness in z�direction as function of length Lb.

3.2.3 Leafspring sti�ness in x1 and y1-direction

Figure 3.4: 1) Top view of a leaf spring indicating dimension parameters. 2)Top view of part A
including forces and moments. 3) Top view of part B including forces and moments. 3)
Internal moments in part A and B.

By applying a force in x1-direction to the leafspring, a reaction moment M0 and reaction
force Fy are introduced, to keep the end of the leafspring attached to the rigid body. In
Figure 3.4 the free body diagrams are given including the forces and moments.

The moments in parts A and B of the leafspring are shown in picture 4 of Figure 3.4 and
are written as
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3.2. HOMOGENEOUS L-SHAPED LEAFSPRING

Ma = M0 � FyLb � Fxy1; (3.22)
Mb = M0 � Fyx1: (3.23)

Due to the guided-end condition the rotation at the end of the leafspring is zero. Using
Castigliano’s second theorem this gives
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Solving this for the reaction moment M0 gives
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bFy
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; (3.25)

where � = Iz;a
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. The reaction force Fy keeps the y1-displacement �y1 = 0. Using this and
Castigliano’s theorem again gives
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Substituting (3.25) into (3.22) and (3.23), then substituting the result into (3.26) and solving
for Fy gives

Fy = �Fx
3L2

a
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: (3.27)

Substituting (3.27) in (3.25) and then substituting the result into (3.22) and (3.23) gives
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Applying Castigliano’s theorem once again to the x1-displacement gives
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Rewriting (3.30) by integration gives
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The sti�ness in x1-direction is found as

ks;x1 =
Fx
�x

=
3EIz;a(4La + �Lb)
L3
a(La + �Lb)

: (3.32)

To determine the sti�ness in y1-direction a similar derivation is followed and the same free
body diagrams can be used as in Figure 3.4. However, now Fy is the applied force and Fx
the reaction force. The sti�nes in y-direction is found as [6]
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ks;y1 =
3EIz;b(La + 4�Lb)
L3
b(La + �Lb)

: (3.33)

The global sti�ness in x-direction and y-direction is found as

ks;x = ks;y = 4ks;x1 + 4ks;y1: (3.34)

3.3 L-shaped composite 2-layered plates

The derivations in Section 3.2 are all based on Euler-Bernoulli theory. Since the actual
leafspring is an L-shaped composite plate rather than an L-shaped composite beam, warping
and shear stresses become important. In this Section �rst an extension is made to composite
beams. Then constraint warping of cantilever plates is considered and �nally shear stresses
are considered for leafspring sti�ness analysis in x1� and y1-direction.

3.3.1 Extension to composite beams

The leafsprings exist of a bi-layer material: a 0:4 µm thick layer of Aluminum as electric
guidance to the top electrode and a 1:5 µm thick layer of Silicon Carbide for structural
support. For the derivation of the sti�ness in z1-direction the two layers contribute in series
to the total sti�ness. To include this multiple layers an e�ective 
exural rigidity can be
found as [23]

(EI)e;z =
mX

j=1

(Ej (Ij + zj(zj � zN )Aj)) ; (3.35)

where m is the number of layers, zj is the neutral axis of the corresponding layer and zN the
neutral axis of the entire beam. The position of the neutral axis is found as [23]

zN =
P m

j=1 zjEjAjP m
j=1EjAj

: (3.36)

Figure 3.5A shows a cross-section of a bilayer beam with all neutral axis. w indicates the
width of the beam and ti the thickness of the corresponding layer.
Also an e�ective torsional rigidity should be found for the derivation of sti�ness in z1-
direction. A thorough derivation of torsional rigidity for multilayer beams with rectangular
cross-section can be found in [24]. Figure 3.5B shows a cross-section of the composite beam
and the corresponding dimensions. The e�ective torsional rigidity is found as [24].

19



3.3. L-SHAPED COMPOSITE 2-LAYERED PLATES

(GJ )e =2 G1

�
2a3

3
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(3.37)

where an = (2n+1)�
2a and A1n; A2n; B1n and B2n are determined by boundary conditions.

The expressions for those parameters are written in Appendix A.3.
For sti�ness derivation in x1- and y1-direction only an e�ective 
exural rigidity has to be

determined. Since for that directions the layers contribute in parallel to the sti�ness, the
e�ective rigidity is found as

(EI)e;x = E1Iz;1 + E2Iz;2: (3.38)

Figure 3.5: A: A cross-section of the beam including the parameters used for determining the e�ec-
tive 
exural rigidity. B: A cross-section of the beam including the parameters used for
determining the e�ective torsional rigidity.

3.3.2 Constrained warping in cantilever plates

For the dimensions of the leafspring the lengths La and Lb are of the same order as the
widths wa and wb. Due to the rectangular cross-section of the leafspring the end will warp
under torsion. Due to the �xed and the guided ends this warping is constrained, which
increases the total sti�ness. The tip rotation of a cantilever plate (including a constraint
against warping) is given by [25] as

�(L) =
TL

2(1� �)DW

�
1�

tanh(4�)
4�

�
; (3.39)
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where T is the applied torque, L and W the length and width respectively, D = Et3
12(1��2) is the

local 
exural sti�ness and � = L
W

q
3
2(1� �) is the aspect-ratio parameter. For an isotropic

material the Young’s modulus E and the shear modulus G are related via G = E=2(1 + �) .
Using this relation and substituting D into the above equation and rewriting gives

TL
�(L)G

=
1
3
Wt3

�
4�

4�� tanh(4�)

�
= J1�; (3.40)

where � = 4�
4��tanh(4�) . So including a constraint against warping only gives a multiplication

with � to the torsional constant. When �!1 (which basically means L=W !1) � goes
to 1 as can be seen in Figure 3.6. This means that the torsion constant goes to the Saint
Venant torsion for large �.

Figure 3.6: The constant � as function of the aspect-ratio parameter �.

Since the leafspring has �nite dimensions the torsion constant given in (3.10) should be
used. Substituting (3.10) for J1 in (3.40) gives a torsion constant for a cantilever plate with
�nite width including a constraint against warping as

JCW =
1
3
Wt3

0

@1�
192
�5

t
W

1X

i=1;i odd

1
i5

tanh
�
i�W

2t

�
1

A
�

4�
4�� tanh(4�)

�
: (3.41)

By considering the leafspring as two cantilever plates connected with an angle of 90 degrees
this constraint against warping can be included by using (3.41)

Combining the constraint against warping and the extension to the composite beam gives
an e�ective torsional rigidity of a composite cantilever plate as

(GJCW )e = (GJ)e� = (GJ)e
4�e

4�e � tanh(4�e)
: (3.42)

where �e is the e�ective �. An e�ective � is necessary since it is a function of the Poisson’s
ratio. So basically an e�ective Poisson’s ratio �e has to be de�ned. To indicate the expected
in
uence of �e on the torsional rigidity the values for � and � are determined for part A
of the leafspring (La =28:5 µm, wa =15 µm). This gives for the Aluminium layer �Al =
1:9469! �Al = 1:1473 and for the Silcon Carbide layer �SiC = 2:1327! �SiC = 1:1328. So
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�Al
�SiC

= 1:0128 which is a di�erence of only 1.3%. Since most probably �SiC < �e < �Al the
e�ective Poisson’s ratio is assumed to be

�eff =
�SiCtSiC + �AltAl

tSiC + tAl
= 0:1895 (3.43)

This gives �e = 2:095 and �e = 1:136 with an expected maximum error of 1.3%. Due to this
small in
uence of �e for this speci�c dimensions of the leafspring this approach is assumed
to be valid for this case.

3.3.3 Shear stress in plates

Shear stress will be important for sti�ness derivation in x1- and y1-direction. Also elongation
of part B in x1-direction should be considered. The strain energies for shear Us and elongation
Ue are (for a rectangular cross-section of the beam)

Us =
Z L

0

3F 2

5GA
dx; Ue =

Z L

0

F 2

2EA
dx: (3.44)

By adding (3.44) and using the exact same derivation as is followed in Subsection 3.2.3 the
sti�ness for x1 and y1-direction including shear and elongation are now given by

ks;x1 =
1

L3
a (La +�Lb)

3EIz;a (4La +�Lb) + 3(La )
5GAa

+ Lb
2EAb

; (3.45)

ks;y1 =
1

L3
b(La +�Lb)

3EIz;b (La +�Lb) + 3(Lb)
5GAb

; (3.46)

where Aa = wat and Ab = wbt.

3.4 Validation of homogeneous and composite L-shaped
leafspring sti�ness

The torsional rigidity for a cantilever plate is obtained by combining the torsion constant
(3.10) and the constraint against warping according to [25]. Moreover for a composite can-
tilever plate it is assumed that the e�ective Poisson’s ratio can be obtained by the relation
stated in (3.43). Therefore the derived torsion constants for a homogeneous and composite
cantilever plate should be validated �rst. Although the relations for the 
exural rigidity of
a composite cantilever beam are obtained from [23], it is checked whether the results corre-
spond to results from �nite element model simulations in Ansys or not. This validation can
be found in Appendix B.1.1. From there it appears that the analytically derived and nu-
merically obtained torsional and 
exural rigidities agree with errors smaller than 3%. Based
on this it can be concluded that the derived torsional and 
exural rigidities for a composite
structure can be used for validation of the leafspring sti�ness. In subsection 3.4.1 the ho-
mogeneous L-shaped leafspring will be validated by comparing the analytical calculated tip
displacement from (3.17), (3.32) and (3.33) by the ones obtained by a �nite element model
analysis in Ansys. Then the same validation will be done for the sti�nesses of the composite
L-shaped leafspring. All errors of the analytical results presented in this Section are de�ned
by

Error% =
jXanalytical �XFEM j

XFEM
� 100% (3.47)
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3.4.1 Validation homogeneous L-shaped leafspring

In this section the leafspring sti�ness for x1, y1 and z1-direction will be validated for a homo-
geneous leafspring. The tip displacements of analytical and FEM results will be compared.
For x1-direction both (3.32) and (3.45) will be validated. The latter one includes shear and
elongation. For y1-direction both (3.33) and (3.46) will be validated. The latter one includes
shear stresses. And for the z1-direction (3.17) will be validated. There both the torsional
constant excluding a constraint against warping (3.10) and including a constraint against
warping (3.41) will used. The FEM model is build in Ansys. Table 3.1 lists the dimensions
of the leafspring. The material properties are chosen to be SiC properties as listed in Table
2.2. Figure 3.7 shows a representation of the leafspring. The mesh is de�ned such that there
are 5 layers of cubic SOLID186 elements over the thickness of the leafspring. SOLID186
cubic elements are 3D 20-node elements that exhibits quadratic displacement behavior. The
end of part A of the leafspring has a �xed contraint. At the end of part B, a tip force
of 1000 µN is applied in all three directions successively. That end is considered as a rigid
surface, since it cannot deform due to connection to the rigid top plate. The end is �xed in
all directions and rotations except for the direction of the applied force. For example, when
a force in x1�direction is applied, all rotations and displacements in y1� and z1�direction
are constrained. Figure B.6 shows the used Ansys model.

Table 3.1: Speci�cations of the leafspring.

Parameter Value
La 28:5 µm
Lb 21 µm
wa 15 µm
wb 10 µm
t 1:9 µm

Figure 3.7: Actual leafspring of MEMS stage. A
larger picture can be seen in Figure
3.1.

Figure 3.8 shows the analytical and FEM results. The FEM is calculated for three
di�erent numbers of elements to show convergence of the solution. The errors in the lower
right picture are de�ned using (3.47). Each time the error is normalized with respect to
the results of the Ansys model. The upper left picture shows the displacements for the
x1-direction. The error between analytical and FEM results is 24.4%. However, including
shear and elongation the error decreases to 6.1%. The same holds for the displacements in
y1-direction in the upper right picture. There the error decreases from 18.0% to 6.2% by
including shear stresses. For the z1-direction the error is signi�cantly larger than for the
other two directions. By including a constraint against warping the error decreases from
27.1% to 23.2%. This error is still quite large. The remaining error is mainly caused by the
e�ects of the corner. To verify this statement a sweep over di�erent widths of the leafspring
is calculated in Comsol. To keep the outer dimesions of the leafspring the same, the lengths
are de�ned as

La = 33:5 µm� 0:5wb; Lb = 28:5 µm� 0:5wa (3.48)

Figure 3.9 shows the results of this sweep and the analytical solutions. Here ‘no warp-
ing’ means that a constraint against warping is included. In the right picture, the upper
right point corresponds to the leafspring as mentioned in Table 3.1. The lowest left point
corresponds to a beam where wa =3 µm and wb =2 µm. Here the error is about 2%. This
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Figure 3.8: Validation of the analytical leafspring tip displacement compared to the tip displacement
determined by Ansys. The displacements are normalized with respect to the Ansys
results. For the lower right picture, ‘+ shear’ means that shear is taken into account
using (3.45) and (3.46) and ‘+ no warping’ means that a constraint against warping is
included using (3.41).

means that (3.17) gives proper results, however due to the relatively wide parts of the leaf-
spring the e�ects at the corner become more important. This gives an exponential increase
in the error. There is no analytical way found to include the ‘corner-e�ects’. Therefore it is
assumed that for sensitivity analysis this is a su�cient proper approximation. From Figure
3.9 it is also clear that for all analyzed dimensions including a constraint against warping
gives a signi�cantly better approximation of the leafspring sti�ness.

3.4.2 Validation composite L-shaped leafspring

In this section the leafspring sti�ness for x1, y1 and z1-direction will be validated for a
composite leafspring. The tip displacements of analytical and FEM results will be compared.
For the x1-direction both (3.32) and (3.45) will be validated using the composite 
exural
rigidity from (3.38). The same holds for the y1-direction where both (3.33) and (3.46) will
be validated using (3.38) again. And for the z1-direction (3.17) will be validated. There the
torsional rigidity excluding a constraint against warping (3.37) and including a constraint
against warping (3.42) will be used, both together with the 
exural rigidity as given in
(3.35). The same FEM model is used as is for the validation of the homogeneous leafspring.
However, now the leafspring is split up in two layers over the thickness. The �rst layer with
thickness t1 = 1:5 µm is made of SiC and the second layer with thickness t2 = 400 nm is
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Figure 3.9: In
uence of the width of the parts with respect to the total error. No warping means
that a for the results obtained a constraind against warping was considered.

made of Al. The mesh is de�ned such that layer 1 has 4 elements over thickness and layer
two 3 elements over thickness. Again a tip force of 1000 µN is applied in all three directions
succesively. Figure B.7 shows the used Ansys model. The analytical and FEM results are
presented in Figure 3.10.

Again for the displacements in x1 and y1 direction the error decreases when shear is taken
into account. For the x1 and y1 direction the error decreases from 24.5% to 3.2% and from
17.8% to 7.9% respectively. For the z1- direction the error increases from 9.8% to 14.4%
when a constraint against warping is included. It is known from the homogeneous leafspring
validation that including a constraint against warping gives more accurate results. However,
in this composite case the analytical leafspring sti�ness is already calculated larger than
the sti�ness determined by the FEM. Including a constraint against warping will result in
additional sti�ness which means that in this case the result will be slightly worse. It is
concluded that for sensitivity analysis the determined composite leafspring sti�nesses in all
three direction are su�ciently accurate.

3.5 Summary

The leafsprings can be de�ned as L-shaped beams. During the analysis the leafspring is split
into a part A and B. One end of part A is clamped to the �xed world and part B has a
guided end due to connection to the rigid top plate. The other ends of part A and B are
connected to each other and form the corner area of the leafpsring. Figure 3.1 shows the
considered leafspring. To derive the sti�ness in a certain direction, a force is applied at the
guided end in that speci�c direction. Due to this force and the connection to the top plate,
reaction forces and moments appear at the tip of the leafpsring. Using the reaction forces
and Euler-Bernoulli beam theory, the strain energy in the leafspring is written down. Using
Castigliano’s second theorem �nally the leafsring sti�ness is derived from this strain energy.
The leafpsring sti�ness in z1�direction is derived in Subsection 3.2.2 and the sti�ness in
x1� and y1�direction are derived in Subsection 3.2.3. Since the leafspring consist of two
di�erent materials an extension to composite beams in made in Subsection 3.3.1. There an
e�ective torsional rigidity and an e�ective 
exural rigidity are derived. Due to the comparable
widths and lengths of the leafspring and due to the �xed/guided ends, a constraint against
warping should be considered. Moreover, shear stresses become relevant too. In Section 3.4
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Figure 3.10: The analytical and numerical determined tip displacements of the composite leafpspring
compared. The displacements are normalized with respect to the Ansys results. For
the lower right picture, ‘+ shear’ means that shear is taken into account using (3.45)
and (3.46) and ‘+ no warping’ means that a constraint against warping is included
using (3.41)

the derived leafspring sti�nesses for all three directions are validated using a �nite element
model of the leafspring build in Ansys. Derived sti�nesses for both a homogeneous and
composite leafspring are validated. The analytical and numerical displacements at the tip
due to a force are compared. When shear is considered, the leafspring sti�ness in both x1�
and y1�direction can be determined using the analytical model with an error smaller than
10% for both the homogeneous and composite leafspring. However, the analytical sti�ness
for a homogeneous and composite leafspring including a constraint against warping, have
an error of 23.2% and 14.4% respectively. This relatively large error is due to mechanical
sti�ness in the corner of the leafspring, which is not considered in the analytical model. In
Subsection 3.4.1 it is shown that for smaller widths of the leafspring the error decreases to
below 5%. When the parts of the leafspring are smaller, the corner area (the area where part
A and B are connected) is smaller. The analytical expressions for leafspring sti�nesses will
be used in sensitivity analysis to improve the performance of the MEMS stage. Considering
this goal, it is concluded that the analytical model for determining the composite leafspring
sti�ness will be su�ciently accurate.
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Chapter 4

Analytical modeling and FEM
validation of the capacitor

The MEMS stage is driven according to the principle of a parallel plate capacitor. This kind
of capacitor in general consist of a �xed electrode and a movable electrode. This electrostatic
actuation is non-linear with respect to the displacement of the movable electrode. In Section
4.1 a theoretical introduction will be given on parallel plate capacitors. Also pull-in will
be treated in more detail. Due to the complex geometry of the MEMS stage, ’standard’
analytical expressions for capacitance can not be applied directly. Therfore a mapping is
proposed to form the complex geometry into a simple rectangular plate in Section 4.2. In
Section 4.3 the mapping and expressions for capacitance are validated using a �nite element
model in Comsol.

4.1 Introduction

4.1.1 Direct electric �eld of a parallel plate capacitor

When neglecting fringing �elds the capacitor is charged because of a voltage source V ac-
cording to [7]

Q = C(z)V; (4.1)

where Q is the electrical charge of the capacitor, C the capacitance and z the degree of
freedom of the top plate. The potential energy Ec of this capacitor is given by

Ec =
1
2
CV 2: (4.2)

By considering the total electric potential energy of the battery-capacitor system the elec-
trostatic force can be derived by taking the gradient of the potential energy [7]. When the
capacitor is charged by a charge Q the battery provides an electrical potential of �QV . The
energy of the battery Eb can be written as

Eb = E0 �QV = E0 � C(z)V 2; (4.3)

where E0 is the initial energy of the battery. Now the total energy of the battery-capacitor
system is given by

Etot = Eb + Ec = E0 �
1
2
C(z)V 2: (4.4)
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As already stated the force is taken to be the gradient of the total electric potential energy,
so the force can be expressed as

Fe =
@E
@z

= �
@C(z)
2@z

V 2: (4.5)

For a simple parallel plate capacitor (see Figure 4.1A) the capacitance is given by [7]

C0(z) =
�Ae
z
; (4.6)

where � is the permittivity of the surrounding medium and Ae the area of overlap of the
bottom and top electrode. This gives a force of

Fe =
�AV 2

2z2 : (4.7)

Figure 4.1: A: A simple parallel plate capacitor. B: The one-dimensional electrostatic actuation
model

Alternatively the electrical force can be derived by using the co-energy, as is done in for
example [12]. The force is determined by the negative gradient of the co-energy E�c [10]

Fe = �
@Ec(V; z)�

@(z)
: (4.8)

The co-energy is given by [10]

E�c =
Z V

0
QdV =

Z V

0
CV dV =

CV 2

2
=
�AV 2

2z
: (4.9)

Using (4.8)

Fe = �
�2�AV 2

4z2 =
�AV 2

2z2 ; (4.10)

which is the same as obtained using the total potential energy of the battery-capacitor
system.

For a movable, deformable plate with length L and width W , initial at distance h from
the �xed bottom electrode, the varying force with distance is given by

Fc = �
�LWV 2

2(h� z(x))2 ; (4.11)

where z(x) is the deformation of the movable plate, and so position depended. Since for the
one dimensional model it is assumed the movable plate can be modeled as a rigid mass as
in Figure 4.1B, it applies that z(x) = z.
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4.1.2 Pull-in Voltage

An instability phenomenon in RF MEMS switches due to electrostatic actuation is known as
pull-in. When increasing a voltage from zero the movable electrode moves towards the �xed
electrode. At a certain point the forces of the electric �eld surpass the restoring forces from
the leafsprings. From that moment the plate will hit against the bottom electrode. When
decreasing the voltage, hysteresis will occur due to contact forces between the movable plate
and the bottom electrode. At the points where the restoring spring force and the electrostatic
force are in equilibrium

keffz =
�AV 2

2(h� z)2 ; (4.12)

where keff is the e�ective sti�ness of the MEMS structure. To obtain the sti�ness, the force
has to be derived with respect to z, this gives

@F
@z

=
�AV 2

(h� z)3 � keff : (4.13)

At equilibrium @F
@z = 0. Using this and then solving (4.13) for z gives

z =
1
3
h: (4.14)

So when the movable plate is moved towards the bottom electrode over an distance of one
third of the original gap height, pull-in occurs. Now substituting (4.14) into (4.12) gives

Vpull =

r
8
27
keffh3

�A
; (4.15)

which is the static pull-in voltage. When actuating the MEMS stage one should be aware of
pull in, since for the speci�c application of this MEMS stage one has to stay away from this
instability point.

4.1.3 One and two dimensional fringing �elds

The electric �eld generated between the plates does not abruptly stop at the edge of the
electrode. There is also an electric 
ow outside the plane directly between the plates, the
so-called fringing �elds. In Figure 4.2 this phenomenon is drawn. So the capacitance of an
parallel plate capacitor is a sum of the direct capacitance C0 (see (4.6)) and the capacitance
of the fringing �elds Cf . To include the fringing �elds the model of Palmer can be used [14].
Both [26] and [27] show that the model derived by Palmer predicts the capacitance of an
parallel plate capacitor with �nite width and in�nite length most accurate compared to other
models. The model of Palmer is given by

C0 + Cf = �
W
h

�
1 +

h
�W

+
h
�W

ln
�

2�W
h

��
: (4.16)

The equations for the fringing �eld are derived assuming an in�nite small plate thick-
ness. However, in practice the plate has considerable thickness t which gives an additional
capacitance Ct. The total capacitance can be found according to [26,27]

C0 + Cf + Ct = �
W
h

 

1 +
h
�W

+
h
�W

ln
�

2�W
h

�
+

h
�W

ln

 

1 +
2t
h

+ 2

r
t
h

+
t2

h2

!!

:

(4.17)
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Figure 4.2: The direct electric �eld and the fringing �elds of a parallel plate capacitor

Equations (4.16) and (4.17) are based on a beam with in�nite length or where L�W . For
the square top plate of the considered MEMS stage, this assumption is clearly not valid as
L = W . The expressions have to be adjusted so that they account for the �nite length of the
top plate. For the capacitance including fringing �elds this is simply done by a multiplication
in the model of palmer according to [15]

C0 + Cf = �
WL
h

�
1 +

h
�W

+
h
�W

ln
�

2�W
h

�� �
1 +

h
�L

+
h
�L

ln
�

2�L
h

��
: (4.18)

That this is a multiplication and not a summation can be explained by rewriting (4.6) for a
square plate capacitor with dimensions L�W to

C0(z) =
1
z

Z

A
�dA =

1
z

Z 0:5L

�0:5L

Z 0:5W

�0:5W
�dxdy: (4.19)

The fringing �elds exist outside the plate which increases the area to an e�ective area Aeff =
LeffWeff , with Leff = L(1 + �L) and Weff = W (1 + �W ) . Substituting the e�ective area
of the plate into (4.19) gives

C0(z) =
1
z

Z

Aef f

�dAeff =
1
z

Z 0:5Lef f

�0:5Lef f

Z 0:5Wef f

�0:5Wef f

�dxdy =
�
z
A(1 + �L)(1 + �W ): (4.20)

In [15], (4.18) is compared to the capacitance obtained by a �nite element model. For gap
heights comparable to the plate dimensions this gives an error of about 6%. However the
error decreases with gap reduction. Considering the additional capacitance due to electrode
thickness, it is assumed that this can be included for two dimensions from (4.17) similar as
for the fringe �elds, since the additional �elds due to electrode thickness appear in the same
way as the fringe �elds, e.g. along the borders of the plate. This results in
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4.2. MAPPING OF THE COMPLEX GEOMETRY INTO A SIMPLE RECTANGULAR PLATE

4.2 Mapping of the complex geometry into a simple
rectangular plate

The expressions derived in Subsections 4.1.1 - 4.1.3 are valid for solid rectangular parallel
plate capacitors. However, as can be seen in Figure 4.3, the geometry of the electrodes
is much more complex. First, the outer borders do no form a perfect square. On top
of that there is a square hole at the center of the top electrode and the top electrode is
perforated. According to [4] the up-state capacitance of a MEMS stage is not in
uenced
by perforation holes if the diameter of the holes (2rp) is smaller than three to four times
the gap height h, since the holes will be completely �lled with fringing �elds. However, the
down-state capacitance will be in
uenced by the holes since than the ratio of gap height
over perforation radius decreases. For the actual MEMS stage the diameter of the holes is
estimated to be 2rp =4 µm= 8h. So both the up-state and down-state capacitance will be
in
uenced by the perforation of the top plate. An analytical expression for the in
uence of
the holes on the capacitance is not found. Also for a large square hole at the center of the
plate no analytical expression is found. Therefore, a mapping of the complex geometry into
a simple rectangular electrode is proposed. So basically an e�ective length Leff and width
Weff has to be determined. As can be seen in (4.6) the capacitance excluding fringing �elds
is linearly related to the area of the electrodes. The fringe �elds and additional capacitance
due to the electrode thickness exist due to the �nite dimensions of the electrode, e.g. the
borders of the electrode. Considering those two �ndings, the mapped rectangular electrode
should have the same area and border length as the complex shaped electrode of the actual
MEMS stage. Figure 4.3 shows the top electrode and Figure 4.4 shows the proposed mapping
(N.B.: The mapping is not to scale). First neglecting the perforation, the borders of the
electrode are given by the red lines in Figure 4.3. The area to be mapped is the area between
the red lines. This area Ae and border length Be are

Ae = 19 000 µm2 and Be = 1024 µm: (4.22)

The relation between the dimensions and the area and border length of the mapped rectan-
gular plate are as trivial

Ae = LeffWeff and Be = 2Leff + 2Weff : (4.23)

Solving this system of equations for Leff and Weff yields

Leff =
1
4

�
Be +

p
B2
e � 16Ae

�
= 471:7 µm; (4.24)

Weff =
Ae
Le

= 40:3 µm: (4.25)

Now considering the 128 perforation holes in this mapping the area Ae decreases with 128�r2
p

and the border length Be increases with 256�rp, which gives Ae = 17 392 µm2 and Be =
2632 µm. The resulting dimensions of the mapped rectangular electrode are Leff = 1302 µm
and Weff = 13:3 µm. This mapping seems a bit extreme since the geometry changes from
approximately a square to a rectangular strip with ratio Lef f

Wef f
= 100

1 . However since the area
of the actual geometry and the mapped geometry are the same and the capacitance mainly
depends on the electrode area (especially for this small gap heights), it is believed this will
be an accurate mapping. A validation of this mapping can be found in Section 4.3.
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Figure 4.3: The actual geometry of
the MEMS top electrode,
where the red lines indi-
cate the borders.

.

Figure 4.4: The mapped rectangular plate with same area
and border length as the actual geometry of the
top electrode of the MEMS stage.

4.3 FEM Validation of the electrode capacitance

In this section the expressions for capacitance are validated using a FEM in Comsol. To
calculate the capacitance of this FEM, a surrounding sphere has to be determined in which
the electric �eld is analyzed. The in
uence of this surrounding sphere is analyzed in Sub-
section B.2. From there it appears that for the dimensions of the MEMS stage a sphere
with a radius of 150 µm is su�ciently large such that the in
uence of the �nite sphere on
the results is negligible. So for all validations in this Section the electric �eld is analyzed
within a sphere with radius of 150 µm. In Subsection 4.3.1 the capacitance for a solid square
plate capacitor will be validated. Besides this, the relevance of the capacitance from fringing
�elds and electrode thickness for a capacitor comparable to the MEMS stage dimensions is
analyzed. After that the proposed mapping for a plate with square hole at the center and the
mapping for a perforated plate will be validated in Subsections 4.3.2 and 4.3.2 respectively.
Finally all elements are combined in the validation of the capacitance for the actual MEMS
stage in Subsection 4.3.4.

4.3.1 FEM Validation capacitance of a square, solid parallel plate
capacitor

In this section the equations for the capacitance of a square solid parallel plate capacitor
will be validated. The capacitance of the direct electric �eld between the plates (C0) is
given by (4.6). The capacitance of the direct �eld including the 2D fringe �elds (C0 + Cf )
is given by (4.18) and to include the additional capacitance of the thickness of the plates
(C0+Cf+Ct) by (4.21). To validate these equations the calculated capacitances are compared
to the obtained capacitance using Comsol. The model consist of two plates with dimensions
150 µm� 150 µm� 2 µm separated by a gap. The gap between the plates is chosen variable
between 300 to 1100 nm. The voltage over the plates is set to 1 V, so the results do not have
to be corrected for the applied voltage. The surrounding medium is de�ned as a sphere of
air with a radius of 150 µm. This radius is found to be large enough in Appendix B.2. The
minimum allowable mesh size is decreased such that even in the gap between the two plates
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the model can be discretized properly. To get an impression of the used mesh the reader is
referred to Figure 4.6.

Figure 4.5: The analytically determined capacitances compared to the capacitances from the FEM.
The error is allowed to be positive or negative. A positive error means an overestimation
of capacitance by the analytical model and vice versa for a negative error. Here Ctot =
C0 + Cf + Ct .

Comparing the analytical and FEM results in Figure 4.5, it can be seen that even (4.6)
(is C0)) is a relative accurate approximation of the capacitance. This is due to the small
air gap between the plates. The capacitance due to fringe �elds and thickness of the plates
is relatively small compared to the capacitance of the direct �eld. For larger air gaps the
in
uence of the fringing �elds becomes more important. This can be concluded using the
middle and right picture of Figure 4.5. The error for a gap size of 500 nm is 2.5%, 0.7% and
0.1% for C0, C0 + Cf and C0 + Cf + Ct respectively. So the analytical expression of the
capacitance including fringing �elds and material thickness is most accurate. The error is
de�ned as

Error% =
Canalytical � CComsol

CComsol
� 100%: (4.26)

This error de�nition is used for all validations in this section. The error is allowed to be
negative to be able to see whether the analytical derived capacitances are an underestimation
or overestimation of the actual capacitance. In all following validations in this section, most
of the time all three analytical expressions ((4.6), (4.18) and (4.21)) will be compared to the
FEM results. However, the �nal error given is always based on (4.21).

4.3.2 Capacitance of a square plate capacitor including a square hole at
the center

In the actual MEMS stage there is a square hole at the center to enable light passing through.
Due to this hole the capacitance of the MEMS stage decreases. To count for this reduction a
mapping of the complex geometry into a simple rectangular plate is proposed in Section 4.2.
The dimensions of this rectangular plate can be determined using (4.24) -(4.25). In Comsol
the same model is used as in Subsection 4.3.1. However, now the gap size is gap height is
�xed at 500 nm and a square hole is put into the center of the top electrode. The width of
the hole is taken to be variable between 10 µm and 70 µm. Again the minimum allowable
mesh size is reduced to proper discretize the model in the gap. The model and the mesh
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can be seen in Figure 4.6. The determined capacitance with Comsol is compared to the
analytical calculated capacitance of the mapped plate. The results are shown in Figure 4.8.

Figure 4.6: The mesh of the plates including a
square hole at the center

Figure 4.7: The mesh of the plates, especially
around the perforation holes.

Figure 4.8: The capacitance of the plates including a square hole at the center over the width of
the hole. The error is allowed to be positive or negative. A positive error means an
overestimation of capacitance by the analytical model and vice versa for a negative error.

As can be seen the mapping qualitatively describes the in
uence of the square hole. The
error between the FEM results and the analytical results increases to 0.2% for whole =10 µm
and to -0.6% for whole =70 µm. The absolute error increases over increasing gap width.
It is believed this is due to an error using the mapping. An increasing hole width means a
decreasing area of the electrode and an increasing border length. This means less capacitance
due to the direct �eld and more capacitance due to the fringe �elds. The mapping assumes
that the fringe �elds exist over the total border length of the hole. However, the fringe �elds
within the hole interfere, which gives a slightly di�erent �eld as can be analyzed using the
mapping. However the error remain small due to the relative small gap size between the
plates. This means that the direct �eld is still the major contributor to the capacitance.
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As can be seen in (4.6) the capacitance of the direct �eld is linearly related to the area
of the plates. Plotting the obtained capacitance over the area of the hole instead of the
width in Figure (4.9), indeed an approximately linear behavior is observed. All in all the
this mapping can be used with a small error to determine the capacitance of a parallel plate
capacitor including a square hole at the center.

Figure 4.9: The capacitance of the plates including a square hole at the center over the total area of
the square hole. The error is allowed to be positive or negative. A positive error means
an overestimation of capacitance by the analytical model and vice versa for a negative
error.

4.3.3 FEM Validation capacitance of a square, perforated plate capacitor

From the previous section we know that the capacitance decreases approximately linear over
an increasing hole area in the middle of the plate. A comparable linearity is expected for
a perforated plate. To determine the capacitance of a perforated plate including a regular
pattern of holes, no analytical solution is found. It is expected that for a plate were the hole
diameter is smaller than 3-4 times the gap height no signi�cant change in capacitance is found
since the fringe �elds will completely �ll the gap [4]. However for larger holes the capacitance
will decrease. In Comsol the same model is used as in Subsection 4.3.2. However, now an
array of 13� 13 holes is put into the top electrode instead of a square hole, as can be seen in
the left picture of Figure 4.10. The radius of the holes is variated from 1 to 5 µm. To ensure
the holes are still approximately a circle a �xed mesh-size is used at the borders of the hole.
The results are compared to analytical results were again the same mapping is used: e.g. the
border length is the length of the outer borders added to the length of the inner borders of
the holes and the area is the area of the plate minus the area of all holes. Figure 4.10 shows
the results of this comparison. Also a quarter model of the plate is used in Comsol. The
boundary condition at the symmetry planes is de�ned as ’zero charge’, which means that
no energy is 
owing through this planes and the electric �eld is forced to be parallel along
the symmetry planes. The result of this quarter plate is also shown in Figure 4.10. The
di�erence in calculated results of the full plate compared to the quarter plate is in the order
of 10�15. As can be seen, using the same mapping as in Section 4.2, the same conclusions
can be made as in Subsection 4.3.2. For increasing radius of the perforation, the area of
the electrode decreases and the total border length increases. The absolute error increases
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again over increasing radius of the holes. The error seems to be much larger compared to the
error in Figure 4.8, however the case where rp = 5 µm is a quite extreme case since the area
of the remaining electrode is smaller than the area of the perforation holes. Qualitatively
the behavior of capacitance over perforation radius is di�erent. The analytical determined
capacitance decreases faster over increasing radius compared to the capacitance determined
by the FEM. Here too, the fringe �elds into the holes interfere, which gives a di�erent
behavior. Basically the mapping of each hole introduces an additional error. However, due
to the small gap height the error remains small. The radii of the actual perforation in the
MEMS stage is about 2 µm. This corresponds to an error of about 1.3%, which is considered
to be accurate.

Figure 4.10: The capacitance of the plates including an array of perforation holes over the radii
of the holes. The error is allowed to be positive or negative. A positive error means
an overestimation of capacitance by the analytical model and vice versa for a negative
error. At the bottom in the left picture two pictures of the electrode are given with
perforation holes on scale.

4.3.4 FEM Validation capacitance of the actual MEMS stage

The actual geometry of the MEMS electrode is presented in Figure 4.3. As can be seen the
outer borders of the plate form not a perfect square. At the outside borders there are eight
notches where the leafsprings are connected to the top plate. This increases the border length
of the plate. Also the perforation of the plate and the square hole give additional border
length for the mapped plate. In Comsol the actual MEMS electrodes are modeled. For a
range of gap heights (300 to 700 nm) the capacitance of the parallel plates are calculated. To
ensure the holes are still circular after meshing the minimum allowable mesh-size is reduced
to 1 µm. A view of the resulting mesh is shown in Figure 4.7. The analytical and FEM
results are compared in Figure 4.11. As can be seen the mapping estimates the capacitance
quite accurate. In normal operation the gap heights variate between approximately 350
- 500 nm. This corresponds to an absolute error of 0.03% to 0.58%. At a gap height of
500 nm the capacitances following from analytical equations and Comsol are C0ft = 337 fF
and CComsol = 335 fF. All in all the mapping can be used with an error below 1% for
determining the capacitance of the MEMS stage.

36



4.4. SUMMARY

Figure 4.11: The analytical and FEM capacitances compared for the actual MEMS stage and the
corresponding error. The error is allowed to be positive or negative. A positive error
means an overestimation of capacitance by the analytical model and vice versa for a
negative error.

It has to be said that the capacitance in Comsol is determined using a rigid plate as
is the same for the analytical model. However, the actual MEMS stage deforms and so the
capacitance will be a function of x and y too, which is not investigated during this project.
In general it can be said that the validity of the mapping depends on the actual geometry
and the ratio between gap height and plate area.

4.4 Summary

The actuation of the MEMS stage is based on a parallel plate capacitor. The capacitance of
this capacitor changes depending on the distance between the two plates, the bottom and top
electrode. When a voltage is applied and the sti�ness of the top electrode is characterized by a
linear spring, pull-in occurs when the electrodes are at a distance of 2

3 of the initial gap height.
The electric �eld also exists outside the plane between the plates, the so-called fringe �elds.
Also the thickness of the electrodes contribute to the electric attraction force. In Subsection
4.1.3 the additional capacitance due to fringing �elds and electrode thickness are derived in
two dimensions. The electrodes have a complex geometry: there is a square hole at the center
of the top plate and there are perforation holes. In Section 4.2 a mapping of the complex
geometry to a simple rectangular electrode is proposed. The basis of this mapping is to ensure
a similar area and border length as the complex geometry. In Section 4.3 the expressions
for the capacitance and the proposed mapping are validated. For this validation, a Comsol
model of two rigid plates is build. The electric �eld is analyzed within a sphere with �nite
radius. To �nd the proper radius for this sphere the total capacitance is analyzed for di�erent
radii in Appendix B.2. Due to the relative small gap height compared to the dimensions of
the electrodes, the direct �eld is the most important and the capacitance due to the fringing
�elds and material thickness are only a few percent. The di�erence between the analytically
determined capacitance for the MEMS stage and the determined capacitance of the MEMS
stage using Comsol is smaller than 1%. Analytically the capacitance is Canalytical = 335 fF
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and using Comsol the capacitance is CComsol = 337 fF. It is concluded that using the
proposed mapping and the derived two dimensional expressions for the capacitance of a
parallel plate capacitor, the capacitance of the MEMS stage can be determined accurately.
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Chapter 5

Analytical modeling and FEM
validation of squeeze �lm forces

Based on preliminary measurements, it is believed that the �rst eigenfrequency is damped
due to squeeze �lm damping [2]. In this chapter �rst a theoretical introduction will be
given on existing analytical derivations for squeeze �lm damping. Then in Section 5.2 a
mapping is proposed to describe the complex geometry of the actual MEMS stage as a
simple rectangular perforated plate. After this the analytical squeeze �lm damping and
sti�ness coe�cient and the proposed mapping will be validated in Section 5.3 using a �nite
element model in Comsol.

5.1 Theoretical introduction

To indicate the amount of damping the quality factor Q can be used. For a resonant beam
the quality factor is expressed as [4]

Q =
k
!0b

; (5.1)

where k is the sti�ness of the beam, b the damping coe�cient and !0 the resonant frequency.
This gives that a large damping coe�cient results in a low quality factor and vise versa. Since
most of damping in MEMS switches is given by squeeze �lm damping a thorough analysis
of this phenomenon is needed.

5.1.1 Gas fundamentals

When the beam is actuated, air must be pushed from the small air gap underneath the beam.
The mean free-path � of air molecules between successive air-molecules is given by [4]

� =
1

p
2�N�2

m
; (5.2)

where N is the number density of the gas and �m the diameter of the gas gas molecule. This
expression is valid for a gas under atmospheric pressure. For dry air N = 0:025 04� 1027 m�3

and �m = 3:7� 10�10 m, which gives a mean free path of �air = 6:6� 10�8 m.
To express the viscosity of a gas under the MEMS top plate the Knudsen number is

used [4]
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Kn =
�
h
: (5.3)

For low Knudsen numbers the gas is viscous. For large Kn the gas-wall interaction becomes
more important. For gap-heights in the order of the mean free path this so-called ‘slip e�ect’
becomes important. The Reynolds equation assume that the gas can be considered as a
continuum and does not slip at the boundaries. Often the gap size between the electrodes is
very small such that the Knudsen number becomes closer to the non-continuum regime. To
use the Reynolds equation in this regime a so called ‘e�ective viscosity coe�cient’ �eff has
to be used. To determine the e�ective viscosity of a gas for this large Knudsen numbers the
model of Veijola et al. [28] can be used with an error of �5% for 0 � Kn � 880

�eff =
�

1 + 9:638K1:159
n

; (5.4)

where � = 1:2566 � 10�6
p
T

�
1 + �

T

� �1
, where T the temperature in Kelvin and � =

110:33 K. For air �air =1:845� 10�5 kg s=m. Also other expressions exist for the e�ective
viscosity. A summation can be found in [7].

The non-dimensional squeeze number � is a frequency dependent number [4]

� =
12�effA
Pah2 !; (5.5)

where Pa is the ambient pressure and A the area of the plate and ! the frequency at which
the plate vibrates. A low squeeze number (� < 3) indicates a viscous 
ow. Air escapes from
the boundaries of the MEMS. For large squeeze numbers the gas is compressed underneath
the top plate of the MEMS stage. Compression yields an additional sti�ness e�ect.

5.1.2 Incompressible gas

For low squeeze �lm numbers the damping constant due to squeeze �lm damping can be
approximated assuming incompressibility of the gas. The damping coe�cient for a square
plate can be approximated by [7]

cs =
0:42�A2

h3 ; (5.6)

However, using the assumption of an incompressible gas, a sti�ness component due to squeeze
�lm damping can not be determined. Moreover, due to a large �rst eigenfrequency of the
considered MEMS stage, the squeeze number will be large too. Hence the gas should be
considered as a compressible gas to determine the 
ow induced damping and sti�ness coef-
�cients.

5.1.3 Compressible gas

To capture the sti�ness e�ects of the squeeze �lm, the Reynolds equation can be used as-
suming the gas to be compressible. The Reynolds equation is derived from the Navier-Stokes
equation. The Reynolds equation governs the pressure distribution in a thin viscous 
uid
�lm. The assumptions made by the Reynolds equation are a Newtonian 
uid, negligibly
inertial e�ects, constant pressure distribution over the height of the �lm, small �lm thick-
ness of the �lm compared to the width and length, steady state dynamics and no slip at
the boundaries [7]. Considering these assumptions and given that the plates only move in
z-direction the general form of the Reynolds equation is given by [18]
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@
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+
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�
�
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�
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@y

�
= 12

�
H
@�
@t

+ �
@H
@t

�
; (5.7)

where x and y are the positions along the length and the width of the plate, t the time, � the
density of the 
uid and H the variable distance between the plates. For MEMS devices the

ow can be considered isothermal due to the small dimensions. This gives that the density
is directly proportional to the pressure P . For normal motion of the parallel plates, both H
and � are not position dependent. Using these assumptions, (5.7) can be written as [7, 18]
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�
+
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�
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�
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�
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@P
@t

+ P
@H
@t

�
: (5.8)

The time-varying pressure underneath the plate is given by

P (x; y; t) = Pa + �p(x; y; t); (5.9)

where Pa is the ambient pressure. By assuming a small displacement z(t) compared to the
original gap height h, H is given by

H(t) = h+ z(t); (5.10)

and (5.8) simpli�es to

@2�p
@x2 +

@2�p
@y2 =

12�
h3Pa

�
h
@�p
@t

+ Pa
@z
@t

�
: (5.11)

Using the non-dimensional quantities

p̂ =
�p
Pa

; � =
z
h
; (5.12)

a non-dimensional form of the Reynolds equation is written as

@2p̂
@x2 +

@2p̂
@y2 � �

@p̂
@�

= �
@�
@�
; (5.13)

where � is a non-dimensional time and � is de�ned as

� =
12�
h2Pa

: (5.14)

The force induced by the 
ow is determined by

Fs =
Z

L

Z

W
�pdxdy = Pa

Z

L

Z

W
p̂dxdy; (5.15)

where L is the length of the plate. This force expression can be used to �nd the 
ow induced
damping and sti�ness coe�cient.

5.1.4 Flow induced damping and sti�ness coe�cient for a rectangular
plate

The derivation in this subsection will be based on [7, 29, 30]. To derive the damping and
sti�ness coe�cients, the center of the coordinate system is placed at the center of the plate.
This gives the boundary conditions of the pressure to be
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�p = 0 at x = �L=2 and y = �W=2: (5.16)

By assuming a small harmonic motion z(t) = z0 cos!t, � and � are given by

�(�) = �0 cos � ; � = !t: (5.17)

The partial di�erential equation in (5.13) is solved by separating variables. The pressure
p̂ is expressed as

p̂ =  1 cos � +  2 sin �; (5.18)

where  1 and  2 are functions of the spatial variables x and y only. The pressure has a part
in phase and out of phase, corresponding to the sti�ness (proportional to the displacement)
and the damping (proportional to velocity). The boundary conditions for  1 and  2 are the
same as for the pressure. They have to be zero along the edges of the plate. Substituting
(5.18) into (5.13) and equating cosines and sines yields

@2 1

@x2 +
@2 1

@y2 � � 2 = 0; (5.19)

@2 2

@x2 +
@2 2

@y2 + � 1 = ���0: (5.20)

 1 and  2 are written in Fourier-series as

 1 =
X

m;n odd

amn cos
� m�x

L

�
cos

� n�y
W

�
; (5.21)

 2 =
X

m;n odd

bmn cos
� m�x

L

�
cos

� n�y
W

�
; (5.22)

where m and n are only odd numbers since the requirement of symmetry along both the x�
and y�axis.

By substituting (5.21) and (5.22) into (5.19) and (5.20), multiplying by cos
� m�x

L
�

cos
� n�y
W

�

and integrating over the plate area [7]

�
m2

L2 +
n2

W 2

�
�2amn + �bmn = 0; (5.23)

�
m2

L2 +
n2

W 2

�
�2bmn � �amn =

16��0

mn�2 (�1)
m +n

2 �1: (5.24)

Solving for amn and bmn yields

amn =
16��0

mn�2
��

m2

L2 + n2

W 2

�
�4 + �2

� (�1)
m +n

2 �1; (5.25)

bmn =
16��0

�
m2

L2 + n2

W 2

�

mn
��

m2

L2 + n2

W 2

�
�4 + �2

� (�1)
m +n

2 �1: (5.26)

Substituting (5.18) into (5.15) gives
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Fs = cos �
Z L=2

�L=2

Z W=2

�W=2
Pa 1dxdy + sin �

Z L=2

�L=2

Z W=2

�W=2
Pa 2dxdy: (5.27)

The 
ow induced force can also be expressed as

Fs = �ksz � cs _z = �ksh�0 cos � + cs!h�0 sin �: (5.28)

Now by equating the coe�cients of cos � and sin � of (5.27) and (5.28), c and k are given as

cs =
Pa
!h�0

Z L=2

�L=2

Z W=2

�W=2
 2dxdy; (5.29)

ks =
Pa
h�0

Z L=2

�L=2

Z W=2

�W=2
 1dxdy: (5.30)

Finally substituting (5.25) into (5.21) and (5.26) into (5.22), then substituting the results
into (5.29) and (5.31) [7]

cs =
64�PaA
�6!h

X

m;n odd

m2 + �2n2

(mn)2
�

(m2 + �2n2)2 + �2

�4

� ; (5.31)

ks =
64�2PaA
�8h

X

m;n odd

1

(mn)2
�

(m2 + �2n2)2 + �2

�4

� : (5.32)

where A = LW and � = W
L . The above derivation of cs and ks is based on [7, 29, 30].

The series in (5.31) and (5.32) converge very fast. This means that using only 1 term gives
already acceptable results for spring and damper coe�cients. As can be seen in (5.32) the
spring coe�cient has a term �2 in the numerator, while the damper coe�cient has a term �
into the numerator. This means the sti�ness converges faster to zero for � ! 0. This means
for small squeeze numbers damping is more important, whereas for larger squeeze numbers
the sti�ness e�ect becomes more important as becomes clear from Figure 5.1. In the case
for � ! 0, cs is approximated according to (5.31) for a square plate (� = 1) as

cs =
0:4�A2

h3 ; (5.33)

where only one term is used. This is almost the same result as obtained using the
incompressible gas model in (5.6). For a high squeeze number, the gas cannot escape and is
compressed into the MEMS structure. This means damping is less important. For squeeze
numbers in between, both damper and spring e�ects come from the squeezed �lm. Figure 5.1
shows the non-dimensionalized spring and damping forces as function of the squeeze number
for a square plate. The point where the spring and damper force are equal is called the
cut-o� squeeze number �c. If � � �c damping e�ects are more important. If � � �c the
spring e�ects are more important.

Blech [30] gives the following approximation for the cut-o� squeeze number

�c = �2(1 + �2): (5.34)

Thus for a square plate �c � 19:7.
The damping force ([ c!hPaA ]) and the spring force ([ khPaA ]) cross each other at � � 20 as

corresponds to the used approximation in (5.34). Figure 5.1 also shows the damping force
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Figure 5.1: The 
ow induced non-dimensional damping and sti�ness forces as function of the
squeeze number.

following from the incompressible gas model. As can be seen, for low squeeze numbers the in-
compressible and compressible damping coe�cient are close, however for � > 3 the damping
coe�cient obtained from the incompressible gas model is not an acceptable approximation
anymore.

5.1.5 Perforated plate surface

The actual MEMS stage has a perforated top plate. Perforation of the top plate means that
the air can also escape through the holes and not only via the boundary of the plates. Due to
the 
ow through the holes an additional damping force is generated. Due to the perforation
the air is less compressed underneath the plates. So perforation yields an increasing damping
coe�cient and an decreasing sti�ness coe�cient. Generally the Reynolds equation (5.8)
cannot be used for a perforated plate, since the gas 
ows not only in the x � y plane but
also through the holes in the z�direction. In Bao et al. [31] the Reynolds equation (5.11) is
modi�ed to include 
ow in z-direction as

@2�p
@x2 +

@2�p
@y2 + �Qz =

12�
h3Pa

�
h
@�p
@t

+ Pa
@z
@t

�
; (5.35)

where Qz is the so-called ‘penetrating rate’, which is a function of the pressure. Equation
(5.35) will be referred to as the ‘Bao model’ for a perforated plate. In [31] an expression
for Qz is derived assuming incompressibility, which means that this is valid for only squeeze
numbers below � = 3. Fortunately Pandey et al. [20] analytically derived the squeeze �lm
sti�ness and damping coe�cient for a perforated plate based on the Bao model using the
compressible Reynolds equation as follows.
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Figure 5.2: The devision of the plate into cells and the corresponding circular representation of one
cell

To derive an analytical expression for this perforation e�ect, a plate perforated by evenly
distributed square holes of width wh in M rows and N columns is considered in [20]. The
pitch of the holes (distance between the center points of the holes) is denoted as q. The
plate can be divided into similar square cells, each including one hole. This square cells
of width q are mapped onto a circular cell with outer radius ro and inner radius ri with
corresponding area, see �gure 5.2. The radii are determined by q2 = �r2

o ! ro = qp
� and

w2
h = �r2

i ! ri = whp
� . When the plate is perforated with circular holes (as in the actual

MEMS stage) ri = rp. When the radius of the hole is comparable to the thickness of the
plate (the hole length) border e�ects have to be considered, since a fully developed Poiseuille

ow can not be assumed anymore. The border e�ect is the fact that the pressure at the top
end of the hole does not drop to the ambient pressure immediately. To count for this larger
pressure at the borders, the hole length has to be replaced by an e�ective hole length that
is de�ned according to [20] as

le� = tp +
3�ri

8
; (5.36)

where tp is the thickness of the plate. For a plate with uniformly distributed holes the
damping and sti�ness constants of the squeeze �lm in (5.31) and (5.32) respectively change
to [20]

cs =
16�PaA
�6!h

X

m;n odd

( �
2

�2 + �2n2 +m2)(4� fperf )

(mn)2
�

( �
2

�2 + �2n2 +m2)2 + �2

�4

� ; (5.37)

ks =
16�2PaA
�8h

X

m;n odd

(4� fperf )

(mn)2
�

( �
2

�2 + �2n2 +m2)2 + �2

�4

� ; (5.38)

where fperf is a non-dimensional number and can be considered to be the fraction of the
area of the holes over the total area of the plate. For a plate with uniformly distributed
holes with M �N rows fperf is given in Appendix A.5 by (A.31) when M and N are even
and by (A.32) when M and N are odd. Expressions (5.37) and (5.38) for the damping and
sti�ness coe�cient are very similar to the damping and sti�ness coe�cient for a solid plate
as derived in (5.31) and (5.32) respectively. The perforation parameter � is de�ned as [18]

� = W=lc; (5.39)
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Figure 5.3: Left: the non-dimensional damping and sti�ness force for a solid and a perforated plate
compared. Right: the total force on a solid and a perforated plate versus the squeeze
number.

where W is the width of the plate and lc a characteristic length de�ned as

lc =

s
2h3le��(�)

3�2r2
i

; (5.40)

where �(�) = 1 + 3r4
i

16le�h3

�
4�2 � �4 � 4 ln(�)� 3

�
and � = ri

ro
. The characteristic length

depends on parameters related to perforations. More details on the perforation parameter
are addressed at the end of this section.

By using only the �rst term of (5.37) and (5.38), then equating cs and ks gives the �rst
order approximation of the cut-o� squeeze number as

�c = �2 + �2(1 + �2); (5.41)

which is comparable to (5.34). Figure 5.3 shows the non-dimensional damping and sti�ness
forces on the left, both for a solid and a perforated square plate. The dimensions of the
plate where taken to be 150 µm � 150 µm and the perforation as an array of 13 � 13 holes
with a radius of 2 µm. The gap heigth is set at h = 500 nm. These dimensions are chosen
such that they correspond to the dimensions of the actual MEMS stage. As expected, the
damping force becomes more important for larger squeeze numbers, whereas the sti�ness
constant is less important when perforation is considered. The cut-o� squeeze number for
the perforated plate is about � � 470. This means that now damping is more important for
� < 470 and sti�ness becomes more important for � > 470. The right picture of Figure 5.3
shows the total non-dimensional force versus the squeeze number. This force is determined
by

Fsqfd = max
�
F̂d cos(!t) + F̂k sin(!t)

�
: (5.42)

Where F̂d and F̂k are the non-dimensional damping and sti�ness force. Due to the rela-
tive small cut-o� squeeze number for a solid plate, the total force increases very fast over
increasing squeeze number, whereas the force of the perforated plate increases more gradual.
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The perforation parameter

By substituting (5.36) and �(�) in (5.40), substituting the result into (5.39) and then rewrit-
ing, the perforation parameter � is de�ned as

� =
�
W
ri

�
�

"
2
3

�
t
ri

� �
h
ri

� 3
+

� �
4

� �
h
ri

� 3
+

1
8
k(�)

#� 1
2

; (5.43)

where k(�) = 4�2 � �4 � 4 ln(�) � 3 and � = ri
ro

. In (5.43) the terms between the square
brackets are to the power �1

2 and not to the power 1
2 as is not correctly written in [20].

The �rst term in (5.43) includes the plate thickness t and so represents the 
ow resistance
through the holes. The second term is due to the edge e�ect of the holes (border e�ect),
whereas the third term is due to the region under a cell. It appears that for � < 0:4 the third
term dominates. This means that the area of the holes are small compared to the area of
the cells, such that the damping on the cells dominates over the damping due to the holes.
For � > 0:8 the �rst term dominates and the holes have a major contribution to the squeeze
�lm damping. In between there are mixed e�ects and both the holes and cells contributes
approximately equally to the squeeze �lm damping [20].

5.2 Mapping of the complex geometry into a simple
rectangular plate

As is known from Chapter 2 the top plate of the MEMS stage has no uniform thickness.
Besides the electrode layer the top plate exists of two structural layers of SiC. The MEMS
stage counts 64 holes in the 1:9 µm thick part of the top plate and 64 holes in the 3:9 µm thick
part as can be seen in Figure 2.3. The hole radius rp = 2 µm. Using (5.36) the e�ective hole
lengths are 4:26 µm and 6:26 µm. Due to the assumption of a rigid top plate, it is believed
that the position of the long and short holes is less important, so an average hole length of
lh = (64� 6:26 µm + 64� 4:26 µm)=128 = 5:26 µm. The pitch q of the holes is 11:5 µm. This
gives that a square unit cell containing one hole has an area of 11:5 � 11:5 =132:25 µm2.
The outer radius for a circular unit cell with corresponding area ro =6:49 µm. This gives a
fraction of the radii as � = ri

r0 = 0:31.

Additionally to the perforation there is also a square hole at the center of the plate. This
hole is covered by the lens at a height of approximately 4:5 µm above the ground electrode.
However, there is also a square hole in the groundplate and substrate to enable light passing
through. This means the gap height underneath the lens can be considered to be in�nite
which means that additional damping and sti�ness due to moving air underneath the lens
can be neglected. The area of the hole in the ground plate is 50� 50 = 2500 µm2. The area
of the gap from underneath the plate to the hole is 4�(0:5�50) = 100 µm2. Due to the open
connection of the hole with the surroundings and the ratio in areas, the pressure underneath
the lens can be considered to be at ambient pressure. So the squeeze �lm damping has to
be analyzed for a square, perforated plate including a square hole at the middle.

The expressions derived in Subsection 5.1.5 are for a rectangular plate with evenly dis-
tributed perforation holes. For application to the actual MEMS stage a mapping has to be
found such that the complex geometry is formed into a rectangular plate with evenly dis-
tributed holes. The same kind of mapping will be used as described in Section 4.2. Besides
the perforation holes, the air can also escape at the boundaries and at square hole at the
center of the plate. This means that again the border length will be an important factor.
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Figure 5.4: The mapped perforated plate

However, in the mapping it is not necessary consider the additional border length due to
the holes, since an analytical expression is found that already includes the perforation holes.
The mapped plate has exactly the same dimensions as found in (4.24) and (4.25) and is
shown in Figure 5.4. The 128 holes are formed into a 4 � 32 array. This forces the pitch
of the holes to be di�erent in x and y direction, qx = 10:1 µm and qy = 14:7 µm. To �nd
the e�ective pitch, the total area of the plate should be divided by the number of holes.
Alternatively a mapping could be proposed where the distribution of the holes is taken to be
most important. The pitch in the original con�guration q = 11:5 µm. Using again a 4 � 32
array the resulting dimensions of the rectangular plate are 46 µm�368 µm. However, in that
case, the area as well as the border lenght do not correspond to the area and border length
of the real MEMS stage, so the �rst option is chosen.

5.2.1 Squeeze �lm damping of the leafsprings

Since the leafsprings have a considerable area compared to the area of the total top plate, it
should be investigated whether the squeeze �lm force on the leafsprings can be neglected or
not. An accurate estimation using an analytical approximation is hardly possible since the
leafsprings will deform during vibration of the top plate. To obtain an accurate estimation
an eigenfrequency simulation in Comsol is done of a quarter of the MEMS stage. As
boundary damping the ‘thin-�lm-
ow damping’ conditions is applied, which means basically
that the e�ective viscosity is used instead of the ‘normal’ viscosity. More explanation on
this and the Comsol model can be found in 5.3. Other settings are a gap height of 500 nm
and as boundary 
ow condition ‘Rare�ed total accomodation’. The 
ow induced forces are
determined by integrating the pressure pro�le over the area. At the �rst eigenfrequency the
ratio of forces is

Fleafspring
Ftotal

= 0:044: (5.44)

So based on this study it is decided that the squeeze �lm damping of the leafsprings can be
neglected with respect to the squeeze �lm damping of the total plate.

5.3 FEM validation of the squeeze �lm damping and
sti�ness in the MEMS stage

To validate the expressions derived in this section for determining squeeze �lm damping and
sti�ness a FEM model in Comsol is used. The user interface ‘thin-�lm-
ow’ can be used to
analyze the squeeze �lm force. The thin-�lm-
ow interface enables to analyze the pressure
distribution over a certain surface. Hence a shortcoming of this simulation type is that 
ow
in z-direction along the edges of the plate is not considered. Using the same approach as for
the validation of the electrostatic capacitance, �rst the expressions for squeeze �lm damping
and sti�ness of a solid square plate will be validated in this Section. Then a square plate

48



5.3. FEM VALIDATION OF THE SQUEEZE FILM DAMPING AND STIFFNESS IN THE MEMS STAGE

with square hole at the center, a square perforated plate and the actual MEMS stage will
be considered. Unless otherwise stated, the dimensions of the plate considered are again
L�W = 150 µm� 150 µm and a gap height of h0 = 500 nm. The ambient pressure is taken
to be 1 atm.

5.3.1 FEM validation for squeeze �lm force on a solid, square plate

First the expressions for a solid, square plate will be validated. Using Comsol, the pressure
distribution underneath the top plate can be analyzed. To �nd the total force on the top
plate, this pressure distribution is integrated over the total plate area. The border conditions
are set to be ambient pressure. To analyze the squeeze �lms near the walls, di�erent boundary
models can be chosen such as no-slip and rare�ed total accommodation. All validations are
done using the no-slip boundary condition. As is known from Section 5.1 assuming the
‘no-slip’ condition is not totally correct. Due to the small gap height the e�ective viscosity
should be used according to the model of Veijola et al. In Comsol this can be done using the
‘rare�ed total accomodation’ boundary condition. However, there the exact same expression
is used as (5.4), so validation with that boundary condition has no additional meaning. The
pressure distribution is determined for a range of frequencies. The amplitude of the plate
is taken to be �z = 0:01h. The velocity of the plate is derived from the amplitude and
frequency of the plate. The mesh is chosen such that the total surface of the MEMS top
plate is discretized into 3088 triangular elements. Figure 5.5 shows the mesh for a quarter
of the plate. To �nd the steady state pressure variation over time, for each frequency, ten
periods are simulated in Comsol. It appeared that most probably this simulation time is
too small for large frequencies. However, the results are close to steady state, so it is chosen
to keep simulation times of ten periods. The resulting 
ow induced force is derived by taking
the maximum force of the last time period.

Figure 5.5: The mesh for analyzing the pres-
sure distribution for a quarter of the
solid plate.

Figure 5.6: The maximum pressure distribution
underneath the top plate for a fre-
quency of f = 100 000 kHz

To compare the analytical results and the results from the FEM an analytical force has
to be determined using the damping (5.31) and sti�ness (5.32) coe�cient. The analytical
force is determined using the maximum force over time according to

Fsqfd = max
�
cs�z! cos(!t) + ks�z sin(!t)

�
: (5.45)

A Comsol result of the pressure distribution underneath a quarter of the plate can be
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seen in Figure 5.6. The analytical force is analyzed over one period of time 2�
! . Figure 5.7

compares the analytical and FEM results. The forces are plotted versus the frequency in
logarithmic scale. Using a linear scale the diagram is very similar to the right picture of
Figure 5.3. As can be seen the analytical results and FEM show the same behavior. For
large frequencies (f > 1 MHz) the error tend to increase rapidly. A possible reason is that
the 
ow is not in steady state after the simulated 10 periods of time for this large frequencies.
So most probably this could be solved by allowing more simulation time. However, operation
frequencies are well below 1 MHz so this slightly increasing error is not relevant. Moreover,
the error remains relatively small and bounded by 4%. Concluding, the damping and sti�ness
coe�cients of squeeze �lm damping for a solid rectangular plate are derived properly.

Figure 5.7: The squeeze �lm force over frequency for a square, solid plate and the corresponding
error.

Using a logarithmic scale on both the x and y axis, it appears that for frequencies up to
0:5� 104 Hz the squeeze �lm force behaves almost linearly as shown in Figure 5.8. The left
picture shows the determined force and the right picture shows the corresponding squeeze
number. From Subsection 5.1.4 we know that for � < 3 the incompressible gas model can
be used to determine the squeeze �lm damping. The incompressible gas model is linearly
related to frequency. And indeed as can be seen the squeeze number is around three for
f � 0:5� 104 Hz. For frequencies above 1� 106 Hz (� > 1000) the force is approximately
horizontally asymptotic. This is the range where sti�ness is far dominant above damping.
The frequency range in between gives mixed e�ects of damping and sti�ness.

5.3.2 FEM validation for squeeze �lm force on a square plate with
square hole at the center

To determine the 
ow induced force for a square plate with square hole at the center a
mapping is devised in Section 5.2. The complex geometry is mapped into a rectangular plate
with corresponding border length and area. Using Comsol the force (FCOM ) is determined
similar as for the solid square plate, however now with a center hole with di�erent dimensions.
The area and border length are determined by A = L�W�wh�wh and B = 2L+2W+4�wh.
Also the 
ow induced force for the mapped plate (FCOM;m) is analyzed in Comsol. The
analytical force (FAN ) is determined using the same expressions as used in Subsection 5.3.1,
however now using the mapped length and width of the plate. A comparison of the three
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Figure 5.8: The squeeze �lm force analyzed in a logarithmic plot and the corresponding squeeze
number

di�erent forces is shown in Figures 5.9 and 5.10. As can be seen all three forces show a
similar behavior over frequency. The error between FCOM ;m and FAN is indicated in Figure
5.10 using the addition ‘Mapped’. As can be seen the error pro�le is similar as obtained for
the solid square plate, which is quite trivial. However, the error between FCOM and FAN is
large for frequencies approximately smaller than 1� 105 Hz. It is not known for sure where
this comes from, however some possible reasons are discussed below. The actual width of
the hole is 50 µm. This gives an maximum error of the analytical squeeze �lm force of about
11%. So for sensitivity analysis the mapping will be a su�cient approximation of the square
hole at the center.

Discussion

It is believed the di�erence in FCOM and FAN is due to the ratio between compressed and
escaping 
uid which is di�erent for each geometry. The pressure pro�le undergoes major
changes during the mapping. Air 
ows from high pressure to low pressure. Due to the change
in pressure pro�le the path traveled by the air particles is di�erent for each geometry. This
means the damping is di�erent. When particles have to travel a larger distance to the
borders of the plate, before escaping also the amount of compressed air will be di�erent.
For very large frequencies almost all 
uid will be compressed. As is trivial then the amount
of compressed 
uid depends primarily on the area of the plate. Since in the mapping the
area is kept similar to the original area, the error decreases for increasing frequency. As
can be seen in Figure 5.10, especially at low frequencies the error decreases for increasing
hole width. Most probably this has to do with the corner area of the original plate. For a
large hole width the corner area is relatively small compared to the side areas of the plate.
Vice versa this holds for a small hole width. In Figures 5.11 and 5.12 the bold black box
indicates the corner areas and the white boxes the side areas for a large and small hole width
respectively of a quarter of the plate. Also the pressure pro�le is shown where red is high
pressure and blue low pressure. The mapping of the MEMS geometry is a rectangular plate.
The pressure distribution of the side areas (which are rectangular too) is comparable to the
pressure distribution of this mapped plate. However, at the corner areas the pressure pro�le
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Figure 5.9: The squeeze �lm force over frequency for di�erent hole widths.

Figure 5.10: The corresponding error of the squeeze �lm force for a square plate with square hole
at the center. Here ‘mapped’ means that the line corresponds to Comsol results for
the mapped plate
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‘bends’. This bending is not in the mapping. For small hole widths this ’bending’ is the
major part of the pressure pro�le, whereas for large hole widths this is the minor part. It
is believed these are the main reasons that introduce errors using the mapping and why the
error is smaller for larger hole widths. However, other reasons possibly exist.

Figure 5.11: The corner and side areas and
the pressure pro�le underneath the
plate with wh = 80µm. The pres-
sures are normalized with respect
to the maximum pressure.

Figure 5.12: The corner and side areas and
the pressure pro�le underneath the
plate with wh = 20µm. The pres-
sures are normalized with respect
to the maximum pressure.

5.3.3 FEM validation for squeeze �lm force of a perforated plate

To carry out a simulation of the squeeze �lm damping of a perforated plate, a perforation
node is added in Comsol to the square solid surface. This perforation enables to include a
user de�ned perforation or to use the integrated Bao-model. Since the analytical derivation
of squeeze �lm damping in Subsection 5.1.5 is based on this Bao-model it is chosen to
use the Bao-model in Comsol. An advantage of using the perforation node in Comsol
is that it is not needed to de�ne the perforation holes in the geometry, which keeps the
model relatively simple. However, the disadvantage is that Comsol does not know the
location of each individual hole. For a solid square plate with uniform thickness and evenly
distributed perforation holes (as is validated in this subsection) this does not matter, however
for the actual complex geometry of the MEMS stage the results will be less accurate using
this approximation. The Comsol model is similar to the model as used in Subsection
5.3.1, however now a perforation node is added. The perforation is de�ned as an evenly
distributed array of holes with a radius of rp = 2 µm. The hole length is set to lh = 3 µm.
The dimensions are chosen such that they are comparable to the perforation of the actual
MEMS stage. Based on Subsection 5.1.5, the analytical squeeze �lm force for a perforated
plate with evenly distributed 13� 13 holes is determined according to (5.45). However, now
the damping and sti�ness constant are de�ned as in (5.37) and (5.38). The result of the
comparison between analytical and Comsol results is given in Figure 5.13.

As can be seen the error is about 2 percent for small squeeze numbers and diverges again
for larger squeeze numbers. Based on these results it is concluded that the analytical squeeze
�lm force for an perforated plate is derived properly.
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Figure 5.13: The numerical and analytical squeeze �lm force for a perforated plate compared and
the corresponding error.

.

5.3.4 FEM validation for squeeze �lm force of the actual MEMS stage

The top plate of the MEMS stage can be roughly be divided in two sections. One section
with a total thickness of 1:9 µm and one section with a thickness of 3:9 µm. Both sections
have a perforation of 64 holes. In Section 5.2 it is assumed that an mean e�ective hole length
of 5:26 µm will be an accurate approximation of the mean of the two di�erent lengths. In
Comsol the di�erence in these two sections is determined using two di�erent perforation
nodes. Figure 5.14 shows the division of the total area in two parts. The outer section has
a perforation with hole length of 1:9 µm and the inner section with 3:9 µm. The pitch of the
holes is for both sections determined by q =

q
1
64As where As is the area of the corresponding

section. The other settings are equal as is used in the previous Subsections.

Figure 5.14: The total area of the MEMS top plate. The area around the square hole is the thickest
part and the outer areas are the thinnest parts.
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To determine the analytical force of the squeeze �lm for the actual MEMS stage, the
mapping as presented in Section 5.2 is used. This means that the squeeze �lm force is
determined according to (5.45) where the damping and sti�ness coe�cient are for a mapped
rectangular perforated plate as in Figure 5.4. Figure 5.15 shows the result of the comparison
between the squeeze �lm force determined by Comsol and determined analytically.

Figure 5.15: The squeeze �lm force for the actual MEMS stage determined by Comsol and deter-
mined analytically.

As can be seen the error is bounded by 7% for the frequency range in Figure 5.15. Again
the mapping is the most accurate for larger frequencies whereas the error is larger for smaller
frequencies. It is believed that this has the same reasons as already stated in the discussion
in Subsection 5.3.2. In general in can be concluded that the analytical squeeze �lm force
using the mapping and perforation is su�ciently accurate for sensitivity analysis.

5.4 Summary

In this chapter an analytical model is derived for the squeeze �lm damping of the considered
MEMS stages. Due to the relative large frequencies and the small gap-size between the
plate, the gas should be considered as compressible and also squeeze �lm sti�ness becomes
relevant. An analytical model is derived to determine the damping and sti�ness coe�cient
of the squeeze �lm based on the modi�ed Reynolds equation. The main assumptions are
that thee pressure at the borders of the plate is set to be ambient pressure and that only
small oscillations of the plate are considered. The pressure distribution underneath the
plate is described as a series of cosines. Due to the perforation of the top plate also the
damping and sti�ness coe�cient for a perforated plate are considered and derived analytically
in Subsection 5.1.5. Including perforation yields an increasing damping coe�cient and a
decreasing sti�ness coe�cient, since less air is compressed into the structure and more air
can escape.

Due to the square hole at the center of the plate a mapping is proposed from the complex
geometry into a rectangular perforated plate in Section 5.2. The total area and the total
border length of the actual MEMS top plate and the mapped geometry are equal. Also the
amount of perforation holes in both situations is equal.

In Section 5.3 the analytically derived expressions for squeeze �lm damping and sti�ness
and the proposed mapping are validated using a �nite element model in Comsol. In Comsol
the ’thin-�lm-
ow’ module is used to analyse the pressure pro�le on the plate due to a
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harmonic, rigid motion of the top plate. By validation of the mapping it appeared that
for frequencies smaller than 10 000 kHz the error between analytical and numerical results
is about 11%. This is due to the di�erence in actual and mapped pressure pro�le. In the
actual MEMS stage the pressure is lower at the corners, since ar can escape in two directions,
whereas for the mapped geometry the mainly escapes via the sides of the plate. At the corners
of the actual MEMS stage the 
ow distance of particles to the edges of the plate is di�erent
than for the mapped geometry. This gives an error in the damping coe�cient. For large
frequencies more 
uid is compressed and sti�ness behavior of the squeeze �lm becomes more
important. The sti�ness coe�cient is more dependent on the area of the plate than the
damping coe�cient. Since the area of the actual MEMS stage and the area of the mapped
geometry are equal, the error in squeeze �lm force between analytical and numerical decreases
for large frequencies. Since the �rst eigenfrequency is about 700 kHz the error for squeeze
�lm force at the �rst eigenfrequency is relatively small. For frequencies between 0 - 1 MHz
the squeeze �lm damping for the MEMS stage can be determined with an maximum error
smaller than 7%.
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Chapter 6

FEM validation of the dynamics of
the semi-analytic MEMS stage

On the microscale there are several nonlinear phenomena that a�ect the dynamical behavior
of a mechanical system. For MEMS stages, the electrostatic actuation, squeeze �lm damping,
and also geometric nonlinearities may introduce non-linear behavior. In this chapter, the
non-linear equation of motion of the MEMS stage will be presented and analyzed. In Section
6.1, the equation of motion is formulated and non-dimensionalized. This equation is the
coupled electro-mechanical model of the MEMS stage where the analytical models from
Chapters 3, 4, and 5 are combined. The non-linear, steady-state behavior of the model
is investigated using the shooting method as presented in Subsections 6.1.2 and 6.1.3. The
analytical coupled model is validated using a multiphysics simulation in Comsol. This �nite
element model is presented in Section 6.3. The analytical and numerical dynamic response
results are compared in Section 6.4.

6.1 Description of the semi-analytical model and
non-dimensionalization

The equation of motion for the parallel plate, single degree of freedom MEMS stage model
is written as

meff �z + ceff (
) _z + keff (
)z = Fz =
�A

�
VDC + VAC cos(
t)

� 2

2(h� z)2 (6.1)

where meff is the e�ective mass of the moving parts, ceff is the total damping coe�cient
from squeeze �lm damping and other dissipative e�ects, keff is the e�ective sti�ness of the
structure consisting of mechanical sti�ness, sti�ness due to residual stress and additional
sti�ness of squeeze �lm air damping, and Fz is the driving force from electrostatic actuation.
The dependency on 
 of ceff and keff is due to squeeze �lm damping. The parameters on
the right-hand of (6.1) side were introduced in Section 4.1.1.

Non-dimenional parameters will be used in further analysis. Non-dimensionalization
serves several needs [7]:

1. First the in
uence and strength of various variables of the system can be identi�ed and
compared to each other and against basic elements of the system. Moreover, it helps
to gauge the strength of a variable, since some parameters at �rst sight may appear
negligible relative to other parameters.
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2. Non-dimensionalization yields a more general approach. This makes models also ap-
plicable for other systems and not for a speci�c one.

3. There are also numerical conditioning advantages, since most of the numerical tools
are not designed for very small numbers as present in MEMS.

To make (6.1) non-dimensional, a non-dimensional displacement ẑ, non-dimensional time
� , and non-dimensional voltages V̂DC and V̂AC are de�ned as

ẑ =
z
h

; � =
t
T

where T =
2�
!n

with !n =

s
kz
meff

; V̂DC =
VDC
Vpull

and V̂AC =
VAC
Vpull

: (6.2)

In 6.2 the sti�ness term kz is the sti�ness of the leafsprings and the residual stress and Vpull
is the static pull-in voltage. For time derivatives we can write

d
dt

=
d

d(T�)
=

1
T
d
d�

and
d2

dt2
=

1
T 2

d
d�2 : (6.3)

Substituting (6.2) and (6.3) into (6.1) results in the non-dimensional equation of motion

meffh
T 2 �̂z +

ceffh
T

_̂z + keffhẑ =
�A

�
V̂DC + V̂AC cos(
̂�)

� 2

2(h� ẑh)2 ; (6.4)

where 
̂ = 
T = 

!n

. This de�nition of 
̂ yields for an excitation frequency of 
 = !n
(rad s�1) the non-dimensional excitation frequency 
̂ = 1. Dividing (6.4) by mef f h

T 2 and
rewriting yields

�̂z + ĉ _̂z + k̂ẑ = �

�
V̂DC + V̂AC cos(
̂�)

� 2

(1� ẑ)2 ; (6.5)

where

ĉ =
2�ceffp
meffkz

; k̂ = 4�2keff
kz

and � =
4�2�AV 2

pull

2meff!2
nh3 : (6.6)

When no squeeze �lm damping/sti�ness is considered, keff = kz which implies k̂ = 4�2. In
state space, the system is written as

_Z1 = Z2; (6.7)

_Z2 = �

�
V̂DC + V̂AC cos(
̂�)

� 2

(1� Z1)2 � ĉZ2 � k̂Z1; (6.8)

where Z1 = ẑ.
To include the additional capacitance due to fringing �elds and electrode thickness, Equa-

tion (4.21) should be considered. In this equation, the capacitance is written as

Ctot =
�WL
h

�(z); (6.9)

where Ctot = C0 + Cf + Ct and

58



6.1. DESCRIPTION OF THE SEMI-ANALYTICAL MODEL AND NON-DIMENSIONALIZATION

� (ẑ) =

 

1 +
(h(1 � ẑ))

�W

 

1 + ln
�

2�W
(h(1 � ẑ))

�
+ ln

 

1 +
2t

(h(1 � ẑ))
+ 2

s
t

(h(1 � ẑ))
+

t2

(h(1 � ẑ)) 2

!!!

�

 

1 +
(h(1 � ẑ))

�L

 

1 + ln
�

2�L
(h(1 � ẑ))

�
+ ln

 

1 +
2t

(h(1 � ẑ))
+ 2

s
t

(h(1 � ẑ))
+

t2

(h(1 � ẑ)) 2

!!!

:

(6.10)

As can be seen � is already non-dimensional, however, z is normalized to ẑ to be able to
include � into the state-space formulation. Using (6.7) and (6.8) the state-space system is
now written as

_Z1 = Z2; (6.11)

_Z2 = ��(Z1)

�
V̂DC + V̂AC cos(
̂�)

� 2

(1� Z1)2 � ĉZ2 � k̂Z1: (6.12)

6.1.1 E�ective vibration mass

Since also a part of the leafsprings will be vibrating, a part of the mass of the leafsprings and
the mass of the rigid plate contribute to the e�ective virbration mass meff . The e�ective
vibration mass is determined by using a FEM model of the MEMS stage in Comsol, where
the top plate is de�ned to be rigid. Then the �rst eigenfrequency of the MEMS stage is
determined at 796 160 Hz. Using the same FEM model and applying a static boundary force
at the electrode, the displacement at the center of the plate is analyzed. Using the 1 DOF
approximation the sti�ness is found to be 4421 N m�1. Then using the 1 DOF approximation
again, the e�ective vibration mass (meff ) can be determined using

fn =
1

2�

s
kz
meff

! meff =
kz

(2�fn)2 = 1:77� 10�10 kg: (6.13)

.

6.1.2 The shooting method

To �nd the frequency responses of a non-linear dynamic system, the method of long-time
integration can be used. A set of initial conditions is de�ned and the system is simulated
over a long time until it converges to a steady state. A more e�cient method to analyze
the steady-state behavior is the shooting method [7]. Moreover, even unstable solutions can
be found which is not possible using long-time integration. In the shooting method one is
searching (shooting) for initial conditions that will correspond to a steady-state (periodic
motion) of the system. On priori it is known that one actuation period of the system is
Ta = 2�


 , where 
 is the angular excitation frequency. An initial state guess is supplied to
the algorithm and updated using a Newton-Raphson iteration scheme. After the error in
initial values has converged to very small values, a periodic solution is found. After this the
local stability of the periodic motion can be determined using Floquet theory. The Matlab
tool ‘MatCont’ is a toolbox that may be used for analyzing the frequency responses of non-
linear system and also to �nd bifurcation points. However, due to the fact that frequency
dependent sti�nesses and damping constants are hard to implement, it is chosen to program
the shooting method as described below in Matlab.
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The following mathematical theory is mainly based on [7]. For the shooting method,
consider a non-autonomous system in state space as

_x = F(x; t): (6.14)

Initial conditions x(0) = � have to be found that will give an instantaneous periodic motion
of the system with period Ta. This means that the state of the system after one period is
exactly the same as the initial condition, which gives

x(Ta; � ) = � = x(0): (6.15)

Here x(Ta; � ) means the state x at time Ta with initial condition � . The �rst guess of the
initial conditions � 0 di�ers from the exact initial condition with �� :

� = � 0 + �� : (6.16)

Substituting (6.16) into (6.15), expanding in Taylor series and only keeping the linear
terms yields

x(T; � 0) +
@x(T; � 0)

@�
�� = � 0 + � � !

�
@x(T; � 0)

@�
� I

�
�� = � 0 � x(T; � 0); (6.17)

where I is the identity matrix with appropriate size. Equation (6.17) has to be solved for
the correction vector �� . Hence @x (T;� 0 )

@� has to be evaluated. This is done by di�erentiating
(6.14) towards � , which gives

@
@�

�
@x
@t

�
=
@F
@�
!

d
dt

�
@x
@�

�
=
@F
@x

@x
@�

: (6.18)

This equation gives the evolution of @x
@� over time. The initial conditions of this system can

be found by di�erentiating x(0) towards � , which gives

@x(0)
@�

= I: (6.19)

The shooting method is executed as follows. An initial guess is supplied to the system of
di�erential equations (6.14) and (6.18) and integrated for one period simultaneously. Then
the values of x(Ta) and @x (Ta )

@� are substituted into (6.17) and the equation is solved for �� .
Then the initial guess is updated using (6.16). This procedure is repeated until the correction
vector �� is converged to very small values. Branches of periodic solutions are computed by
incrementally increasing (or decreasing) the excitation frequency and using initial conditions
of the previous frequency point. A disadvantage of this method is that the branch can not be
followed when a cyclic fold bifurcation (or turning point) is met. But by considering both an
increasing and decreasing frequency series, multiple solutions can be found at one frequency
point. However, due to the squeeze �lm damping these bifurcation points are not expected.

6.1.3 The shooting method applied to the electro-mechanical model

To apply the shooting method, derivatives of the state variables with respect to the initial
conditions (�1; �2) are needed. For convenience this is de�ned as

Z3 =
@Z1

@�1
; Z4 =

@Z1

@�2
; Z5 =

@Z2

@�1
; Z6 =

@Z2

@�2
: (6.20)
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Di�erentiating (6.20) with respect to time using (6.7) and (6.8)

_Z3 =
@ _Z1

@�1
=
@Z2

@�1
= Z5; (6.21)

_Z4 =
@ _Z1

@�2
=
@Z2

@�1
= Z6; (6.22)

_Z5 = 2Z3�

�
V̂DC + V̂AC cos(
̂�)

� 2

(1� Z1)3 � ĉZ5 � k̂Z3; (6.23)

_Z6 = 2Z4�

�
V̂DC + V̂AC cos(
̂�)

� 2

(1� Z1)3 � ĉZ6 � k̂Z4: (6.24)

The initial conditions of the system of (6.7)-(6.8) and (6.21)-(6.24) are

Z0 =
�
�10 �20 1 0 0 1

� T : (6.25)

The shooting method requires simultaneous integration of the system (6.7)-(6.8) and (6.21)-
(6.24) over one period of time. The update of the initial conditions can be found by substi-
tuting the values Z(T ) into

��
Z3(T ) Z4(T )
Z5(T ) Z6(T )

�
� I

� �
��1
��2

�
=

�
Z1(0)� Z1(T )
Z2(0)� Z2(T )

�
: (6.26)

The iterative procedure is repeated until �� converges to very small values. The stabil-
ity of the obtained periodic motion can be analyzed by calculating the two eigenvalues of�
Z3(T ) Z4(T )
Z5(T ) Z6(T )

�
. These eigenvalues are called the Floquet multipliers. If the absolute value

of both eigenvalues are smaller than unity the periodic motion is locally stable. If the abso-
lute value of at least one of them is larger than unity the periodic motion is locally unstable.
Resulting amplitude-frequency diagrams using the shooting method are presented in Section
6.4.

6.2 Experimental results of �rst generation MEMS stages

Referring to the project approach in Section 1.4, it was intended to carry out radio frequency
capacitive measurements on the MEMS stages. Indeed, the dynamical behavior captured by
the electro-mechanical coupled model should be validated by experimental results. Since it
was found that the top plate of the second generation MEMS stages (the actual generation) is
not properly released, unfortunately no experimental results could be obtained. A description
of the measurement setup, the theoretical background of the RF measurements and the issues
encountered, is given in Appendix C. To have an impression of the dynamic behavior of the
MEMS stages, measurement results of the �rst generation MEMS stages will be presented
from [2]. In the �rst generation MEMS stages, after fabrication there was more residual stress
left in the top plate than for the second generation. White light interferometry measurements
showed that the buckling of the top plate was 1.9 - 2:3 µm upwards. This means the gap
height underneath the plate was about 2.25 - 2:65 µm. The much larger gap size obviously
has in
uence on the electrostatic force and the squeeze �lm damping, whereas the buckling
itself has in
uence on the sti�ness of the plate. In between the production of the �rst and
second generation the fabrication process is optimized such that the buckling of the plate
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6.3. MULTIPHYSICS SIMULATIONS OF THE MEMS STAGE IN COMSOL

is reduced to the order of a few hundred nanometers. This means that measurements on
the �rst generation are not representative for the dynamic behavior of the second generation
MEMS stages, but can only be used to give an impression.

Measurement data for the �rst generation is obtained by using a laser vibrometer. Using
a DC bias voltage and AC amplitude at di�erent frequencies a frequency amplitude diagram
is obtained. The bias voltage was larger than the AC amplitude. Hence no frequency
doubling appeared. The frequency doubling will be explained in more detail in Section 6.4.
The exact values of the voltages are not known anymore. Figure 6.1 shows the measured
amplitude frequency diagram [2]. The measured eigenfrequency is fexp = 500� 25kHz, with
an estimated Q-factor of Q = 2� 2:5.

Figure 6.1: Measured amplitude frequency diagram of the �rst generation MEMS stages. The bias
voltage and AC amplitude was kept constant for each frequency. At 475 kHz a point is
missing due to a measurement error [2].

6.3 Multiphysics simulations of the MEMS stage in Comsol

6.3.1 Eigenvalues from Finite Element programs

Comsol gives complex valued eigenvalues for damped structures. Real valued frequencies
and damping coe�cients can be derived from this complex valued eigenvalues, such as the
undamped natural frequency, the damped frequency and the damping constant. In [32], it
is explained how to extract these quantities from the complex valued eigenvalue in Comsol.
The traditional de�nition of the complex valued eigenvalue can be written as

�trad = a+ bi; (6.27)

where a and b are the real and imaginary parts. From this eigenvalue the traditional complex
eigenfrequency can be determined as

ftrad = fr + fii =
b

2�
�

a
2�
i (6.28)
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where fr and fi are the real and imaginary parts. However in Comsol the complex valued
eigenvalue is de�ned as �COM = ��trad [32] . Assume the complex valued eigenvalue in
Comsol to be

�COM = �r + �ii: (6.29)

Then the complex valued eigenfrequency in Comsol is found to be [32]

fCOM = fr + fii =
��i
2�

+
�r
2�
i: (6.30)

Now the undamped frequency fn, the damped frequency fd, the damping coe�cient � and
the peak frequency fp are given by [32]

fn =
q
f2
r + f2

i ; (6.31)

fd = jfrj; (6.32)

� =
fiq

f2
r + f2

i

=
fi
fn
; (6.33)

fp =
q
f2
r � f2

i : (6.34)

It should be mentioned that the damping coe�cient � is only de�ned for proportionally
damped systems, however it is often used in engineering practice (also in the MEMS world),
even if the system is viscously damped.

6.3.2 Comsol model and simpli�cations

Since a thorough knowledge of the program is missing an e�cient and accurate way to model
and run a coupled multi-physical simulation of the MEMS stage in Comsol was not possible
within the given time period. Hence it is chosen to make simpli�cations to the model using
the knowledge of the program obtained during the validations in Chapters 3, 4 and 5. In
this subsection, the simpli�cations to the FEM model and the corresponding consequences
are described.

Due to symmetry of the MEMS stage only a quarter of the top plate of the MEMS stage is
modelled in Comsol. For the computation of the mechanics it is chosen to use a solid quarter
of the top plate instead of a perforated quarter. From Figure 2.2 we know that the di�erence
in eigenfrequency between a solid and perforated plate is neglegible. However using the same
mesh settings signi�cantly more elements are needed to properly de�ne the discretization of
the perforated top plate. Since the radius of the perforation holes rp = 2 µm a �xed small
mesh size is needed at the rim of the holes to ensure the holes to be approximately circular.
Besides, where a hole is placed at the border between the two structural layers very sharp
corners are present which forces the mesh size to be relatively small. All in all the amount
of elements and so the computational time signi�cantly increases. So a solid quarter of the
MEMS stage will be used instead of a perforated quarter.

For modeling the interaction between structures and 
uids a ‘
uid-structure-interaction’
simulation is generally used. Besides modeling the structure also the 
uid domain should
be de�ned and modeled, where this domain could be descretized by using a moving mesh
in Comsol. However, this means the size of the model will be more than doubled. To
avoid this it is chosen to use the ‘Thin-�lm-
ow’ boundary condition in Comsol. This
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boundary condition is applied to the bottom side of the top plate and describes the 
ow of
the air between the wall (movable top plate of the MEMS stage) and the base (the ground
electrode). The wall displacements follow from the deformation of the top plate due to
the electrostatic force. An advantage of the ‘Thin-�lm-
ow’ boundary condition is that it
can be expanded by a perforation node. Hence it is not needed to include the perforation
holes into the geometry, however they are virtually counted for using the ‘Bao-model’ (see
Eq. (5.35)). A disadvantage of using this boundary condition instead of a 
uid-structure-
interaction simulation is that the 
uid 
ow along the edges of the plate cannot be analyzed
properly. In the simulations the pressure at the edges will be de�ned as ambient pressure.
However, in reality the pressure does not drop immediately to the ambient pressure but is
slightly larger. This could be taken into account using an e�ective elongation of the plate
�Le [18]. This option is also available in Comsol. However, then an elongation should be
estimated which introduces an inaccuracy as well. Hence, it is chosen to simply use ambient
pressure at the edges of the plate.

Regarding the electrostatic actuation an electromechanics simulation is often used. In [33],
such a simulation is executed for a simple cantilever beam. The beam itself exists of only
100 elements (where the model of a quarter of the MEMS stage contains 115035 elements).
In [33], for 8 DC voltage steps, the static deformation against voltages is obtained. To
obtain only this curve for the relatively small model approximately 15 minutes are needed
(of course this depends on the computer hardware used). To obtain a frequency amplitude
diagram of the MEMS stage the deformation of the MEMS stage for a certain combination
of AC and DC voltages has to be calculated about ten harmonic excitation periods for each
frequency to get into steady-state. Based on this it is concluded that such a simulation will
be very time consuming and unfeasible. Hence it is chosen to analyze only small deformations
(e.g. �z � 1 nm). Then the electrostatic force can be approximated by a simple harmonic
force, applied as a boundary condition at the bottom side of the top plate. This is only
valid for the case were no bias voltage (Vdc) is applied. In [34] the electrostatic force is
linearized around z = 0 and expanded in Taylor series. Then it appears that the bias
voltage contributes to the sti�ness and results in a softening e�ect. So only for Vdc =
0 V and small deformations the electrostic force can be considered as a simple harmonic
actuation. Consequently, nonlinear e�ects induced by electrostatic forcing such as super-
harmonic resonances cannot be calculated in that case.

Below, an overview of the main assumptions regarding the Comsol model is given:

1. Top plate: Only a solid quarter of the plate is modeled.
2. Squeeze �lm damping: A ‘Thin-�lm-
ow’ boundary condition is applied to the bottom

electrode. Perforation is virtually included using the ‘Bao-model’.
3. Electrostatic actuation: The electrostatic force is considered as a simple harmonic force.

Hence only very small deformations e:g:�z � 1 nm are considered. Consequently, non-
linear e�ects induced by electrostatic forcing such as super-harmonic resonances cannot
be obtained.

Despite all simpli�cations it appears that obtaining a full frequency amplitude diagram still
is too time consuming. Using a �xed damping constant and sti�ness constant instead of
the ‘Thin-�lm-
ow’ boundary condition and simulating over ten periods for a frequency of
100 kHz still no steady-state is reached and computational times are in the order of half
an hour for only one �xed frequency. Most probably computational times will be in the
order of a few days to calculate a frequency amplitude diagram. Hence it is chosen to only
do an eigenvalue analysis of the MEMS stage using the above stated simpli�cations. Here,
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the system will be �rst linearized around the static equilibrium position. Based on the
calculated eigenvalues still information is obtained about the dynamic characteristics of the
MEMS system, see (6.31)-(6.34).

The material properties used in the model are the properties given in Section 2.2.

6.4 Comparison of the results from the semi-analytical
model to Comsol results

In Comsol, the eigenvalue analysis is done for three di�erent situations: for the undamped
system, for the damped perforated system and for the damped system without perfora-
tions. For the semi-analytic model, the frequency amplitude diagrams are determined using
the shooting method as explained in Subsections 6.1.2 and 6.1.3. The approximate eigen-
frequency is then obtained by �nding the frequency where the maximum amplitude (i.e.
resonance) appears.

Figure 6.2 and 6.3 show two amplitude-frequency diagrams. In each �gure, three dif-
ferent diagrams are presented: the undamped frequency response, the damped response
for a solid MEMS top plate, and the damped response for a perforated MEMS top plate.
The frequency step is set at �f � 5:2 kHz. In Figure 6.2 the amplitude-frequency plot
is shown for VAC = 1:0 V and VDC = 0 V. In (6.1), it can be seen that the actuation
voltage is a quadratic term, e.g. (VDC + VAC cos(!t))2. In this case this simpli�es to
(VAC cos(!t))2 = V 2

AC
� 1

2 + 1
2 cos(2!t)

�
. As can be seen this gives ‘frequency doubling’, since

an input signal with a frequency of !(rad s�1) gives an actuation signal with a frequency
of 2!(rad s�1). i Figure 6.2 In general this frequency doubling appears when VAC > VDC .
In Figure 6.3, the applied voltages are VDC = 1:5 V and VAC = 1:0 V. As can be seen the
resonances appear at approximately the same frequencies as in Figure 6.2. However, due
to the increased bias voltage also second super-harmonic resonances appear at half the har-
monic resonance frequencies. In Table 6.1, the analytically determined harmonic resonance
frequencies are compared to the eigenfrequencies obtained by Comsol. In theory, these fre-
quencies should be very close. Di�erences are probably mainly due to assumptions made in
the analytical model (e.g. the error in leafspring sti�ness as is found in Subsection 3.4.2). In-
cluding squeeze �lm damping for the perforated structure gives a decrease of approximately
2% in eigenfrequency of the analytical model, whereas the Comsol model predicts a rise in
eigenfrequency of about 10% as follows from Table 6.1. Qualitatively the analytical model
and the Comsol model predict a sligthly di�erent behavior, however both models predict a
damped resonance/eigenfrequency that is close to the undamped resonance/eigenfrequency.
When considering the damping of the unperforated structure, predict qualitatively the same
behavior. Both the Comsol and analytical model predict a signi�cantly increase in eigen-
frequency, respectively 38% and 42% due to increased sti�ness in the non-perforated case.
The experimental eigenfrequency of 500 kHz displayed in Table 6.1 has been measured for
the �rst generation of MEMS stages, so this value only gives a rough indication whether
obtained results from both the Comsol and analytical model are reasonable or not. Table
6.2 gives the corresponding quality factors (Q = 1

2� ) of the damped eigenfrequencies. As can
be seen again, both models predict the same behavior from the perforated structure to the
non-perforated structure.
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Figure 6.2: The frequency amplitude diagram of the analytic single DOF model of the undamped
top plate and the damped top plate with and without perforation using VAC = 1V and
VDC = 0V . The frequency at the x-axis is de�ned as f = 2!

2� Hz. The amplitude is the
maximum amplitude.

Table 6.1: Comparison of the analytical harmonic resonance frequencies and numerically obtained
eigenfrequencies in Comsol.

Conditions fAnalytical (kHz) fComsol (kHz) fexperimental (kHz)
Undamped 717 675.38 -
Damped - Perforated 703 739.74+145.7i 500�25
Damped - Non Perforated 1018 929.65+54.634i -

Table 6.2: Comparison of the analytically and numerically obtained quality factors.

Conditions QAnalytical (kHz) QComsol (kHz) Qexperimental (kHz)
Damped - Perforated 3.3 2.6 2-2.5
Damped - Non Perforated 9.5 8.5 -

6.5 Summary

In Section 6.1, the analytical single DOF model is non-dimensionalized to have a more
general approach and for numerical advantages. Using the shooting method frequency am-
plitude diagrams are obtained for this nonlinear dynamic single DOF model for both the
undamped and damped MEMS stage. The corresponding eigenfrequency is approximated
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Figure 6.3: The frequency amplitude diagram of the analytic single DOF model of the undamped
top plate and the damped top plate with and without perforation using VDC = 1:5V and
VAC = 1V . The amplitude is the maximum amplitude.

by considering the frequency where the largest response, i.e. resonance, amplitude appears.
In Comsol, a simpli�ed model of the MEMS stage is made to determine the eigenvalues of
the MEMS stage. There, the undamped and damped MEMS stage are considered. Squeeze
�lm damping is introduced using the boundary condition ‘Thin-�lm-
ow’ at the bottom side
of the 
exible top-plate. Only small deformations are considered, such that the electrostatic
force could be approximated by a simple harmonic force. In Section 6.4, the results from
the Comsol and analytical model are compared. In Table 6.1, the analytically determined
harmonic resonance frequencies are compared to the eigenfrequencies obtained by Comsol.
In theory, these frequencies should be very close. The damped resonance frequency of the
perforated structure is calculated sligthy smaller than the undamped resonance frequency
by the analtyic model, whereas the Comsol model predicts an increase in eigenfrequency of
about 10%. however both models predict a damped resonance/eigenfrequency that is close
to the undamped resonance/eigenfrequency. When considering damping of the damped non-
perforated structure, both models predict a signi�cant increase in resonance/eigenfrequency.
The predicted resonance frequencies by the analtyical model and the computed eigenfrequen-
cies by the Comsol model have a maximum di�erence of about 10%.
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Chapter 7

Sensitivity analysis and optimized
design of the MEMS-stage

In Chapter 6, the dynamic behavior of the analytical electro-mechanical model is validated
using a simpli�ed model of the MEMS stage in Comsol. From that chapter it also becomes
very clear that computational time needed for dynamic analysis increases enormously when
making the FEM model more realistic. Therefore, the derived analytical dynamic model can
be used as a method to estimate the e�ect of design changes more easily and faster using
sensitivity analysis. The sensitivity analysis will mostly focus on the dimensions of the leaf-
springs. The plate is considered to be rigid, so a di�erent design of the plate will only a�ect
the e�ective vibration mass and not the sti�ness (except for a possible e�ect on the squeeze
�lm damping and electrostatic actuation). The total sti�ness of the structure is mainly de-
pendent on the leafsprings. In Section 7.1, a sensitivity analysis of the eigenfrequency with
respect to the leafspring parameters will be carried out. It is chosen to �nd the sensitivity
with respect to the eigenfrequency instead of to the leafspring sti�ness, since considering
the fabrication process, a change in thickness of one of the layers of the leafspring will also
give additional mass to the top plate. In Subsection 7.1.3, a correction is carried out for
this additional mass due to changing the thickness of the leafsprings and so the top plate.
In Section 7.2, design improvements are proposed based on the sensitivity analysis. Fur-
thermore, depending on the consequences of the proposed design improvements, additional
design changes will be suggested to ensure proper functioning of the MEMS stage.

7.1 Sensitivity analysis of the undamped eigenfrequency of
the MEMS stage with respect to design parameters

In this section the sensitivity of the eigenfrequency to changes in the dimensions of the
leafspring is investigated. For example, to �nd the sensitivity of the eigenfrequency to La,
the length of part A of the leafspring, multiple values for La is used and for each length the
undamped natural frequency is determined. In Subsection 3.2, the leafspring is divided into
two parts: part A with dimensions La � wa � t and part B with dimensions Lb � wb � t.
For the composite leafspring the thickness t consists of two layers: a structural layer of SiC
with thickness t1 and the Aluminum electrode layer with thickness t2. See Figure 3.1 for the
de�nition of part A and B of the leafspring.
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RESPECT TO DESIGN PARAMETERS

7.1.1 Lengths of the leafspring parts

The length of part A of the leafspring determines basically the connection point of the
leafsprings to the center of the plate. An increasing length La results in connection points
more to the corners of the plate whereas an decreasing length results in connection points
more towards the center of the plate. In the actual design the connection points are optimized
such that ‘
apping modes’ are prevented as much as possible. An example of a 
apping
mode can be found in Appendix B.3. Changing Lb will e�ectively increase or decrease the
lengths between the clamped edges of the plate. Both a decrease of length in La and Lb
will result in more tension in plane of the top plate when the plate moves towards the
bottom electrode. The corresponding consequences for the existence of the 
apping modes
and additional tension are not considered in this analysis. The maximum dimension change
for La and Lb is set to �10 µm, which is approximately one half to one third of the initial
lengths. Whether these are realistic dimension changes or not will be addressed in Section 7.2
too. The error in the analytical model will increase for shorter lengths, since the derivation
in z�direction is based on Euler-Bernoulli theory, where shear e�ects are not taken into
account. Vise versa the error will decrease for longer lengths of the leafspring parts. The
e�ect of longer/shorter leafsprings on the e�ective vibration mass, as described in Subsection
6.1.1 is not considered here.

Figures 7.1 and 7.2 show the sensitivity of the eigenfrequency with respect to La and Lb
respectively. In both �gures, the left picture shows the absolute eigenfrequency, the middle
picture the changes in eigenfrequency and the right picture the sensitivity. The sensitivity
is derived by using the numerical di�erence quotient. As can be seen both �gures are quite
similar. For increasing length the eigenfrequency decreases and for decreasing lengths the
eigenfrequency increases, as is quite trivial. Decreasing the lengths of the leafsprings gives
a rise in eigenfrequency of about 20-25 kHz µm�1. When decreasing the length of part B a
maximum in sensitivity is reached after a reduction of approximately 5 µm.

Figure 7.1: Changes in eigenfrequency as function of varying length of part A of the leafspring.
fn (La) means that the frequency is a function of the length.

7.1.2 Widths of the leafspring parts

It is expected that increasing the width of one of the parts of the leafspring will give a rise in
eigenfrequency. As a consequence of increasing beam widths the error in the analytical model
will increase, since then the width of the leafspring will be more comparable to the length of
the leafspring and the leafsprings will more act like a plate than like a beam. Figures 7.3 and
7.4 show the sensitivity of the eigenfrequency to the widths of parts A and B respectively.
Indeed, as expected, increasing the widths results in a larger eigenfrequency. The sensitivity
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Figure 7.2: Change in eigenfrequency as function of varying length of part B of the leafspring.
fn (Lb) means that the frequency is a function of the length.

to increasing widths decreases for wider parts. The sensitivity at the original design is about
15-20 kHz µm�1.

Figure 7.3: Changes in eigenfrequency as function of varying width of part A of the leafspring.
fn (wa) means that the frequency is a function of the width.

7.1.3 Thickness of structural and electrode layer

The MEMS stage is fabricated by deposition of di�erent layers on top of each other. The top
plate and leafsprings consist of an electrode layer with thickness tAl = 400 nm and a structural
layer with thickness tSiC = 1:5 µm. On top of that the top plate has an additional structural
layer of 2 µm thickness of SiC. This last mentioned layer is left out of the sensitivity analysis
since it only a�ects the top plate and not the leafsprings. To avoid changing the fabrication
process, a change in thickness of one of the layers in the leafspring yields the same change
of thickness in the top plate. Hence, the mass of the top plate will change. By determining
the sensitivity of the eigenfrequency to thicknesses tSiC and tAl the e�ective vibration mass
is corrected for the weight change of the top plate. Figures 7.5 and 7.6 show the sensitivity
to tSiC and tAl respectively. Please note that the sensitivity is given here in kHz nm�1

instead of kHz µm�1. Increasing the thicknesses yields an increasing eigenfrequency. The
sensitivity decreases for increasing tSiC whereas it increases for increasing tAl. However, the
eigenfrequency is much more sensitive to changing the thickness of the structural layer than
changing the electrode thickness. This is due to the larger Young’s modulus of SiC, which
is about 5-6 times larger than the Young’s modulus of Al. Adding 0:1 µm to tSiC yields an
increase of approximately 50 kHz.
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Figure 7.4: Changes in eigenfrequency as function of varying width of part B of the leafspring.
fn (wb) means that the frequency is a function of the width.

Figure 7.5: Changes in eigenfrequency as function of varying thickness of SiC layer 1 of the top
plate. fn (t1) means that the frequency is a function of the thickness.

7.2 Improved design

In Section 7.1 the sensitivity of the undamped eigenfrequency with respect to the dimensions
of the leafspring is investigated and it is indicated which parameters should be increased or
decreased for an increasing eigenfrequency, but the shift of parameters will be determined in
this section.

7.2.1 Design improvements based on the sensitivity analysis

It can generally be concluded that decreasing the lengths of the leafspring parts and in-
creasing the width and thickness results in an larger eigenfrequency. This e�ect is only
investigated for each parameter seperately and not for a speci�c combination of parameters.
So the sensitivity analysis cannot be used to predict an absolute change in eigenfrequency
of a combination of design changes, however it can be used as a guidline. Moreover, conse-
quences of changing parameters with respect to, for example, existence of 
apping modes is
not investigated. Also the stresses in the corners of the leafsprings and the required volt-
ages for actuation are not considered here. In this section, an optimized design is proposed
and analyzed, which means that the eigenfrequency, which was originally 717 kHz, must be
increased. Design changes based on the sensitivity analysis are proposed and additional
geometrical changes are presented to ensure proper functioning of the MEMS stage. The im-
proved analytical model will be compared to the results from simulations with the improved
design in Comsol.
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Figure 7.6: Changes in eigenfrequency as function of varying thickness of the electrode layer of the
top plate. fn (t2) means that the frequency is a function of the thickness.

The coordinates of connection points of the leafsprings to the top plate are determined
by length La and not by Lb. Therefor changing Lb most probably hardly a�ect the existence
of 
apping modes, which means that changing this length is more safe. Since the error in
the analytical model will increase for a shorter length of the beam it is chosen to decrease
the lengths of Lb and La to a small extent. The length of Lb will be decreased by � 10% to
Lb = 19 µm. The length of La will be decreased by only approximately 5% to La = 27 µm,
since the position of the connection points is optimized for preventing 
apping modes. These
changes will result in an increase of �fn = 80 kHz.

The eigenfrequency is slightly less sensitive to the width of the leafsprings. Increasing
the widths will also introduce additional error to the analytical model. Considering this, it
is decided not to change the widths of the leafsprings.

The eigenfrequency is much more sensitive to the thickness of the layers. A disadvantage
is that increasing the thickness of the leafsprings yields more mass to the top plate as
well. Considering this and that for only an additional thickness of �tSiC = +0:1 µm the
eigenfrequency increases with approximately 50 kHz it is chosen to exchange the thickness
of the �rst and the second structural layer. This means that tSiC now will be 2 µm and
the second structural layer of SiC will be 1:5 µm. This will have minor in
uence on the
sti�ness of the plate, since the total thickness of the plate will not change. And due to this
unchanged thickness, the additional mass will be small. This means that the eigenfrequency
will increase with approximately 5� 50 kHz = 250 kHz.

Increasing the thickness of the aluminium electrode layer has minor e�ect on the eigenfre-
quency. However, due to the proposed sti�er design of the leafsprings more electrical energy
is needed to position the top plate. So despite the additional mass and material it is chosen
to increase the thickness of the electrode layer to tAl = 500 nm which results in an additional
20 kHz. All proposed design changes based on the sensitivity analysis are listed in Table 7.1.
Note that next to the changes listed in Table 7.1, as stated earlier the thickness of the second
structural layer will decrease from 2.0 to 1:5 µm.

7.2.2 Additional design changes

As already stated in Subsection 7.2.1 the location of the connection points of the leafsprings
to the top plate are optimized such that 
apping modes are prevented as much as possible.
Due to the proposed repositioning of these connection points towards the center of the plate
it could be possible that 
apping modes occur at lower frequencies than before. Considering
this it is proposed to round the corners of the plate. The corners of the plate do (almost)
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Table 7.1: The proposed design changes based on the sensitivity analysis. Here the actual value
means the value of the second generation MEMS stages.

Parameter Actual value Proposed value Expected gain
La 28:5 µm 27 µm 30 kHz
Lb 21 µm 19 µm 50 kHz
wa 15 µm 15 µm 0 kHz
wb 10 µm 10 µm 0 kHz
tSiC 1:5 µm 2:0 µm 250 kHz
tAl 400 nm 500 nm 20 kHz

not contribute to the sti�ness of the plate, however, they do contribute to the electrostatic
force. Moreover, rounding the corners yields a decreasing mass of the top plate. Hence the
undamped eigenfrequency of the top plate will increase. The radius of the corners is proposed
to be rc = 40 µm, such that the curve of the corner ends just before the connection with
the leafspring. The actual area of the non-perforated top plate is 19 312 µm2. Due to the
rounding of the corners (and the other proposed changes) this area decreases to 18 124 µm2,
which is a decrease of 5.7%. According to (4.6) the capacitance is linearly related to the area,
which means that the capacitance will decrease with 5.7% as well. The sti�er design and
the reduced capacitance means that a larger voltage is needed to position the top plate. By
a summation of the expected gains from Table 7.1 an increase in eigenfrequency is expected
of about 350 kHz. In Section 7.3 the expected increase in eigenfrequency using the dynamic
analytical model will be determined.

7.2.3 Geometry of the improved design

The proposed design changes in Subsections 7.2.1 and 7.2.2 are processed in a new geomet-
rical design of the MEMS stage as presented in Figure 7.7. As can be seen the geometry
is very similar to the geometry of the actual MEMS stage except for the rounded corner.
Moreover the top structural layer has undergone minor changes to ensure the ’ribs’ are still
at the centerline of the leafspring connection points.

Figure 7.7: The geometry of the improved de-
signed MEMS stage.

Figure 7.8: The geometry of the original de-
signed MEMS stage

Due to the proposed design changes, also the mapping used for determining capacitance
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Figure 7.9: The frequency amplitude diagram with VDC = 0 V and VAC = 1 V for the improved
design. The diagrams are shown for the undamped case, for the damped-perforated and
damped-solid case. The frequency at the x-axis is de�ned as f = 2!

2� Hz. The amplitude
is the maximum amplitude.

and squeeze �lm damping changes. First of all, the amount of perforation holes is changed.
The thickest part still counts 64 holes and the thinner part now counts only 52 holes, which
is a total of 116 perforation holes instead of 128. As already given in Subsection 7.2.2 the
total area of the solid top electrode will be 18 124 µm2. The border length of the new design
will be 731 µm. This means a mapped plate of 391 µm� 46 µm with 29� 4 = 116 holes for
determining the squeeze �lm damping. The e�ective hole length is determined the same way
as in Subsection 5.2 and found to be 3:33 µm. For determining the capacitance, the total
area of the perforation holes has to be substracted from the area of the plate and the total
border length has to be added to the border length of the plate. Finally this gives a mapped
solid plate of 644 µm� 26 µm.

7.3 Dynamics of the analytical and Comsol model of the
optimized MEMS stage

A new analytical model is build by carrying out the design changes and the resulting changed
mappings. The shooting method is used again to obtain the amplitude frequency diagram for
Vac = 1 V and VDC = 0. Figure 7.9 shows again the amplitude diagrams for the undamped
situation and two damped cases.

The new design is also implemented in Comsol and the eigenvalues are calculated in
the same way as explained in Chapter 6. Table 7.2 lists the analytical determined eigen-
frequencies and the eigenfrequencies determined by Comsol as well as the corresponding
Q-factors.
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Table 7.2: Comparison of the analytically and numerically obtained eigenfrequencies

Conditions fAnalytical (kHz) fComsol (kHz) QAnalytical
(kHz)

QComsol

(kHz)
Undamped 1133 878.73 - -
Damped - Perfo-
rated

1139 943.8+106.21i 6.8 4.5

Damped - Non
Perforated

1307 1066.2 + 36.228i 21.6 14.7

The analytically determined eigenfrequency of the second generation MEMS stages was
717 kHz for the undamped case. From Table 7.2 it can be seen that the increase in the
analytical eigenfrequency is indeed slightly larger than 350 kHz as expected. However, the
analytically obtained eigenfrequency is clearly larger when comparing this value with the
eigenfrequency of the improved design resulting from Comsol. The di�erence between
the analytical and Comsol undamped eigenfrequency was 6.2% for the original design and
increases to 29% for the improved design. Also the errors for the damped eigenfrequencies
increase. A more thorough analysis of the corresponding modeshape obtained in Comsol
shows that in the improved design, the deformation is for about 50 percent in the leafsprings
and 50 percent in the plate, whereas for the original design 70-80% of the deformation was
in the leafsprings. Figures 7.10 and 7.11 show the deformation of the top plate for the �rst
eigenmode. In the improved design the leafspring sti�ness is increased, whereas the sti�ness
of the plate is approximately kept constant. So the assumption of the plate being a rigid
body is getting violated more and more.

To test this reasoning, the improved design of the leafsprings is modeled in Comsol and
the sti�ness is determined using the same procedure as already worked out in Chapter 3.
Table 7.3 lists the leafspring sti�nesses determined by the analytical model (kx1; ky1; kz1)
and by the Ansys model (kxAN ; kyAN ; kzAN ) of the original design in the �rst two columns
respectively and the corresponding error between them in the third column. In the fourth
and �fth column, the leafspring sti�nesses of the improved design are given determined by
the analytical model (kx1;I ; ky1;I ; kz1;I) and the Ansys model (kxAN;I ; kyAN;I ; kzAN;I)
respectively with the corresponding error between them in the sixth column. The increases
of leafspring sti�ness from the original design to the improved design in percentage are given
in Table 7.4. As can be seen the error between the analytical and Ansys leafspring sti�nesses
is even smaller for the improved design than for old design. This means that the assumptions
for deriving the leafspring sti�ness are still valid. Moreover, when de�ning in Comsol the top
plate of the improved design as rigid body then the undamped eigenfrequency is 1143:1 kHz,
which is approximately equal to the analytical derived eigenfrequency of the improved design.
Based on this it is concluded that a thorough study of the sti�ness and deformation of the
top plate is needed for more accurate prediction of the dynamical behavior of the MEMS
stage.
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Table 7.3: The leafspring sti�nesses of the original design and the leafspring sti�nesses of the im-
proved design both determined analytically and by Ansys. Also the corresponding error
between the analytical and Ansys results are given. The original design means the design
of the second generation MEMS stages.

Analytical
original
design

Ansys origi-
nal design

Error
original
design

Analytical
improved
design

Ansys im-
proved
design

Error
improved
design

kx 1 =
31 139 N m� 1

kxAN =
32 122 N m� 1

3.0% kx 1;I =
48 011 N m� 1

kxAN;I =
49 385 N m� 1

2.8%

ky1 =
40 345 N m� 1

kyAN =
43 720 N m� 1

7.7% ky1;I =
69 422 N m� 1

kyAN;I =
73 073 N m� 1

5.0%

kz1 =
447:35 N m� 1

kzAN =
390:92 N m� 1

14.4% kz1;I =
1242 N m� 1

kzAN;I =
1129 N m� 1

10.0%

Table 7.4: The increases in leafspring sti�ness when comparing the original design to the improved
design for both the analytical and Ansys model

Sti�ness x1-
direction

Sti�ness y1-
direction

Sti�ness z1-
direction

Analytical 54% 72% 178%
Ansys 54% 67% 189%

Figure 7.10: A 3D view of the �rst mode of
a quarter of the MEMS top plate
( Comsol). The displacements
are normalized with the maximum
displacements.

Figure 7.11: A 2D view of the �rst mode of
a quarter of the MEMS top plate
( Comsol). The displacements
are normalized with the maximum
displacements.

Required actuation voltages

The actuation voltages of the optimized design should be kept as small as possible. The
maximum voltage needed to position the top plate is smaller than the static pull in voltage.
So checking the static pull-in voltage will be su�cient as a check for the required actuation
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voltage. For the original design the area of the perforated top electrode is 17 392 µm2. Con-
sidering only the direct electric �eld between the plates, the pull-in voltage can determined
using (4.15). Using the analytically determined leafspring sti�ness in z-direction from Table
7.3, the pull-in voltage is found to be 29:3 V. For the improved design the area of the per-
forated top plate is 16 662 µm2. Using the same equations and the analytically determined
leafsrping sti�ness for the optimized design from Table 7.3, the pull-in voltage for the opti-
mized design is found to be 49:9 V, which is an increase of 70.3% with respect to the pull-in
voltage of the original design. Since the required actuation voltages are of the same order it
is believed that this maximum required voltage is still an acceptable value.

7.4 Summary

A sensitivity analysis is carried out for the �rst eigenfrequency with respect to the dimensions
of the leafspring. Decreasing the lengths and increasing the thicknesses of the leafsprings
is most e�cient for increasing the �rst eigenfrequency of the MEMS stage. Based on this
sensitivity analysis a combination of design improvements is proposed in Section 7.2. In
Section 7.3, the dynamic properties of the improved design are analyzed using both the
analytical model and a Comsol model. Table 7.2 lists the improved (increased) eigenfre-
quencies determined by the analytical and Comsol model. The error between the analytical
and numerical determined eigenfrequency is about 29%, whereas for the old design this was
only 6%. This increased error is found to be due to the assumption of a rigid top plate. This
conclusion is supported by three �ndings:

1. A more thorough study of the improved leafspring design using Ansys show that the
analytical model is still valid to determine the sti�ness of the improved leafspring.

2. Analyzing the modeshape of the improved design in Comsol show that the deformation
during the �rst eigenmode is for 50% in the leafsprings and for 50% in the top plate,
whereas for the original design there was about 70-80% of the deformation in the
leafsprings.

3. When de�ning the top plate of the improved design as a rigid body in Comsol, the
numerically and analytically determined �rst eigenfrequencies agree very well.

Based on this it is concluded that a more thorough study of the top plate sti�ness and
bending is needed for more accurate prediction of the dynamical behavior of the MEMS
stage.
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Chapter 8

Summary, conclusions and
recommendations

8.1 Summary and conclusions

TNO developed the so-called ‘meta-instrument’. This instrument is a high speed positioning
and tracking platform for near-�eld optical imaging microscopes [2, 3]. A sub-nanometer
positioning resolution with an expected 670 kHz bandwidth is achieved by a MEMS stage.
The design of the MEMS stage is based on a radio frequency capacitive switch. A top elec-
trode is suspended by eight identical leafsprings above a ground electrode. To improve the
performance of this MEMS stage, the dynamical behavior of the MEMS stage is analyzed.
Therefore as a tool, an analytical model that describes dynamical behavior of the MEMS
stage is developed, assuming the MEMS stage to be described by a single degree of free-
dom model. The analytical model consists of mainly three parts: the leafspring sti�ness,
electrostatic actuation, and the squeeze �lm damping and sti�ness.

In Chapter 3, an analytical model for the leafspring sti�ness is derived. The leafsprings
can be de�ned as L-shaped beams. During the analysis the leafspring is split into a part A
and B. One end of part A is clamped to the �xed world and part B has a guided end due to
connection to the rigid top plate. The other ends of part A and B are connected to each other
and form the corner area of the leafspring. The analytical model is based on Euler-Bernoulli
theory and Castigliano’s second theorem. Expressions for the leafspring sti�ness are derived
for all three directions. The analytical model also includes the composite structure of the
MEMS stage. It appeared that for the x1� and y1�direction shear stresses were important
and for the z1�direction a constraint against warping had to be included into the analytical
model. The analytical model is validated using a �nite element model of the leafspring in
Ansys. The leafspring sti�ness in both x1� and y1�direction can be determined using the
analytical model with an error smaller than 10%. The analytical sti�ness in z1�direction
for a composite leafspring including a constraint against warping, has an error of 14.4%.
This relatively large error is due to rather complex stress state in the corner of the leaf-
spring, which is not considered in the analytical model. It appears that for smaller widths
of the leafspring the error for the z1�direction decreases to below 5%. When the parts of
the leafspring have a more beam-like shape, the corner area (the area where part A and B
are connected) is smaller. For sensitivity analysis the analytical model for determining the
composite leafspring sti�ness in z1-direction is su�ciently accurate.

In Chapter 4, an analytical model for the capacitance of the MEMS stage is derived.
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The actuation of the MEMS stage is based on a parallel plate capacitor. An applied voltage
over the plates creates an electric �eld between the plates resulting in an attractive electro-
static force. The electric �eld also exists outside the plane between the plates, the so-called
fringe �elds. Also the thickness of the electrodes contribute to the electric attraction force.
The additional capacitance due to fringing �elds and electrode thickness are derived. The
electrodes have a complex geometry: there is a square hole at the center of the top plate
and there are perforation holes to increase the damping e�ect of the squeeze �lm and to
enable better etching of the sacri�cial layer during fabrication. A mapping of the complex
geometry to a simple rectangular electrode is proposed. The basis idea of this mapping is
using a similar area and border length in the simpli�ed model as in the complex geometry.
The analytical model and proposed mapping are validated using a �nite element model of
the electrodes in Comsol. Due to the relatively small gap height compared to the dimen-
sions of the electrodes, the direct electric �eld is dominating and the capacitances due to the
fringing �elds and material thickness contribute only a few percent. The di�erence between
the analytically determined capacitance for the MEMS stage and the determined capaci-
tance of the MEMS stage using Comsol is smaller than 1%. Analytically, the capacitance
is Canalytical = 335 fF and using Comsol the capacitance is CComsol = 337 fF. Therefore,
for sensitivity analysis the analytical model for electrostatic actuation is su�ciently accurate.

In Chapter 5, an analytical model for the squeeze �lm damping and sti�ness of the MEMS
stage is derived. For squeeze numbers � < 3, the damping coe�cient can be derived by as-
suming an incompressible gas. However, for the considered MEMS stage this assumption is
not valid, due to the relatively large frequencies and the small gap-size between the plates.
Hence, the gas should be considered as compressible and also squeeze �lm sti�ness becomes
relevant. An analytical model is derived to determine the damping and sti�ness coe�cient of
the squeeze �lm based on the modi�ed Reynolds equation. The pressure at the border of the
plates is set to the ambient pressure and only small oscillations of the plate are considered.
The pressure distribution underneath the plate is described as a series of cosines. Due to the
perforation of the top plate also the damping and sti�ness coe�cient for a perforated plate
are considered and derived analytically. Including perforation yields an increased damping
coe�cient and a decreased sti�ness coe�cient, since less air is compressed into the structure
and more air can escape. Due to the square hole at the center of the plate, a mapping is
proposed from the complex geometry into a rectangular perforated plate. The total area
and the total border length of the actual MEMS top plate and the mapped geometry are
equal. Also the amount of perforation holes in both situations is equal. The analytically
derived expressions for squeeze �lm damping and sti�ness and the proposed mapping are
validated using a �nite element model in Comsol. Excluding perforation, the mapping can
be used for frequencies above 10 000 kHz with an error in 
ow induced force below 5%. For
frequencies smaller than 10 000 kHz the error between analytically and numerically deter-
mined squeeze �lm force is about 11%. This is due to the di�erence in actual and mapped
pressure pro�le. In the actual MEMS stage, the pressure pro�le bends 90 degrees at the
corners, whereas for the mapped geometry this pressure pro�le is basically folded back to
one rectangular strip. At the corners of the actual MEMS stage, the air particles can escape
in two directions, whereas for the rectangular plate the air particles can only escape in one
direction. For large frequencies more 
uid is compressed and sti�ness behavior of the squeeze
�lm becomes more important. The sti�ness coe�cient is more dependent on the area of the
plate than the damping coe�cient. Since the area of the actual MEMS stage and the area
of the mapped geometry are equal, the error in squeeze �lm force between analytical and
numerical decreases for large frequencies. For frequencies between 0 - 1 MHz the squeeze
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8.1. SUMMARY AND CONCLUSIONS

�lm damping and sti�ness for the MEMS stage can be determined with an maximum error
smaller than 7%, which is su�ciently accurate.

In Chapter 6, the derived analytical models for leafspring sti�ness, electrostatic actuation
and squeeze �lm damping and sti�ness are combined in a single degree of freedom equation
of motion that approximates the nonlinear dynamical behavior of the MEMS stage. This
analytical model is non-dimensionalized to have a more general approach and for numeri-
cal advantages. Using the shooting method, frequency-amplitude diagrams are obtained for
both the undamped and damped MEMS stage. A part of the analytical model is validated
using a simpli�ed �nite element model of the MEMS stage in Comsol. In the Comsol
model, squeeze �lm damping is introduced using the boundary condition ‘Thin-�lm-
ow’ at
the bottom side of the top-plate. Only small deformations of the top plate are considered,
such that the electrostatic force may be approximated by a simple harmonic force. In Sec-
tion 6.4, the results from the Comsol model and the analytical model are compared. It is
observed that the analytically determined resonance frequencies di�er at most about 10%
when compared to the eigenfrequencies determined by Comsol. The analytically derived
undamped �rst resonance frequency is 717 kHz and the undamped �rst eigenfrequency from
Comsol is 675:38 kHz, which is a di�erence of about 6%.

In Chapter 7, the sensitivity of the �rst eigenfrequency to a change in the dimensions
of the leafspring is investigated. It appeared that decreasing the lengths and increasing the
thicknesses of the leafspring is most e�cient for increasing the �rst eigenfrequency of the
MEMS stage. Based on this sensitivity analysis a combination of design improvements are
proposed for the MEMS stage. The analytical model predicts an improved �rst undamped
eigenfrequency of 1133 kHz, whereas the �nite element model of the improved design in
Comsol predicts the frequency to be 878:73 kHz, which is a di�erence of about 29%. It
appears that for the improved design the assumption of a rigid MEMS top plate is not valid
anymore. A thorough study of the bending sti�ness of the top plate is needed. Due to
fabrication issues unfortunately no experimental results could be obtained in this project.

The initial project goal was to develop an analytical dynamic model of the MEMS stage
and validate this model using FEM and experiments. Subsequently, an improved design of
the MEMS stage had to be proposed, based on a sensitivity analysis using the developed
analytical model. Considering this, the project goal is partially achieved. An analytical
dynamic model of the MEMS stage is developed and validated using FEM models. However,
due to fabrication issues, validation using radio-frequency capacitive measurements was not
possible. A sensitivity analysis is carried out and based on this, an optimized design of the
leafsprings is proposed. This resulted into an increased �rst eigenfrequency of 200 kHz for
the undamped MEMS stage in Comsol simulations. This means that the ultimate goal of
a �rst eigenfrequency of 10 MHz is clearly not met.

In short, the results obtained in this project are:

� A FEM validated, analytical model based on Euler-Bernoulli beam theory to determine
the sti�ness of L-shaped, homogeneous and composite beams. For the x1 and y1-
direction shear stresses are included and for the z1-direction constraint against warping.
This analytical model could be used to determine the sti�ness for all kinds of L-shaped
leafsprings (and L-shaped two-layered leafsprings), as long as the widths of the parts
remain signi�cantly smaller than the lengths and displacements are small.
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8.2. RECOMMENDATIONS

� A FEM validated, analytical model to determine the capacitance of a two dimensional
�nite parallel plate capacitor. Additional capacitances due to two dimensional fringes
�elds and due to incorporation of electrode thickness are included. Also a mapping of
the complex shaped electrodes into a representative rectangular geometry is proposed
and validated using the FEM. The described mapping can be used to approximate the
capacitance of complex geometries as long as the gap height between the electrodes is
much smaller than the dimensions of the electrodes.

� A FEM validated, analytical model based on the modi�ed Reynolds equation for de-
termining squeeze �lm damping and sti�ness of perforated, parallel plates. Also a
mapping of perforated plates with square holes at the center to a representative perfo-
rated rectangular plate is proposed and validated using FEM. This analytical model can
be used to approximate the squeeze �lm damping and sti�ness of complex geometries
as long as displacements are small.

� A FEM validated, analytical, coupled electro-mechanical non-linear dynamic single
degree of freedom model including leafspring sti�ness, two dimensional electrostatic
actuation, and squeeze �lm damping and sti�ness.

� A sensitivity analysis of the eigenfrequency with respect to the leafspring dimensions.
� An improved design of the MEMS stage is proposed, based on the sensitivity analysis.

8.2 Recommendations

For future research it is recommended to:

1. Reconsider the assumption a rigid MEMS top plate. A thorough study on the plate
bending sti�ness is needed. Alternatively, it could be investigated and how to optimize
the sti�ness of the plate such that the assumption of a rigid top plate is justi�ed. This
motion as a rigid body is necessary to prevent the lens from deforming which could
cause optical issues.

2. Carry out radio frequency capacitive measurements on the MEMS stage to characterize
the dynamical behavior of a range of frequencies and to �nd the actual pull-in voltage.

3. Depending on the research goals, a more thorough analysis of the non-linear dynamics
could provide possible interesting insights in the dynamical behavior of the system.

4. Investigate alternative designs for the MEMS stage and its purpose, e.g. a circular top
plate. The current square design is a leftover from the initial goal of a 6DOF nano-
positioning device. For a 1DOF device a circular top plate suspended by leafsprings
has the advantage that 
apping modes do not occur.

5. Investigate the stresses in the leafspring for the optimized design. Fracture should be
prevented.
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Appendix A

Intermediate steps analytical
derivation

A.1 Leafspring sti�ness in z1-direction

From (3.1) - (3.4) it follows that

@Ma

@M0
= 0;

@Ta
@M0

= 1;
@Mb

@M0
= 1;

@Tb
@M0

= 0;
@Ma

@T0
= 1;

@Ta
@T0

= 0;
@Mb

@T0
= 0 and

@Tb
@T0

= 1

(A.1)
Rewriting (3.11) and (3.12) by integration using (3.1) - (3.4) and (A.1) gives

�1 =
Z L a

0

�
M0 � FzLb

GJa

�
dy1 +

Z L b

0

�
M0 � Fzx1

EIy;b

�
dx1 =

M0La � FzLbLa

GJa
+
M0Lb � 1

2FzL2
b

EIy;b
= 0

(A.2)

�1 =
Z L a

0

�
T0 � Fzy1

EIx;a

�
dy1 +

Z L b

0

�
T0

GJb

�
dx1 =

T0La � 1
2FzL2

a

EIx;a
+
T0Lb

GJb
= 0 (A.3)

The internal moments and torques Ma, Ta, Mb and Tb are written by substituting (3.13)
and (3.14) into (3.1) - (3.4) as

Ma = Fz

 
1
2GJbL

2
a � EIx;aLby �GJbLay
EIx;aLb +GJbLa

!

; (A.4)

Ta = Fz

 
�1

2GJaL
2
b

EIy;bLa +GJaLb

!

; (A.5)

Mb = Fz

 
EIy;bLaLb + 1

2GJaL
2
b � EIy;bLax�GJaLbx

EIy;bLa +GJaLb

!

; (A.6)

Tb = Fz

 
1
2GJbL

2
a

EIx;aLb +GJbLa

!

: (A.7)

Now substituting (A.4) - (A.7) into (3.15) yields
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A.2. LEAFSPRING STIFFNESS IN X1 AND Y1-DIRECTION

� z1 =
Z L a

0

Fz
� 1

2 GJbL 2
a � EI x;a L by1 � GJbL a y1

�

EI x;a (EI x;a L b + GJbL a )

 
1
2 GJbL 2

a � EI x;a L by1 � GJbL a y1

EI x;a L b + GJbL a

!

+

Fz
�
� 1

2 GJa L 2
b

�

GJa (EI y;b L a + GJa L b)

 
� 1

2 GJa L 2
b

EI y;b L a + GJa L b

!

dy1+

Z L b

0

Fz
�
EI y;b L a L b + 1

2 GJa L 2
b � EI y;b L a x1 � GJa L bx1

�

EI y;b (EI y;b L a + GJa L b)

 
EI y;b L a L b + 1

2 GJa L 2
b � EI y;b L a x1 � GJa L bx1

EI y;b L a + GJa L b

!

+

Fz
� 1

2 GJbL 2
a

�

GJb(EI x;a L b + GJbL a )

 
1
2 GJbL 2

a

EI x;a L b + GJbL a

!

dx1: (A.8)

This can be rewritten to (3.16).

A.2 Leafspring sti�ness in x1 and y1-direction

The procedure to �nd the sti�ness in x1 and y1-direction is the same as for the sti�ness in
z1-directions. So only one intermediate results is given here.

Substituting (3.25) into (3.22) and (3.23), then substituting the result into (3.26) and
rewriting by integration yields

� y 1 =
� 2L 2

a L 2
bFx + � 2L a L 4

bFy

4(L a + �L b)2EI z;a
+

2
� 1

2 L 2
a L 2

bFx + L a L 3
bFy + 1

2 �L 4
bFy � 1

3 Fy L 3
b(L a + �L b)

�
(L a + �L b) � �L 2

a L 3
bFx � �L a L 4

bFy

4(L a + �L b)2EI z;b
= 0 : (A.9)

Solving (A.9) for the reaction force Fy results in (3.27).

A.3 Composite torsional rigidity

The parameters A1n; A2n; B1n and B2n in (3.37) are given as [24]

�1B2n = �3(G1 �G2)
�

sech(anc)� sech(anb)
��

tanh(anc)� coth(anb)
�
; (A.10)

A2n = B2n tanh(anc) + �3 sech(anc); (A.11)
�2B1n = �3

�
G1 sech(anc)� (G1 �G2) sech(anb)

�
�G2

�
A2n+B2n tanh(anb)

�
; (A.12)

A1n = �3 sech(anc)�B1n tanh(anc); (A.13)

where �1; �2 and �3 are de�ned as

�1 =G2
�

tanh(an b) tanh(an c)� 1
�
�G1

�
coth(an b) tanh(an c)� 1

�

�G1 tanh(an c)
�

tanh(an c)� tanh(an b)
�

+G2 tanh(an c)
�

tanh(an c)� coth(an b)
�
; (A.14)

�2 =G1
�

tanh(an c)� tanh(an b)
�
; (A.15)

�3 =4a2
�

2
�

� 2 (�1)n +1

(2n+ 1)3 : (A.16)
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A.4. STIFFNESS CONTRIBUTION DUE TO RESIDUAL STRESS IN THE TOP PLATE

A.4 Sti�ness contribution due to residual stress in the top
plate

Residual stresses in MEMS is mainly a result of the fabrication process. A cantilever MEMS
structure is after release from a sacri�cial layer under residual stress. To relieve the stress,
the cantilever starts curling. When the curled beam becomes in equilibrium, there is no
residual stress anymore. For a cantilever MEMS stage structure consisting of a �lm layer
with thickness tf deposited on a substrate with thickness ts, the residual stress in the �lm
�f can be determined using the Stoney’s formula [21]

�f =
Ef t2s

6tf (1� �f )R
(A.17)

where Ef is the Young’s modulus of the �lm, �f Poison’s ratio and R the curvature of
the beam. So the �nal curvature of the cantilever beam is a result of the initial residual
stress. This relation of curvature and residual stress is applied to the speci�c MEMS stage
in this report by using some assumptions. For the speci�c MEMS stage, the plate is �xed
by eigth leafsprings. The points where the leafsprings are connected to the plate can move
in all directions. So the plate is not fully clamped, but is able to curve a bit out of plane.
The fabricated gap is 355 nm and due to residual stresses the �nal gap is 500 nm. It is
assumed that the plate will release the residual stress until it comes in equilibrium with
the horizontal leafspring forces. So the released residual stress results in a bended plate,
while the remaining residual stress is in equilibrium with the horizontal spring force. For
simpli�cation it is assumed that the residual stresses in the leafsprings itself can be neglected.
A segment of the plate in equilibrium is shown in Figure A.1A.

Figure A.1: A: A part of the plate with force equilibrium of the spring force and the residual force.
B: The curvature of the plate as part of a circle.

So the remaining residual force Fres can be determined using the horizontal leafspring
force Fs;x1 (neglecting the horizontal spring force of four leafsprings in y1-direction)

Fres = Fs;x = 4ks;x1�x (A.18)
where the deformation of the plate in horizontal direction (�x) is determined by assuming
a curvature of the beam as part of a circle, see Figure A.1B. The known (arc) length of the
plate L and the known vertical movement of the center of the plate �z can be expressed in
terms of � and R as
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A.4. STIFFNESS CONTRIBUTION DUE TO RESIDUAL STRESS IN THE TOP PLATE

L =
R��
180

; �z = R
�

1� cos
�
2

�
: (A.19)

By solving the set (A.19) for R and � the horizontal displacement is de�ned as

�x =
1
2
L� sin

�
2
R: (A.20)

When there is no displacement of the rigid body the external force is zero, since the force acts
perpendicular to the direction of movement. However, when the rigid body moves slightly
out of the initial position, a force Fz;res, negative to the direction of the movement, is induced
by the residual stress approximated by

Fz;res = 8Fres sin �z where �z � arcsin (
�z(L=2)
Lb=2

) (A.21)

where 0 < � < �
2 . Now the additional non-linear sti�ness due to the residual stress is found

as

kr;z(�z) =
Fz;res
�z

(A.22)

Alternatively the residual stress can be inserted by considering moments along the edges of
the plate. When a moment M1 is applied distributed along two opposite edges of a plate
with homogeneous thickness t, the plate will show a certain curvature, see Figure A.2A. The
relation between the applied moment and the curvature is written as [22]

1
R1

=
M1

EI
=

12M1

Et3
; (A.23)

by assuming small de
ections compared to the thickness of the plate. When a moment is
applied in two directions, Figure A.2B, the principle of superposition can be used to �nd the
�nal curvature of the plate. This gives [22]

1
R1

=
12
Et3

(M1 � �M2); (A.24)

1
R2

=
12
Et3

(M2 � �M1): (A.25)

(A.26)

Figure A.2: Moments applied along edges of a plate

Rewriting (A.24) and (A.25) gives
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A.5. SQUEEZE FILM DAMPING

M1 =
Et3

12(1� �2)

�
1
R1
� �

1
R2

�
; (A.27)

M2 =
Et3

12(1� �2)

�
1
R2
� �

1
R1

�
: (A.28)

(A.29)

Due to symmetry of the top plate of the MEMS stage R1 = R2 = R and so M1 = M2 = M .
Now the correct moment has to be found such that the resulting curvature of the plate is
equal to the actual curvature of the plate due to residual stresses. Since the top plate of the
MEMS is not of homogeneous thickness and includes holes a �nite element model will be
used to �nd the correct bending moment. So basically the bending moment is considered to
be

M =
�
R
; (A.30)

where the constant � = Et3(1+�)
12(1��2) has to be determined using �nite element analysis. By

including the Moment as an external force along the edges of the plate, a rise in ’sti�ness’
will be seen which is the same result as caused by residual stress. Therefor it is assumed that
there is no residual stress in the leafsprings, since the moment is applied along the edges of
the plate.

However, due to the more complex geometry of a folded leaf spring instead of a straight
leafspring an accurate analytical expression for the additional sti�ness in z�direction due
to the axial residual force is best analyzed by a �nite element analysis. Furthermore, since
the residual stress has a main contribution to the vertical sti�ness of the MEMS structure,
the �nite element model is also needed to obtain an accurate estimation of the additional
sti�ness and to validate the analytical approximations.

A.5 Squeeze �lm damping

When a plate has M rows and N columns of evenly contributes holes the force contribution
due to perforation is given by [20]
If M and N are even

fperf = 4(�1)(m+n�2)=2 sin
�
m�lh
2L

�
sin

�
n�lh
2W

� (N�1)=2X

i=((N�1)=2)

cos
�
m�iq
L

� (M�1)=2X

j=�((M�1)=2)

cos
�
n�jq
W

�

(A.31)
where lh = 2

p
�ri and q is the pitch of the holes.

If M and N are odd

fperf = 4(�1)(m+n�2)=2 sin
�
m�lh
2L

�
sin

�
n�lh
2W

� N�1X

i=�(N�1)

cos
�
m�iq
L

� (M�1)X

j=�(M�1)

cos
�
n�jq
W

�

(A.32)
where i! i+ 2 and j ! j + 2
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Appendix B

Intermediate validations and FEM
models

This appedices describes some intermediate validations. In Section B.1.1 the torsional rigid-
ity for homogeneous and composite cantilever beams will be validated. In Section B.2 the
radius of the surrounding sphere around two electrically loaded plates will be determined
such that the �nite sphere has negligible in
uence on the results.

B.1 Sti�ness validations and FEM models

B.1.1 Validation of homogeneous and composite 
exural and torsional
rigidities

To validate the torsional rigidity for a homogeneous cantilever plate in (3.41), a cantilever
plate is modeled in Ansys. The cantilever plate has dimensions L�W � t. The length L is
variable between 30 to 100 µm, the width W is �xed at 15 µm and the thickness t at 2 µm.
These dimesions are choses such that they are comparable to the dimensions of part A of the
actual leafspring. The material properties are the same as for SiC (see Table 2.2). In Ansys
one end has a �xed constrained whereas a torque of 10 nN m is applied to the other end. The
mesh is build of cubic SOLID186 elements, which is a higher order 3D 20-node element and
exhibits quadratic displacement behavior. Over thickness of the cantilever beam there are
two elements. Figure ?? shows this FEM model.

The tip rotation of a bar is related to the applied torque according to

�(L) =
TL
GJ

(B.1)

For validation J is taken to be J1 (3.9), Ja=b (3.10) and JCW (3.41) respectively. Figure B.1
shows the results of the comparison between analytical and FEM results. As can be seen
using the de�nition of J1 the error increases for increasing length of the cantilever plate.
The analytical and FEM results show a di�erent tendency. However, including the �nite
width of the beam using Ja=b gives a decreasing error over increasing length (as expected).
For lengths L <50 µm the error is larger than 5%. This is due to the increasing relevance
of warping for shorter plates. Indeed including a constraint against warping as in (3.41) the
error decreases.

To validate the torsional rigidity for a composite plate as determined in (3.37) and (3.42)
a FEM model is build of a cantilever plate where L and W are kept the same. The plate
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B.1. STIFFNESS VALIDATIONS AND FEM MODELS

Figure B.1: The analytical and numerical determined tip rotations of a homogeneous cantilever plate
of variable length and the corresponding error

consists of two layers of material: layer 1 SiC of thickness t1 =1:5 µm and layer 2 Al of
thickness t2 =400 nm. The thicknesses and materials are choses such that they are equally
to the structure of the actual leafspring. Again the model is build in Ansys and the mesh
is de�ned such that each layer has 4 elements in thickness. So the total beam has 8 cubic
elements in thickness. The other properties of the FEM model are equally as the FEM model
of the homogeneous cantilever plate. Figure B.3 shows the FEM model of the composite
cantilever plate.

Figure B.2: The �nite element model of the
homogeneous cantilever plate build
with SOLID186 cubic elements with
two layers over thickness

Figure B.3: The �nite element model of the
composite cantilever plate build
with SOLID186 cubic elements with
in each layer four elements over
thickness.

Again the analytical and FEM tip rotations are compared. GJ is taken to be (GJ)e from
(3.37) and (GJCW )e from (3.42).

Figure B.4 shows the results of the comparison between analytical and FEM results. As
can be seen using the de�nition of (GJ)e gives a decreasing error over increasing length (as
expected). For lengths L <50 µm the error is larger than 5%. This is due to the increasing
relevance of warping for shorter plates. Indeed including a constraint against warping as in
(3.42) the error decreases. However, now the error slightly increases for lengths of L � 100µm.
This could be caused by the assumption of the e�ective Poisson’s ratio as in (5.4). However,
the error is between 1-2% which is considered to be accurate.

To validate the 
exural rigidity the same FEM models are used as for the validation of the
torsional rigidities. However, now a tip load of 10 µN in transverse direction is applied to the
cantilever plate. For the homogeneous cantilever plate the maximum error is smaller than
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B.1. STIFFNESS VALIDATIONS AND FEM MODELS

Figure B.4: The analytical and numerical determined tip rotations of a composite cantilever plate
of variable length and the corresponding error

1% and decreases over increasing length. The error for the 
exural rigidity of the composite
plate (as de�ned in (3.35)) is smaller than 1.6% and decreases over increasing length, as can
be seen in Figure B.5

Figure B.5: The analytical and numerical determined tip displacements of a composite cantilever
plate of variable length and the corresponding error

So both the 
exural (3.35) and torsional rigidity (3.42) for a composite cantilever plate
are properly derived.

B.1.2 Figures of leafspring FEM models

Figure B.6 shows the �nite element model of the homogeneous leafspring as is build in
Ansys and Figure B.7 shows the FEM of the composite leafspring. There the yellow layer
corresponds to the electrode and the red layer to the structural SiC layer.
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B.2. DETERMINATION OF THE SURROUNDING SPHERE

Figure B.6: The FEM of the homogeneous leafspring as is build in Ansys. As can be seen the
model has �ve layers of elements over the thickness of the leafspring.

.

Figure B.7: The FEM of the homogeneous leafspring as is build in Ansys. The yellow layer corre-
sponds to the electrode and the red layer to the structural SiC layer. The electrode has
3 elements over thickness and the structural layer �ve elements.

.

B.2 Determination of the surrounding sphere

To validate the expressions for the capacitance of the parallel plate capacitor a FEM analysis
is done using Comsol. To analyze the electric �eld, a model of two parallel plates of
150�150�2 µm is used. The gap between the plates is de�ned to be h =500 nm. These
dimensions are chosen such that they correspond to the actual dimensions of the MEMS
stage. Since the electric �eld also exists outside the gap between the plates, a surrounding
sphere has to be de�ned. This sphere should be su�ciently large, which has to be determined.
Figure B.8 shows the parallel plates captured in a sphere. To �nd an appropriate radius of the
sphere two di�erent boundary conditions are supposed. First the capacitance is determined
using a zero charge boundary condition at the sphere. Secondly the sphere is considered
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to be perfectly conductive. Figure B.9 shows the two computed solutions for di�erent radii
including the average.

Figure B.8: The parallel plates in a surrounding
sphere.

Figure B.9: The capacitance of the parallel
plates as function of the radius of
the surrounding box.

For a radius of 150 µm, the di�erence in solutions is only 0:15% which is considered to be
accurate enough. In validation of Chapter 4 always a surrounding sphere with radius 150 µm
will be used. All results given are the average of the results using a perfectly insulating and
fully conductive boundary condition.

B.3 FEM calculation of a 
apping mode

Due to an optimization of the cooridnates of the connection of the leafsprings to the top
plate, ‘
apping modes’ are prevented as much as possible. This means that 
apping modes
only occur at very large frequencies. Flapping modes are the modes where for example
the corners of the plate vibrate with a large amplitude whereas the body of the plate only
vibrates with small amplitudes. The �rst 
apping mode appears around 1:9 MHz. Figure
B.10 shows this 
apping mode determined by Comsol. In this �gure the displacements are
normalized by the maximum displacement.
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Figure B.10: The �rst 
apping mode of a quarter of the MEMS stage. The displacements are
normalized with respect to the maximum displacement.

.



Appendix C

Radio Frequency Capacitive
Measurements

The capacitance of the electric loaded plates changes when the distance between the plates
changes. Using Radio Frequency signals the change in capacitance can be measured. Know-
ing the capacitance of the MEMS stage enables to determine the distance between the plates.
In Section C.1 the experimental setup and theoretical background are presented. In Section
C.2 some problems regarding the measurements are described.

C.1 Experimental Setup

Figure C.1 gives a schematic of the experimental setup. A Voltage Controlled Oscillator
(VCO) is used to generate a radio frequency signal of 2:45 GHz. This signal is ampli�ed
(and attenuated) to approximately 20dBm. Via a splitter a signal of 10dBm is sent to the
Local Oscillator (LO) of the IQ-demodulator. The other part of the signal goes through
a circulator to the MEMS. A Bias-T is used to merge the RF signal and the DC driving
signal. At the MEMS the signal re
ects with a certain amplitude and phase and goes via
the circulator to the IQ-demodulator. Using the In-phase (I) and Quadrature (Q) signals
the capacitance of the MEMS can be derived.

Figure C.1: The experimental setup for RF capacitive measurements [3].
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C.1.1 Theory

The RF signal sent to the MEMS is re
ected with a certain re
ection coe�cient �A. However,
due to phase shifts and losses in cables and other passives the measured re
ection coe�cient
�M is not equal to the actual re
ection coe�cient. Figure C.2 presents how this can be
modeled. This system can be written as [16]

Figure C.2: The experimental setup shown as a one-port system.

�
b1
b2

�
=

�
S11 S12
S21 S22

� �
a1
a2

�
: (C.1)

The measured re
ection coe�cient is given by [16]

�M =
b1
a1

= S11 +
�AS12S21

1� �AS22
: (C.2)

The measured re
ection coe�cient is constructed from the In-phase (I) and Quadrature Q
signals according to

�M = rej� =
p
I2 +Q2ej arctan(Q=I): (C.3)

The components of the error matrix S11 and S22 and the product S12S21 can be determined
by replacing the MEMS with a device with known re
ection coe�cients. For an open end
the re
ection coe�cient is �A = 1, for a short end �A = �1 and for and 50 
 load �A = 0.
By substituting these values into (C.2)

�load = S11; (C.4)

�open = S11 +
S12S21

1� S22
; (C.5)

�short = S11 �
S12S21

1 + S22
: (C.6)

Rearranging gives

S22 =
�open � 2�load + �short

�open � �short
; (C.7)

S12S21 = (�open � �load)(1� S22) = (�load � �short)(1 + S22): (C.8)

Using (C.2) �A can be written as a function of �M and the components of the error matrix
according to

�A =
�M � S11

S12S21 + S22(�M � S11)
(C.9)
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The impedance can be calculated as [16]

Z = Z0
�A + 1
�A � 1

; (C.10)

where typically Z0 = 50
. The impedance is a complex number with the real part R
the resistivity and the complex part the reactance Xc. The reactance is a function of the
capacitance according to

Xc = �
1
!C

; (C.11)

where C is the capacitance and in this case ! = 2� � 2:45� 109. When the initial gap height
h0 between the plates is known, the actual distance between the plates h can be determined
using

h =
C0h0

C
; (C.12)

where C0 is the measured capacitance of the MEMS when no driving voltage is applied.

C.2 Issues regarding RF measurements

C.2.1 White light interferometry measurements

Since no useful signals were measured using the RF circuit, white light interferometry mea-
surements are were to �nd whether the MEMS stage responses to an applied voltage. The
measurments were executed by Guido Gubbels (TNO). The MEMS stages were disconnected
from the RF circuit and only connected to a power supply. First the pro�le of the MEMS
stage was measured without a voltage over the electrodes. Then di�erent voltages were ap-
plied, however no movement of the top plate was detected. At a voltage of 25 V the contacts
to the top electrodes melted which means that there was a voltage at the electrodes. So that
no movement of the top plate was detected could have two possible reasons: �rst the MEMS
stages were already collapsed against the bottom electrode and stick together, secondly the
top electrode was not properly released, remaining dust between the plates prevent the top
electrode from moving. To check the second reasoning, another white light interferometry
measurements were done. Using sticky tape the top plate was carefully removed from the
MEMS stage. Then the bottom side of the top electrode could be analyzed and it could be
seen whether there is remaining material between the plates or not. Two top plates where
removed from the MEMS stages. One top plate was lost before measurements could be done.
Checking the remaining part it appeared that this top plate was broken diagonally and that
half the top plate was still at the MEMS stage. The other one was pulled of completely,
except for the lens. This is remarkable since it was expected that the lens would come o�
more easily due to the larger gap size. Thus it could be that there is remaining material
underneath the lens. The remaining bottom electrode and the bottom side of the top plate
did not have any remaining material as can be seen in Figures C.3 on page 101 and C.4 on
page 102.

After this it was decided to contact the party that has manufactured the MEMS stages.
They have analyzed the MEMS stages and they also think the MEMS stage is not properly
realeased. At the moment of writing they are doing a larger etching time on a wafer with
non-released devices. Secondly, we heard that it was decided to leave te material underneath
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the lens to save costs. This means there is no hole in the substrate and in the top electrode.
Figure C.5 shows the design plan of the MEMS stage and the realized design.
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Figure C.3: The remaining lens of the top plate and the total bottom electrode visible
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Figure C.4: The remaining lens of the top plate and the total bottom electrode visible
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Figure C.5: The design plan and the realized MEMS stage. One half of the picture represents the
design plan and the other half the realized device. As can be seen in the realized device
there is no hole in the substrate and underneath the lens.
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