The Philips Remote Al Streaming (PRAIS) platform

Citation for published version (APA):
Mennens, R. J. P. (2020). The Philips Remote Al Streaming (PRAIS) platform. Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/10/2020

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Jul. 2022

https://research.tue.nl/en/publications/a50b48c7-c35a-42ed-8abd-2193f5e705f5

PDEng THESIS REPORT
The Philips Remote Al Streaming (PRAIS)
platform

Robin Mennens
October 2020
Department of Mathematics & Computer Science

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The Philips Remote Al Streaming (PRAIS) platform

Robin Mennens

October 2020

Eindhoven University of Technology
Stan Ackermans InstituteSoftware Technology

PDENngReport: 2020/060

Confidentiality StatusPublic

Partners

Philips Eindhoven University of Technology

Steering Group Marcel Quist
Zoran Stankovic

Alexander Serebrenik

Date October2020

Composition of the Thesis Evaluation Committee:

Chair: Mark van derBrand
Members: ReinderBril
Ihor Kirenko
Marcel Quist

Zoran Stankovic

Alexander Serebrenik

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct

Date

Contact address

Published by
PDENg Report

Abstract

October, 2020

Eindhoven University of Technology

Department of Mathematics and Computer Science
Software Technology

MF 5.086

P.O. Box 513

NL-5600 MB

Eindhoven, The Netherlands

+31 (0)40 247 9111

Eindhoven University of Technology
2020/060

An extremely relevant topic for Philips (and healthcare in general),
is Arti cial Intelligence (Al), which has the potential to improve
many aspects of people’s lives. Relatively new Al data sources in-
clude audio/video/data streams that deliver data in real time and
enable many new Al use cases. While the combination of Al and
streaming has signi cant potential, there are several obstacles to
tackle: care providers do not always have the required (expen-
sive) hardware to use Al algorithms, care providers rarely have
the required knowledge and infrastructure to develop and main-
tain streaming technology, Al algorithms are not always easy to
integrate because they are developed using different technologies,
and Al algorithms are hard to replace once integrated. Aiming
to tackle these obstacles and to enable Al streaming use cases,
Philips Research is maturing remote Al streaming: the remote (in
the cloud or on premise) execution of Al algorithms that take an
audio/video/data stream as input and/or output. In this work, we
present the Philips Remote Al Streaming (PRAIS) platform, which
allows developers to easily build applications that require real-time
audio/video/data streaming functionality. With such functionality,
PRAIS enables Al streaming use cases and tackles the above-listed
obstacles. As a platform, PRAIS bene ts both Philips and its open
innovation partners. We evaluated PRAIS during two collabora-
tions. Firstly, a group of bachelor computer science students used
PRAIS to develop demonstrators that show how PRAIS enables the
sharing of Al algorithms among hospitals and the real-time analy-
sis of Neonatal Intensive Care Unit (NICU) video and sensory data.
A usability study with the students shows that PRAIS is considered
easy to use. Secondly, in a collaboration with Maxima Medisch
Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for research purposes.

Keywords

Preferred reference

Partnership

Disclaimer Endorsement

Disclaimer Liability

Trademarks

Copyright

Al, streaming, real-time, cloud, healthcare, platform

The Philips Remote Al Streaming (PRAIS) platform. Eindhoven
University of Technology, PDEng Report 2020/060, October 2020.

This project was supported by Eindhoven University of Technol-
ogy and Philips

Reference herein to any speci ¢ commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the Eindhoven University of Technology and
Philips. The views and opinions of authors expressed herein do
not necessarily state or re ect those of the Eindhoven University
of Technology and Philips, and shall not be used for advertising or
product endorsement purposes.

While every effort will be made to ensure that the information con-
tained within this report is accurate and up to date, Eindhoven Uni-
versity of Technology makes no warranty, representation or under-
taking whether expressed or implied, nor does it assume any legal
liability, whether direct or indirect, or responsibility for the accu-
racy, completeness, or usefulness of any information.

Product and company names mentioned herein may be trademarks
and/or service marks of their respective owners. We use these
names without any particular endorsement or with the intent to in-
fringe the copyright of the respective owners.

Copyright ® 2020, Eindhoven University of Technology. All
rights reserved. No part of the material protected by this copyright
notice may be reproduced, modi ed, or redistributed in any form
or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system,
without the prior written permission of the Eindhoven University
of Technology and Philips.

Eindhoven University of Technology

Abstract

An extremely relevant topic for Philips (and healthcare in general), is Arti cial Intelligence (Al),
which has the potential to improve many aspects of people’s lives. Relatively new Al data sources
include audio/video/data streams that deliver data in real time and enable many new Al use cases.
While the combination of Al and streaming has signi cant potential, there are several obstacles to
tackle: care providers do not always have the required (expensive) hardware to use Al algorithms,
care providers rarely have the required knowledge and infrastructure to develop and maintain stream-
ing technology, Al algorithms are not always easy to integrate because they are developed using
different technologies, and Al algorithms are hard to replace once integrated. Aiming to tackle these
obstacles and to enable Al streaming use cases, Philips Research is maturing remote Al streaming: the
remote (in the cloud or on premise) execution of Al algorithms that take an audio/video/data stream
as input and/or output. In this work, we present the Philips Remote Al Streaming (PRAIS) platform,
which allows developers to easily build applications that require real-time audio/video/data streaming
functionality. With such functionality, PRAIS enables Al streaming use cases and tackles the above-
listed obstacles. As a platform, PRAIS bene ts both Philips and its open innovation partners. We
evaluated PRAIS during two collaborations. Firstly, a group of bachelor computer science students
used PRAIS to develop demonstrators that show how PRAIS enables the sharing of Al algorithms
among hospitals and the real-time analysis of Neonatal Intensive Care Unit (NICU) video and sensory
data. A usability study with the students shows that PRAIS is considered easy to use. Secondly, in a
collaboration with Maxima Medisch Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for research purposes.

The Philips Remote Al Streaming platform i /Version 1.0

Eindhoven University of Technology

i The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Foreword

It is such a privilege that we have been able to witness the growth path of the PDEng education from
multiple angles. First of all, being a PDEng student myself in the past, | learned to appreciate the
multi-disciplinary technology design approaches. Secondly, with the PDEng Software Technology
international team we worked closely on a fun Arti cial Intelligence (Al) demonstrator assignment
with 18 fellow international PDEng students and our team, and that was where we rst met. And now,
over the last 10 months, we witnessed your personal growth from closeby within our team. A warm
and positive experience!

Where the rst team assignment was about exploration for a fun and inspiring demonstrator, showing
what you can do with already available Al in the cloud, your nal assignment has been a major step in
technical complexity, while adapting to the stakeholders’ expectation levels. You were able to do that
in a Philips research settings where we seek and design health solutions based on customer insights
and needs. Where the requirements are typically in ux and never carved in stone. You actually
supported and drove the process to get these requirements clear and focused by rapid prototyping,
inspiring by tangible examples and most of all nowadays empowering co-creation to unleash the
talents of many others. This is in high level terms our envisioned assignment.

Now more speci cally on the topic, Robin turned a preliminary proof of concept into a real “‘Access
to Al’ platform - to stream audio and video data sources (e.g. from camera, screen share, or commu-
nication apps) from wherever in the world, to an Al algorithm wherever in the world (e.g. Microsoft,
Google, and Amazon clouds, as well as dedicated Philips Healthcare Al solution components).

This impacts people. Experts, e.g. physicians who own the video data sources can work to-
gether with global experts owning or developing Al algorithms.

This impacts resources. The ubiquitous streaming enables free design of resource distributions
on-premise or in the cloud instead of inevitable embedded approaches.

This impacts speed of innovation. The streaming connection to Al is simpli ed, so researchers
and innovators can rely on provided initial set-up and can dedicate more time to their targeted
use cases. (e.g. PhD students with an assignment of 3 years may otherwise spend signi cant
amount of time e.g. approximately 10 months with the setup alone).

| observed with pleasure how you merged naturally in our Philips Research ‘Scalable Service De-
livery’ team, with other interns coming and going. And step-by-step grew your contributions and
position in the team. How you drove and supported the assignment of the TU/e SEP students team of

The Philips Remote Al Streaming platform iii /Version 1.0

Eindhoven University of Technology

12, asa rstvalidation of ‘unleashing talent of many others’, resulting in inspiring demonstrators. Up
to the moment we pulled you in a customer facing position to co-create with PhD’s, researching new
video use cases.

In a report that is published in 2020, at least one reference to COVID-19 must appear somewhere, and
where better than in this foreword? The team circumstances changed considerably in your 3rd month
of the assignment (March 2020) when the of ces closed down and working from home became the
new norm. Thank you for the quick and easy adaption to this new reality in keeping up the team
spirit alongside impressive contributions to the ‘Scalable Service Delivery’ team and Philips.

As said, | consider it a privilege knowing you personally and being in the position to ‘add your name’
to the annals of our joint working history in Philips!

Thank you!

Eindhoven, September 25, 2020
Marcel Quist and Zoran Stankovic

iv The Philips Remote Al Streaming platform / \ersion 1.0

Eindhoven University of Technology

Preface

This document is the main deliverable of the Philips Remote Al Streaming (PRAIS) platform project
and describes the process of designing and implementing PRAIS. PRAIS is a platform that allows
developers to easily build applications that require real-time audio/video/data streaming functionality.
With such functionality, PRAIS enables Al streaming use cases and tackles many technical challenges.
Example use cases include:

Real-time analysis of Intensive Care Unit (ICU) video and vital sign data can provide faster and
more accurate detection of anomalies, such as apnea in neonates.

Real-time pose detection of patients can be used to quickly detect seizures.

Speech to text transcription enables features such as real-time (translated) subtitles, automatic
transcription of a doctors consult, and real-time sentiment analysis.

As a platform, PRAIS bene ts both Philips and its open innovation partners.

This project was carried out by Robin Mennens as part of his ten-month Software Technology (ST)
Professional Doctorate in Engineering (PDENg) graduation project. The project was carried out within
Philips Research.

The target audience of this document mainly includes people with a technical (computer science)
background with an interest in PRAIS. Chapters 1, 2, and 6 are recommended reading material for
people with a non-technical background.

Eindhoven, September 25, 2020
Robin Mennens

The Philips Remote Al Streaming platform v / Version 1.0

Eindhoven University of Technology

vi The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Acknowledgements

This project would not have been possible without numerous people | was happy to work with.

Firstly, I would like to thank my company supervisors Marcel Quist and Zoran Stankovic. From day
one | felt welcome and part of the team. 1 learned a lot and was really inspired by your enthusi-
asm, creativity, and teamwork. This project would not have been possible without your support and
supervision. Marcel, thank you for showing me around and inspiring me with the amazing things
happening within Philips Research. Zoran, thank you for taking the time to explain and introduce me
to the complex domain of real-time streaming. | de nitely learned a lot on a technical level. Also a
big thank you to Arjan, who was always able to help me out with technical issues. It was a pleasure
working with you.

I would like to thank my TU/e supervisor Alexander Serebrenik for his supervision, guidance, and
extensive feedback throughout. This work would not have been possible without your supervision.
A special thank you for the valuable teachings regarding usability studies. | de nitely learned a lot
there.

A special thanks to the other team members. Melis and Livia, while our time together was short,
thank you for the warm welcome and nice dinner we had together. | want to thank Roel and Ralitsa
for their amazing work on the apnea and pose detection algorithms. Without your help, the SEP
project de nitely would have been much more of a struggle. Thank you Priyanka for your support
and the valuable discussions that we had. Last but not least, | want to thank Hubrecht for his inspiring
work and humor.

I want to thank my fellow PDEng trainees for the interesting, valuable, and especially fun times we
had. A special thanks to Yanja Dajsuren and Dg@sir@e van Oorschot for their guidance and support
throughout the last two PDENg years.

A word of appreciation goes to the external Thesis Evaluation Committee members Reinder Bril, Ihor
Kirenko, and Mark van den Brand. Thank you for taking the time to read my thesis and to grade my
work.

Finally, I would like to thank my family and friends for supporting and encouraging me throughout.

Eindhoven, September 25, 2020
Robin Mennens

The Philips Remote Al Streaming platform vii / Version 1.0

Eindhoven University of Technology

viii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Executive Summary

Arti cial Intelligence (Al) has the potential to improve many aspects of people’s lives, and thereby
coincides perfectly with the Philips ambition to improve the lives of three billion people per year by
2030. Relatively new Al data sources include audio/video/data streams that deliver data in real time
and enable many new Al use cases. For example:

Real-time analysis of Intensive Care Unit (ICU) video and vital sign data can provide faster and
more accurate detection of anomalies, such as apnea in neonates.

Real-time pose detection of patients can be used to quickly detect seizures.

Speech to text transcription enables features such as real-time (translated) subtitles, automatic
transcription of a doctors consult, and real-time sentiment analysis.

While the combination of Al and streaming has signi cant potential, the harmonized platform services
at Philips do not yet provide out-of-the-box streaming functionality. Aiming to |l this technologi-
cal gap, we developed the Philips Remote Al Streaming (PRAIS) platform, which enables remote
Al streaming: the remote (in the cloud or on premise) execution of Al algorithms that take an au-
dio/video/data stream as input and/or output. As an Al co-creation platform, PRAIS bene ts both
Philips and its open innovation partners. In particular:

PRAIS allows Al algorithms to run in the cloud or on premise, providing easy access to Al.

By using PRAIS, care providers do not need complex technical knowledge and expensive in-
frastructure to use Al.

PRAIS enables many valuable use cases that involve Al streaming algorithms.
As an Al co-creation platform, PRAIS allows Al developers to easily expose their algorithms.

We designed and implemented PRAIS based on four envisioned future use cases and have been able
to validate twice during two collaborations. Firstly, a group of ten bachelor computer science students
used PRAIS to develop demonstrators. By abstracting away the complexities of real-time streaming,
PRAIS enabled the students to build complex streaming applications in just six weeks. A usability
study with the students shows that PRAIS is considered easy to use. Secondly, in an open innovation
collaboration with Maxima Medisch Centrum we explored how PRAIS can be used to record NICU
baby footage. Such recordings are used for Al research purposes.

We recommend to further develop and mature PRAIS such that more use cases can be implemented.
In particular, we recommend integrating PRAIS with the Philips Realtime Communications Plat-
form [50], which would make Al even more accessible.

The Philips Remote Al Streaming platform ix /Version 1.0

Eindhoven University of Technology

X The Philips Remote Al Streaming platform / Version 1.0

Glossary

Al
PDEnNg
ST
TU/e
PSG
PMP
SDK
API
PR
S2S
P2P
ul
RTC

WebRTC

Peer
Conference
Participant

Algorithm

PRAIS

IRM

Eindhoven University of Technology

Arti cial Intelligence

Professional Doctorate in Engineering
Software Technology

Eindhoven University of Technology
Project Steering Group

Project Management Plan

Software Development Kit
Application Programming Interface
Philips Research

Screen to Screen

Peer to Peer

User Interface

Real Time Communication is the real-time exchange of infor-
mation, e.g., video, audio, and/or data streams, from a sender to
a receiver over any low-latency telecommunications connection.
Web Real-Time Communications is a collection of standards,
protocols, and Javascript APIs. It enables P2P audio, video, and
data RTC. With webRTC, latency is minimal because it uses real-
time protocols and P2P connections.

An entity that implements WebRTC and is thereby able to join a
conference.

A remote communication session between one or more peers us-
ing WebRTC.

A peer in a conference that is typically controlled/used by a hu-
man.

A peer in a conference that is not a participant. It is typically a
computer program that performs some calculations or executes
other problem-solving operations. It can be an Al, for example.
The Philips Remote Al Streaming platform is the system that
was designed and developed during this project.

The Innovation Rack Manager is a peer that adds/removes al-
gorithms to/from conferences.

The Philips Remote Al Streaming platform xi / Version 1.0

Eindhoven University of Technology

HSRA

HSDP

CAO
Javascript RTC API

Prototype C# RTC API

PRAIS C# API

NAT

STUN

TURN

Research RTC Backend

ICE

SDP
Secondary Storage

SSO

IP
PaaS
Cl/CD
TAM
mTAM
NPS
PU
PEU

The HealthSuite Reference Architecture is the Philips architec-
ture that guides and governs the individual solution architectures,
platform architectures, and product architectures in all Philips
healthcare domains.

The HealthSuite Digital Platform is the practical manifestation
of the HSRA. It is essentially a repository containing all tech-
nologies described in the HSRA.

The Chief Architect Of ce governs the HSRA.

The (mature) API developed by the PR team that got transferred
to the CAO.

The API developed within the PR team for demo purposes. As
a proof of concept, however, it was much less mature than the
Javascript RTC API. In particular, it was not designed as a plat-
form and does not contain a vendor abstraction layer.

The API that was designed and developed during this project.
Network Address Translation

Session Traversal Utilities for NAT

Traversal Using Relays around NAT

The set of entities that enable webRTC for the Javascript RTC
API, Prototype C# RTC API, and PRAIS C# API. In particular:
the STUN/TURN servers, the signaling and messaging servers,
and the orchestration service.

Interactive Connectivity Establishment is a technique used in
computer networking to nd ways for two computers to talk to
each other as directly as possible in peer-to-peer networking.

Session Description Protocol is a format for describing stream-
ing media communications parameters.

A collection of storage components not consisting of random ac-
cess memory or the part designated as swapping pool.

Single Sign On

Internet Protocol

Platform as a Service

Continuous Integration/Continuous Development
Technology Acceptance Model

modi ed TAM

Net Promotor Score

Perceived Usefulness

Perceived Ease-of-Use

Xii The Philips Remote Al Streaming platform / \ersion 1.0

Eindhoven University of Technology

List of Tables

2.1 Theidenti ed stakeholders for this project. 13

3.1 An overview of the non-functional requirements. Each non-functional requirement is
placed into a context, i.e.,anility. 23

4.1 A comparison of the different solutions we considered regarding the generation of
timestamps for recorded video frames. oo oL 29

4.2 Comparison of .NET Framework and .NET Core 30

4.3 Comparison of the ICELink in LiveSwitch tokencontents 35

5.1 An overview of all functional requirement categories (except the requirements with

7.1

D.1

J.1

J.2

L.1

won’t priority) and their implementation status at the end of the project. M, S, and
C stand for Must, Should, and Could respectively. IL and LS refer to ICELink and
LiveSwitch. Categories without IL or LS are the categories generic to the system. . . 46

A risk that we identi ed during the project. The ID, L, I, and P columns represent
Identi er, Likelihood, Impact, and Priority, respectively. The P column is color coded
with a gradient from red to yellow that represent high to low priority respectively. . . 59

A list of all the functional requirements. The requirements are categorized and priori-
ties follow the MoSCoW model: Must, Should, Could, Would. 87

The results of the questionnaire. Participant E mentioned he could not Il in questions
2, 3, 4, and 5, which is why he left them empty. In the analysis, we replaced these
empty values with the middle value 4, which is recommended by the mTam [LL 20]

The risks that we identi ed during the project. The ID, L, I, and P columns represent
Identi er, Likelihood, Impact, and Priority, respectively. The P column is color coded
with a gradient from red to yellow that represent high to low priority respectively. . . 186

The Philips Remote Al Streaming platform xiii / Version 1.0

Eindhoven University of Technology

Xiv The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

List of Figures

11

1.2

2.1

2.2

2.3

2.4

3.1

3.2

A conceptual overview of the Philips Remote Al Streaming (PRAIS) platform. Via
audio (blue), video (red), and data (green) streams, users (called participants) can
easily connect to Als or any other algorithm.

An overview of the existing system at the start of the project. The Prototype C#
RTC API was only a prototype, meaning that it served as a proof of concept. In
contrast, the more mature Javascript RTC API had already been transferred to the
CAQ to be incorporated into the HSRA. The Research RTC back-end mostly consists
of infrastructure required to set up audio/video/data streams.

Peers use a STUN server to discover their public IP. If a peer is behind a symmetric
NAT, then the peer uses a TURN server as a relay (in red). Otherwise, a direct P2P
connectionissetup (inblue).

A high-level overview of the system the PR team had in place at the start of this
project. The blue, yellow, and orange colors map to the similarly colored components
in Figure 2.3. Algorithms and participants use the Research RTC back-end to set up
webRTC audio/video/data connections among each other.

An overview of how the system the PR team had in place at the start of this project
was deployed. The blue, yellow, and orange colors map to the similarly colored com-
ponentsin Figure 2.2.

By using Al, we can detect the skeletal structure of a baby in an image. Colors are
used to more easily distinguish body parts.

A conceptual view of visualization streaming. In a typical setup (top), algorithms
stream their output over a data channel to a web application (which is used by a par-
ticipant) that then visualizes the output. In contrast, when using visualization stream-
ing (bottom), the algorithm rst streams the visualization code to the web application,
which has placeholders for such visualizations. After that, the algorithm streams its
output to the web application, which can then visualize the output.

Illustrated are the streaming infrastructures of the four use cases described in Sec-
tion 2.4 (top left: Section 2.4.4, top right: Section 2.4.1, bottom left: Section 2.4.2,
and bottom right: Section 2.4.3). Circles represent participants while squares rep-
resent algorithms. Audio, video, and data streams are represented by blue, red, and
greenarrows respectively.

16

The Philips Remote Al Streaming platform xv [Version 1.0

Eindhoven University of Technology

XVi

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

A visual overview of the PRAIS use cases. The Developer actor is shown to be only
associated with the Join Conference PRAIS use case, which is done to make the dia-
gram readable. In fact, a Developer can be involved in any of the PRAIS use cases.

A visual overview of the requirement categories (except for requirements with won’t
priority) and their relations. Colors indicate MoSCoW priorities where must, should,
and could, are dark'green, green, and yellow respectively.

A conceptual overview of the system developed by the SEP students.

A visual overview of the recording ow at MMC. The top part of the gure illustrates
which entities are involved in the recording pipeline while the bottom part details
which steps are executed by each entity (note the color mapping). In the bottom part,
dashed rectangles represent steps that we do not control, i.e., they are part of software
tools/components thatwe use.

An overview of all the packages and components of PRAIS. All arrows represent
a uses relationship. Overall, we have a Javascript package and a C# package that
each contain different components. Furthermore, the NuGet frame represents which
components are part of the PRAIS C# NuGet package.

The class diagram that represents the design of AlgorithmCore. Rectangles in green
represent interfaces that are implemented by the ICELink WebRTC Implementor and
LiveSwitch WebRTC Implementor. Note that, to make the diagram readable, not all
methods/properties are included. In particular, several asynchronous versions of meth-
ods are left out. The complete API speci cation can be found in Appendix G and
online [29]. e

The class diagram that represents the design of ICELink WebRTC Implementor. Rect-
angles in green represent the interfaces of AlgorithmCore. Rectangles in orange repre-
sent ICELink classes. Note that, to make the diagram readable, not all methods/prop-
erties are included. In particular, several asynchronous versions of methods are left
OUL. .

A sequence diagram representing the authentication ow implemented by the SEP
students for algorithms and participants. Algorithms use the client credentials grant
type [45] while participants use the implicit ow grant type [44]. The two bottom-
most event calls indicate how the LiveSwitch server noti es peers of certain events. .

A sequence diagram that illustrates the typical ManualSignaling ow of an algorithm
and participant. Furthermore, the diagram shows how the PRAIS Recorder Applica-
tion obtains a token (see Section 4.3.1). Blue lifelines represent the algorithm and the
channels that the algorithm subscribes to while orange lifelines represent the partici-
pant and the channels that the participant subscribes to. The yellow lifeline represents
the conference channel that both the algorithm and participant subscribe and publish
to. The messages/events in the red rectangle can essentially happen in any order. They

19

36

are shown here to illustrate what types of messages/events are sent over which channels. 38

A sequence diagram that represents the envisioned visualization streaming design . .

The Philips Remote Al Streaming platform / \ersion 1.0

40

4.9

4.10

51

7.1

B.1

C1

F.1

H.1

K.1
K.2

L.1

L.2

Eindhoven University of Technology

A visual overview of how different entities are deployed. This gure is an extended
version of Figure 2.3, which shows the deployment of the system at the start of this
project. Recall that yellow, orange, and blue colors refer to back-end, participant side,
and algorithm side entities, respectively. Lines/rectangles with a bold border are new
entities/connections. Dashed lines/rectangles represent connections/entities that were
modi ed.

A visual overview of how the software development is organized.

A visual overview of the hierarchical structure and categories that were identi ed after
card sorting. The numbers in parentheses represent: number of participants/number
of statements. For example, all ve participants provided tops about PRAIS using 69
statements. L

A milestone trend analysis chart that shows how milestones were planned and achieved
overtime. R.standsforReport.

A visual representation of P2P/SFU/MCU. Circles represent peers while squares rep-
resent a server. When using P2P, all peers connect to each other, resulting in a mesh
network. By using an SFU/MCU, a star network is created in which all traf ¢ goes
via the server. An MCU differs from an SFU in the sense that it merges all incoming
streams into a single outgoing stream, which is done perpeer..

During use case brainstorming, we would draw how participants and algorithms con-
nect among each other. This helped us understand how use cases differ/overlap and
provided insight into what functionality should be part of PRAIS.

The user interface of the PRAIS Recorder Application. The red rectangles indicate
four parts of the user interface that each have their own purpose.

The class diagram that represents the design of the LiveSwitch WebRTC Implementor.
Rectangles in green represent interfaces part of AlgorithmCore. Rectangles in orange
represent LiveSwitch classes. Note that, to make the diagram readable, not all meth-
ods/properties are included. In particular, several asynchronous versions of methods
areleftout. L

Source code for PRAIS.nUSpeC
Source code for Install.psl

The rst part of the Gantt chart that shows the project planning. The second part is
illustrated in Figure L.2

The second part of the Gantt chart that shows the project planning. The rst part is
illustrated inFigure L.1

41
43

51

58

71

74

98

115

174
175

178

The Philips Remote Al Streaming platform xvii / Version 1.0

Eindhoven University of Technology

XViii The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Contents
Abstract i
Foreword iii
Preface v
Acknowledgements vii
Executive Summary iX
Glossary Xi
List of tables xiii
List of gures xiii
1 Introduction 1
1.1 ProjectconteXt e 1
1.1.1 Philips Remote Al Streaming platform 2
1.1.2 Theoriginof PRAIS 3
12 ScopeandGoal 4
1.3 Outline 4
2 Problem analysis 5
2.1 WebRTC 5
2.2 WebRTCoproviders 6
221 ICELink 6
222 LiveSwitch 6
223 SUMMAIY e e e e e e 7
2.3 Theexisting system 7

The Philips Remote Al Streaming platform xix /Version 1.0

Eindhoven University of Technology

XX

2.4

2.5
2.6

UseCases v v v v i i i
2.4.1 Neonatal pose detection
2.4.2 Neonatal apnea detection
243 Algorithmsharing
2.4.4 Audio/videorecording
245 Summary
Algorithm and Al analysis
Stakeholder Analysis

System Requirements

3.1

3.2
3.3
3.4

Technicalgoals
3.1.1 Visualization Streaming
Requirement gathering
PRAISusecases
Requirement overview
3.4.1 Functional requirements
3.4.2 Non-Functional Requirements

PRAIS Architecture & Design

4.1
4.2
4.3

4.4

4.5

4.6
4.7

Veri
5.1

The 4+1 View model of architecture
Software Engineering Project (SEP)
Maxima Medisch Centrum
4.3.1 PRAIS Recorder Application.
Logical View
441 ThePRAISC#API.
ProcessView
451 Authentication
452 Manual Signaling

4.5.3 Connection setup implementation details

4.5.4 Visualization Streaming
Physical View
DevelopmentView

cation and Validation

Functional evaluation
511 Automated system testing

The Philips Remote Al Streaming platform / Version 1.0

10
10
11
11
12
12

15
15
15
16
18
20
20
22

25
25
25
26
28
29
31
34
34
36
39
40
40
42

52 Usability.
5.2.1 Usability Study Goal
5.2.2 Methodology
523 Results
5.2.4 Discussion and Conclusion
5.3 Vendor Abstraction
54 Installability
55 Deployability
56 Security
5.7 Integratability
5.8 Compatibility

6 Conclusion and Future Work

6.1 Recommendations and Future Work

7 Project Management

7.1 Wayofworking
72 Planning
7.3 Risk Management

7.4 Retrospective

Bibliography

About the author

A WebRTC Providers

B SFUand MCU

C Use Case Analysis

D Requirements

E SEP project description

F PRAIS Recorder Application

G PRAIS Documentation

Eindhoven University of Technology

55

.......................... 56

57

........................ 57
........................ 57
........................ 59
........................ 59

65

67

69

71

73

77

89

97

99

The Philips Remote Al Streaming platform xxi /Version 1.0

Eindhoven University of Technology

H Additional Design

I Usability Study Files

J PRAIS Usability Study Results
K NuGet generation

L Project management

XXii The Philips Remote Al Streaming platform / Version 1.0

115

117

123

173

177

Eindhoven University of Technology

The Philips Remote Al Streaming platform xxiii /Version 1.0

Eindhoven University of Technology

1 Introduction

In this chapter, we introduce the context of the problem statement (Section 1.1). Afterwards, in
Section 1.2, we de ne the project scope and goals. Finally, in Section 1.3, we provide an outline of
the report.

1.1 Project context

Philips [21], one of the leading health technology companies in the world, strives to make the world
healthier and more sustainable. In particular, its goal is to improve the lives of three billion people per
year by 2030 [21]. To this end, Philips Research (PR) [19], which is part of Philips, aims to provide
meaningful innovations that improve people’s lives. Also, being at the forefront of innovation puts
Philips in a stronger and more bene cial business position. Therefore, PR actively stimulates open in-
novation, in which PR leverages its knowledge, intellectual property, and technologies to collaborate
and innovate together with selected organizations. In practice, open innovation often manifests in a
situation in which Philips provides the technical infrastructure that enables others to innovate faster.
The leading architecture of such infrastructure is de ned by the Philips HealthSuite Reference Archi-
tecture (HSRA) [20]: a consistent, uni ed, and company-wide approach to architecture and platform
development. In particular, the HSRA provides a framework of shared rules, guidelines, APls, data
models, and technology choices that centralize customer experience and stimulate innovation. The
practical manifestation of the HSRA is Philips’ HealthSuite Digital Platform (HSDP) [49]. Since
these two refer to the same concept, we only refer to the HSRA in the remainder of this work. While
the Philips Chief Architect Of ce (CAO) is responsible for managing and updating the HSRA, one of
the main goals of PR is to mature and validate new technologies such that they can be adopted in the
HSRA. Overall, the HSRA is used within Philips itself and by open innovation partners.

An extremely relevant topic for Philips (and healthcare in general), is Arti cial Intelligence (Al),
which has the potential to improve many aspects of people’s lives. Philips is already actively using
Al in the medical data interpretation domain, in which Al is used to detect/interpret medical data. Be-
cause Philips sees signi cant potential in this domain, many new research projects are being started.
For example, to improve aspects such as availability and deployability of Al, PR is maturing technolo-
gies to bring Al to the cloud. In addition, relatively new data sources in the medical data interpretation
domain are audio/video/data streams. Such streams deliver data in real time and enable many new Al
use cases. For example, an Al algorithm that monitors the vitals and a video of a prematurely born
baby can be used to detect apnea faster and more reliably [Mon20, SBM™ 15].

The combination of Al in the cloud and streaming is what the PR Scalable Service Delivery team
(hereafter referred to as PR team) is investigating. This project took place in the PR team, which
is maturing the technology and developing the infrastructure required for remote Al streaming: the

The Philips Remote Al Streaming platform 1 /Version 1.0

Eindhoven University of Technology

remote (in the cloud or on premise) execution of Al algorithms that take an audio/video/data stream
as input and/or output. Reasons for developing such technology include:

The technology enables remote Al streaming use cases (see Section 2.4 and Appendix C).

Hospitals or other care providers do not always have the required hardware to run certain Al
algorithms. Such hardware is often expensive and requires maintenance.

Hospitals or other care providers rarely have the required knowledge and infrastructure to de-
velop and maintain streaming technology.

Algorithms are not always developed using the same technologies. Consequently, in a typical
scenario where algorithms are directly integrated with the systems that use them, integration
can be non-trivial.

In a setting where an algorithm has been integrated into existing systems, whenever the algo-
rithm is modi ed/improved, then all systems using that algorithm need to be updated.

In addition to PR, there are other parties such as academic hospitals that also develop Al. For
them, there are several technical and non-technical reasons (see Section 2.4.3) to not share their
developed algorithms.

The above listed issues indicate a need for technical infrastructure that allows the easy setup of au-
dio/video/data streams between remote peers. Such technology would drive open innovation and
would be a valuable addition to the HSRA. In this work, we present the Philips Remote Al Streaming
(PRAIS) platform, which aims to 1l this newly identi ed technological gap.

1.1.1 Philips Remote Al Streaming platform

During this project, aiming to tackle the above-mentioned issues, we developed the Philips Remote Al
Streaming (PRAIS) platform (see Figure 1.1). At the foundation of PRAIS, lies Web Real-Time Com-
munications (webRTC) [6], which is the streaming technology that enables real-time communication
between peers. Built on top of that, is a set of easy-to-use Application Programming Interfaces (APISs)
that enable developers to easily set up streams between Al algorithms and other peers. Combined with
the provided infrastructure, PRAIS is a platform with which we aim to tackle the above-mentioned
issues and turn these into innovation opportunities:

Streaming use cases: PRAIS enables many valuable use cases that involve streaming Al algo-
rithms (see Section 2.4 and Appendix C).

Open innovation: As a platform, PRAIS can be used by other organizations, allowing them
to more quickly develop and use streaming Al algorithms. They do not need the technical
knowledge/infrastructure anymore to do this.

Technical obstacles: With PRAIS, we tackle several technical obstacles:

Accessibility: By running algorithms remotely (on Philips hardware), the algorithm func-
tionality becomes much more accessible. In theory it could be used from any device, e.g.,
smartphone, tablet. Furthermore, hospitals or other healthcare entities can save money
because they do not have to buy/maintain expensive hardware.

Deployability and Replaceability: Individual algorithms can be deployed/updated/re-
placed without signi cantly affecting other algorithms/systems.

2 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

$SUWLIL
,QWHOC

$OJRU @ \ 3DUWLF

Figure 1.1: A conceptual overview of the Philips Remote Al Streaming (PRAIS) platform. Via audio
(blue), video (red), and data (green) streams, users (called participants) can easily connect to Als or
any other algorithm.

Composability: Algorithm functionality can be composed for different purposes.
Scalability: New algorithm instances can be spawned depending on the system load.

Technology Heterogeneity: PRAIS standardizes the communication between algorithms,
meaning that the algorithms themselves can be implemented using different technologies.

At the start of this project, the PR team already had a system in place, which formed the starting point
of PRAIS. In Section 1.1.2 we describe this system.

1.1.2 The origin of PRAIS

As described before, PR matures and validates technologies to be incorporated in the HSRA. To this
end, PR employs three research phases:

1. Exploration phase: Explore whether a concept be interesting. Read, talk, sketch, and validate.
2. Proof of concept: Build demos and/or do in-house pilots in a safe environment.

3. Advanced development: Develop a pilot at an actual customer/partner. Further advertise the
technology within PR using demonstrators/pilots/proofs of concept.

These phases are all about maturing technology to a level where it can be adopted into the HSRA.
This means that others (the CAO, for example) need to be convinced that the technology is mature
enough. In practice, this entails the building of demonstrators/pilots/proofs of concept. Furthermore,
an important driver behind such convincing is whether the technology serves a valuable business case.

At the start of the project, the PR team already had a system in place (see Figure 1.2). This system
formed the basis of PRAIS and it had already gone partially through the PR research phases. More
speci cally, webRTC [6] is a technology that the PR team matured through the advanced development

The Philips Remote Al Streaming platform 3 /Version 1.0

Eindhoven University of Technology

$OJRULWKPV 3DUWLFLSDG
5HVHDURK|5
%DFNHQEG
3URWRW\SB &35 > < > _DYDVFURBSH¥B,5
I = = oo >

$XGLRGHR 'DWD VWUHDPYV

Figure 1.2: An overview of the existing system at the start of the project. The Prototype C# RTC
API1 was only a prototype, meaning that it served as a proof of concept. In contrast, the more mature
Javascript RTC API had already been transferred to the CAO to be incorporated into the HSRA. The
Research RTC back-end mostly consists of infrastructure required to set up audio/video/data streams.

phase, to be incorporated into the HSRA. WebRTC functionality is exposed via the Javascript RTC
API (see Figure 1.2) to participants, who get access to RTC functionality by using web applications.
In particular, the API contains a vendor abstraction layer that makes sure the same functionality can be
provided using different implementations. This is an important requirement from the HSRA, which
aims to prevent vendor lock-in as much as possible.

To enhance the Javascript RTC API and to prove the concept of remote Al streaming, the PR team
developed the Prototype C# RTC API. This API brings webRTC functionality to C# algorithms (this
was a given for this project), enabling audio/video/data streaming between algorithms and partici-
pants. With the Prototype C# RTC API, the PR team proved the potential of remote Al streaming
and led a patent on it. As a proof of concept, however, the Prototype C# RTC APl was much less
mature than the Javascript RTC API. It was not designed as a platform and does not contain a vendor
abstraction layer. All in all, the Prototype C# RTC API had only reached the end of the proof of
concept phase and during this project we aim to mature it through the advanced development phase.

1.2 Scope and Goal

Given the project context (Section 1.1) and the existing system (Section 1.1.2), the scope, main goal,
and the sub-goals of this project are:

G1 Mature remote Al streaming such that it reaches a maturity level that is suitable for the advanced
development phase. This means that:
(a) PRAIS is ready to be used by open innovation partners.
(b) Demonstrators that show the potential of PRAIS have been implemented.

In the remainder of this work, we refer to these (sub)goals as: (GX), where X indicates the goal
number. In Section 3.1, we describe a set of technical goals that follow from these (sub)goals.

1.3 Outline

In the remainder of this document, we rst provide a more in-depth problem analysis in Chapter 2.
After that, in Chapter 3, we describe the requirements gathering process and provide an overview of
the requirements. Then, in Chapter 4, we describe the architecture and design of PRAIS. Following
that, we describe how we veri ed and validated PRAIS in Chapter 5. Then, in Chapter 6, we provide
a conclusion and directions for possible future work. Lastly, in Chapter 7, we describe the project
management process and provide a retrospective on this project.

4 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

2 Problem analysis

To better understand the problem at hand, we investigated both technical and non-technical aspects,
which we describe in this chapter. In Section 2.1, we describe and explain webRTC, which is the
streaming technology that forms the foundation of PRAIS. After that, in Section 2.2, we describe
and compare different webRTC providers that were used during the project. Then, in Section 2.3,
we describe an analysis of the existing system to understand its functionality and limitations. After
that, we describe a use case analysis conducted to nd suitable real-time Al streaming use cases
(Section 2.4). Then, in Section 2.5, we describe a technical analysis that we did to better understand
the typical inputs and outputs of algorithms/Als. Finally, to better understand the stakeholders and
their concerns, we conducted a stakeholder analysis (Section 2.6).

2.1 WebRTC

Web Real-Time Communications (webRTC) [6] is a collection of standards, protocols, and Javascript
APIs. It enables Peer-to-Peer (P2P) Real-Time Communication (RTC) capabilities in a browser and
was introduced by Google. Nowadays, it is actively supported by many companies such as Apple,
Microsoft, and Mozilla. With webRTC, it is possible to add real-time audio/video/data streaming
capabilities to an application via JavaScript APIs that are present in all major browsers.

While webRTC provides the streaming functionality itself, it does not provide a default implemen-
tation for signaling, which is the discovery and negotiation process prior to setting up the actual
connection. More speci cally, two peers that wish to connect over a webRTC connection typically
reside in different networks, which means that they rst have to locate one another. After that, the two
peers negotiate the media format that they shall use in their communication.

Setting up a webRTC connection to a peer is not straightforward for several reasons: rewalls may
need to be bypassed, Network Address Translation (NAT) typically hides devices behind routers, and
if the router does not allow direct connections, then a relay may be required. To tackle these issues, the
Interactive Connectivity Establishment (ICE) framework was introduced. ICE uses Session Traversal
Utilities for NAT (STUN) servers to discover the public Internet Protocol (IP) address of a peer and
to determine whether the peer’s router would prevent a direct connection. If this is the case, then
ICE uses Traversal Using Relays around NAT (TURN) servers to bypass the router’s restrictions by
opening a connection with a TURN server that relays all information to the other peer (see Figure 2.1).

Given the issues described above, webRTC requires some extra infrastructure to make it work prop-
erly. Because of this, there exist a number of companies that provide this infrastructure and (typically)
their own API layer built on top of webRTC. Furthermore, some of those companies also implement
their own native webRTC stack such that native applications can also use webRTC. In Section 2.2, we
describe the webRTC providers relevant to this project.

The Philips Remote Al Streaming platform 5 /Version 1.0

Eindhoven University of Technology

KR DP KR DP ,"

6781 ~——__
<RX DUH RX DUR ~—
& 1RW EHKLQG V\PPHWULF IS 1RW EHKLQG V\PPHWYL

3 3 FRQQHFWLROQ

7851

Figure 2.1: Peers use a STUN server to discover their public IP. If a peer is behind a symmetric NAT,
then the peer uses a TURN server as a relay (in red). Otherwise, a direct P2P connection is set up (in
blue).

2.2 WebRTC providers

In this project, the choice for using webRTC was given, but which webRTC provider to use was still
an open question. As mentioned in Section 1.2, vendor (a webRTC provider is a vendor in this case)
abstraction is an important requirement for the HSRA, and at the start of this project, PR already had
licenses for two webRTC providers: ICELink (Section 2.2.1) and LiveSwitch (Section 2.2.2). The PR
team, however, indicated that there may be other (better) webRTC providers out there, which is why
we investigated and compared several other webRTC providers using the following criteria:

C# client library: The algorithm RTC API is written in C# (which was a given for this project).
Back-end exibility: The system should be deployable both in the cloud and on premise.

Licensing: PR already had licenses for ICELink and LiveSwitch, making it possible to use them
immediately.

Our investigation showed that ICELink and LiveSwitch were indeed the best choice. An overview of
the other investigated webRTC providers can be found in Appendix A.

2.2.1 ICELink

ICELink [2] allows developers to easily add webRTC functionality to their applications by providing
a cross-platform API that can be used in web applications, native mobile applications, and native
desktop applications. ICELink, like webRTC, is signaling-agnostic, so it requires a separate signaling
mechanism. FrozenMountain [4], the developer of ICELink, also develops WebSync [5], which can
be used to implement signaling both in the cloud and on premise. Furthermore, at the start of this
project, the PR team was already using the JavaScript and C# ICELink SDKs in the JavaScript RTC
API and Prototype C# RTC API, respectively.

2.2.2 LiveSwitch

LiveSwitch [1] extends ICELink and is also being developed by FrozenMountain. The additional
LiveSwitch server adds features such as out-of-the-box signaling, peer presence management, and

6 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

exibility to combine Peer-to-Peer (P2P), Selective Forwarding Unit (SFU), and Multipoint Control
Unit (MCU) connections (see Appendix B for more details). The LiveSwitch server can be deployed
both in the cloud and on premise.

2.2.3 Summary

At the start of the project, the PR team was already familiar with ICELink while LiveSwitch was
relatively new. There were, however, no customers that used Philips applications built using ICELink,
which is why Philips did not renew the ICELink license. On the other hand, LiveSwitch was used
more actively, which is why Philips did renew the LiveSwitch license. Consequently, LiveSwitch was
chosen initially as the preferred webRTC provider. Later on in the project, when the PR team sold an
application built using ICEL.ink, the ICELink license got renewed again. To make PRAIS work with
this application, we also added ICELink as a webRTC provider (see Chapter 4).

From a technical point of view, we deem it easier and less work to simply use a single webRTC
provider instead of implementing multiple. The story above, however, shows that there are also non-
technical forces that in uence which technology can be used. This is exactly why vendor abstraction
is so important.

The starting point of PRAIS is an existing system, which we have to understand in depth. We describe
an analysis of this system in Section 2.3.

2.3 The existing system

We analyzed the system that the PR team already had in place to understand its structure and limi-
tations. A conceptual overview is shown in Figure 2.2 while the deployment diagram for the same
system is shown in Figure 2.3. Note that the blue, yellow, and orange colors in both gures identify
the same parts of the system. For both algorithms and participants there is a layered structure.

Participants use the TeleHealth web application, which was built using the Javascript RTC API, to join
webRTC conferences: remote RTC sessions between one or more peers. As mentioned before, the
Javascript RTC API provides a vendor abstraction layer such that different webRTC providers can be
used. Initially, there were two webRTC providers: ICELink (see Section 2.2.1) and Vidyo [13] (also
see Appendix A). Vidyo, however, only provided its service in the cloud, which is why ICELink was
the preferred webRTC provider.

Algorithms join webRTC conferences by using the Prototype C# RTC API. At the start of this project,
the API was tightly coupled to ICELink (note the dotted line in Figure 2.2), did not contain a vendor
abstraction layer, and was designed as a proof of concept.

Using the Research RTC back-end, participants and algorithms are able to connect to each other over
webRTC audio/video/data streams. The required components for setting up such a connection include:
the WebSync [5] signaling server, the ICELink STUN/TURN server, and the Amazon Web Services
(AWS) [22] authentication lambda function that veri es authentication tokens provided by peers that
wish to connect to the STUN/TURN or signaling server. The other two lambda functions and the
DynamoDB are used for logging purposes.

An important entity within the existing system is the Innovation Rack Manager (IRM). The IRM
is essentially an algorithm that lives in its own webRTC conference and has the responsibility of

The Philips Remote Al Streaming platform 7 [Version 1.0

Eindhoven University of Technology

adding/removing algorithms to/from other conferences. It is identi able by name and participants
use this name when sending messages over the signaling channels to instruct the IRM. The signaling
server also knows the name of the IRM and can therefore forward the message correctly. The IRM
would spawn algorithms as separate processes on the same machine and instruct the algorithm to
connect to the correct conference.

$OJRULWKPV SBDUWLFLSDC

B [$0] 7HOH+HDOW

3URWRW\S& &35 SHVHD UK -DYDVFURSHB §
... 6LIQDO I %DFNHQG 6LIJQDOf=
& (/LQN | > > ,&(/LQ|[9LG\R

. HEB& R R CEELEEEETEED > . HEB&
$XGLRGHR 'DWD

Figure 2.2: A high-level overview of the system the PR team had in place at the start of this project.
The blue, yellow, and orange colors map to the similarly colored components in Figure 2.3. Algo-
rithms and participants use the Research RTC back-end to set up webRTC audio/video/data connec-
tions among each other.

(QYLURQPHMWDJRQ :HE 6HUYLFHV

+7736!1 .
5(67 ODFKLQEB!Q ODUJH
5| ©/DPEGD)XQFWLRQ $:|
$XWKHQWLFDWLRQ ©:HEG6\QF2
JURJHQORXQWD|L ®

+7736!1
©/DPEGD)XQFYWLRQ®(67
&DOO 'DWD 5HRRUGLQJ

=

IRUZDUG \—%¥

|

©,&(/LQN? ©,,6 HE $SS{I
EI 6781 7851 78516 6LIJQDOLQJ OHVVIDJLQPD
©$3, *DWHZ ©/DPEGD)XQF 6HUYHU 6HUYHU
+7736 HEVRFNH 4XDOLW\ 'DWD 5

: HEVRFNHWYV +7736!!

+7736!1 7761 6'3
5(67 Y
'"HYLFH!!&OLHQW EURZVHU ODFKLQH!IIHW HQYLURQPHQW
XVH .) g ©& sso:|3w_
DYDVFULSW 57d4s83—» ©HEB& -DYDVEU /ILEUDU\2 SEIRUL T
,&(/LQN
N l XVHVII
STV XVHVII $:| $:|
o A
L?;L ©:HEB& & /LEUpdiaH
©:HE 3D£L ©:HEB& -DYDVF W DFN@ e(LoN [€ 3URWRW\SH & |5
ZHOH+HDOWK %URZVHU SURY G
. HEB&!!
$XGLR®@HR 'DWD|

Figure 2.3: An overview of how the system the PR team had in place at the start of this project was
deployed. The blue, yellow, and orange colors map to the similarly colored components in Figure 2.2.

Following the analysis of the existing system, we identi ed the following issues, all of which are
motivators for the requirements described in Chapter 3:

An IRM is identi ed by name, which is not necessarily unique. Furthermore, participants need
to know the IRM names and which algorithms can be spawned by which IRM.

8 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

The default WebSync server was extended to make the sending of messages to IRMs work.
This creates a mix of responsibilities where the WebSync server is used for both signaling and
messaging to the IRM.

The system only allowed the creation of a single default webRTC connection between two
peers.

Algorithms could only broadcast their results to the whole conference as there was no mecha-
nism to selectively send it to a single peer.

Tokens were stored in browser applications/algorithms because they could not be generated
dynamically. This is not secure, because anyone who manages to get such a token gets access
to the system.

Peers only have a (nhot necessarily unique) name to identify themselves.

The Prototype C# RTC API did not have any documentation and was part of a large Visual
Studio [23] solution that also contains other (unnecessary) elements than the API.

2.4 Use Cases

The PRAIS platform should be generic in the sense that it should work for different applications
in as many use cases as possible. Therefore, during several brainstorming sessions and discussions
with domain experts and PR team members, we explored many different use cases. A select few
were eventually chosen to be implemented (see Sections 2.4.1-2.4.4) while the others are described in
Appendix C. By implementing applications for the use cases (see Sections 4.2 and 4.3.1), we tested
PRAIS and obtained valuable demonstrators (G1b). Most of the use cases involve a Neonatal Intensive
Care Unit (NICU).

A NICU is an intensive care unit that is typically used for prematurely born babies. The parents of
such babies cannot stay with their baby inde nitely, which makes it emotionally very tough. The
NICU Screen-to-Screen (S2S) application, which was developed by the PR team, aims to tackle this
problem. By placing a camera inside the NICU, parents can remotely view their baby. In addition
to helping with the emotional burden of the parents, it also creates the opportunity to use the baby
footage and other sensory data for Al (and other) use cases. Two of such use cases are described in
Sections 2.4.1 and 2.4.2.

2.4.1 Neonatal pose detection

Cerebral Palsy (CP) is a group of neurological disorders that permanently affect body movement and
muscle coordination. It appears in infancy and is therefore a highly relevant topic in NICU research.
Recent work [EBK™19] has shown that the absence of dgety movements at three to ve months of
age is a strong indicator for developing CP. Nowadays, a doctor has to look at a baby for approximately
ten minutes to assess whether or not dgety movements are present. Furthermore, such an assessment
often occurs remotely or at the parent’s home because at three months of age, a baby is typically
already home. To shorten this time-intensive task and to make remote assessment easier, the PR team
is investigating whether Al can be used to analyze the movements of a baby. Asa rst step, the team
developed a pose detection Al that is able to detect the baby’s skeletal structure (see Figure 2.4) and
visualize the movement patterns.

The Philips Remote Al Streaming platform 9 /Version 1.0

Eindhoven University of Technology

Figure 2.4: By using Al, we can detect the skeletal structure of a baby in an image. Colors are used
to more easily distinguish body parts.

2.4.2 Neonatal apnea detection

Apnea is a disorder where breathing temporarily (approximately 20+ seconds) pauses or is very shal-
low, resulting in a dangerous drop of oxygen saturation. It occurs during sleep and those affected are
typically sleepy or feel tired during the day. Apnea can be obstructive, in which breathing is inter-
rupted by a blockage of air ow, it can be central, in which the brain simply stops sending signals to
breathe, or it can be a combination of the two.

While apnea typically only occurs during sleep, the brain of a prematurely born baby is not fully
developed yet, which can result in apnea occurring while the baby is awake. Nowadays, the sensors in
a NICU trigger an alarm whenever apnea is detected (i.e., breathing stops for 20+ seconds and oxygen
saturation is too low). Nurses then have to make sure the apnea goes away by stimulating the baby,
e.g., touching/shaking the baby, or by administering some caffeine. The moment an alarm goes off,
it is basically too late because oxygen saturation is already too low. Therefore, every second counts,
which is why the PR team is investigating whether Al can be used to detect apnea faster and more
reliably, as well as maybe even predict it [Mon20]. In particular, the team developed an Al that, given
video and sensory data, can detect and classify apnea. In addition, the Al estimates the baby’s heart
rate and breathing rate, which removes the need for a sensor that measures these values. Considering
that a neonatal is very small and vulnerable, this is a major improvement.

2.4.3 Algorithm sharing

In an academic hospital, in addition to the standard medical care, the staff is also involved in medical
research. In the Netherlands, for example, we have academic hospitals in Amsterdam, Utrecht, Maas-
tricht, and other cities. With the rise of Al, such hospitals are focusing more on developing Al (or
any other algorithm) that can be used for medical purposes. While hospitals have the desire to share
their algorithms to improve healthcare, there are several reasons why this is troublesome. First, on the
academic level, there is the precious balance between sharing for better healthcare versus academic
competition (who publishes rst and protection of intellectual property). Second, privacy and security

10 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

are sensitive topics in the healthcare domain and often introduce constraints. Also, hospitals do not
always have the technical knowledge to share algorithms and even if they do, setting up the techno-
logical infrastructure and arranging all contracts between the hospitals can take months. Finally, we
believe it to be more practical to keep the algorithm with the experts such that they can maintain and
develop it further while others use it. Overall, hospitals would greatly bene t from technology that
lets others make use of their (Al) algorithms without sharing the actual algorithm itself. PRAIS is
a rst step towards providing such technological infrastructure that has been veri ed and is easy to
work with. From a security perspective, the usage of P2P streaming technology means that there is no
server between the peers and that there is no need to store sensitive data on secondary storage outside
the hospital (assuming the algorithm does not store the data it receives).

2.4.4 Audio/video recording

To train an Al model, researchers typically use prerecorded audio/video. Obtaining such data is mostly
a labor-intensive task and there are often privacy/security constraints to tackle. In a use case that we
encountered in the past, a PhD student spent about ve months tackling privacy/security constraints
and setting up the technological infrastructure for recording audio/video from a NICU camera, to
eventually change directions because it turned out to be too much work.

Maxima Medisch Centrum (MMC) Veldhoven bought the NICU S2S application and hired a PhD
student to develop Als that use the NICU camera footage. Similar to the case described above, in a
collaboration with MMC, recording of NICU camera footage is again needed. This time, however,
with PRAIS, the technological infrastructure works out-of-the-box, making it possible to record NICU
footage.

This use case is a nice example of how PRAIS enables open innovation (G1a), where researchers can
focus on the research instead of having to bother with technological infrastructure and privacy/security
constraints.

2.45 Summary

The use cases described above are the main drivers behind the PRAIS requirements. All use cases
require some form of audio, video, and/or data streaming between peers in a fast and secure manner.
This means that topics such as peer authentication, peer-to-peer streaming, and media source diversity
have high priority. More detailed requirements are de ned and discussed in Chapter 3.

During a Software Engineering Project (SEP) with computer science bachelor students (see Sec-
tion 4.2), we implemented applications that realize the pose (Section 2.4.1), apnea (Section 2.4.2),
and algorithm sharing (Section 2.4.3) use cases. In a collaboration with MMC (see Section 4.3),
we explored the recording use case (Section 2.4.4) and built the PRAIS Recorder Application (see
Section 4.3.1).

In Section 2.5, we describe an analysis that we performed to better understand typical algorithm/Al
inputs/outputs.

The Philips Remote Al Streaming platform 11 /Version 1.0

Eindhoven University of Technology

2.5 Algorithm and Al analysis

On a high level, algorithms and Al have input and output, i.e., they can be seen as a black box. Since
PRAIS should be able to stream those inputs and outputs, we conducted a technical analysis in which
we explored the most common inputs and outputs. In particular, we did the analysis by doing online
research, by leveraging the knowledge within the PR team, by leveraging the algorithm/Al experience
of the trainee, and by considering the algorithms required for the use cases described in Section 2.4.

Since algorithms are developed in C#, we rst considered the C# built-in types [16]: bool, (s)byte,
char, decimal, double, oat, (u)int, (u)long, (u)short, object, and string. While this list is quite long,
note that all of these types are stored as bytes and that they can be encoded as strings, e.g., Json [18]
(which is more human readable). Therefore, PRAIS should be able to stream both bytes and strings.
While byte/string streaming is already quite enabling, note that typical algorithms use/provide collec-
tions/data structures [17] that consist of bytes and strings. For example, a typical image classi cation
Al takes an image (a multidimensional array of ints) as input and provides an array of probabilities
(doubles, for example) as output. In particular, considering the use cases described in Section 2.4,
there is also a need to stream audio/video. Video is essentially a sequence of images, which are
multidimensional arrays of numbers. Audio is encoded as a sequence of numeric samples taken at
a certain frequency. While audio and video could be streamed using bytes/strings, it would require
quite some additional logic, which is not user-friendly. Therefore, PRAIS should be able to stream
audio and video. These insights were used in the requirements gathering process, which we describe
in Chapter 3.

2.6 Stakeholder Analysis

We conducted a stakeholder analysis to identify stakeholders and to understand their concerns. The
stakeholders belong to three organizations: Eindhoven University of Technology (TU/e), Philips, and
Maxima Medisch Centrum (MMC). An overview of the stakeholders is provided in Table 2.1.

Two important stakeholders actually used PRAIS. The rst was a group of ten TU/e bachelor students
who worked together with us during their nal Software Engineering Project (SEP). More details on
this collaboration are described in Section 4.2. The second PRAIS user was a PhD student at Maxima
Medisch Centrum, who worked on the recording use case (Section 2.4.4). More information on this
collaboration is described in Section 4.3. In Section 7.1 we describe how we communicated with each
of the stakeholders.

Lastly, observe that the scope of this project does not include the actual transfer of PRAIS to the
HSRA, i.e., the CAO. This is a process that typically takes months and is therefore envisioned to be
done after this project is completed. Consequently, the CAQO is not a stakeholder for this project.

In the next chapter, we describe the requirement gathering process and provide an overview of the
requirements.

12 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Eindhoven University of technology

Name

Role

Interest in

Robin Mennens

PDEng trainee

Gaining architectural/design/development knowl-
edge and experience. Successfully graduating.

Alexander Serebrenik

TU/e supervisor

Successful project delivery, report quality, and
PRAIS veri cation and validation.

Yanja Dajsuren

PDEng ST manager

Quality of project results, relationship with
Philips, successful graduation of trainee.

SEP students PRAIS user Usability and functionality of PRAIS (see Sec-
tion 4.2).
Philips
Name Role Interest in
Marcel Quist PR team lead and | Successful demos using PRAIS, increasing

Project owner

awareness around PRAIS, and further maturing
PRAIS concepts.

Zoran Stankovic

PR team soft-
ware architect and
Project mentor

Successful demos using PRAIS, increasing
awareness around PRAIS, and further maturing
PRAIS concepts. Usability/extensibility/main-
tainability of PRAIS.

Arjan Draisma

PR team research

engineer

Usability/extensibility/maintainability of PRAIS.

Ralitsa Kehayova

PR team intern: al-
gorithm developer

Successful integration of the pose detection algo-
rithm with PRAIS.

Roel Montree

PR team intern: al-
gorithm developer

Successful integration of the apnea detection al-
gorithm with PRALIS.

Maxima Medisch Centrum

Name Role Interest in
Ilde Lorato PhD Researcher and | Functionality of PRAIS Recorder Application
PRAIS user (see Section 4.3.1).

Carola van Pul

Supervisor PhD Re-
searcher

Functionality of PRAIS Recorder Application
(see Section 4.3.1).

The Philips Remote Al Streaming platform

Table 2.1: The identi ed stakeholders for this project.

13 / Version 1.0

Eindhoven University of Technology

14 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

3 System Requirements

In this chapter, we describe a set of technical goals (Section 3.1) that more precisely describe what
we aimed for during this project on a technical level. After that, in Section 3.2, we describe the
requirement gathering process. In Section 3.3, we give an overview of the PRAIS use cases. Finally,
in Section 3.4, we provide an overview of the requirements using a requirements model.

3.1 Technical goals

The main goals of this project (see Section 1.2) mostly focus on business aspects. To better understand
what was technically required to achieve these goals, we provide a set of technical project goals:

TG1 Design and implement the PRAIS C# API. In particular, a vendor abstraction layer should be
added.

TG2 Integrate the PRAIS C# API with the existing Javascript RTC API.

TG3 Address the technical limitations of the existing system (see Section 2.3).

TG4 Investigate and prototype visualization streaming (see Section 3.1.1).

In the remainder of this work, we refer to these goals as: (TGX), where X indicates the goal number.
The rst technical goal (TG1) follows from the fact that the Prototype C# RTC API was designed
as a proof of concept. In particular, it does not contain a vendor abstraction layer. With TG2, we
aimed to combine the strengths of the Javascript RTC API and the PRAIS C# API. By making sure
they integrate, developers can easily connect participants in the browser to algorithms. TG3 directly
follows from the limitations identi ed in the existing system (see Section 2.3). We aimed to address
most of these limitations during this project. Lastly, TG4 is a technical exploration that is of interest
to the PR team (see Section 3.1.1).

3.1.1 Visualization Streaming

In a typical scenario, as shown in the top part of Figure 3.1, an algorithm streams its output over a
data channel to a participant (who uses a web application). The web application then visualizes the
algorithm results. In this setup, there is a dependency because the web application needs to know
the algorithm output format and how to visualize it. With visualization streaming, we aim to remove
this dependency by moving the responsibility of result visualization to the algorithm itself (see the
bottom part of Figure 3.1). The algorithm sends the code required for visualizing the output to the
web application. By running this code in a placeholder, the web application is able to visualize the
algorithm output. Overall, with visualization streaming, we aim to have algorithms that are compatible
with any web application that supports visualization streaming and vice versa. During this project, we
aimed to explore the technical feasibility and to implement a prototype of visualization streaming.

The Philips Remote Al Streaming platform 15 /Version 1.0

Eindhoven University of Technology

RXWSXW ~ RXWSXW
GDWD GDWD
$OJRULWKP $OJRULYV

: HE DSSOLFDWLRQ

A

$OJRULWKP o e $OJRULV

: HE DSSOLFDWLRQ

Figure 3.1: A conceptual view of visualization streaming. In a typical setup (top), algorithms stream
their output over a data channel to a web application (which is used by a participant) that then visual-
izes the output. In contrast, when using visualization streaming (bottom), the algorithm rst streams
the visualization code to the web application, which has placeholders for such visualizations. After
that, the algorithm streams its output to the web application, which can then visualize the output.

3.2 Requirement gathering

Throughout the project, there were three requirement gathering iterations, resulting in three project
phases (also see Section 7.2). The rst two phases mainly relate to the fact that at the start of the
project, there were no customers who used Philips applications built using ICELink, which is why
LiveSwitch was chosen initially as the preferred webRTC provider (see Section 2.2.3). Later on in
the project, when the PR team sold the ICELink-powered NICU S2S application, the ICELink license
got renewed again, resulting in the second phase. Lastly, we iterated through the requirements with
the speci c recording use case (see Section 2.4.4) in mind. The three phases are described in detail
below.

In the rst phase, we started gathering those requirements that would comprise the core of PRAIS,
i.e., the functionality that would de nitely be required. We did this during several activities:

As described in Section 2.3, we analyzed the existing system to identify limitations. We de ned
requirements to address these limitations.

Since PRAIS should support several use cases, we analyzed several of them (see Section 3.3)
to better understand what functionality should be provided by the PRAIS C# API.

Within the PR team, we held several brainstorming sessions around the whiteboard. In particu-
lar, the experience of the PR team with the Prototype PRAIS C# API offered valuable insight-
s/lknowledge.

We consulted several literature sources:

Remote Al results in a setting that is very similar to a microservices architecture [NN15],
in which an application is structured as a collection of independently deployable services,

16 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

i.e., algorithms. Consequently, literature [NN15] on best practices regarding microser-
vices architectures provided inspiration for important aspects to include in the require-
ments.

HSRA guidelines are provided by the CAO on Platform as a Service (PaaS) [vDWvZ18]
development. Since PRAIS is essentially a PaaS, we consulted this document on top-
ics such as logging and security. In particular, the document prescribes the usage of
OAuth2.0 [42] with (optionally) OpenlID Connect [38] for access management.

We consulted Philips privacy and security of cers to discuss related aspects around PRAIS.
We quickly found out that privacy concerns the processing of data. PRAIS itself, as a
platform, only transfers data and does not really process it. The processing is done by
the algorithms developed by PRAIS users. Consequently, privacy concerns did not play
a major role in this project. Security, on the other hand, did play a major role. In fact,
one of the Philips security of cers provided us with a document [Prob] that lists about
400 security and privacy requirements that should be ful Iled by Philips services. For this
project, this list is too long to fully consider. Therefore, we used the document as a source
of inspiration for important security requirements that we could take into account.

By combining all the knowledge/insights from the above-mentioned activities, we collected an ini-
tial set of requirements that resulted in the PRAIS C# API. Important criteria in prioritizing these
requirements were as follows:

Whether the functionality is essential to get things working, i.e., minimum viable product.
Whether the functionality is required in one of the use cases described in Section 2.4.

Lastly, we rst wanted to make sure that the PRAIS C# API is usable in a simple but common
setting, which we considered to be the scenario where a developer uses the API on his/her
computer and from there also runs the algorithms he/she is developing. This means that topics
such as advanced security, centralized logging, and containerization have lower priority.

Given the initial set of requirements, the PRAIS C# API was designed and developed using LiveSwitch
as a webRTC provider (see the darker green boxes in the LiveSwitch rectangle in Figure 3.4). To con-
nect algorithms (built using the PRAIS C# API) to participants, we developed a simple LiveSwitch-
powered web app [33]. The outcome of this phase was used by the SEP students (see Section 4.2),
providing us with a rst iteration of user experience (see Section 5.2.1).

For the second phase, the plan was initially to implement the Javascript RTC API using LiveSwitch.
This would make the PRAIS C# API and Javascript RTC APl compatible. As described above, how-
ever, the ICELink-powered NICU S2S application required algorithm functionality, which is why
ICELink was added as a webRTC provider to the PRAIS C# API (see the darker green boxes in the
ICELink rectangle in Figure 3.4). This allowed us to verify the vendor abstraction layer built into the
PRAIS C# API. Furthermore, after modifying the existing JavaScript RTC API, both APIs became
compatible.

In the last phase, now that both APIs were compatible, we de ned and prioritized the requirements for
the recording use case, which was to be implemented at Maxima Medisch Centrum (MMC). We did
this by having meetings with the PhD student who is doing a NICU-based research at MMC. Based
on her input, we would further de ne the requirements during brainstorming sessions within the PR
team.

The Philips Remote Al Streaming platform 17 [Version 1.0

Eindhoven University of Technology

$XGLR®HR 5HFRUGLQJ 1IHRQDWDO 3RVH '"HWHFWLRQ
3RVH
QI
SDHOFJRRUU(IB_WKP KH GHWHFWLRQ
DOJRUUWKP
1HRQDWDO $SQHD '"HWHFWLRQ $OJRULWKP 6KDULQJ

! .QVLGH KRVSLWRBWVLGH KRVSLWR®LGH KRVS
$SQHD : . f

GHWHFWLRQ : %DE\ 5| $OJRULWKP 3 SHRVF'_\‘NDR =D
DOJRULWKP : :
‘DWDED/ i
s :

UHDGL
DOJRUUYWKP

Figure 3.2: lllustrated are the streaming infrastructures of the four use cases described in Section 2.4
(top left: Section 2.4.4, top right: Section 2.4.1, bottom left: Section 2.4.2, and bottom right: Sec-
tion 2.4.3). Circles represent participants while squares represent algorithms. Audio, video, and data
streams are represented by blue, red, and green arrows respectively.

As described above, an important factor in prioritizing the requirements was whether or not a piece
of functionality was required in one of the use cases. To this end, we analyzed the use cases in depth,
which we describe in Section 3.3.

3.3 PRAIS use cases

At the start of phase one, in order to determine the set of requirements that comprise the core function-
ality of PRAIS, we conducted a use case analysis. We analyzed the use cases described in Section 2.4
to determine what functionality should be offered by the PRAIS C# API. Note the distinction between
use cases and what we call PRAIS use cases. A use case essentially describes an application that a
developer would build using PRAIS. A PRAIS use case describes a piece of PRAIS functionality that
is used by such a developer. So, by understanding use cases we aim to identify and understand the
required PRAIS use cases.

For each use case, we determined the required streaming infrastructure, as shown in Figure 3.2. Note
that each of these use cases can be implemented in different ways. The ones shown in Figure 3.2 are
just examples that helped us understand the PRAIS use cases. In the Audio/Video Recording use case
(top left and see Section 2.4.4), the audio and video footage of a baby is streamed to an algorithm
that records all incoming media. Afterwards, a researcher can watch/use the footage by replaying the
recording. The Neonatal Pose Detection use case (top right and see Section 2.4.1) covers the situation
in which video footage of a baby is streamed in real time to a pose detection algorithm that sends the
output over a data channel to a doctor, who can then view the results. The Algorithm Sharing use case
(bottom right and see Section 2.4.3), represents a more generic scenario. Baby media/data is streamed
from inside a hospital to an external algorithm X that then streams the output media/data back to a
doctor/researcher in the hospital again. Finally, for the Neonatal Apnea Detection use case (bottom
left and see Section 2.4.2), we considered two scenarios. The rst is a real-time scenario where baby
video and sensor data is directly streamed to the apnea detection algorithm. The second is a scenario

18 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

where recorded baby video (that was, for example, recorded using a recording algorithm) and sensor
data is streamed from a database to the apnea detection algorithm. In both scenarios, the algorithm
streams the output to a doctor who analyzes the results.
An overview of other use cases that we considered in our analysis, but did not dive into deeply, is

provided in Appendix C. The output of the use case analysis is a set of PRAIS use cases, which are
shown in Figure 3.3. These PRAIS use cases form the basis of the requirements, which are described

in Section 3.4.

PRAIS CR#AFI

Leave Conference

hES
~
waxtends

<<extend=>

Create P2P Data
Stream

Receive data

tincludes

L=

Send data

Authenticate

Define audio

parameters aincluder

Y

Publish messages to
conference

ubscribe to message
topics

Send messagesto
peers

Receive messages
from peers

|
|
|
|
|
| “

h
wextends
| N

Create P2P Audio
Stream

<<gxtend>>

L
!

=<exten

-
-

Define video
parameters

|
% winclude®
.

Create P2P Video
Stream

=7

=

Stream audiofvideo

Receive audio/video

Record audiafvideo | —— —

CaptureScreen

Send custom

audio/videa frames

Use Camera

wextend®

Select Camera

| —

Developer

Figure 3.3: A visual overview of the PRAIS use cases. The Developer actor is shown to be only
associated with the Join Conference PRAIS use case, which is done to make the diagram readable. In
fact, a Developer can be involved in any of the PRAIS use cases.

The Philips Remote Al Streaming platform

19 / Version 1.0

Eindhoven University of Technology

3.4 Requirement overview

The outcome of the requirement gathering process includes two sets of MoSCoW [25] (Must, Should,
Could, Won’t) prioritized functional and non-functional requirements. The functional requirements
are described in Section 3.4.1 while the non-functional requirements are described in Section 3.4.2.

3.4.1 Functional requirements

A complete list of all 150 functional requirements is provided in Appendix D. Since we deem this
list too long to discuss in the main text, we group the requirements into categories, of which a visual
overview is shown in Figure 3.4 (except for the won’t requirements). Each category represents a
set of requirements that form a piece of functionality and colors indicate priority (must, should, and
could, are dark'gréen, green, and yellow respectively). Observe that the LiveSwitch and ICELink
requirement categories have quite some overlap because they mostly cover the same functionality
that is implemented using different webRTC providers. The requirement categories shown under
‘Common’ are those requirements that describe functionality that is generic to the system and is
thus webRTC provider agnostic. Each requirement category is described below (where overlapping
LiveSwitch and ICELink requirements categories are discussed together).

ILYH6ZLWEFK &RPPRQ ,&(/LQN
%DFN (QG
RQ [&RQWUROOHG 6HFX WLRQ
(IWH®| $XWKHQWLFDWIR® ORF
LR 6ROXWLRQ 3UHYL UDWLR
LGHQWLILFpW[RQ PV
WHQGV WHQGV
a Q «a e S5HTXLUHV
$GYDQFH
&RQIHUHQFH
QFH UHQF
o HTx Weal ODQDIHPHQOW . 574
oL $OJRULWHKP UL QD
SHILVWUDWLRP
ODQDJHPHOW
SHTXLUHV SHTXLUHV ([WHQGV
$OIJRULWKP [0x0w (Whel 9LVXDOLIDWLRQ "y $OIRULWKP [0Xg
&RQQHFWLROY oy 6WUHDPLQJ o &RQQHFWLRQV
QDOLQ
,_SHTXL S5HTXLUHV 5HTXL—U—H—V'|
oHgLD | $OIRVLWKE OHGLD
SHFRUGLQ[J . AR SHFRUGLQ[J
PH PHV
FDSWXUH
([WHQGV ([®HQGV S5HT XL ([V+VHQGV
| | |
$0JRULWKP oHGLD| $OIRULWKPIOHGLD| go5ruLwkP [0HGLD
6RXUFHV —([WHaGy, BRXUFHV 6RXUFHV 985,6 SR S 5HFRUGLQU
%DPHUD 6FUHHQ $SSOLFDWLRQ
JEOH FDSWXUH JLOH

Figure 3.4: A visual overview of the requirement categories (except for requirements with won’t
priority) and their relations. Colors indicate MoSCoW priorities where must, should, and could, are

dark'green, green, and yellow respectively.

20

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

3.4.1.1 Basic Conference Management

Must: Before peers can connect to each other, they need to join a conference. Once joined, algorithms
should detect the joining/leaving of other peers such that connections can be set up.

3.4.1.2 Security

Must: We want to control who can join a certain conference. So, participants and algorithms shall
authenticate themselves before joining a conference. Authentication shall be done using tokens that
have an expiration date.

3.4.1.3 Peer-To-Peer Connections

Must: In order to connect peers, algorithms shall set up P2P connections to other peers. This includes
both audio/video and data connections.

3.4.1.4 Algorithm Media Sources

Must: When an algorithm sets up an audio/video P2P connection, then the algorithm shall send cus-
tom audio/video frames to the other peer. With custom audio/video frames, basically any frame can
be sent. This offers a lot of exibility and therefore has must priority.

Should: When an algorithm sets up an audio/video P2P connection, then the algorithm shall use
screen capture or a webcam as a media source.

Could: When an algorithm sets up an audio/video P2P connection, then the algorithm shall use a local
le as a media source.

3.4.1.5 Algorithm Messaging

Must: Audio/video/data connections can already be used to stream media/data. Streaming connec-
tions, however, are quite resource intensive and are therefore excessive when, for example, simple
event triggers need to be sent. Therefore, algorithms shall have a lightweight method to send mes-
sages to other peers.

3.4.1.6 Javascript RTC API

Must: The signaling implementation of the Javascript RTC API had to be changed to manual signaling
(see Section 4.5.2) to make the API integratable with the PRAIS C# API.

3.4.1.7 Algorithm Multi-Connections

Should: Algorithms shall set up multiple audio/video/data connections between the same peer. This
is especially useful for data channels, where different channels can be used for different purposes.
Many use cases can already be implemented with only a single connection, however, which is why
this has should priority.

The Philips Remote Al Streaming platform 21 / Version 1.0

Eindhoven University of Technology

3.4.1.8 Recording

Should: Algorithms shall record incoming audio/video to a local le. This has should priority for
ICELink because it was actually used at MMC.

Could: For LiveSwitch, we have the same requirements as above, but there was no direct need to
have this functionality with LiveSwitch, which is why this has could priority. Additional could re-
quirements include the recording of additional metadata and making sure that recorded video frames
have the same resolution (which was desirable but not required by MMC).

3.4.1.9 PRAIS Recorder Application

Should: The PRAIS Recorder Application was used at MMC and is essentially a user interface on top
of the PRAIS recording functionality. In Section 4.3.1, we describe its functionality and design.

3.4.1.10 Back-end Controlled Security

Could: In the basic security setup (see Section 3.4.1.2), peers authenticate themselves with the back-
end using locally stored or generated tokens (see Section 4.5.1.1). With this extended security, algo-
rithms have to rst authenticate themselves with an authentication server to obtain such a token.

3.4.1.11 Advanced Conference Management

Could: With basic conference management (see Section 3.4.1.1), algorithms have control over when
they join a conference and which conference that is. This is in contrast to the original IRM function-
ality (see Section 2.3), where other peers can decide when algorithms join/leave a certain conference.
With advanced conference management, we aim to again provide such functionality. In particular,
algorithms shall register themselves with a server upon startup and other peers shall then instruct
algorithms (via the server) to join/leave certain conferences.

3.4.1.12 Visualization Streaming

Could: These requirements cover the visualization streaming exploration/prototype (TG4).

3.4.2 Non-Functional Requirements

The list of non-functional requirements is shown in Table 3.1. Each non-functional requirement is
placed into a context, i.e., an ility. Note that a lot of security requirements are already included in
the functional requirements. NF-9, in practice, means that PRAIS should support OAuth2.0 [42] and
OpenlD Connect [38]. NF-10, in practice, means that the PRAIS C# API should be implemented as a
.NET Standard library [26].

In the next chapter, we describe the architecture and design of PRAIS, which followed from the
requirements described in this chapter.

22 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Table 3.1: An overview of the non-functional requirements. Each non-functional requirement is
placed into a context, i.e., an ility.

ID

NF-1
NF-2
NF-3

NF-4
NF-5

NF-6
NF-7
NF-8
NF-9

NF-10

Priority Context

Must
Must
Must

Must
Must

Must
Must
Must

Could

Could

Usability
Usability
Vendor abstrac-
tion

Installability
Installability

Deployability
Deployability
Integratability

Security

Compatibility

Description

The PRAIS C# API shall be documented for developers.
The PRAIS C# API shall be easy to use.

The system shall abstract away the webRTC provider.

The PRAIS C# API shall be easy to install by users.

Philips shall control who gets access to the PRAIS C#
API.

The system shall run in the cloud.
The system shall run on premise.

The PRAIS C# API shall integrate with the Javascript
RTC API.

The system shall use the access control technology pre-
scribed by the Philips PaaS document [vDWvZ18].

The PRAIS C# API shall be usable from any .NET imple-
mentation.

The Philips Remote Al Streaming platform 23 / Version 1.0

Eindhoven University of Technology

24 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

4 PRAIS Architecture & Design

In this chapter, we describe the design and architecture of PRAIS by using the 4+1 view model of ar-
chitecture [Kru95] (see Section 4.1). First, we describe how we cover the use cases (i.e., the +1 view)
described in Section 2.4 during the two collaborations that took place during this project. In particular,
in Section 4.2, we describe a project that we did together with a group of computer science students.
After that, in Section 4.3, we describe the collaboration with a hospital that does NICU research.
Then, the logical, process, physical, and development views are described in Sections 4.4, 4.5, 4.6,
and 4.7. Since the architecture and design follow from the requirements, we use (FR-X) and (NF-Y)
notation to refer to functional requirement category X and non-functional requirement Y.

4.1 The 4+1 View model of architecture

The 4+1 view model of architecture, originally introduced by Kruchten [Kru95], is a model for de-
scribing the architecture of software-intensive systems, based on multiple views[Kru95]:

The logical view, which is the object model of the design (when an object-oriented design
method is used).

The process view, which captures the concurrency and synchronization aspects of the design.

The physical view, which describes the mapping(s) of the software onto the hardware and re-
ects its distributed aspect.

The development view, which describes the static organization of the software in its develop-
ment environment.

The description of an architecture the decisions made can be organized around these four views
and then illustrated by a few selected use cases or scenarios which become a fth view.

Before diving into the design of PRAIS, it is important to understand the contexts of the projects in
which we brought the use cases/scenarios described in Section 2.4 into practice (i.e., the +1 view). In
Section 4.2, we describe a Software Engineering Project (SEP) that we did together with a group of
computer science bachelor students. After that, in Section 4.3, we describe how we collaborated in an
open innovation project with Maxima Medisch Centrum (MMC).

4.2 Software Engineering Project (SEP)

At the end of their last computer science bachelor year, students of Eindhoven University of Technol-
ogy participate in a SEP project. For ten weeks, they work with a real customer to obtain their rst

The Philips Remote Al Streaming platform 25 / Version 1.0

Eindhoven University of Technology

real software development experience. For us, SEP provided the perfect opportunity to let a group of
students work with the PRAIS C# API and thereby assess its usability (see Section 5.2.1). The SEP
project started on April 20 and lasted until July 3. Relating this to the timeline of this project, this
means that the SEP students were provided the PRAIS C# API with LiveSwitch as webRTC provider.
Figure 4.1 provides a high level overview of what the SEP students worked on. In Appendix E, a
detailed description of the SEP project can be found. The SEP group represented two academic hos-
pitals that want to share NICU Al algorithms with each other. Hospital A developed a pose detection
algorithm for neonates while hospital B developed an apnea detection algorithm. Observe that the
pose detection (Section 2.4.1), apnea detection (Section 2.4.2), and algorithm sharing (Section 2.4.3)
use cases are covered here. We already possessed the pose and apnea algorithms, which we provided
to the students. Given Figure 4.1, the students developed the following:

The pose detection, apnea detection, and database bots, which were developed using the PRAIS
C# API. The pose and apnea detection algorithms that we provided to the students are written
in Python, so the students developed a Python wrapper that enables running a Python algorithm
from C#.

The hospital A [37] and B [36] web applications, which are used to simulate doctors and NICUs.
Since we did not have LiveSwitch as a webRTC provider in the Javascript RTC API, the students
had to use LiveSwitch directly in these web applications.

The hospital A authentication back-end, which consists of an OpenID Connect [38] authentica-
tion server and an OpenID Connect identity provider (see Section 4.5.1.2 for more details).

A simulated database for hospital A that contained (simulated) NICU sensor data. This was
done because Philips has NICU sensor data on an internal network drive. By having a database
bot that connects to this drive and then streams the data to an algorithm, we aimed to demon-
strate that algorithm input can come from different/multiple sources (G1b).

All in all, with the SEP project, we aimed to achieve the following:

Assess the usability of PRAIS, which we did using a usability study (see Section 5.2).
Assess the stability of PRAIS, i.e., to discover bugs/other issues.

To explore the options regarding combining OpenlD Connect and PRAIS. This relates closely
to the security non-functional requirement (NF-9).

To explore and prototype visualization streaming (TG4 and see Section 3.1.1).
To build demonstrators that show the potential of PRAIS (G1b).

In the following sections, where relevant, we include parts of the design of the SEP project.

4.3 Maxima Medisch Centrum

MMC is a hospital located in Veldhoven that has several NICUs. To allow parents to remotely view
their babies, MMC is using the NICU S2S application that was built using the Javascript RTC API. A
PhD student at MMC is doing a NICU-based research and her project required NICU video recordings,
i.e., the recording use case described in Section 2.4.4. This use case required the integration of PRAIS
with the NICU S2S application. On a technical level, this meant we had two options:

26 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

+RVSLWDO $ +RVSLWDO %
9LHZ $0J
“——_| 9LGHR 5HVXAWYV
$03J

3RVH GHWHFWLRHVXOWV ! "REWRU
ERW
+RVSLWBIE %
$SSOLFDWLR@ 3\

1,&8 9LGHR 1,&8
9LGHR

, 2SHQ," &RQQH
H 1
wrey, —waEwawel I ~-
N S « | SHVXOowV pOL] Q
: — FRGH
: +RVSLWBE $: :
'REWRU $SSOLFDWLRQ $SQHD GHWHFWLRQ
ERW :
6HQVYRU [PMAPS| WDO $ +RVSLWDO $ §
‘DWDEDVH $XWKHQWLEDWLRQ EPFN HG

2SHQ," &RQQHFW

Figure 4.1: A conceptual overview of the system developed by the SEP students.

1. Add ICELink as a webRTC provider to the PRAIS C# API.
2. Add LiveSwitch as a webRTC provider to the Javascript RTC API.

Eventually, we chose option 1 for two reasons. The rst is that adding ICELink to the PRAIS C#
API allowed us to test whether the vendor abstraction layer was properly designed and implemented
(TG1). It turned out that this was the case because we were able to add ICELink as a webRTC provider
without having to change the design. Secondly, the NICU S2S application was already running at
MMC (indirectly on ICELink). Switching it to LiveSwitch while it was already live was deemed too
much of a risk.

Since the PhD student is not very technically pro cient in C#, we developed the PRAIS Recorder
Application (see Section 4.3.1), which is essentially a Ul layer on top of the PRAIS C# API. All in
all, with the MMC collaboration, we aimed to achieve the following:

Integration of the PRAIS C# API and Javascript RTC APl was already an important non-
functional requirement (NF-8) and goal (TG2). The MMC collaboration provided the perfect
opportunity to test the integration.

To demonstrate how PRAIS can be used to stimulate open innovation (G1a). In particular,
PRAIS essentially provides an academic layer on top of the NICU S2S application. Any hospital
that uses the NICU S2S application can now use PRAIS to connect algorithms to their NICUs.

To demonstrate the recording functionality of PRAIS (G1b).

The Philips Remote Al Streaming platform 27 [Version 1.0

Eindhoven University of Technology

4.3.1 PRAIS Recorder Application

In addition to being a demonstrator, the PRAIS Recorder Application is a tool that was built for
pragmatic purposes: to enable recording of NICUs at MMC. Its functionality mostly follows from
the requirements speci ed by MMC (FR-3.4.1.9). For example, features include: log-in before a
researcher can connect to a NICU, only connect to NICUs that have informed consent, and recording
of aspeci ed number of video chunks of speci ed duration. By using PRAIS as a basis, most features
were trivial to implement (because PRAIS already provides the actual recording functionality), which
is why we provide a more elaborate description of the PRAIS Recorder Application in Appendix F.

A more dif cult requirement to satisfy relates to the fact that the video recordings are used for research
purposes. In this case, an accurate timestamp per recorded video frame was required, which turned out
to be dif cult to obtain. More speci cally, the timestamp should represent the moment a video frame
was generated, should describe a UTC date and time, and should be millisecond accurate. Figure 4.2
provides a visual overview of the recording ow at MMC. A webcam is attached via a USB cable to a
tablet that runs the NICU S2S web application. The PRAIS Recorder Application, which runs on the
researcher’s computer, connects to the NICU (the tablet) and then retrieves the video to be recorded.
As is shown in Figure 4.2, the ideal moment to generate a timestamp for a video frame is directly
after it has been generated. Note, however, that dashed rectangles indicate steps that are executed by
software tools/components that we do not control. Consequently, we can only generate a timestamp
when we actually record a video frame. After doing some tests, we found that the delay between
generating a video frame and actually recording it is about 700 milliseconds. Unfortunately, this
delay heavily depends on the network bandwidth availability and CPU availability of the tablet and
computer. All in all, aiming to satisfy this requirement, we explored different solutions (see Table 4.1)
but concluded that, given the available time, this is the best we can do. In the future, when more time
is available, we deem it worthwhile to implement one of the potential solutions listed in Table 4.1.

With the SEP and MMC collaborations, we cover all the use cases described in Section 2.4. Further-
more, the collaborations combined required the implementation of all must and should requirements
(see Section 5.1 for more details). In the next sections, we describe each of the views of the 4+1 view
model of architecture [Kru95].

: HEFDP DWWDFKHG
WR WDEO 86 % 9LG-|+R—)9LG-H—R——)

7DEOHW UXQQLQJ
1,8 6 6 LQ D EURZVHU &RPSXWHU UXQQLQJ WKH
35$,6 5GHFRUGHU $SSOLFDWLRG

" *HQHUDWH !

LS P Ly (QFRGHM 3DFNHWE (QFU\SW-—--» 6HQGH----- > 'HFU\S¥-'HSDFNE-¥ 'HFRGH>» S5HFRUG
JGHDO WLPHVWDPS 0 T o o $FWXDO WLP
JHQHUDWLRQ PRPHQW JHQHUDWLRC

Figure 4.2: A visual overview of the recording ow at MMC. The top part of the gure illustrates
which entities are involved in the recording pipeline while the bottom part details which steps are
executed by each entity (note the color mapping). In the bottom part, dashed rectangles represent
steps that we do not control, i.e., they are part of software tools/components that we use.

28 The Philips Remote Al Streaming platform / Version 1.0

Description

Pros

Eindhoven University of Technology

Cons

Generate frame times-
tamps upon receiving
them (chosen solution)
Embed a timestamp in
the video frame itself

Send timestamps in par-
allel over a data channel

Replace NICU S2S in
the browser with a na-
tive version of NICU
S2S

Easy to implement. Only
requires changes in the
PRAIS C# API.

Timestamps are accurate.

Timestamps are accurate.

Enables control over
video frame generation
and thus enables accurate
timestamp generation at

Timestamps are not accurate.

Both NICU S2S and the PRAIS C# API
need to be changed. Unsure about feasibil-
ity. Higher coupling: extra dependency be-
tween NICU S2S and PRAIS (embedding
of timestamps should somehow be toggled
from PRAIS).

Both NICU S2S and the PRAIS C# API
need to be changed. Generation of video
frames is done by the browser, so we are
not sure whether this is feasible. Higher
coupling: extra dependency between NICU
S2S and PRAIS (extra datachannel needs to
be opened).

Requires a signi cant amount of develop-
ment.

the sending side.

Table 4.1: A comparison of the different solutions we considered regarding the generation of times-
tamps for recorded video frames.

4.4 Logical View

In Figure 4.3, an overview of all the packages and components of PRAIS is shown. On the highest
level, we have a C# package and a Javascript package.

The C# package contains the PRAIS C# API NuGet package [30]. A NuGet package is the Microsoft-
supported mechanism for sharing code and thereby makes installation of the PRAIS C# API easy (NF-
4). As we can see, the NuGet package includes four components that follow a layered architectural
pattern. AlgorithmCore contains the core functionality of PRAIS. It de nes all API functions but does
not implement these functions itself because that is the responsibility of the webRTC implementors:
LiveSwitch WebRTC Implementor and ICELink WebRTC Implementor. The only responsibility and
functionality of the PRAIS component is to connect and instantiate AlgorithmCore with one of the
implementors at runtime. With this setup, we allow the user to pick a webRTC implementor at runtime
and thereby achieve a vendor abstraction layer (NF-3).

Observe that the components of the NuGet package use different .NET variants: .NET Framework
4.7.2 and .NET Standard 2.0. Another .NET variant (that we did not use) is .NET Core. Both .NET
Framework and .NET Core are implementations of .NET, while .NET Standard is a formal speci -
cation of the APIs that are common across all .NET implementations [26]. In practice, this means
that .NET Standard libraries can be used from any .NET implementation. This is exactly why Algo-
rithmCore is implemented as a .NET Standard library, making the core of PRAIS compatible with

The Philips Remote Al Streaming platform 29 /Version 1.0

Eindhoven University of Technology

1 1
-DYDVFULSW SDFNDpH & SDFNDJH
1X*H
©TSHVFULSW? © 1(7)JUDPHZRUN |¢ * < © 1(7)JUDPHZRUN
(ILVWLQJ -DYDVFULsw |57& 3, 35%,6 < < "HPR$OJRULWKRAV

" — | —

@1(7)UDPHZR@ a ©1(7)UDPHZR@
ILYHB6ZLWFK L& (/LQN
“HE57& ,PSOHPHQWR . HE57& ,PSOHPHQWRU

— v e

© 1(7 6WDQGDUG|g 2
$OJRULWKP&RUR

©YSHVFULSW?
0DQXDO 6LJQDOLQY

© 1(7 JUDPHZRUN
THVW 358%,6

©([WHUQD€|

6(3 BURMHFW
6RXUFH &RGH

© 1(7 JUDPHZRUN
35$,65HFRUGHU$SSO

A

\ 4

Figure 4.3: An overview of all the packages and components of PRAIS. All arrows represent a uses
relationship. Overall, we have a Javascript package and a C# package that each contain different
components. Furthermore, the NuGet frame represents which components are part of the PRAIS C#
NuGet package.

essentially any .NET webRTC implementor (NF-10). Table 4.2 shows a comparison of .NET Frame-
work and .NET Core. Given this comparison, we would ideally implement the webRTC implementors
in .NET Core (or .NET Standard) because it works cross-platform, is faster, and does not need to run
in a Windows docker container. Unfortunately, at the start of this project, ICELink was only provided
as a .NET Framework library. LiveSwitch, on the other hand, did also come as a .NET Standard li-
brary, which did unfortunately not include relevant features such as camera/screen/microphone media
capture and the H.264 video codec on MacOS [39]. Because of this, we used the LiveSwitch and
ICELink .NET Framework libraries.

Other components shown in Figure 4.3 include:

DemoAlgorithms: A collection of demo algorithms built using the PRAIS C# API (G1b).

Test.PRAIS: A collection of automated system tests that verify the functionality of the PRAIS
C# API. See Section 5.1 for more details.

PRAISRecorderApplication: The recorder application developed for MMC (see Section 4.3.1).
SEP Project Source Code: The SEP students worked with the PRAIS C# APl NuGet package.

.NET Framework .NET Core
Performance Lower Higher
Cross-platform Windows only Windows, Linux, and MacOS
Maturity Released in 2002 Released in 2016
Owner Microsoft Open source

Docker support Windows docker containers only Linux docker containers. More op-
timized for containerization.

Table 4.2: Comparison of .NET Framework and .NET Core

30 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Existing Javascript RTC API: This is the Javascript RTC API that was already there at the start
of this project.

Manual Signaling: This represents an extension of the Javascript RTC APl which was required
for the integration of the PRAIS C# API and the Javascript RTC APl (NF-8).

In Section 4.4.1, we discuss the NuGet package, i.e., the design of the PRAIS C# API in more detail.

441 The PRAIS C# API

As shown in Figure 4.3, the PRAIS C# API consists of four components. Recall that the PRAIS
component is a simple layer that connects and instantiates the other components. Therefore, in this
section, we only describe the designs of AlgorithmCore (Section 4.4.1.1), and ICELink WebRTC Im-
plementor and LiveSwitch WebRTC Implementor (Section 4.4.1.2). The documentation that belongs
to the PRAIS C# API (NF-1) can be found in Appendix G and online [29].

4.4.1.1 Algorithm Core

The class diagram representing the design of AlgorithmCore is shown in Figure 4.4. Observe the
rectangles in green that represent interfaces that are implemented by the ICELink WebRTC Imple-
mentor and LiveSwitch WebRTC Implementor. With this bridge design pattern [40], we realize the
vendor abstraction layer (NF-3). To make the API easily accessible, all core functionality resides in
the Algorithmimpl class (NF-2). After instantiating such a class with the correct con guration, an al-
gorithm can perform actions such as Join()/Leave() conferences (FR-3.4.1.1), SendMessageToPeer()
(FR-3.4.1.5), OpenDataChannels(), and OpenMediaStream() (FR-3.4.1.3, FR-3.4.1.7) with a certain
media source when desired (FR-3.4.1.4). By using an observer design pattern [Proa], several events
that are triggered by the API can be observed. For example, after joining a conference, the OnPeer-
Connected event is triggered whenever a peer joins the same conference. During this project, we
reviewed the design of AlgorithmCore in a design/code review session with Zoran and Arjan (see
Section 2.6). Overall, there were six important design decisions to consider.

Firstly, both ICELink and LiveSwitch use generic connection concepts that bundle audio, video, and
data streams. In contrast, webRTC splits these concepts into separate media and data streams. Con-
ceptually, both approaches make sense and technically there also is not a very big difference. In the
end, we decided to go for the webRTC approach because of three reasons. Firstly, we noticed that in
ICELink/LiveSwitch, a connection has a direction, which makes sense for audio and video but not so
much for data. In their documentation, they even write that data connections are always bi-directional.
Secondly, we believe that conceptually, audio and video always go well together while data is a more
separate concept. Thirdly, the functionality that goes with audio/video and data streams is different.
Simply put, a data stream is used to send/receive strings/bytes while an audio/video stream is used to
send/receive audio and video frames. Because of these reasons, we decided to split the concepts of
media and data streams (NF-2).

Secondly, in addition to a unique Id (TG3), Peers also have a DisplayName, Tag, and list of Roles.
We decided to add the Tag because it allows developers to add any custom (json) string to its peers.
Furthermore, we also saw value in enabling algorithms to reason based on a peer’s role, which is why
we added the Roles attribute (NF-2).

The Philips Remote Al Streaming platform 31 /Version 1.0

Eindhoven University of Technology

Figure 4.4: The class diagram that represents the design of AlgorithmCore. Rectangles in green repre-
sent interfaces that are implemented by the ICELink WebRTC Implementor and LiveSwitch WebRTC
Implementor. Note that, to make the diagram readable, not all methods/properties are included. In
particular, several asynchronous versions of methods are left out. The complete API speci cation can
be found in Appendix G and online [29].

The LiveSwitchGatewayUrl and WebsyncGatewayUrl de ne the address of the back-end server. De-
pending on which webRTC provider is used, one of the elds should be de ned. The Secret and Token
elds are used for authentication (FR-3.4.1.2), which we describe in more detail in Section 4.5.1.

Another design decision relates to the consideration of having a default (inactive) connection to every
peer that joins the same conference (which was the behavior in the Prototype C# API). A user would
then change the direction of this default connection instead of creating new ones. While, from a
design perspective we preferred not having default connections (NF-2, FR-3.4.1.7), it also turned out
that LiveSwitch has a bug that prevents the changing of connection directions. At this point, this bug
still has not been solved, which made the decision regarding this design trade off easy.

We considered whether there is a requirement for an algorithm instance to be present in multiple con-
ferences at the same time, which is possible in the Javascript RTC API. After some discussion and use
case investigation, we could not identify a use case where this functionality is really needed. There-
fore, we concluded that the extra technical effort, complexity, and uncertainty (in terms of technical

32 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

feasibility) did not outweigh the envisioned bene ts.

Lastly, observe that all classes (except AlgorithmImpl) are sealed, which means they cannot be ex-
tended. This is mainly done from the consideration that in the future, the PRAIS C# API may change.
By preventing extension, there is a smaller chance that application code that uses the PRAIS C# API
breaks, i.e., there is better backwards compatibility (NF-2).

4.4.1.2 ICELink and LiveSwitch WebRTC Implementors

The class diagram representing the design of ICELink WebRTC Implementor is shown in Figure 4.5.
The design of LiveSwitch WebRTC Implementor is very similar, which is why it is included in Ap-
pendix H. The main difference between the two is that ICELink WebRTC Implementor also contains
ManualSignaling (NF-8, FR-3.4.1.6). The green rectangles represent the interfaces that are part of Al-
gorithmCore. By implementing them here, and by connecting them to ICELink functionality (orange
rectangles), we realize the bridge design pattern [40], i.e., the vendor abstraction layer.

An important design decision, regarding the LiveSwitch WebRTC Implementor, relates to the way in
which we implement the connections. Recall that peers can only handle about four simultaneous
P2P connections (depending on the hardware) and that LiveSwitch offers support for SFU and MCU
connections (see Section 2.2.2). While it would be nice to use such SFU/MCU connections under
the hood, it also adds quite some complexity to the system. Furthermore, considering our use cases,
there is no use case that really requires more than four active simultaneous connections. Therefore,
we decided to use P2P connections (FR-3.4.1.3).

Figure 4.5: The class diagram that represents the design of ICELink WebRTC Implementor. Rect-
angles in green represent the interfaces of AlgorithmCore. Rectangles in orange represent ICELink
classes. Note that, to make the diagram readable, not all methods/properties are included. In particu-
lar, several asynchronous versions of methods are left out.

The Philips Remote Al Streaming platform 33 /Version 1.0

Eindhoven University of Technology

4.5 Process View

Within the process view, there are several important aspects to consider. In Section 4.5.1, we describe
how we use tokens to authenticate peers. After that, in Section 4.5.2, we describe manual signaling.
Then, in Section 4.5.3, we discuss some implementation aspects regarding connection setup. Lastly,
we describe the design of the visualization streaming prototype developed during the SEP project in
Section 4.5.4.

45.1 Authentication

PRAIS enables the easy streaming of audio/video/data, which makes security, i.e., authentication, a
very important topic. In general, we note the following regarding security in PRAIS:

As mentioned before, the Javascript RTC API has already been transferred to the CAO. From
a security perspective, this means that webRTC has been checked, veri ed, and approved as a
technology to be incorporated into the HSRA (FR-3.4.1.2).

At the start of this project, the PR team was using token-based authentication [38, 42], in which
a peer is authenticated using a token (see Section 4.5.1.1 for more details).

WebRTC streams are always encrypted. Furthermore, webRTC only works over HTTPS, which
means that also the signaling channels are encrypted.

Recall non-functional requirement NF-9, which essentially states that PRAIS should support OAuth2.0
[42] and OpenlID Connect [38] (which both work with tokens). These technologies are the leading
standard for Single Sign-On (SSO) and identity provision on the internet, which is why Philips pre-
scribes using them [vDWvZ18]. Furthermore, since the existing system was already using token-
based authentication and since LiveSwitch also uses tokens [43], we decided to use token-based au-
thentication in PRAIS.

45.1.1 Token based authentication

A peer uses a token to authenticate with the back-end (FR-3.4.1.2). For ICELink, this means that
a peer requires a token to connect to the WebSync/TURN server. For LiveSwitch, a peer requires a
token to connect to the LiveSwitch server. With token-based authentication, there are two important
considerations: token generation and token distribution.

Token generation

A token is essentially a piece of data that the back-end uses to authenticate a peer. A token is encoded
using a secret that should only be known to the back-end because the back-end uses the same secret
to decode the token. Ideally, the tokens used to connect to the ICELink and LiveSwitch back-ends are
the same, i.e., there is just one token type for PRAIS. Since the PR team already de ned what tokens
look like for ICELink and since LiveSwitch uses its own tokens, we have two types of tokens, which
are shown in Table 4.3. In the future, it is possible to change one of the systems to make sure one
token type can be used by both back-ends.

As we can see in Table 4.3, both tokens use the same core concepts. At the highest level, there is an
application for which conferences are created (FR-3.4.1.1). The difference is that LiveSwitch tokens

34 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

ICELink LiveSwitch [43] Description

Application Salt Application ID A unique identi er for the application

- Client ID A unique identi er associated with a speci c
LiveSwitch instance

User ID User ID A unigue username

- Device ID A unique identi er associated with a particular de-
vice

- Roles A list of roles belonging to the peer

- Conference ID Conference that may be connected to

Not valid before time - Earliest time at which the token is considered valid

Expiration time Expiration The token is not valid anymore after this time

time
Type - Is either TRN or MSG. Indicates whether the token

should be used for connecting to the TURN server
or WebSync server respectively.

Table 4.3: Comparison of the ICELink in LiveSwitch token contents

explicitly specify which conference may be joined (which is safer). The application salt in an ICELink
token maps to an application ID that is only known by the back-end. An organization key that maps to
this application 1D is used to encode and decode ICELink tokens. Similarly, LiveSwitch uses a secret
for encoding and decoding. Lastly, the most important eld in both tokens is the expiration time. With
this eld, we make sure that tokens are not valid anymore after some point in time, which is vital in
case a token is lost/illegally shared (FR-3.4.1.2).

Token distribution

Peers require a token to connect to the back-end, which means they somehow have to obtain this
token. Recall that we rst want to make things work in a simple but common setting, which we
consider to be the scenario where a developer uses the API on his/her computer and from there also
runs the algorithms he/she is developing. To this end, in the requirements, we already split token
distribution into two levels, resulting in the two requirement categories: Security (FR-3.4.1.2) and
Back-end controlled security (FR-3.4.1.10). Security concerns the common setting in which the back-
end authenticates using tokens but does not generate those tokens yet. For ICELink, this means that
peers simply have a locally stored token. For LiveSwitch, peers generate tokens locally using a secret
(see the rst alternative in Figure 4.6). Note that this is not safe, but that it is practical for developers.
For both back-ends, we have test applications for which these tokens can be used. In applications such
as NICU S2S and the PRAIS Recorder Application, Back-end controlled security should be used. In
such a setting, we use SSO, which we explain in Section 4.5.1.2.

4.5.1.2 Single Sign-On: OAuth2.0 and OpenlID Connect

SSO allows a user to log in with a single username and password to different software systems.
In our case, this means that a peer obtains ICELink/LiveSwitch tokens by authenticating with an
external identity provider (NF-9, FR-3.4.1.10). The biggest advantage of this setup is that the PRAIS
back-end does not need to know any credentials, it just needs to be connected to identity providers.
Regarding SSO technologies, the Philips HSRA prescribes [vD\WvZ18] OAuth2.0 [42] and/or OpenlD

The Philips Remote Al Streaming platform 35 /Version 1.0

Eindhoven University of Technology

Figure 4.6: A sequence diagram representing the authentication ow implemented by the SEP students
for algorithms and participants. Algorithms use the client credentials grant type [45] while participants
use the implicit ow grant type [44]. The two bottom-most event calls indicate how the LiveSwitch
server noti es peers of certain events.

Connect [38]. OAuth2.0 was developed as a standard for secure authorization for external parties, and
later the OpenID Connect speci cation was de ned to add secure authentication as well. All in all,
both frameworks de ne different grant types that can be used to obtain access tokens.

During the SEP project, we explored integrating OAuth2.0 and OpenlD Connect with PRAIS. To this
end, the students developed an authentication server and simulated an identity provider that does the
actual authentication. Figure 4.6 illustrates how algorithms and participants obtain LiveSwitch tokens
from the authentication server. Algorithms are not human, meaning they do not really have an identity
and they can not interact with a login screen. Because of this, algorithms follow the client credentials
grant type [45], in which they directly send locally stored credentials to the authentication server. If
they are correct, the authentication server returns a LiveSwitch token. Participants, on the other hand,
can interact with a login screen, which is why they follow the implicit ow grant type [44]. In this

ow, participants are redirected to the identity provider where they log in. This results in an id_token
that tells the authentication server the user was authenticated.

All in all, the SEP results show that PRAIS and OAuth2.0/OpenID Connect nicely integrate. For
now, the SEP results serve as a prototype and should still be integrated with PRAIS. In the future,
the authentication server should be extended to also generate ICELink tokens (or tokens should be
standardized). By supporting OAuth2.0/OpenID Connect, PRAIS will allow organizations to use
their own authentication mechanism, giving them control over which peers get access to PRAIS.

4.5.2 Manual Signaling
As described in Section 2.1, webRTC enables peer to peer connections but still requires signaling [41]
to set up such connections. While the signaling protocol is prede ned, the means used to transfer

signaling messages is not. In our case, LiveSwitch provides out-of-the-box signaling but ICELink
does not. In particular, for ICELink, we have to set up our own signaling server, which the PR

36 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

team already did by using WebSync [5]. Since WebSync is the ICELink recommended approach for
signaling, ICELink provides a default signaling implementation called AutoSignaling. The JavaScript
RTC API uses AutoSignaling internally, so ideally, the PRAIS C# API also uses AutoSignaling. We
identi ed some limitations, however:

AutoSignaling always sets up a default connection to a newly connected peer. This does not
work for us because we want to control how and to which peers we connect (NF-2).

AutoSignaling does not provide functionality to easily connect over additional connections to
already connected peers. Since we want to potentially have multiple connections to the same
peer, AutoSignaling does not suf ce (FR-3.4.1.7).

For these reasons, we decided to implement signaling ourselves, which allows us to get the exibility
that we require. ICELink already provides a very basic template for implementing signaling, which
they call ManualSignaling. We extended and implemented ManualSignaling both in the Javascript
RTC API (FR-3.4.1.6) and the PRAIS C# API (which is required to make them integrate).

Since we already had the WebSync server in place and since the signaling protocol itself [41] is prede-

ned, we mostly had to de ne how peers exchange (signaling) messages. Figure 4.7 illustrates how an
ICELink-powered algorithm obtains a token and connects to the WebSync server. WebSync provides
a publish-subscribe messaging mechanism [5], where peers publish and subscribe to channels. In
Figure 4.7, for example, the WebSync server creates the channels and the algorithm/participant sub-
scribes to the relevant channels. Overall, we use the following channels (italic text represents literal
strings while {text} represents a placeholder):

/Clientld/{ClientID} is used to send messages to a peer that is not in the same conference (which
is required by one of the Javascript RTC API calls). Any peer can publish to this channel (for
which they need to know {ClientID}) and only the peer with {ClientID} subscribes to this
channel.

/Confld/{ConferencelD} is used to send messages to the whole conference. All peers that are
part of the conference publish and subscribe to this channel. Furthermore, the WebSync server
publishes events whenever a peer subscribes/unsubscribes. This allows the peers to keep track
of which peers are present in the conference.

/SigClient/{ConferencelD}/{ClientID} is used to send messages to a peer that is in the same
conference. Furthermore, this channel is used as the messaging channel for a speci c peer. All
peers part of {ConferencelD} can publish while only the peer with {ClientID} subscribes to
this channel.

As we can see, we not only require a channel for signaling messages but also channels for peer man-
agement (FR-3.4.1.1) and message exchange (FR-3.4.1.5). Note that each of the channels has a certain
pre X. We use these pre xes in the WebSync server to Iter and log conference subscribe/unsubscribe
events (FR-3.4.1.6). Overall, ManualSignaling provides a lot of exibility and enables the integration
of the Javascript RTC API and the PRAIS C# APl (NF-8). In Section 4.5.2.1, we describe how we
achieved this integration.

The Philips Remote Al Streaming platform 37 [Version 1.0

Eindhoven University of Technology

Figure 4.7: A sequence diagram that illustrates the typical ManualSignaling ow of an algorithm
and participant. Furthermore, the diagram shows how the PRAIS Recorder Application obtains a
token (see Section 4.3.1). Blue lifelines represent the algorithm and the channels that the algorithm
subscribes to while orange lifelines represent the participant and the channels that the participant
subscribes to. The yellow lifeline represents the conference channel that both the algorithm and
participant subscribe and publish to. The messages/events in the red rectangle can essentially happen
in any order. They are shown here to illustrate what types of messages/events are sent over which
channels.

38 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

45.2.1 Manual Signaling integration

As described in Section 4.5.2, we added manual signaling to make the integration of the Javascript
RTC API and the PRAIS C# API possible. Furthermore, at MMC, the NICU S2S application was
already being used by nurses and parents. Consequently, we had to deploy the modi ed Javascript
RTC API without breaking the existing system. To this end, we used the following procedure:

1. Implement manual signaling in both the Javascript RTC API and the PRAIS C# API.

2. Verify the implementation by using the automated system tests with the ICELink test app (see
Section 5.1.1).

3. Ina code review session with Zoran and Arjan (see Section 2.6), we inspected and veri ed the
design and implementation of manual signaling.

4. Set up a test deployment of the NICU S2S application that uses the modi ed Javascript RTC
API.

5. Manually test the application in combination with PRAIS, and x bugs where needed.

6. Deploy the modi ed Javascript RTC API to the NICU S2S deployment running at MMC.

By following these steps, we successfully deployed the modi ed APIs to the NICU S2S application
at MMC. By doing so, we realized the connection between NICU S2S and PRAIS, enabling MMC to
use NICU footage for research. All in all, we see this as the rst example of how PRAIS enables open
innovation (G1la).

4.5.3 Connection setup implementation details

There are several implementation aspects to consider regarding the setting up of a connection. In
Section 4.5.2, we explained how some of the manual signaling channels include a {ConferencelD}.
Also, recall that we always create conferences that belong to a certain application (see Section 4.5.1.1).
Consequently, it is possible for two applications to have conferences with the same ID. Therefore, to
prevent this, the {ConferencelD} in a manual signaling channel is actually a concatenation of the
ICEL.ink application salt and conference ID.

Another problem to tackle when setting up a data channel(s), is that both peers must use the same
label for the data channel(s). Unfortunately, both ICELink and LiveSwitch do not have a built-in
mechanism to exchange such a label(s). Luckily, for both, when setting up a connection, a tag can be
added. We use this tag to include a json string that lists the data channel label(s). By doing so, both
peers know which data channel label(s) should be used.

Lastly, in our manual signaling implementation, we use a similar approach for the signaling mes-
sages that we exchange. More speci cally, we tag every signaling message with a json string that
contains: DataChannelLabels, ConnectionID, and a Tag. Depending on the signaling message type
(offer, answer, or candidate), not all elds are required. We include a ConnectionID because multiple
connections may be set up simultaneously. The Tag eld has value offer, answer, or candidate, to
indicate the signaling message type.

The Philips Remote Al Streaming platform 39 /Version 1.0

Eindhoven University of Technology

45.4 Visualization Streaming

During the SEP project, we worked with the students on a visualization streaming (see Section 3.1.1)
prototype (FR-3.4.1.12). The visualization streaming process and design is illustrated in Figure 4.8.
By using a data channel, the algorithm rst streams the Javascript visualization code to the partici-
pant, who then loads the script into the browser. The visualization code should implement a simple
interface with just three functions: initializeVisualization(), updateVisualization(data), and remove-
Visualization(). On the participant side, we can then simply call these functions to load, update, and
delete the visualization from a placeholder. Afterwards, another data channel is used to continuously
send data to be visualized.

For this project, the goal was to prototype visualization streaming (TG4). In the future, the Javascript
RTC API and PRAIS C# API can be extended to provide easy access to visualization streaming.

4.6 Physical View

A visual overview of how different entities are deployed is shown in Figure 4.9. To the back-end,
we added an Amazon Elastic Container (EC2) machine T3a.medium that runs the LiveSwitch server.
This server can essentially run anywhere, meaning that it will also work on premise when needed
(NF-6, NF-7). For now, by deploying it on Amazon, we make sure it is available in the cloud (the
same is true for C5n.large). We added an Amazon S3 bucket (healthrtc.org) that contains the les for
the PRAIS documentation (NF-1) and several web apps: ICELink Test App, LiveSwitch Test App,
and SEP Web Apps. Observe that these web apps are also shown in the orange Client browser to
illustrate how they connect to other components. An S3 bucket that already existed at the start of this

Figure 4.8: A sequence diagram that represents the envisioned visualization streaming design

40 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

project (healthrtc.net) was extended by adding Telehealth PRAIS and NICU S2S PRAIS. Telehealth
PRAIS is a modi ed telehealth application that uses the Javascript RTC API that contains manual
signaling. NICU S2S PRAIS is a test deployment of the NICU S2S application that also runs the
modi ed Javascript RTC API. Both were used to verify the integration of manual signaling with the
existing NICU S2S application (NF-8); see Section 4.5.2.1 for more details.

As described before, the PRAIS C# API only runs on .NET Framework. Therefore, the blue .Net

environment machine needs to be a Windows machine. When developing, .NET Framework 4.7.2

also needs to be installed. Since webRTC is supported on all major browsers, there is quite some
exibility in which Client browser to use.

Figure 4.9: A visual overview of how different entities are deployed. This gure is an extended version
of Figure 2.3, which shows the deployment of the system at the start of this project. Recall that yellow,
orange, and blue colors refer to back-end, participant side, and algorithm side entities, respectively.
Lines/rectangles with a bold border are new entities/connections. Dashed lines/rectangles represent
connections/entities that were modi ed.

The Philips Remote Al Streaming platform 41 [Version 1.0

Eindhoven University of Technology

4.7 Development View

In this section, we describe how the software is organized in its development environment. Non-
technical aspects such as project planning, risk management, and way of working are described in
Chapter 7. Figure 4.10 provides a visual overview of how the software development is organized. All
code is present in the following Philips Gitlab repositories:

PRAIS: Contains all PRAIS source code including the Extensible Markup Language (XML)
comments that are used to autogenerate the APl documentation, for which we use Docfx [46].
Docfx automatically detects the XML comments included in the source code and compiles
them to readable API documentation. In addition, Docfx allows the inclusion of handwrit-
ten documentation. We use this, for example, to also include content such as the conceptual
PRAIS documentation and the installation instructions. Docfx can be used locally (through
the build_docs and serve_docs batch les), to check whether the documentation is generated
correctly. Alternatively, Docfx can be used in the Continuous Integration/Continuous Develop-
ment (CI/CD) pipeline that automatically builds and uploads the documentation to AWS [29].
The PRAIS repository also contains all automatic system tests, which we describe in more de-
tail in Section 5.1.1. Since some of these tests require a webcam, which is not available in
a CI/CD pipeline machine, we decided that for now, it is suf cient to run these tests on the
developer’s machine before pushing to the main branch. Lastly, whenever a developer builds
the PRAIS project, the PRAIS C# API NuGet package is automatically generated locally (see
Appendix K).

HealthRtcOrg: Contains the source code of several web apps that are hosted on healthrtc.org.
In particular, it contains the LiveSwitch Test App [33], ICELink Test App [32], and the web
apps [36, 37] created by the SEP students. Similar to the PRAIS repository, whenever a devel-
oper pushes to the main branch, all code is automatically deployed to AWS.

PRAISExamples: This is a private repository that we aim to selectively share with developers
in the future. It contains PRAIS examples (including the PRAIS Recorder Application) and
the PRAIS NuGet package(s). By providing access, we essentially allow the developer to use
PRAIS (NF-5).

uc-pal-private: Contains the Javascript RTC API. During this project, a branch was created
for the version that contains manual signaling. We use this new version by manually copying it
to the Telehealth repository and the AWS S3 bucket that hosts the NICU S2S test deployment.
We used this deployment to test whether everything still worked after adding the new Javascript
RTC API; more details can be found in Section 4.5.2.1.

Telehealth: To test whether the Telehealth application still works with the new Javascript RTC
API (that contains manual signaling), we manually add the new API version, build the required
web app les, and then copy the build output to an S3 bucket that is hosted on healthrtc.net.

On AWS, Route 53 is Amazon’s Domain Name System (DNS) service that we use to route users to
the correct domains. CloudFront is also an AWS service that we use to host two AWS S3 buckets
as websites: healthrtc.org and healthrtc.net. The reason for splitting the two is that the .net domain
was already live at the start of the project while the .org domain was not. To make sure we could
safely work without affecting the existing S3 bucket, we added the .org domain (and corresponding
S3 bucket).

42 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Figure 4.10: A visual overview of how the software development is organized.

The Philips Remote Al Streaming platform 43 [Version 1.0

Eindhoven University of Technology

44 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

5 \eri cation and Validation

In this chapter, we describe how we veri ed and validated different aspects of PRAIS. In particular,
in Section 5.1, we describe which of the functional requirements were actually implemented and how
we tested the functionality. Then, in Sections 5.2 through 5.8, we address each of the non-functional
requirements and describe how we validated them.

5.1 Functional evaluation

In Chapter 3, we provided an overview of all 150 functional requirements (see Appendix D) by split-
ting the requirements into 24 MoSCoW prioritized categories. All requirement categories with won’t
priority were not implemented during this project because of time limitations. The requirement cate-
gories with must, should, or could priority are listed in Table 5.1 with their implementation status. As
we can see, all requirements with must and should priorities were implemented successfully. Some
requirement categories with could priority were not implemented. Regarding Back-end controlled
security, a rst design/prototype was made during the SEP project (see Section 4.5.1.2) and thereby
provides a starting point for future development. For the IL: Recording requirements, the technical
obstacle described in Section 4.3.1 impeded a proper design/implementation. To validate the require-
ments that were implemented, we used automated system tests (where possible), which are described
in Section 5.1.1.

5.1.1 Automated system testing

In general, there are four levels at which software can be tested: unit, integration, system, and ac-
ceptance testing [BCS™10]. In a typical development process, unit tests are added rst to test the
functionality of individual components. Then, the integration of components is tested by adding in-
tegration tests. After that, the system as a whole is tested by adding system tests. Finally, the system
is provided to actual users, who test the system by using it. Ideally, the rst three test types are au-
tomated such that changes in the software can be quickly veri ed. In our case, for example, C# test
frameworks such as MSTest [27] provide the tools to easily automate testing.

While developing the PRAIS C# API, we also implemented automated tests, but we did not follow
the typical development process because of the nature of PRAIS. More speci cally, most algorithm
functionality only becomes available after joining a conference and involves other peers. This makes
it very dif cult to only test individual components or sets of components. Consequently, we decided
to only implement tests on the system level. In particular, we used functional testing [BCS™10] and
implemented automated functional tests. In practice, this means that all our tests only use PRAIS C#
API calls, i.e., the API is treated as a black box. By doing so, in a way, we are indirectly also doing

The Philips Remote Al Streaming platform 45 [Version 1.0

Eindhoven University of Technology

Table 5.1: An overview of all functional requirement categories (except the requirements with won’t
priority) and their implementation status at the end of the project. M, S, and C stand for Must, Should,
and Could respectively. IL and LS refer to ICELink and LiveSwitch. Categories without IL or LS are
the categories generic to the system.

Category Prio. Impl. Comment

IL: Algorithm Media Sources M

IL: Algorithm Messaging M

IL: Basic Conference Management M

IL: Javascript RTC API M

IL: Peer-to-peer Connections M

IL: Security M

LS: Algorithm Media Sources M

LS: Algorithm Messaging M

LS: Basic Conference Management M

LS: Peer-to-peer Connections M

LS: Security M

IL: Algorithm Media Sources S

IL: Algorithm Multi Connections S

LS: Algorithm Media Sources S

LS: Algorithm Multi Connections S

PRAIS Recorder Application S

IL: Recording S

IL: Recording C See the technical obstacle described in Sec-
tion 4.3.1.

LS: Recording @

Back-end Controlled Security C During the SEP project, an OpenlD Con-
nect authentication server that generates
LiveSwitch tokens was implemented (Sec-
tion 4.5.1.2). To make this server compati-
ble with PRAIS, ICELink token generation
should also be added, which is potential fu-
ture work (see Section 6.1).

LS: Algorithm Media Sources C Not required for any of the implemented use
cases.

IL: Algorithm Media Sources C Same as above.

Advanced Conference Management C Due to time limitations, we did not imple-
ment this functionality.

User Interface Streaming C During the SEP project, a prototype of user
interface streaming was implemented (see
Section 4.5.4). This proves the feasibility
of the concept and serves as a starting point
for future development.

46 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

unit and integration testing. Furthermore, it allows us to easily test the implementation of different
webRTC providers. This was especially useful when adding ICELink as a webRTC provider. For
the tests that involve a participant, we created two test webapps, one for LiveSwitch [33] and one for
ICELink [32]. By using Selenium [28], we automatically open a browser window with a test webapp
(depending on which webRTC implementor we are testing), resulting in a participant that joins a
conference. In total, we implemented 80 functional tests using the MSTest framework to verify the
functionality of the PRAIS C# API.

In the following sections, we discuss and validate each of the non-functional requirements.

5.2 Usability

Regarding usability, we de ned two non-functional requirements in Section 3.4.2:
The PRAIS C# API shall be documented for developers.”
The PRAIS C# API shall be easy to use."

For the rst requirement, the documentation written for PRAIS and the PRAIS C# API can be found
online [29] and in Appendix G. In the usability study with the SEP students (see Section 5.2.2), we
asked the students what they thought of the documentation. Overall, they were very positive (see
Section 5.2.4).

Assessing whether the PRAIS C# API is easy to use is more dif cult, because it is a very subjective
matter. It requires us to understand the human activities of the PRAIS C# API users. To this end, we
did a usability study with the SEP students (see Section 5.2.1).

5.2.1 Usability Study Goal

At the time of executing this project, the SEP students were the only PRAIS users, which is why we
aimed to assess the usability of PRAIS using their experience and insights. There exist many different
research methods to study and understand the human activities [ESSD08, KLL97] regarding the usage
of a system. To pick an applicable research method, we considered the following:

We have a limited user population (only ten SEP students).

While the SEP project lasted for ten weeks, we only had two weeks to execute the usability
study.

The bene ts of using PRAIS are hard to quantify. More speci cally, there are no PRAIS al-
ternatives (that we know of) that were used by the SEP students in the past. The only possible
comparison we can do is within the project itself, where LiveSwitch was used for participants
in the browser and the PRAIS C# APl was used for algorithms.

Considering these factors, we decided to do an exploratory case study [ESSDO08], in which we collect
guantitative data using a questionnaire and qualitative data through interviews. With the questionnaire
results, we aim to understand how the SEP students experienced the usability of PRAIS. Furthermore,
by using the Net Promotor Score (NPS) [31], we aim to understand whether or not the students would
recommend PRAIS to others. The interview results serve to understand why the students had certain
experiences and to understand the strong/weak points of PRAIS. All in all, this user study serves as

The Philips Remote Al Streaming platform 47 [Version 1.0

Eindhoven University of Technology

an initial investigation of the usability of PRAIS. We aim to derive new hypotheses and build theories
regarding PRAIS’ usability. The complete study is described in detail in Section 5.2.2.

5.2.2 Methodology

There exist many different tools for assessing the usability of software systems. The System Usability
Scale (SUS) [BJ96] was designed to take a quick measurement of how people perceive the usability
of software systems they were using. It consists of ten ve-point questions with alternating positive
and negative tone. A tool that was designed to provide similar results to those obtained with the
SUS, is the Usability Metric for User Experience (UMUX) [Fin10]. UMUX consists of four seven-
point questions where two are positively and two are negatively toned. In an attempt to even further
reduce the number of questions, UMUX-LITE [LUMZ13] only contains two out of the four UMUX
guestions. Lastly, another tool we considered and compared against the above-mentioned tools is the
Technology Acceptance Model (TAM) [Dav89, VD00, VB08, LL 20]. All in all, since TAM nicely
splits and de nes usability as a combination of perceived usefulness and perceived ease-of-use we
decided to use it (see Section 5.2.2.1).

5.2.2.1 The Technology Acceptance Model (TAM)

The Technology Acceptance Model [Dav89] aims to measure perceived usefulness (PU) and perceived
ease-of-use (PEU). PU is de ned as The degree to which a person believes that using a particular
system would enhance his or her job performance.” [Dav89]. PEU, in contrast, refersto The degree
to which a person believes that using a particular system would be free of effort.”” [Dav89]. The
TAM questionnaire consists of 12 questions, six for the measurement of PU and six for PEU. In later
works [VVDO00, VB08], TAM got extended into TAM2 and TAM3 respectively. In the extended models,
aspects such as social in uence, cognitive instrumental processes, trust, and perceived risk on system
use are also included.

Observe that the purpose of TAM is to predict future use instead of rating the experience of actual use.
Lah et al. [LL 20] address this shortcoming by introducing modi ed TAM (MTAM). In mTAM, re-
spondents indicate agreement with statements regarding actual user experience instead of anticipated
experience. Similar to TAM, mTAM still consists of 12 items, six for PU and six for PEU. We used
these 12 items as a basis for de ning the PRAIS questionnaire items. In Section 5.2.2.2, we describe
the complete study and the questionnaire in more detail.

5.2.2.2 The usability study

As described above, the PRAIS usability study consist of a questionnaire and an interview, which can
both be found in Appendix I. The questionnaire consists of 12 seven-point statements about PRAIS
that are based on mTAM. More speci cally, we modi ed each statement to speci cally talk about
PRAIS. Furthermore, the rst statement was modi ed to explicitly talk about LiveSwitch to make
the statement more speci ¢: Using PRAIS in my job enables me to accomplish tasks more quickly
than LiveSwitch." In addition to these 12 statements, the questionnaire includes an NPS [31] question:

How likely is it that you would recommend PRAIS to a friend or colleague?" With this question,
we aim to understand whether or not the students would recommend PRALIS to others. By following
interview guidelines [34], we designed the interview questions to understand the experience of the

48 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

SEP students and to understand the strong/weak points of PRAIS.

Since the SEP students were the only PRAIS users thus far, we did not have a group to test the
usability study with. Instead, we asked the PR team to review the study. Their feedback was used
to improve the initial version of the study. Furthermore, the study was reviewed and approved by
the Eindhoven University of Technology Ethical Review Board of the Mathematics and Computer
Science department (Reference ID: ERB2020MCS6).

All ten SEP students were asked via email to participate (voluntarily) in the usability study and ve
ended up actually participating. Since the students have different responsibilities within their team,
we checked with the participants whether they actually worked with PRAIS during their ten-week
project. The ve students that did not participate in the study did not work a lot with PRAIS because
they had other responsibilities such as testing, documentation, and front-end development. All of
the students are in the last year of their computer science bachelor’s program. The questionnaire was
distributed via email asa Word le that the students could Il in. The interview was done online via the
LiveSwitch test app [33]. This allowed us to add an algorithm that recorded the audio of the individual
speakers, which made the audio to text transcription much easier. Every interview took approximately
half an hour. In Section 5.2.2.3, we discuss aspects to consider regarding the reliability and validity
of the study. The results of the questionnaire and interviews are described in Section 5.2.3.

5.2.2.3 Reliability and validity

We assess the reliability and validity of our study by using the following four aspects [KLL97,
ESSDO08]: construct validity, internal validity, external validity, reliability. Each of these aspects
is discussed in more detail below.

Construct validity is used to determine how well a test measures what it is supposed to measure.
In our case, this refers to the question whether or not our study actually measures usability. Firstly,
usability is a very broad term that can be interpreted in many ways. Because of this, we de ned
usability more speci cally by following the TAM [Dav89] model and we split it into PU and PEU.
TAM has been shown to properly measure PU and PEU [Dav89]. A risk to consider here is that
we modi ed the rst statement of the mTAM model to talk about LiveSwitch, which may affect the
reliability of the results. Secondly, the NPS question aims to determine likelihood to recommend
and not usability. Consequently, we cannot use its result to determine usability. Still, it provides an
indication of how the students experience working with PRAIS. Lastly, there is no guarantee that the
questions asked during the interview are the right ones.

Internal validity considers the study design itself, i.e., whether the results really follow from the data.
A factor of in uence is the fact that the author of this document was the customer for the students.
This introduces the risk of the students being biased in their feedback because there is a hierarchy
between the researcher and the participants. In particular, we had to grade the SEP students, which
may lead to the students giving mostly positive feedback. To reduce this bias as much as possible, we
did the usability study only after grading the SEP project.

Another factor to consider is the comparison to LiveSwitch. The students used the LiveSwitch type-
script APl while for PRAIS they used the PRAIS C# API. This difference in programming language
and the fact that students may be more adept at certain languages may affect how the students feel
about the usability of PRAIS compared to LiveSwitch.

External validity considers whether claims regarding the generality of the results are justi ed. In

The Philips Remote Al Streaming platform 49 /Version 1.0

Eindhoven University of Technology

our case, the envisioned users of PRAIS are software developers, i.e., professionals. The usability
study, however, was done with bachelor level computer science students. In general, students and
professionals have different characteristics, e.g., differences in skill/motivation. Consequently, we
cannot claim with certainty that the SEP students are good proxies for the envisioned professional
users [FZB"18].

Reliability considers whether the study can be repeated with the same results. In our case, the ques-
tionnaire and interview can be reused as is in a different study. The biggest challenge in reproducing
the results would be the setting of the SEP project.

To test the internal consistency of the PU and PEU measurements, we computed Cronbach’s alpha
values for both. For PU and PEU, we have Cronbach’s alpha values of 0.90 and 0.29 respectively.
While the rst is acceptable, the second is not. Note that these values do not say much because our
sample size is small, even smaller than the number of questions asked, which is a risk to the reliability
of this study. Given that the SEP students are the only PRAIS users so far, however, this is the best
we could do.

5.2.3 Results

The detailed questionnaire results and interview transcriptions can be found in Appendix J. In Sec-
tion 5.2.3.1, we describe our ndings based on the questionnaire results. After that, in Section 5.2.3.2,
we describe how we analyzed the questionnaire transcriptions and report our ndings.

5.2.3.1 Quantitative Results

Lah et al. [LL 20] describe in their mTAM work how to compute mTAM scores for PU and PEU:

To get mTAM scores that, like the SUS and UMUX, range from 0 to 100, for PU and PEU separately,
compute the mean of the item scores, subtract one from that mean, then multiply by 100/6. To get an
overall mTAM score, compute the mean of PU and PEU." [LL 20]. Using the questionnaire results,
we computed mTAM scores for PU and PEU, which are both 72.77. This appears to be a coincidence
as the results for PU and PEU differ. Unfortunately, Lah etal. [LL 20] do not specify how to interpret
these values. Luckily, since mTAM scores were designed to be similar to SUS scores, we can use other
resources [BKMO09] that provide guidelines on how to interpret such scores. In particular, Bangor
et al. [BKIMO09] describe three scales to interpret SUS scores. On an acceptable/not acceptable scale,
our 72.77 score would be rated as acceptable. On a classical American grading scale, we would get a
C, and on an adjective scale, the score can be interpreted as good.

When we do not convert the quantitative results to mTAM scores, we can do some statistical analysis
on the original answers. Recall that these values range from 1 to 7, representing strongly disagree
to strongly agree respectively. For PU, we have a mean of 5.36 with a standard deviation of 0.91.
Similarly, for PEU, we have a mean of 5.36 with a standard deviation of 0.75. This indicates that, on
average, participants are positive with respect to PU and PEU of PRAIS.

Regarding the NPS question, all participants answered with either seven or eight, which translates
to all participants being neither promoters nor detractors [31]. This results in an NPS score of zero,
which is the lowest possible score. Considering that all participants are essentially neutral, we do not
deem this as a bad result.

50 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

5.2.3.2 Qualitative Results

To analyze and interpret the interview results, we used card sorting [35]. We rst transcribed the ve
interview audio recordings to text. After that, we selected all sentences/statements made about PRAIS
and turned these into 166 so-called cards (which can be found in Appendix J). Lastly, all cards were
put into one Excel sheet and during a card sorting session, we grouped the cards into categories. The
output of this grouping is a hierarchical structure (see Figure 5.1) that essentially represents the mental
model of the participants regarding PRAIS. At the highest level, we found three main categories: tips,
tops, and neutral statements. Within those categories, we again have subcategories and even sub-
subcategories, which can be seen in Figure 5.1. In Section 5.2.4, we discuss these results more in
depth.

5.2.4 Discussion and Conclusion

Given the quantitative and qualitative results, we make the following observations regarding the us-
ability of PRAIS.

Overall, participants are happy with PRAIS (96 tops compared to 67 tips and mTAM scores of
72.77). They feel that PRAIS is simple and easy to use, and that most required functionality is
already there.

There appears to be more consensus when it comes to tops. More speci cally, there is no tip
that was mentioned by all ve participants.

Figure 5.1: A visual overview of the hierarchical structure and categories that were identi ed after
card sorting. The numbers in parentheses represent: number of participants/number of statements.
For example, all ve participants provided tops about PRAIS using 69 statements.

The Philips Remote Al Streaming platform 51 /Version 1.0

Eindhoven University of Technology

Participants are happy with PRAIS’ documentation, especially compared to LiveSwitch’s doc-
umentation. They would like some more examples and conceptual documentation, however.

Compared to LiveSwitch, participants nd PRAIS easier to learn, that PRAIS saves time, and
that PRAIS is better in general. They also note, however, that LiveSwitch has more features
which makes it more suitable in complex use cases.

Most participants would recommend PRAIS if a friend or colleague were to build a streaming
application.

Most tips refer to additional nice-to-have features such as closing of data channels, better log-
ging, and more interfaces to make testing easier.

The tip regarding .NET Framework is more fundamental to PRAIS and even directly relates
to NF-10 (also see Section 5.8). In essence, .NET Framework is Windows-only and the stu-
dents encountered some issues with Visual Studio. They recommend providing PRAIS as .NET
Core/Standard to make PRAIS also available on Linux/MacOS.

The tip regarding adding a Javascript API is something we had already solved by implementing
ICELink as a webRTC provider in the PRAIS C# API.

Overall, the usability study results provide very valuable insights into the usability of PRAIS. In the
future, we de nitely recommend considering adding the features that were identi ed as missing (see
Section 6.1). Given the scope and goals of this project, we can conclude that PRAIS satis es the
usability requirements. It is to be seen whether these results can also be generalized to a broader
audience. Therefore, we hypothesize: PRAIS is perceived as useful and easy to use by software
developers.”

5.3 Vendor Abstraction

Regarding vendor abstraction, we de ned the following non-functional requirement in Section 3.4.2:
The PRAIS C# API shall abstract away the webRTC provider."

In Section 4.4, we described how we achieve vendor abstraction in our design with a bridge pat-
tern [40]. By adding both LiveSwitch and ICELink as webRTC providers, we have shown that dif-
ferent providers can be added. Furthermore, the automated system testing (see Section 5.1.1) at API
level makes it very easy to check whether a new webRTC provider implementation works correctly.
The only place where vendor speci ¢ infrastructure is required is the back-end, where we have both a
WebSync and a LiveSwitch server. All in all, we deem that this requirement is satis ed.

5.4 Installability

Regarding installability, we de ned the following non-functional requirements in Section 3.4.2:
The PRAIS C# API shall be easy to install by users."
Philips shall control who gets access to the PRAIS C# API."

As described in Section 2.3, the Prototype C# RTC API was part of a large Visual Studio [23] solu-
tion that also contained other (unnecessary) elements than the API. To make the installation easier,
the PRAIS C# API is distributed as a NuGet [30] package. The NuGet package is internally avail-
able within a Philips repository. Where needed, Philips can grant access to others if they wish to use

52 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

PRAIS. The PRAIS installation instructions are written in the online documentation [29]. Further-
more, after asking, the SEP students indicated that all of them were able to install the PRAIS C# API
without any issues.

5.5 Deployability

Regarding deployability, we de ned the following non-functional requirements in Section 3.4.2:
The system shall run in the cloud."
The system shall run on premise."

In Section 4.6, we described the deployment of PRAIS. Whether or not the system can run in the
cloud or on premise depends on the back-end. Currently, both the WebSync and LiveSwitch server
run in the cloud. Each of these servers can also be deployed on an on-premise machine, making it
possible to also run the system on premise.

5.6 Security

Regarding security, we de ned the following non-functional requirement with could priority in Sec-
tion 3.4.2: The system shall use the access control technology prescribed by the Philips PaaS docu-
ment [vDWvZ18]."

As described in Section 4.5.1, during the SEP project, we successfully prototyped the integration of
Auth2.0/0OpenlID Connect and PRAIS. Due to time limitations, however, we did not manage to fully
integrate the authentication server with PRAIS. Still, the provided design (see Section 4.5.1.2) and
implemented authentication server provide a good starting point for future integration.

5.7 Integratability

Regarding integratability, we de ned the following non-functional requirement in Section 3.4.2: The
PRAIS C# API shall integrate with the Javascript RTC APL."

As described in Section 4.5.2, with manual signaling, we realized the integration of the Javascript RTC
API and the PRAIS C# API. At MMC we tested this integration with the PRAIS Recorder Application
(see Section 4.3.1) in a real-life scenario where recording functionality was added to the NICU S2S
application being used at MMC.

5.8 Compatibility

Regarding compatibility, we de ned the following non-functional requirement with could priority in
Section 3.4.2: The PRAIS C# API shall be usable from any .NET implementation.”

In Section 4.4, we described the four core components of the PRAIS C# API and explained our choice
for different .NET variants. Currently, the PRAIS C# API is only available in .NET Framework. The
core of the API, however, is implemented as a .NET Standard library, meaning that in the future, any
.NET webRTC provider can be added.

The Philips Remote Al Streaming platform 53 /Version 1.0

Eindhoven University of Technology

54 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

6 Conclusion and Future Work

There are two fronts on which Philips leverages its Health Suite Reference Architecture (HSRA).
Firstly, the HSRA provides a consistent, uni ed, and company-wide approach to software architec-
ture and development within Philips itself. Secondly, the HSRA provides architectural building blocks
that are leveraged in open innovation collaborations. Philips Research (PR) is mainly responsible for
maturing and validating new technologies such that they can be adopted in the HSRA. Remote Al
streaming, is one of such technologies, and with it, we aim to address several issues (as listed in
Section 1.1): to enable remote Al streaming use cases, to remove the need for care providers to buy/-
maintain expensive hardware, to remove the need for care providers to develop/maintain streaming
technology, to make Al algorithms more available/replaceable, and to enable sharing of Al algorithms.

In this work, we presented the Philips Remote Al Streaming (PRAIS) platform, which aims to address
the above-listed issues. The design and development of PRAIS was driven by a set of technical and
non-technical project goals, which are repeated below:

G1 Mature remote Al streaming such that it reaches a maturity level that is suitable for the advanced
development phase. This means that:
(a) PRAIS is ready to be used by open innovation partners.
(b) Demonstrators that show the potential of PRAIS have been implemented.

TG1 Design and implement the PRAIS C# API. In particular, a vendor abstraction layer should be
added.

TG2 Integrate the PRAIS C# API with the existing Javascript RTC API.

TG3 Address the technical limitations of the existing system (see Section 2.3).

TG4 Investigate and prototype visualization streaming (see Section 3.1.1).

At the core of PRAIS lies the PRAIS C# API, which supports both ICELink and LiveSwitch as we-
bRTC providers (TG1). We veri ed the usability of the API in a collaboration with SEP students,
during which PRAIS demonstrators were built (G1b). Furthermore, we did a usability study of which
the results show that users nd the API easy to use. During the SEP project, we also established
the feasibility of visualization streaming. This proof of concept provides the basis for further explo-
ration (TG4). After adding manual signaling, we successfully integrated the PRAIS C# API with the
Javascript RTC API (TG2). By doing so, we connected PRAIS to the NICU S2S application run-
ning at MMC. By using the PRAIS Recorder application (G1b), MMC is able to record NICU video
footage, which they use for research purposes. This is a rst example of how PRAIS can stimulate
open innovation (G1a). In addition to designing and implementing the PRAIS C# API, we addressed
most of the identi ed limitations in the existing system, either by implementing functionality or by
providing a design for an envisioned solution (TG3). All in all, the project results provide strong
evidence that PRAIS is becoming mature (G1). In the future, more demonstrators should be built to
further prove PRAIS’ value and we envision adding several features, as described in Section 6.1.

The Philips Remote Al Streaming platform 55 /Version 1.0

Eindhoven University of Technology

6.1 Recommendations and Future Work

In this section, we list possible directions for future work.

LiveSwitch and .NET Standard

Overall, based on our experience with LiveSwitch and ICELink, we would recommend LiveSwitch.
While ICELink provides more exibility in the sense that any signaling implementation can be used,
LiveSwitch provides out-of-the-box signaling, which saves a lot of development/maintenance time.
Furthermore, LiveSwitch supports features such as SFU/MCU connections, enabling use cases that
require more than four simultaneous connections. The main drawback of LiveSwitch is that the
LiveSwitch server must be used. This means that FrozenMountain [4] also requests payment for
P2P connections (which is not the case with ICELink).

On a technical level, we already mentioned in Section 4.4 that LiveSwitch is also provided in .NET
Standard. In addition, around the end of this project, ICELink was also released in .NET Standard.
Since .NET Standard works cross-platform, is faster, and can run in a Linux container, we recommend
implementing PRAIS with .NET Standard. Do note, however, that not all features are supported in
.NET Standard [39].

Authentication back-end and Standardized tokens
As mentioned in Section 4.5.1.1, we use different tokens for ICELink and LiveSwitch. In the future,
we recommend standardizing the token format such that both back-ends can use the same tokens.

In parallel, we recommend integrating the authentication server built during the SEP project with
PRAIS. By doing so, PRAIS will support OpenID Connect, which is in line with the Philips PaaS
guidelines [vDWvZ18]. Once integrated, the authentication server can be extended to also support
other SSO protocols such as LDAP [47].

Visualization streaming

During the SEP project, we successfully prototyped visualization streaming. To make visualization
streaming more usable/accessible, we recommend extending the Javascript RTC API and the PRAIS
C# API with functionality that enables the easy setting up of visualization streaming. The design
described in Section 4.5.4 provides a starting point for such an extension.

Recording timestamps

As described in Section 4.3.1, we considered several solutions regarding the generation of timestamps
per recorded video frame. In the future, to improve upon the current approach, we recommend to
implement one of the considered solutions.

56 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

7 Project Management

In this chapter, we discuss several aspects regarding the project management of this project. In Sec-
tion 7.1, we discuss our way of working. After that, in Section 7.2, we provide a complete overview
of the project planning. Then, in Section 7.3, we describe how we managed risks during this project.
Lastly, in Section 7.4, we provide a retrospective by the author of this document. In this chapter, we
refer to the main author as the trainee.

7.1 Way of working

In total, this project lasted for ten months, during which the trainee was part of the PR team. Because
of the corona virus, this was a very interesting project from a project management perspective. The

rst 2.5 months of the project took place in the of ce, but the remainder was done almost completely
remotely. This also implied a change in the way of working.

Within the PR team, a Scrum/Agile [48] working methodology is used. Originally, sprints lasted for
two weeks and stand-ups were held two times per week. When we started working remotely, however,
we increased the stand-up frequency to ve times per week. Other recurring meetings such as the
sprint planning and sprint demo provided a structured way to keep the team up to date. Furthermore,
where needed, ad hoc meetings were scheduled.

In addition to the Scrum/Agile process, weekly meetings were held with the TU/e supervisor to keep
track of the project’s short-term progress. On a monthly basis, during the Project Steering Group
(PSG) meetings, the trainee, TU/e supervisor, Project owner, and Project mentor came together to
discuss the project planning on a higher level. During the SEP project, weekly demo and planning
meetings were held to monitor and steer the SEP project. During the collaboration with MMC, we
planned remote meetings on an ad-hoc basis when needed.

7.2 Planning
On a high level, this project can be split into three phases:

1. LiveSwitch phase in which we gathered requirements, de ned relevant use cases, prepared the
SEP project, and designed and implemented the PRAIS C# API using LiveSwitch as a webRTC
provider.

2. ICELink phase in which we implemented the PRAIS C# API using ICELink as a webRTC
provider, added manual signaling, and integrated the Javascript RTC API and the PRAIS C#
API. In parallel, we executed the SEP project.

The Philips Remote Al Streaming platform 57 /Version 1.0

Eindhoven University of Technology

3. Recording phase in which we deployed the new API versions to MMC, added recording features
to PRAIS, and built the PRAIS Recorder Application.

Throughout these phases, other activities also took place such as report writing and the comeback day
presentation. In Appendix L, we provide a Gantt chart that illustrates the complete project planning. A
milestone trend analysis chart that shows how we planned/achieved different milestones over time is
shown in Figure 7.1. In this chart, the User Doc V1, System V2, and PRAIS Recorder App milestones
represent the ends of the LiveSwitch, ICELink, and Recording phases, respectively. Overall, the
planning of the rst phase went smoothly, mainly because the start of the SEP project resulted in a
very strict deadline. Consequently, almost all effort went into designing and developing the PRAIS
C# API. During the second and third phases, the planning was more exible, especially when it came
to the report (note how the report milestones change a lot). The goal was to nish all main chapters of
the report before a big review session (and holiday) at the beginning of August.

Figure 7.1: A milestone trend analysis chart that shows how milestones were planned and achieved
over time. R. stands for Report.

58 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

7.3 Risk Management

In any project, there are risks, and to prevent/mitigate them as well as possible, we kept track of the
risks that we were aware of. For each risk, we de ned an: identi er, status, description, likelihood,
impact, priority, mitigation action (reduce likelihood), and contingency action (reduce impact). The
likelihood value ranges from 1 to 5 and represents: extremely unlikely, remote possibility, possibly
occur, will probably occur, and almost certain, respectively. The impact value ranges from 1 to 5 and
represents: insigni cant, minor, moderate, major, and catastrophic, respectively. To get a risk priority,
we multiply the likelihood and impact values. During every PSG meeting, we would discuss newly
identi ed risks and check if there were unidenti ed risks. The complete list of identi ed risks is too
large to include in the main text, which is why Table 7.1 lists only one risk to show how we managed
them. The complete risk table can be found in Appendix L.

ID Status Description L I P Mitigation action Contingency action (re-
(reduce likelihood) duce impact)

12 Mitigated, The SEP students 0 4 0 First, de ning and Assuming there is at least
all re- will have to work agreeing on what is a minimal workable sys-
quired with the system, included in the min- tem, i.e., the minimal vi-
features which means that imal viable system able system is not com-
were when they start, is essential. Robin plete but there is at
imple- there should be shall do this by least some functionality.
mented a minimal viable de ning priorities Then, it is essential to
on time. version that works of the requirements. come up with a project

well enough for Second, nishing that is still doable and

them to complete
the project. So,
there is a risk that
the system would
not be ready yet.

the minimal viable
system shall have
the highest prior-
ity until the SEP
project begins.

also has value to this
project. In the worst
case, when there is no
working system at all, we
may have to cancel the
SEP project.

Table 7.1: Arisk that we identi ed during the project. The ID, L, I, and P columns represent Identi er,
Likelihood, Impact, and Priority, respectively. The P column is color coded with a gradient from red
to yellow that represent high to low priority respectively.

7.4 Retrospective

In this section, | re ect on different project aspects and discuss some lessons learned.

Philips

In addition to being the longest project that | ever worked on, this was also my rst project in a very
large company. In the beginning, this was quite challenging because | had to gure out what my
position was in this enormous organization. Luckily, after some time, | learned who is a relevant
stakeholder and who is not. In addition, I learned that one can greatly bene t from the connections of
colleagues. For example, | had to get in touch with privacy/security of cers. Instead of going around
looking for them myself, I simply asked my supervisor who already knew whom to contact.

The Philips Remote Al Streaming platform 59 /Version 1.0

Eindhoven University of Technology

SEP

Something | really enjoyed during this project was supervising the SEP project. For me, it was the
rst time that | was a customer. It was amazing to experience a collaboration where both parties

really bene t. The students indicated that they really enjoyed the project and | ended up with useful

demonstrators and PRAIS feedback. It was amazing to see how a group of enthusiastic students picks

up your project de nition and delivers a working product after just ten weeks. On a personal level, |

learned that | really enjoyed managing a group and feel con dent in saying that | was also good at it.

MMC

The collaboration with MMC was also very motivating and rewarding. After working on PRAIS
for approximately seven months, it was very rewarding to see it nally being used in practice by
researchers. Especially the knowledge that PRAIS enables innovation that is eventually going to help
babies is very exciting. In addition, it was my rst collaboration with an actual hospital. Throughout
the project, I heard several stories within the team about how privacy and security are important topics.
Only until I actually talked to the people in the hospital did I realize how important such topics are.
Allin all, I see the collaboration with MMC as a very valuable experience.

Changing Environment

This project was pretty dynamic for two main reasons. The rst is the corona virus, which resulted
in suddenly having to work full-time from home. The second lies in the switch from LiveSwitch to
ICELink. All in all, this required quite some exibility and | believe that I managed quite well. With
the Scrum/Agile way of working, it was fairly easy to react to the changing environment. Furthermore,
in Philips Research, it is quite normal to encounter unexpected/new circumstances, meaning that the
team was also very supportive in adapting to new situations.

It is all about money

As software engineers, we love to stay in our technical bubble and simply want to develop software.
When money is involved, however, which is the case in any company, business aspects play an im-
portant role. In this project, this became especially apparent for the webRTC providers. Vendor
abstraction was an important design aspect to prevent vendor lock-in, and obtaining a new ICELink
license turned out to be quite a long process. All in all, this taught me two things. Firstly, no matter
how perfect a technical solution is, if it is too expensive, it will not matter. Secondly, in a big company,
it often takes some time to get what you need because there are quite some people/steps to go through.

60 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Bibliography

[1] Liveswitch. https://help :frozenmountain :com/docs/liveswitch . Ac-
cessed: 2020-04-30. 6

[10] Spit re. https://github :com/RainwayApp/spitfire . Accessed: 2020-05-
12. 69
[11] Webrtc for the universal windows platform. https://webrtc-uwp :github :io/ .

Accessed: 2020-05-12. 69

[12] Mixedreality-webrtc project. https://microsoft :github :io/
MixedReality-WebRTC/manual/introduction :html . Accessed: 2020-05-
12. 69

[13] Vidyo.io. https://developer :vidyo :io/#/documentation . Accessed:

2020-05-12. 7, 70

[14] Opentok platform. https://tokbox :com/developer/guides/basics/
Accessed: 2020-05-12. 70

[16] C# built-in types. https://docs :microsoft :com/en-us/dotnet/csharp/
language-reference/builtin-types/built-in-types . Accessed:
2020-05-19. 12

[17] C# data structures. https://docs :microsoft :com/en-us/dotnet/
standard/collections/ . Accessed: 2020-05-19. 12

[18] Json. https://'www :json :org/json-en :html . Accessed: 2020-05-19. 12

[19] Philips research. https://www :philips :com/a-w/research/about-
philips-research :html . Accessed: 2020-05-26. 1

[2] lcelink. https://help .frozenmountain :com/docsl/icelink3 . Accessed:
2020-04-30. 6

[20] Healthsuite reference architecture. https://www :philips :com/a-w/
research/blog/20191209-reference-architectures-and-
guardrails-burden-or-opportunity-for-innovation :html . Ac-

cessed: 2020-05-26. 1

[21] Philips. https://www :philips :com/a-w/about/company/our-
strategy/our-strategic-focus . Accessed: 2020-05-27. 1

The Philips Remote Al Streaming platform 61 / Version 1.0

https://help.frozenmountain.com/docs/liveswitch
https://github.com/RainwayApp/spitfire
https://webrtc-uwp.github.io/
https://microsoft.github.io/MixedReality-WebRTC/manual/introduction.html
https://microsoft.github.io/MixedReality-WebRTC/manual/introduction.html
https://developer.vidyo.io/#/documentation
https://tokbox.com/developer/guides/basics/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types
https://docs.microsoft.com/en-us/dotnet/standard/collections/
https://docs.microsoft.com/en-us/dotnet/standard/collections/
https://www.json.org/json-en.html
https://www.philips.com/a-w/research/about-philips-research.html
https://www.philips.com/a-w/research/about-philips-research.html
https://help.frozenmountain.com/docs/icelink3
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/research/blog/20191209-reference-architectures-and-guardrails-burden-or-opportunity-for-innovation.html
https://www.philips.com/a-w/about/company/our-strategy/our-strategic-focus
https://www.philips.com/a-w/about/company/our-strategy/our-strategic-focus

Eindhoven University of Technology

62

[22] Amazon web services. hitps://aws :amazon:com/ . Accessed: 2020-06-04. 7

[23] Microsoft visual studio. https://visualstudio ‘microsoft :com/. Accessed:
2020-06-04. 9, 52

[25] Moscow. https:/lwww :volkerdon :com/pages/moscow-
prioritisation . Accessed: 2020-06-16. 20
[26] .net standard. https://docs :microsoft :com/en-us/dotnet/standard/

net-standard . Accessed: 2020-06-16. 22, 29

[27] Mstest framework. https://docs :microsoft :com/en-us/visualstudio/
test/getting-started-with-unit-testing?view=vs-2019 . Ac-
cessed: 2020-06-22. 45

[28] Selenium. hitps://www :selenium :dev/ . Accessed: 2020-06-22. 47

[29] Prais online documentation. https://healthric :org/docs/articles/
conceptual :html . Accessed: 2020-06-24. xvi, 31, 32, 42, 47, 53, 99

[30] Nuget packages. https://docs :microsoft :com/en-us/nuget/what-is-
nuget . Accessed: 2020-06-24. 29, 52, 173

[31] Net promotor score (nps). https://hbr :0rg/2003/12/the-one-number-
you-need-to-grow . Accessed: 2020-06-26. 47, 48, 50

[32] Icelink test webapp. https://healthrtc :org/icelinktestapp/
testapp :html?&channel=Conferenceld&mode=P2P&username=
Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE . Ac-
cessed: 2020-06-22. 42, 47

[33] Liveswitch test webapp. https://healthrtc :org/demo/index :htm. Ac-
cessed: 2020-06-22. 17, 42, 47, 49

[34] Survey best practices & design guidelines. https://www :surveymonkey :com/
mp/survey-guidelines/ . Accessed: 2020-06-26. 48

[35] Card sorting. https://github .com/ds4se/chapters/blob/master/
zimmermann/card-sorting :md Accessed: 2020-07-08. 51

[36] Sep hospital b web application. https://healthrtc .org/sep-pose-vl/
index :html . Accessed: 2020-07-15. 26, 42

[37] Sep hospital a web application. https://healthrtc .org/sep-apnea-vl/
index :html . Accessed: 2020-07-15. 26, 42

[38] Openid connect. https://openid :net/connect/ . Accessed: 2020-07-15. 17,

22,26, 34, 36
[39] Liveswitch library versions. https://help .frozenmountain :com/docs/
liveswitch/clients# ‘NET. Accessed: 2020-07-15. 30, 56

The Philips Remote Al Streaming platform / Version 1.0

https://aws.amazon.com/
https://visualstudio.microsoft.com/
https://www.volkerdon.com/pages/moscow-prioritisation
https://www.volkerdon.com/pages/moscow-prioritisation
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing?view=vs-2019
https://www.selenium.dev/
https://healthrtc.org/docs/articles/conceptual.html
https://healthrtc.org/docs/articles/conceptual.html
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/icelinktestapp/testapp.html?&channel=ConferenceId&mode=P2P&username=Anonymous&tag=tag&roles=roleone&token=ENTERTOKENHERE
https://healthrtc.org/demo/index.htm
https://www.surveymonkey.com/mp/survey-guidelines/
https://www.surveymonkey.com/mp/survey-guidelines/
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://github.com/ds4se/chapters/blob/master/zimmermann/card-sorting.md
https://healthrtc.org/sep-pose-v1/index.html
https://healthrtc.org/sep-pose-v1/index.html
https://healthrtc.org/sep-apnea-v1/index.html
https://healthrtc.org/sep-apnea-v1/index.html
https://openid.net/connect/
https://help.frozenmountain.com/docs/liveswitch/clients#.NET
https://help.frozenmountain.com/docs/liveswitch/clients#.NET

Eindhoven University of Technology

[4] Frozenmountain. https://www :frozenmountain :com/. Accessed: 2020-04-30.
6, 56

[40] Bridge design pattern. https://refactoring :guru/design-patterns/
bridge . Accessed: 2020-07-15. 31, 33, 52

[41] Webrtc signaling. https://developer :mozilla :org/en-US/docs/Web/
API/WebRTC_API/Signaling_and_video_calling . Accessed: 2020-07-20.
36, 37

[42] Oauth 2.0. hitps://oauth ‘net/2/ . Accessed: 2020-07-20. 17, 22, 34, 35

[43] Liveswitch tokens. https://help .frozenmountain :com/docs/
liveswitch/server/advanced-topics#CreatinganAuthServer
Accessed: 2020-07-22. 34, 35

[44] Implicit ow. https://openid :net/specs/openid-connect-core-
1_0:htmi#ImplicitFlowAuth . Accessed: 2020-07-22. xvi, 36

[45] Client credentials ow. https://oauth :net/2/grant-types/client-
credentials/ . Accessed: 2020-07-22. xvi, 36

[46] Docfx. https://dotnet ‘github :io/docfx/ . Accessed: 2020-07-23. 42
[47] Ldap. https://Idap :com/ . Accessed: 2020-07-27. 56

[48] Scrum. https://www :scrum :org/resources/what-is-scrum . Accessed:
2020-07-28. 57

[49] Healthsuite digital platform. https://www :hsdp :io/ . Accessed: 2020-08-13. 1

[5] Websync. https://help :frozenmountain :com/docs/websync4 . Accessed:
2020-04-30. 6, 7, 37

[50] Philips realtime communications platform. https://
share :philips :com/sites/STS020170418141503/
architecture/Lists/Asset%20Categoryl/Category :aspx?ID=

56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%
2Fsites%2FSTS020170418141503%2Farchitecture%
2FSiteAssets%2FPages%2FPlatform%2520Details%
2Easpx%3FPF%3DHSRA%2520%28CA0%29&ContentTypeld=
0x010054F21D110376634C81B77A41A6A257C60072939D0FAFEOD84EA18279A5E38F37B
Accessed: 2020-09-14. ix

[6] Webrtc. https://webrtc :org/ . Accessed: 2020-04-30. 2, 3,5

[7] Kurento. https://doc-kurento :readthedocs :io/en/6 :13:2/
index :html . Accessed: 2020-05-12. 69

[8] Janus. https://janus :conf :meetecho :com/docs/ . Accessed: 2020-05-12. 69

[9] Openvidu. https://docs :openvidu :io/en/2 :13:0/ . Accessed: 2020-05-12.
69

The Philips Remote Al Streaming platform 63 / Version 1.0

https://www.frozenmountain.com/
https://refactoring.guru/design-patterns/bridge
https://refactoring.guru/design-patterns/bridge
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://oauth.net/2/
https://help.frozenmountain.com/docs/liveswitch/server/advanced-topics#CreatinganAuthServer
https://help.frozenmountain.com/docs/liveswitch/server/advanced-topics#CreatinganAuthServer
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://oauth.net/2/grant-types/client-credentials/
https://oauth.net/2/grant-types/client-credentials/
https://dotnet.github.io/docfx/
https://ldap.com/
https://www.scrum.org/resources/what-is-scrum
https://www.hsdp.io/
https://help.frozenmountain.com/docs/websync4
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://share.philips.com/sites/STS020170418141503/architecture/Lists/Asset%20Category1/Category.aspx?ID=56&Source=https%3A%2F%2Fshare%2Ephilips%2Ecom%2Fsites%2FSTS020170418141503%2Farchitecture%2FSiteAssets%2FPages%2FPlatform%2520Details%2Easpx%3FPF%3DHSRA%2520%28CAO%29&ContentTypeId=0x010054F21D110376634C81B77A41A6A257C60072939D0FAFE0D84EA18279A5E38F37BB00857EC5D6A16F634283A79AC666BC49B3
https://webrtc.org/
https://doc-kurento.readthedocs.io/en/6.13.2/index.html
https://doc-kurento.readthedocs.io/en/6.13.2/index.html
https://janus.conf.meetecho.com/docs/
https://docs.openvidu.io/en/2.13.0/

Eindhoven University of Technology

[BCS*10] Paulo Borba, Ana Cavalcanti, Augusto Sampaio, Jim Woodcook, Patr cia Machado,
Auri Vincenzi, and Jos# Maldonado. Testing Techniques in Software Engineering, vol-
ume 6153. 2010. 45

[BJ96] BROOKE and J. SUS : A ’quick and dirty’ usability scale. Usability Evaluation in
Industry, 1996. 48

[BKMOQ9] Aaron Bangor, Philip T. Kortum, and James T. Miller. Determining what individual SUS
scores mean: adding an adjective rating scale. unde ned, 2009. 50

[Dav89] Fred D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly: Management Information Systems, 13(3):319
339, 9 1989. 48, 49

[EBK™19] Einspieler, Bos, Krieber-Tomantschger, Alvarado, Barbosa, Bertoncelli, Burger,
Chorna, Del Secco, DeRegnier, H ning, Ko, Lucaccioni, Maeda, Marchi, Mart n, Mor-
gan, Mutlu, Nogolovk, Pansy, Peyton, Pokorny, Prinsloo, Ricci, Saini, Scheucheneg-
ger, Silva, Soloveichick, Spittle, Toldo, Utsch, van Zyl, Vizals, Wang, Yang, Yard mc -
Lokmanoglu, Cioni, Ferrari, Guzzetta, and Marschik. Cerebral Palsy: Early Markers of
Clinical Phenotype and Functional Outcome. Journal of Clinical Medicine, 8(10):1616,
10 2019. 9

[ESSDO08] Steve Easterbrook, Janice Singer, Margaret Anne Storey, and Daniela Damian. Selecting
empirical methods for software engineering research. In Guide to Advanced Empirical
Software Engineering, pages 285 311. Springer London, 2008. 47, 49

[Fin10] Kraig Finstad. The Usability Metric for User Experience. Interacting with Computers,
22(5):323 327,19 2010. 48

[FZB*18] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, Andreas
Jedlitschka, Natalia Juristo, J rgen M nch, Markku Oivo, Per Runeson, Martin Shep-
perd, Dag I.K. Sj#berg, and Burak Turhan. Four commentaries on the use of students
and professionals in empirical software engineering experiments, 12 2018. 50

[KLL97] Barbara Kitchenham, Stephen Linkman, and David Law. DESMET: A methodology for
evaluating software engineering methods and tools. Computing and Control Engineering
Journal, 8(3):120 126, 1997. 47, 49

[Kru95] Philippe B. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42
50, 1995. 25, 28

[LL 20] Ur ka Lah, James R. Lewis, and Bo tjan umak. Perceived Usability and the Modi ed
Technology Acceptance Model. International Journal of Human Computer Interaction,
pages 1 15, 2 2020. xiii, 48, 50, 123

[LUM13] James R. Lewis, Brian S. Utesch, and Deborah E. Maher. UMUX-LITE - When there’s
no time for the SUS. In Conference on Human Factors in Computing Systems - Pro-
ceedings, pages 2099 2102, New York, New York, USA, 2013. ACM Press. 48

[Mon20] R.J. H. Montree. Apnea detection and classi cation in neonates using non-invasive elec-
tromyography and video analysis. Master’s thesis, Eindhoven University of Technology,
the Netherlands, 2020. 1, 10

64 The Philips Remote Al Streaming platform / Version 1.0

[NN15]

[Proa]
[Prob]

[SBM™*15]

[VB08]

[VDOO]

[vDWvZ18]

Eindhoven University of Technology

Sam Newman and Sam Newman. Building microservices : designing ne-grained sys-
tems. O’Reilly Media, 2015. 16, 17

Programming in the Large with Design Patterns - Eddie Burris - Google Books. 31

Product Security and Services Of ce. Services Security and Privacy Requirements -
Revision 5. Technical report, Philips (Con dential). 17

Shashank Sharma, Sourya Bhattacharyya, Jayanta Mukherjee, Parimal Kumar Purkait,
Arunava Biswas, and Alok Kanti Deb. Automated detection of newborn sleep apnea
using video monitoring system. In ICAPR 2015 - 2015 8th International Conference on
Advances in Pattern Recognition. Institute of Electrical and Electronics Engineers Inc.,
22015. 1

Viswanath Venkatesh and Hillol Bala. Technology Acceptance Model 3 and a Research
Agenda on Interventions. Decision Sciences, 39(2):273 315, 52008. 48

Viswanath Venkatesh and Fred D. Davis. Theoretical extension of the Technology Ac-
ceptance Model: Four longitudinal eld studies. Management Science, 46(2):186 204,
2000. 48

Ronald van Driel, Klaas Wijbrans, and Jan van Zoest. CAO - Philips PaaS Reference
Architecture Design. Technical report, Philips (Con dential), 2018. 17, 23, 34, 35, 53,
56

The Philips Remote Al Streaming platform 65 / Version 1.0

Eindhoven University of Technology

66 The Philips Remote Al Streaming platform / Version 1.0

About the author

Eindhoven University of Technology

Robin Mennens received his bachelor’s degree in
Software Science (2016) and his master’s degree
in Computer Science and Engineering (2018) from
Eindhoven University of Technology (The Nether-
lands). During his master’s program, he had an intern-
ship and carried out his master’s thesis project at Pro-
cessGold in Eindhoven. His master’s thesis, Graph
layout stability in process mining, was in the elds
of process mining and graph drawing and involved
the development and implementation of a graph lay-
out algorithm. Still eager to learn more, he started the
Software Technology PDEnNg program in 2018, also
at Eindhoven University of Technology. During the
program, he was involved as a project manager, devel-
oper, SCRUM master, and product owner in Al, agri-
culture, and software quality management projects for
Philips, Precision Agrotech Center, and ASML.

The Philips Remote Al Streaming platform 67 / Version 1.0

Eindhoven University of Technology

68 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

A WebRTC Providers

During this project, we investigated several webRTC providers and compared them. In this chapter,
we describe the webRTC providers that we investigated but did not end up working with. Each of the
providers has some kind of limitation, which we describe below.

Kurento [7]

Kurento provides a webRTC media server and a set of client-side APIs to simplify the development
of audio/video applications for the web and smartphone platforms. By de ning media pipelines, the
media server can be con gured to handle media elements in a certain order/way. Similar to our use
case, they have modules (which are essentially algorithms) that run on the media server (while in our
case we want to run the algorithms as webRTC clients). Also, Kurento only provides JavaScript and
Java client-side APIs.

OpenVidu[9]

OpenVidu is built on top of Kurento and therefore suffers from the same drawbacks. It aims to further
wrap and hide all the low-level technicalities such that users are provided with a simple, effective, and
easy to use API.

Janus [8]
Janus is a general-purpose webRTC server written in C. Extra functionality can be added by adding
plug-ins to the server. Unfortunately, there are no client-side APIs and we found the documentation
to be poor.

Spit re [10]

Spit re is a library that wraps the webRTC native code such that .NET applications can take advan-
tage of data channels. Considering our use case, Spit re did not suf ce because we also required
audio/video streaming.

WebRTC for the Universal Windows Platform [11]

Microsoft launched this project in an effort to port the webRTC codebase to Universal Windows
Platform (UWP). It is open source and available as a NuGet package. On the API level it is very
similar to the standard webRTC API, which means that it is still quite low level. Because of this, we
preferred other providers such as ICELink and LiveSwitch, which abstract away some of the details.

MixedReality WebRTC Project [12]

The MixedReality webRTC project consists of a set of components designed to help mixed reality
app developers integrate peer-to-peer audio, video, and data real-time communication into their ap-
plication. Like the name suggests, the project mainly focuses on features that enhance collaborative
experiences in mixed reality apps. Since we require a more general-purpose webRTC implementation,
this option did not really suit our needs.

The Philips Remote Al Streaming platform 69 / Version 1.0

Eindhoven University of Technology

Vidyo.io [13]

Vidyo.io is a platform as a service (PaaS) that makes it easy for developers to integrate real-time video
communication capabilities into their application. It mainly consists of client-side SDKs that provide
APIs for integrating such communication capabilities. All of the clients connect to the Vidyo cloud
service, which means that there is no on-premise option. For the same reason, we did not use Vidyo.

OpenTok platform [14]

OpenTok is similar to Vidyo. In addition to providing client-side SDKSs, it also provides server-side
SDKSs that give more control over RTC sessions and authentication. Like Vidyo, all clients connect to
the cloud (OpenTok Cloud), which means that there is no on premise option.

70 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

B SFUand MCU

Figure B.1 visually compares a Peer-to-Peer (P2P), Selective Forwarding Unit (SFU), and Multipoint
Control Unit (MCU) setup. While P2P connections are the fastest in terms of transmission speed,
they also require quite some CPU power because encoding audio/video is an expensive operation
(while decoding is not). A typical Personal Computer (PC), for example, can only manage three P2P
connections at the same time. By placing an SFU or MCU between the peers (see Figure B.1), peers
only need to encode their audio/video signal once; the SFU/MCU then takes care of the distribution to
other peers. A disadvantage of an MCU is that it needs to decrypt, decode, encode, and encrypt each
incoming stream (in that order) to merge them into one outgoing stream. This means that an MCU
needs a decryption/encryption key, which is less secure than a P2P/SFU connection.

Figure B.1: A visual representation of P2P/SFU/MCU. Circles represent peers while squares represent
a server. When using P2P, all peers connect to each other, resulting in a mesh network. By using an
SFU/MCU, a star network is created in which all traf ¢ goes via the server. An MCU differs from an
SFU in the sense that it merges all incoming streams into a single outgoing stream, which is done per
peer.

The Philips Remote Al Streaming platform 71 / Version 1.0

Eindhoven University of Technology

72 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

C Use Case Analysis

During the use case analysis, we explored many different use cases, out of which some were picked
to be investigated in more detail (see Section 2.4). In the sections below, we describe the other use
cases and explain why we did not investigate them in more detail. Figure C.1 shows the output of one
of the brainstorming sessions we had while exploring use cases.

Bilingual conversation
Two actors that speak different languages are having a remote audio/video session. To make sure that
the actors can understand each other, the system does the following:

1. Convert the spoken audio into text.
2. Translate the text to the other language.
3. Show the translated text as subtitles.

4. (Optional) synthesize the translated text into audio again.

Before this project, the PR team already implemented a demonstrator for this use case in a project
done together with a group of PDENng Software Technology trainees. As a rst test for PRAIS, we
implemented this use case again to verify the PRAIS functionality. Currently, the involved algorithm
is part of the PRAISExamples repository (see Section 4.7).

Multilingual conversation

The same as bilingual conversation but now there are three or more actors that speak two or more
different languages. Since this is simply a more complex case of the bilingual conversation, we did
not investigate it further.

Condition monitoring
In a scenario where a doctor and a patient have regular remote sessions, the system automatically
keeps track of different aspects of these sessions. Think of:

The emotional state of the patient (can be based on audio and/or video).
A (translated) transcription of the conversation.

A (translated) summary of the conversation.

A history of transcriptions and summaries.

A sentiment score per participant based on the transcription.

Live sentiment analysis to give live feedback to the doctor/patient.

Video snapshots of the conversation (of the patient’s face, for example).

The Philips Remote Al Streaming platform 73 / Version 1.0

Eindhoven University of Technology

Figure C.1: During use case brainstorming, we would draw how participants and algorithms connect
among each other. This helped us understand how use cases differ/overlap and provided insight into
what functionality should be part of PRAIS.

An Al can detect topics of interest/entities during the conversation. If someone, for example,
mentions paracetamol then the system can provide more information on this medication. This
can be done live during conversation or as a summary afterwards.

Multilingual instant messaging, i.e., translate chat messages.

Before this project, the PR team had already implemented a demonstrator (containing most of the
features of this use case) in a project done together with a group of PDEng Software Technology
trainees. Therefore, use-case-wise, there was not much value to gain anymore.

De-identi cation of private data

Whenever video is shared between two or more actors (screen share, for example), the system detects
private data in the video and automatically blurs it. The same can be done for audio, i.e., one can
replace sensitive data with beeps.

Before this project, the PR team had already implemented (the video part of) this use case in a project
done together with a group of PDEng Software Technology trainees. Therefore, use-case-wise, there
was not much value to gain anymore.

74 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Neonatal Intensive Care Unit (NICU) sleep-wake detection
With an Al algorithm and a camera that is constantly Iming a prematurely born baby, the system can
automatically detect whether the baby is awake or sleeping.

The PR team had already managed to prototype this use case in the past. Also, it is very similar to the
apnea detection (Section 2.4.2) and pose detection (Section 2.4.1) use cases (for which no prototype
existed yet).

Patient pose detection

With a camera that is constantly Iming a patient and an Al algorithm, the system is able to detect
the position/pose of the patient. This information can be used to detect seizures, for example, i.e., to
detect the shaking of the body. Since one of our team members was actively working on neonatal pose
detection (which is a similar use case), we preferred that use case instead of this one.

Controlling a remote device

In a screenshare session, one of the clients takes over control of the other’s machine. During use case
analysis, we did not have a stakeholder who would directly bene t from such a system, which is why
we did not investigate it further.

Take over screen of remote machine (that is broken)

By attaching a device that runs an algorithm to a hospital machine (MRI for example), it would be
possible to see the MRI screen and even control it. More speci cally, the device can read the video
signal of the machine and stream it to a remote service engineer. At the same time, the remote service
engineer can send mouse/keyboard input to the machine via the attached device. During use case
analysis, we did not have a stakeholder who would directly bene t from such a system, which is why
we did not investigate it further.

Augmented Reality (AR) video streaming

A eld service engineer (FSE) who is unable to solve a problem and who is wearing an AR headset
can get remote help from a remote service engineer (RSE). The RSE sees whatever the AR headset
is Iming and he or she can point to places on the screen. An algorithm then converts this 2d pointer
to 3d space and shows it in AR to the FSE. We did not have such an algorithm/AR headset directly
available, which is why we did not investigate this use case further.

Hospital control room

In a central hospital location, many RTC streams come in from different cameras/algorithms. This
gives the crew watching these streams a means to have an overview of the complete hospital. While
hospitals have shown interest in such a system in the past, during use case analysis, we did not have
a concrete stakeholder that would directly bene t from such a system, which is why we did not
investigate it further.

The Philips Remote Al Streaming platform 75 / Version 1.0

Eindhoven University of Technology

76 The Philips Remote Al Streaming platform / Version 1.0

D Requirements

Eindhoven University of Technology

Table D.1 lists all the functional requirements. The requirements are categorized and priorities follow
the MoSCoW model: Must, Should, Could, Would.

ID

Priority Category

Description ‘

F-13

Must

ICELink
/LiveSwitch:
Security

Algorithms shall generate tokens locally

F-36

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify applications

F-51

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify conferences

F-52

Must

ICELink
/LiveSwitch:
Security

The system shall uniquely identify peers

F-53

Must

ICELink
/LiveSwitch:
Security

Peers shall authenticate themselves using tokens before
joining a conference

F-54

Must

ICELink
/LiveSwitch:
Security

A conference shall uniquely map to an application

F-57

Must

ICELink
/LiveSwitch:
Security

An algorithm instance shall be present in at most one con-
ference

F-148

Must

ICELink
/LiveSwitch:
Security

The system shall encrypt streams

F-149

Must

ICELink
/LiveSwitch:
Security

Tokens shall have an expiration date

The Philips Remote Al Streaming platform 77 [Version 1.0

Eindhoven University of Technology

F-9 Must ICELink: Al- AnICELink algorithm shall use a custom media source to
gorithm Media send audio/video to other peers
Sources

F-111 Must ICELink: Algo- An ICELink algorithm shall send messages to speci ¢
rithm Messaging peers in the same conference.

F-112 = Must ICELink: Algo- An ICELink algorithm shall receive messages from spe-
rithm Messaging ci ¢ peers in the same conference.

F-116 & Must ICELink: Basic An ICELink algorithm shall join a conference
Conference
Management

F-117 = Must ICELink: Basic An ICELink algorithm shall leave a conference
Conference
Management

F-118 Must ICELink: Basic An ICELink algorithm shall terminate itself
Conference
Management

F-127 = Must ICELink: The Javascript RTC API shall use manual signaling to set-
Javascript RTC tle peer-to-peer connections
API

F-119 Must ICELink: Peer- An ICELink algorithm shall send audio peer-to-peer to
to-peer Connec- speci ¢ peers over audio stream when speci ed by the
tions user

F-120 = Must ICELink: Peer- An ICELink algorithm shall send video peer-to-peer to
to-peer Connec- speci ¢ peers over video stream when speci ed by the
tions user

F-121 = Must ICELink: Peer- AnICELink algorithm shall send data peer-to-peer to spe-
to-peer Connec- ci c peers over data stream when speci ed by the user
tions

F-122 = Must ICELink: Peer- An ICELink algorithm shall disconnect from speci c
to-peer Connec- peers over any stream when speci ed by the user
tions

F-123 = Must ICELink: Peer- An ICELink algorithm shall receive audio peer-to-peer
to-peer Connec- from speci ¢ peers over audio stream when speci ed by
tions the user

F-124 = Must ICELink: Peer- An ICELink algorithm shall receive video peer-to-peer
to-peer Connec- from speci c peers over video stream when speci ed by
tions the user

78 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-125 = Must ICELink: Peer- An ICELink algorithm shall receive data peer-to-peer
to-peer Connec- from speci ¢ peers over data stream when speci ed by
tions the user

F-126 = Must ICELink: Peer- An ICELink algorithm shall use manual signaling to set
to-peer Connec- up a peer to peer connection
tions

F-150 = Must ICELink: Peer- Manual Signaling shall integrate with the existing back-
to-peer Connec- end WebSync call data record logging functionality
tions

F-79 Must LiveSwitch: Al- A LiveSwitch algorithm shall use a custom media source
gorithm Media to send audio/video to other peers
Sources

F-69 Must LiveSwitch: Al- A LiveSwitch algorithm shall send messages to speci ¢
gorithm Messag- peers in the same conference.
ing

F-83 Must LiveSwitch: Al- A LiveSwitch algorithm shall receive messages from spe-
gorithm Messag- ci c peers in the same conference.
ing

F-34 ' Must LiveSwitch: Ba- A LiveSwitch algorithm shall join a conference
sic Conference
Management

F-35 = Must LiveSwitch: Ba- A LiveSwitch algorithm shall leave a conference
sic Conference
Management

F-38 Must LiveSwitch: Ba- A LiveSwitch algorithm shall terminate itself
sic Conference
Management

F-1 Must LiveSwitch: A LiveSwitch algorithm shall send audio peer-to-peer to
Peer-to-peer speci c peers over audio stream when speci ed by the
Connections user

F-2 Must LiveSwitch: A LiveSwitch algorithm shall send video peer-to-peer to
Peer-to-peer speci c peers over video stream when speci ed by the
Connections user

F-3 Must LiveSwitch: A LiveSwitch algorithm shall send data peer-to-peer to
Peer-to-peer speci c peers over data stream when speci ed by the user
Connections

F-4 Must LiveSwitch: A LiveSwitch algorithm shall disconnect from speci ¢

Peer-to-peer
Connections

peers over any stream when speci ed by the user

The Philips Remote Al Streaming platform

79 [/ Version 1.0

Eindhoven University of Technology

F-70 Must LiveSwitch: A LiveSwitch algorithm shall receive audio peer-to-peer
Peer-to-peer from speci c peers over audio stream when speci ed by
Connections the user

F-71 = Must LiveSwitch: A LiveSwitch algorithm shall receive video peer-to-peer
Peer-to-peer from speci ¢ peers over video stream when speci ed by
Connections the user

F-72 Must LiveSwitch: A LiveSwitch algorithm shall receive data peer-to-peer
Peer-to-peer from speci c peers over data stream when speci ed by
Connections the user

F-65 Should ICELink: Al- AnICELink algorithm shall use screen capture as a media
gorithm Media source to send audio/video to other peers
Sources

F-110 Should ICELink: Al- An ICELink algorithm shall use a camera/microphone
gorithm Media (connected to the device the algorithm runs on) as a media
Sources source to send audio/video to other peers

F-113 Should ICELink: Algo- An ICELink algorithm shall connect over multiple video
rithm Multi Con- streams to the same peer when speci ed by the user
nections

F-114 Should ICELink: Algo- An ICELink algorithm shall connect over multiple audio
rithm Multi Con- streams to the same peer when speci ed by the user
nections

F-115 Should ICELink: Algo- An ICELink algorithm shall connect over multiple data
rithm Multi Con- streams to the same peer when speci ed by the user
nections

F-67 Should ICELink: An ICELink algorithm shall record incoming audio from
Recording peers speci ed by the user

F-68 Should ICELink: When an ICELink algorithm records audio and video from
Recording a peer, then the algorithm shall synchronize the audio and

video

F-131 Should ICELink: An ICELink algorithm shall record incoming video from
Recording peers speci ed by the user

F-132 Should ICELIink: An ICELink algorithm shall store a recording as mkv for-
Recording mat

F-133 Should ICELink: An ICELink algorithm shall store a recording with a le-
Recording name speci ed by the user

F-134 Should ICELink: An ICELink algorithm shall store a recording in a folder
Recording speci ed by the user

80 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-135 Should ICELink: An ICELink algorithm shall store an absolute millisecond

Recording accurate frame receival timestamp time for every recorded
video frame

F-80 Should LiveSwitch: Al- A LiveSwitch algorithm shall use a camera/microphone
gorithm Media (connected to the device the algorithm runs on) as a media
Sources source to send audio/video to other peers

F-81 Should LiveSwitch: Al- A LiveSwitch algorithm shall use screen capture as a me-
gorithm Media dia source to send audio/video to other peers
Sources

F-5 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple data
Algorithm Multi streams to the same peer when speci ed by the user
Connections

F-6 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple video
Algorithm Multi streams to the same peer when speci ed by the user
Connections

F-7 Should LiveSwitch: A LiveSwitch algorithm shall connect over multiple audio
Algorithm Multi streams to the same peer when speci ed by the user
Connections

F-136 Should PRAIS Recorder The PRAIS Recorder Application shall record a number
Application of video chunks speci ed by the user

F-137 Should PRAIS Recorder The PRAIS Recorder Application shall record video
Application chunks of a duration speci ed by the user

F-138 Should PRAIS Recorder The PRAIS Recorder Application shall authenticate a user
Application before allowing connections to incubators

F-139 Should PRAIS Recorder The PRAIS Recorder Application shall only record incu-
Application bators at MMC that have consent

F-140 Should PRAIS Recorder The PRAIS Recorder Application shall terminate a con-
Application nection to an incubator when the nurse disables the same

incubator

F-141 Should PRAIS Recorder The PRAIS Recorder Application shall show the video of
Application a connected incubator

F-142 Should PRAIS Recorder The PRAIS Recorder Application shall connect to exactly
Application one incubator at the same time

F-143 Should PRAIS Recorder The PRAIS Recorder Application shall stop showing the

Application

video of a connect incubator when speci ed by the user
via the Ul

The Philips Remote Al Streaming platform

81 / Version 1.0

Eindhoven University of Technology

F-144 Should PRAIS Recorder The PRAIS Recorder Application shall con gure the le

Application name of the recording based on what the user speci ed via
the Ul

F-145 Should PRAIS Recorder The PRAIS Recorder Application shall store the recorded
Application video in a local folder speci ed by the user

F-39 Could Advanced Con- An algorithm shall register with the system before joining
ference Manage- a conference
ment

F-40 Could Advanced Con- The system shall keep track of all registered algorithms
ference Manage-
ment

F-41 Could Advanced Con- An algorithm shall be identi ed by name within a solution
ference Manage- provider
ment

F-42 Could Advanced Con- The system shall instruct an algorithm to join a speci ¢
ference Manage- conference
ment

F-43 Could Advanced Con- When a peer is in a conference, then the peer shall add
ference Manage- algorithms to the same conference
ment

F-66 Could Advanced Con- When apeer isinaconference, then the peer shall remove
ference Manage- algorithms from the same conference
ment

F-109 Could Advanced Con- The system shall instruct an algorithm to leave a speci ¢
ference Manage- conference
ment

F-10 Could Back-end Con- Peers shall be authenticated by solution providers using
trolled Security ~ open ID connect

F-11 Could Back-end Con- The system shall generate tokens and provide them to au-
trolled Security thenticated peers

F-37 Could Back-end Con- An application shall uniquely map to a solution provider
trolled Security

F-50 Could Back-end Con- The system shall uniquely identify solution providers
trolled Security

F-55 Could Back-end Con- An algorithm shall uniquely map to a solution provider
trolled Security

F-56 Could Back-end Con- An algorithm shall join a conference if the algorithm and
trolled Security ~ conference belong to the same solution provider

82 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-58 Could Back-end Con- The system shall encrypt all security related messages
trolled Security
F-8 Could ICELink: Al- An ICELink algorithm shall use a local le as a media
gorithm Media source to send audio/video to other peers
Sources
F-146 Could ICELink: An ICEL.ink algorithm shall store an absolute millisecond
Recording accurate frame created timestamp time for every recorded
video frame
F-147 Could ICELink: An ICELink algorithm shall record all video frames at the
Recording same resolution
F-82 Could LiveSwitch: Al- A LiveSwitch algorithm shall use a local le as a media
gorithm Media source to send audio/video to other peers
Sources
F-128 Could LiveSwitch: A LiveSwitch algorithm shall record incoming audio from
Recording peers speci ed by the user
F-129 Could LiveSwitch: When a LiveSwitch algorithm records audio and video
Recording from a peer, then the algorithm shall synchronize the au-
dio and video
F-130 Could LiveSwitch: An ICELink algorithm shall record incoming video from
Recording peers speci ed by the user
F-63 Could User Interface An algorithm shall send a user interface to other peers
Streaming
F-64 Could User Interface A peer shall display a user interface that was sent by an-
Streaming other peer
F-44 Won’t Algorithm The system shall run algorithms as docker containers
Deployment
F-45 Won’t Algorithm The system shall orchestrate the docker containers
Deployment
F-46 Won’t Algorithm The system shall load balance the algorithms
Deployment
F-14 Won’t Algorithm When an algorithm uses a camera as media source and
Media Sources when there are multiple cameras connected to the de-
vice the algorithm runs on, then the algorithm shall select
which camera shall be used as media source.
F-15 Won’t Algorithm When an algorithm uses a microphone as media source

Media Sources

and when there are multiple microphones connected to the
device the algorithm runs on, then the algorithm shall se-
lect which microphone shall be used as media source.

The Philips Remote Al Streaming platform

83 / Version 1.0

Eindhoven University of Technology

F-24 Won’t Audio Stream An algorithm shall specify the required sample rate of the
Parameters audio stream
F-25 Won’t Audio Stream An algorithm shall specify the desired sample rate of the
Parameters audio stream
F-26 Won’t Audio Stream An algorithm shall specify the required sample size of the
Parameters audio stream
F-27 Won’t Audio Stream An algorithm shall specify the desired sample size of the
Parameters audio stream
F-28° Won’t Audio Stream An algorithm shall specify the required channelCount of
Parameters the audio stream
F-29 Won’t Audio Stream An algorithm shall specify the desired channelCount of
Parameters the audio stream
F-30 Won’t Audio Stream An algorithm shall specify the required audio bandwidth
Parameters of the audio stream
F-31 Won’t Audio Stream An algorithm shall specify the desired audio bandwidth of
Parameters the audio stream
F-32 Won’t Audio Stream An algorithm shall check whether required constraints are
Parameters supported by the device it runs on
F-33 Won’t Audio Stream An algorithm shall check whether required constraints are
Parameters supported by the peer it connects to
F-94 Won’t LiveSwitch: Ba- A LiveSwitch participant shall join a conference
sic Conference
Management
F-95 Won’t LiveSwitch: Ba- A LiveSwitch participant shall leave a conference
sic Conference
Management
F-89 Won’t LiveSwitch: Par- When A LiveSwitch participant uses a camera as media
ticipant Media source and when there are multiple cameras connected
Sources to the device the participant runs on, then the participant
shall select which camera shall be used as media source.
F-90 Won’t LiveSwitch: Par- When A LiveSwitch participant uses a microphone as me-
ticipant Media dia source and when there are multiple microphones con-
Sources nected to the device the participant runs on, then the par-
ticipant shall select which microphone shall be used as
media source.
F-91 Won’t LiveSwitch: Par- A LiveSwitch participant shall use a local le as a media

ticipant Media

Sources

source to send audio/video to other peers

84

The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

F-92 Won’t LiveSwitch: Par- A LiveSwitch participant shall use a camera/microphone
ticipant Media (connected to the device the participant runs on) as a me-
Sources dia source to send audio/video to other peers

F-93 Won’t LiveSwitch: Par- A LiveSwitch participant shall use screen capture as a me-
ticipant Media dia source to send audio/video to other peers
Sources

F-84 Won’t LiveSwitch: Par- A LiveSwitch participant shall receive messages from spe-
ticipant Messag- ci c peers in the same conference.
ing

F-85 Won’t LiveSwitch: Par- A LiveSwitch participant shall send messages to speci ¢
ticipant Messag- peers in the same conference.
ing

F-86 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple data
Participant Multi streams to the same peer in the same conference
Connections

F-87 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple
Participant Multi video streams to the same peer in the same conference
Connections

F-88 Won’t LiveSwitch: A LiveSwitch participant shall connect over multiple au-
Participant Multi dio streams to the same peer in the same conference
Connections

F-102 Won’t LiveSwitch: A LiveSwitch participant shall send audio peer-to-peer to
Peer-to-peer speci ¢ peers over audio stream
Connections

F-103 Won’t LiveSwitch: A LiveSwitch participant shall send video peer-to-peer to
Peer-to-peer speci ¢ peers over video stream
Connections

F-104 Won’t LiveSwitch: A LiveSwitch participant shall send data peer-to-peer to
Peer-to-peer speci ¢ peers over data stream
Connections

F-105 Won’t LiveSwitch: A LiveSwitch participant shall disconnect from speci ¢
Peer-to-peer peers over any stream when speci ed by the user
Connections

F-106 Won’t LiveSwitch: A LiveSwitch participant shall receive audio peer-to-peer
Peer-to-peer from speci c peers over audio stream
Connections

F-107 Won’t LiveSwitch: A LiveSwitch participant shall receive video peer-to-peer

Peer-to-peer
Connections

from speci c peers over video stream

The Philips Remote Al Streaming platform

85 / \Version 1.0

Eindhoven University of Technology

F-108 Won’t LiveSwitch: A LiveSwitch participant shall receive data peer-to-peer
Peer-to-peer from speci ¢ peers over data stream
Connections

F-73 Won’t LiveSwitch: A LiveSwitch algorithm shall send audio via SFU to spe-
SFU Connec- ci c peers over audio stream when speci ed by the user
tions

F-74 Won’t LiveSwitch: A LiveSwitch algorithm shall send video via SFU to spe-
SFU Connec- ci c peers over video stream when speci ed by the user
tions

F-75 Won’t LiveSwitch: A LiveSwitch algorithm shall send data via SFU to spe-
SFU Connec- ci c peers over data stream when speci ed by the user
tions

F-76 Won’t LiveSwitch: A LiveSwitch algorithm shall receive audio via SFU from
SFU Connec- speci c peers over audio stream when speci ed by the
tions user

F-77 Won’t LiveSwitch: A LiveSwitch algorithm shall receive video via SFU from
SFU Connec- speci c peers over video stream when speci ed by the
tions user

F-78 Won’t LiveSwitch: A LiveSwitch algorithm shall receive data via SFU from
SFU Connec- speci c peers over data stream when speci ed by the user
tions

F-96 Won’t LiveSwitch: A LiveSwitch participant shall send audio via SFU to spe-
SFU Connec- ci c peers over audio stream
tions

F-97 Won’t LiveSwitch: A LiveSwitch participant shall send video via SFU to spe-
SFU Connec- ci c peers over video stream
tions

F-98 Won’t LiveSwitch: A LiveSwitch participant shall send data via SFU to spe-
SFU Connec- ci c peers over data stream
tions

F-99 Won’t LiveSwitch: A LiveSwitch participant shall receive audio via SFU
SFU Connec- from speci c peers over audio stream
tions

F-100 Won’t LiveSwitch: A LiveSwitch participant shall receive video via SFU
SFU Connec- from speci c peers over video stream
tions

F-101 Won’t LiveSwitch: A LiveSwitch participant shall receive data via SFU from
SFU Connec- speci c peers over data stream
tions

86 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

‘ F-59 Won’t Monitoring The system shall have a central log store ‘
‘ F-60 Won’t Monitoring The system shall log separately for every solution provider ‘
F-61 Won’t Monitoring The system shall display the solution provider’s logs to

the solution provider
‘ F-62 Won’t Monitoring A peer shall send log entries to the central log store ‘

F-47 Won’t Peer Async A peer shall publish events to the conference via a mes-
Communication sage broker

F-48 Won’t Peer Async A peer shall subscribe to events that are published by peers
Communication in the same conference

F-49 Won’t Peer Async The system shall use a centralized message broker
Communication

F-12 Won’t Security A LiveSwitch participant shall generate tokens locally

F-16 Won’t Video Stream An algorithm shall specify the required aspect ratio of the
Parameters video stream

F-17 Won’t Video Stream An algorithm shall specify the desired aspect ratio of the
Parameters video stream

F-18 Won’t Video Stream An algorithm shall specify the required resolution
Parameters (width,height) of the video stream

F-19 Won’t Video Stream An algorithm shall specify the desired resolution
Parameters (width,height) of the video stream

F-20 Won’t Video Stream An algorithm shall specify the required framerate of the
Parameters video stream

F-21 Won’t Video Stream An algorithm shall specify the desired framerate of the
Parameters video stream

F-22 Won’t Video Stream An algorithm shall specify the required video bandwidth
Parameters of the video stream

F-23 Won’t Video Stream An algorithm shall specify the desired video bandwidth of
Parameters the video stream

Table D.1: A list of all the functional requirements. The requirements are categorized and priorities
follow the MoSCoW model: Must, Should, Could, Would.

The Philips Remote Al Streaming platform 87 [Version 1.0

Eindhoven University of Technology

88 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

E SEP project description

The Philips Remote Al Streaming platform 89 /Version 1.0

Eindhoven University of Technology

F PRAIS Recorder Application

The User Interface (Ul) of the PRAIS Recorder Application is shown in Figure F.1. The four red
rectangles indicate the following parts of the Ul:

1. Auser rstneeds to log in before any functionality of the application becomes available. When
the PRAIS Recorder Application is started, only the Ul elements in rectangle 1 are enabled.

2. Provides an overview of all NICUs that have informed consent, i.e., those incubators that may
be connected to. The Refresh button can be used to refresh the list of NICUs while the Connect
to incubator button is used to connect to one of the incubators.

3. After connecting to a NICU, the live camera feed is shown. The Show video checkbox can be
used to toggle the showing of the camera feed.

4. Allows the user to con gure different recording parameters such as: Recording Folder, Record-
ing File Name, Recording Chunk Duration, and Number of Chunks to be recorded.

The Philips Remote Al Streaming platform 97 /Version 1.0

Eindhoven University of Technology

Figure F.1: The user interface of the PRAIS Recorder Application. The red rectangles indicate four
parts of the user interface that each have their own purpose.

98 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

G PRAIS Documentation

Below, to show what the documentation looks like, we include some PRAIS conceptual and API
documentation. The complete documentation can be found online [29].

The Philips Remote Al Streaming platform 99 /Version 1.0

Eindhoven University of Technology

H Additional Design

The class diagram representing the design of LiveSwitch WebRTC Implementor is shown in Fig-
ure H.1.

Figure H.1: The class diagram that represents the design of the LiveSwitch WebRTC Implemen-
tor. Rectangles in green represent interfaces part of AlgorithmCore. Rectangles in orange represent
LiveSwitch classes. Note that, to make the diagram readable, not all methods/properties are included.
In particular, several asynchronous versions of methods are left out.

The Philips Remote Al Streaming platform 115 /Version 1.0

Eindhoven University of Technology

116 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

| Usability Study Files

Below, included are the informed consent form and the questionnaire (including the interview ques-
tions) the participants had to Il in.

The Philips Remote Al Streaming platform 117 /Version 1.0

J P

Table J.1

Eindhoven University of Technology

RAIS Usability Study Results

lists the results of the questionnaire. Each column refers to one of the questionnaire ques-

tions. In particular:

Q1L:
Q2:
Qa3:
Q4:
Q5:
Q6:
Q7.
Qs8:
Qo:

Using PRAIS in my job enables me to accomplish tasks more quickly than LiveSwitch.
Using PRAIS improves my job performance.

Using PRAIS in my job increases my productivity.

Using PRAIS enhances my effectiveness on the job.

Using PRAIS makes it easier to do my job.

I have found PRAIS useful in my job.

Learning to operate PRAIS was easy for me.

| found it easy to get PRAIS to do what | want it to do.

My interaction with PRAIS has been clear and understandable.

Q10: | found PRAIS to be exible to interact with.

Q1

1: It was easy for me to become skillful at using PRAIS.

Q12: 1 found PRAIS easy to use.
Q13: How likely is it that you would recommend PRAIS to a friend or colleague?

Table J.2

lists the 166 cards used during card sorting and their assigned categories. After that, the

audio transcriptions of the 5 interviews are shown. In those transcriptions, sentences in bold are the
statements that were converted into cardsorting cards.

Participant Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q0 Qi1 Q12 Qi3

Table J.1:

4, and 5,

A 5 6 6 5 5 6 7 5 5 5 6 6 8
B 6 5 6 6 6 6 5 5 5 5 5 5 7
C 7 6 6 6 7 6 5 6 7 4 5 6 7
D 5 4 5 4 4 5 6 6 6 4 6 6 8
E 6 6 4 5 6 5 5 5 7
The results of the questionnaire. Participant E mentioned he could not Il in questions 2, 3,

which is why he left them empty. In the analysis, we replaced these empty values with the

middle value 4, which is recommended by the mTam [LL 20] model.

The Philips Remote Al Streaming platform 123 /Version 1.0

Eindhoven University of Technology

1d11osener

IaV

yum ob Ajgeqoad pjnom | "abueyd noA pinom Jeym ‘Inoy uonsanb pasamsue osje | Yuiyl | wduosener ppy sdig
'$$999NS MIom
e AJ[eal 10U sem yaiym o1pnis [ensiA Buisn ul sem S| dd Yyim Buidojansp Inoge aiow ||apn -dwedd 1IN sdiL
"Teyr 01 anp 1snl asaym sBuiyy
10w asnedag ‘swiajqoad ay |8 Ajeau aAj0S PINOM 11 YI0MBLWERLY 18U° WOl Youms 1snf noA MIoMm
JI "pey am swajqold ayl [fe sainded Jo puiy 3 YJOMaWeIS 18U dY) ‘8102 18U Yl QUIYl | -owedd 1IN sdi
'ssanb | 1ses| 8y}
1| am Bulyl ay) Sem Jey] SewIlBWOS 0IPNIS [eNnSIA asn 0] aAey 0} ‘10] e 3Jeq sn 18s 1snf 3Iom
Aayl puy “waisAs Bu1jo0] 8411Ud 8y} pue SMOPUIAA YIM paresBaiul AIsA SI Jomawel) 1au’ -awedd 1IN sdi
*91q1ssod §| *8409 18U’ 01 BulAOW JapISU0D 3Iom
Ajleal pjnom | ‘oS "yoalaais e aq Aew smopuipn uo dde #0 e Bulkojdep ‘jeuidsoy e Joj ‘0S -owel4 13N’ sdi]
"XNUIT UNJ SI9AJSS 1sow ‘swyiiobie axew noA 3Iom
UBYAA "apIS wiyrliobie ayr Ajpsow Xoeq 19s S0P 1eyl MUlyl | "SMOPUIAA AJUO Sem 11 asnedaq -owel4 13N’ sdi]
"19A8 ‘urebe Jans MIoMm
OIPNIS [BNSIA 8SN J8ASU 0} PSMOA |[e 8ABY S\ “YJomawely 18U’ Auesjd AlgA “iomawely 1au’ -owel4 1IN sdig
"SIV dd 8sh Yalym s10q ayi 01 Jano apis Jeyy Adod 03 Japiey
yonw eyl ussqg 8A,pINOM 1 qulyl 1.uop | (Yaumsaaill Burules]) suop eyy 106 | Jaye ing [esnaN
"IV SuoIeIIUNWWOI
awn-eas Jayio Aue ynum aousladxa aney 1,uop | asnedag ‘as|e Bulylewos ussoyd Apease
aney Aays 1 SIVHd asn 01 Wyl adUIAU0I Ajjenide 03 a|ge aq 1, UP|NOM | 31| ‘0T/8 10 UdASS [esnaN
‘Buiyiou ueyy Janaq Ajaniu ap s,31Ing “plIOM
3yl u1 Buiyl 81ndss 1Sow 8y} Jou S, ‘S19198s 8yl Buisn 9a168p e 03 uoIEINUBYINE SI 818y L [esnaN

juswaiels Auobaredgnsans

A1obareDgns Auobare)d oypn

The Philips Remote Al Streaming platform / Version 1.0

124

Eindhoven University of Technology

"912J0CR|3 810W 11q © aJe Jey) Sa|dWexa 810W OM] J0 3Uo agAeul aAey 0] poob ag 1yBIw 11 ‘SaA

sojdwex3 aIoN uoneusWwNI0Qg

sdiL

SaA :9amalAIBIU| uonippe poob e agAew
391U 3g pjnom 1eyl i1 Adod ued noA uayl Yl YIom 0 ajes Ajjeal 10U SI awely syl 1yl Mou
noA J1 ‘Ajjenmdadouod syJom SIyl Moy 1noge SJ0p 3I0W SW0S pasu am agAew ssanb | yesA

s00Q [em

-daouo) aION uoIEuBWNI0Q

sdiL

*3S|@ Bulylawos 1aA0 11 8sn pjnom Aym puy ‘Ajsnouoayouise
utol 01 sueaw 11 yeym 1nNoge Mulyl awos agAew pue poyiaw uiol Jenbas e pue auAse uiol
0] aAey NOA ‘aup SI 813y} ‘MOU UOIRIUBWINIOP 8y} Je BUINOOo| W, | ‘0S[e SI 818y} puy ‘UesA

so0Q [en

-dsouoy aIoN uonEuBWNI0Q

sdiL

‘ayew pinod noA juawanoaduwi Ajuo ayp
a0 PINOM JeyL " YIIM Op PIN0J | TeyM 10U Ing ‘saop 11 Jeym ulejdxa noA (:uoneiuswnaoq)

s20Q e

-daouo) &ION uoInEuBWNI0Q

sdiL

‘JuswaAoidwi ue aq pjnom ey “alow 19adxs ued noA yeym uo |Ie1sp oiul ob agAew
0S ¢sawreiy 1snl asuas 1ey1 BuiylAue 11 S| ¢30 824N0S BIPALW WOISNI B PIN0d JeyM Ing ‘Wolsnd
pue uaalas vlawed Aexo ‘adAl 82unos eIpaWw ‘924n0s eipaw Jo adAy ay) sAes 11 aaurisul 104
$U21MSAAIT Uo Juapuadap 1ey) SI ‘921n0S RIPaW B SI TeYM 31| aSUSS Jey) U] "1, USeM 11 ‘0apIA
puas 0 Asea A|[eal aq pjnom 11 3ybnoyl am ‘pus-juo.y syl Uo Jeyy Yim pajbbnais osje am yuiyl
| AJ1Sow 1Yl MUIYl | PUY ¢S$824N0S BIpaw aJe sBuiyl Jo puiy 1eymn ¢l Yiim op Ajjesnaioayl
| PIN0OJ Jeym INQ 824N0S BIPAW B SI JeYM USAS JON "894N0S BIPaW B UYlIM Op | UBd Jeym
MOUY| 01 Juem Aayl 0S ‘Aem Jeyl usea] 0] sjuem ApogAlans 10U Ing usea] 01 Aem poob e s,1eyl
MUIYL | pUY "SOowisp wopuel sawos Bumneald 1snl ybnoayl Buipuelsispun Ino Jo 1SOW PIp am
MUIYL | pueISIapuUN 0} S1d0JdASp BWOS 10} pJaey 1ig e aq Aew 1] ‘asLidins [auueyd elep e
31eald Ajgeqold pjnom 1eym SSejd [auueyd Brep e S alayl os ysijbu3 ui s,11 pue welbelp e
SI a1ay1 ybnoyr uana oS 's1daduod Jesausb ay) si anoidwil pjnom | 1eyl 1ed Ajuo syl aghew

so0Q [en

-dsouoy aIoN uonEuBWNI0Q

sdiL

UOIEHWI| YONMSDAIT B SeM Jey} Inoge pay[e}
Apeaife am Buiylswos 1yl INg ‘sjpuuryoelep Buneulwls) oy Buly syl si aisyl yeshk yo

S|auueyd
erep Buiso|d

sdiL

"Jey 1o} poylaw Ou Sem aJay} Ing S|puueyIeIep
3s0[2 pue uado Ajgerjal 01 pajuem am alaym Bulyl e oul uel am julod swos 1e andljaq |

S|auueyd
erep Buiso|d

sdiL

"97eUNIoJUN SBM UIIYM YIIIMSSAIT IN0ge ules| 0} pey
[I11s am 0s sBuiyl Jo apis sdde gam ay1 10) S|Hd Ou SI a1ay1 1eyl SI [jns wajqoid ayl [1sp

IdV
1duosener ppv

sdiL

125 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

"l1am se sBulyl 8soyl JO aWwos aAeY 0] 891U 3¢ PINOM I Ing 19npoJd feu ayl ul
painbai |13s sem 11 J1 mou 3,uop | Jutod swos Je Aljeuonouny 19exa eyl Buipssu SeA|8SIN0
punoy am MUIyl | [[9M Se SIdd pue Jeyl ax1] Buiyiswos 186 01 831U aq pjnom 11 agAew
Tey: a1 Buiyiswos o dn Bumss |1ns a4e Ayl Jaylaym sniels e 8as Ued NoA sjsuueyoeiep

Sainjes) alow

aneY NOA YJIIMSSAIT Ul PAdIIoU | JOJ 3d1U 3Q PINOM 3gABW I |9A3] [IIUYIS) B UO 385 §,197] Sey UOUMSAAIT sdiL
"pesIsul Youmsani asn snf
0} J3ISea 11 YUIY) | ‘U] S0P S|V d JeUM UBY) JUBIBLIP 11q B SI Jey) 4N1s op 01 aAeY NOA JI
‘0S “Apsow Ayeuonouny S1wHd 8yl yim 4ons Ajjeal pjnoys noA S|wdd asn noA usym os
SIvdd AJlpow 01 mojje Ajjeas 1,usaop 1 Aleiqij ayl ulyiim a1jgnd aJe Jey) saoepialul Jo 10| e Salnjes) alow
10U 1SB3]| 1B 0 39BLISIUI JO 10] B JOU PUB S3SSB|D Pa|ess JO 10| B SUIRIU0D S|V Hd asnedaq ||9M\ Sey UOUMSAAIT sdiL
"3U0 8INZ\/ 1J0S0.DI|A 3y} J0) 1da9x3 Jayl0 uoneusWwNI0Qg sdi
"9AISUB]X 240W 11g 31| B 8 P|N02
UOITRIUBINIOP 83 Teyl Uly} | LIels 8yl 1e sem 1sea] axl| | Buiyl ayp J1asil S1wed 10} yeak ing Jayl0 uoneuswndog sdig
"abueyd pinom | 1ey1 Buiyr Ajuo ay1 s,1eyl Yuiyr | ing yuiy | Aje1ejdwiod
J0U 10 pajuswnIop 1.uase Asyl wrod awos e pappe noA reyl suondsoxs umolyl ayy Ajuo 8yl0 uoneswNI0g sdiL
"JO 9]qeded
AJ1ea1 S1 11 Yeym si SIy1 31| JO Bapl ue nNoA aAIb Ajjeal 01 uoljeulBewi ay) 01 yanw 001 1iq
SaARS| JUIYY | ING [[oM AJoA SIWVHd pulyaq eapl ay1 smoys 1 "ajdwexs a1seq Ajjeal e S,11 SOA Y10 uoneuawnIog sdi]
"JONJ1SU09 Jo adA1 Yya1ym asn 01 uaym axi| osfe Aje1oadss puy "Aj10exa ‘SaA
:99MBIAIBIU| ¢J818q S1daduod sy Buipuelsiapun ul djay pinom ssjdwexs alow 0s ‘Aex0 ssjdwex3 alo\ uoleluswniog sdiL
papinoJd 81am Jey] S10g UOIIR|SURI) BU) pUe 104 0Yda ‘U SI Jeym ‘ay uey Jayio S|vyd
10} 818y} N0 sajdwexa Jo 10| e Jou S,a18y) [[am asnedaq sbulyl sjdwexs swos agAew ng ssjdwex3 alopN uolrelUBWNI0Q sdi
uoneuswnaop ayl isnl wouy Jesjd sAemje 10u
s,Jey) asneaaq Spoylaw 9 19ads e asn 03 MOy alow NOA smoys Ajfeal Jeys a1oyaq pres | axl|
a1dwexa Jayioue agAew ay1] Buiylswos aq pjnom ppe pinom | reyr Buiyy Ajuo syy ssoddns | sejdwex3 alojN UONRIUBWNI0J sdi]

The Philips Remote Al Streaming platform / Version 1.0

126

Eindhoven University of Technology

ynyn :99MaIAIBIU| "apRW NOA JaAISS UOIRINUAY)

AIn2ag

-ne ue ay1| Jnegep Aq djay 01 Bulylswos aq pjnoM UoeIUaYINe pauonuaw noA os Aexo PaJURAPY 310N sdi]
A1noasg
suoIdUNY 1 MOY 40 Ued [ewiou e a)1] 31 ew ‘S| d 03Ul J8AISS UOITedIIUaYINe 8yl ppy PAJUBAPY 310N sdi
Aunass
“eapl poob e aq pjnom uoieanusyine Jo Aem pasueApe alow e Joy uoddns Ing PaJUBAPY 310N sdiL
A1nasg
‘pajpury aJe S18109s Aem ayr Buibueyd syl pauonusw A aLq | |19 PaJURAPY 3I0IN sdi
yeaA
:99MaIAJIBIU| “aJayl 10] e djay Apealje pjnom Buibbo] ayr 1eyl pauonusw Apealfe noA ing Buibbo sdi)
ynyn :aamainiau| ¢buoam Bulob s, 1eym Buibbngap ul noA djay pjnom
1ey1 ‘uo Bulob s,yeym uo noge noA s|191 SIvHd sBuiyl ayl a1 Bulaoaduwir Yuiyl noA os Buibbo sdi]
'sak ‘ynyn :eamalAlBIu| ¢BuIbbo] alow ‘0S Buibbo sdi]
"JOU S80P YINMSBAIT 8snedsq sabessaw
Ingasn Bo| SIvHd aney 1snt uiyl | Buibbol S1wHd S.11 [edsuab ul ing (:sbuiyy Buissiw) Buibbo sdi]
yeaA :9amalIAIBIu| “1ey) uo aAoidwi Ajjeal ued am yuiyl |
0S “J1aAe| uonJe.ISqR 8yl 01Ul UM Aj[eal 10U Jo puny sI BuibBo] Yyaumsaal ayl [[e asnedsg Buibbo sdi]
'suondadxa ays SI pauonuaw Apealje | abueyd pjnom | 1eyl buiyr auo os Buibbo sdi]
ey 31| Bulyiswos auo Juaiaylp e Moy Jo uondadxs [enjoe
ay) arebedoud isnl sayiie Aem awos ul parehedoid way) 83s 01 axi| Ajjeas pjnom | parebedoid
10U 1Nq SIVYd Ag payored sawnawos ase Asyl ‘suondadxe ayl SI a1ayl puey auo ayl uQ Buibbo sdi|
pue suondaoxs Y1im Jeap 01 Aseaun 1eymawos 11
saxew siyL -} ayebedoud Jou S80p INQ 11 S8YILI S| d PUe Uo1dadxa Ue SMOIY) YOUMSIAIT
SBLUIBLLIOS SU0INA3IXa 8yl YUIY] | 918M S| Hd Bulsn uaym ssaj 11q e alam eyl sbuiy omy sy L Buibbo sdi]

127 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

'3lay papnjoul 01 Aliejd ay1 4oj 1snl

‘810J3(1Y) pauonuaw Apeaife | INg ‘YdIMSBAIT Inoge sBulyl awos mouy 01 pey noA JeyL Bsyl0 sdig o)
‘Al1ea 193ds Buiyl S1wHd e 18yl Uiyl 1,uop | Ing "S1aAe| uonoeriISge JO apISUMOP
AJUo 3y3 5,781 0S "YIUMSBAIT paj[ed NoA asnedaq sem Wwa|qoid ayl aloaym pu pinod noA os Bsy10 sdi) o)
‘Buiyiswos 10 yanmsani sbng 31 usyy
pue S|Wwyd Ul poyswl 8yl JO SNJ04 Urew 8yl 3,usem ased asn 9 19ads A1aa swos ng Wb 1
op pIp NOA awn ay) Jo 1sow pue 1y6L 11 pIp NoA 1eyl uoissaidull ay) Japun a13M NoA S|vHd
ybnoay: 1 pip noA usym asneaag ‘Svdd ybnoayr ueyy swejqold asoubelp 0] Jaises sawil
-9W0S SBM pus-1uoiy ay) Buisn NoA ‘Ya1IMS3AIT pueiSIapun NoA JI eyl yuiyl Ajjenide | yeak 18y10 sdi] o)
"YOUMSIAIT 10 ‘S Hd ‘1ed InoA sem
1 41 8souBelp 1,upinod NoA asnedaq Aem sy ul 106 epury uonorASge ay) Usy) pue pausddey
TeYyM N0 pu 0] UOIIBIUBINIOP YIHMSBAIT 01 06 01 pey [[13S NOA UsyL ¢1Ne) S,YoNMSaAIT]
Jo ney Aw u s ‘uaddey siyy pip AYAA "UIUMSSAIT]S aJe Salius Boj syl asnedsq ‘umolyl
10443 SI1Y1 s1 Aym Yo ax1j ojul swed Apjainb A1aa noA 1ng ‘S1wvdd ynim sbuiyl op asnl ued noA
[3A8] J1Seq AJBA BUl 1 Aem e Ul YIIIMSBAIT] MOUX 0] papasau [[13S NOA 1ey) ajgextewsl Si i
INQ SIVHd J0 3Nk} 3y Ajjeal Jou sy ‘sem aoualiadxa pIp am Jey Bulyy suo ayp 1eys Yulyi op | lsy10 sdiL 0
"SIY) pulyaq ad10yd ubisep Aue siI aiayl Jayraym Jo 11 op 01 Aem 1saq
AUl a1] S.Jeyl 41 ains Ajjeas Jou w, | "aseq wyiiobe pusaixa 03 aAey nNoA Alljeuoniouny S|1vyd
ay1 186 01)1 Inoge Signop awos pey | INg INoge ains Ajjeal Jou w,| yey as|e Bulylswos JEN (e} sdig a
18K wioped
[IN} B SI31 UBY] "SISSN SE SN IO} USAS OWSP |BI1UYIS) B JO aiow S,11 BuIssiw S 1ey) asneasq
JUSWOW 8yl 18 92UaJ3JU0D UMO AW 8]8ald 1,Ued | 19409 UMO AW 3]1eald 1,ued | os sued 19A wuoje|d
Buissiw awos saA ‘awos aney 1,uop NoA ‘ayl aney noA asnedsq Si 41asH SIVHd Julyl | ON 919|dwod © 10N sdig o)
'S, Teyy Buiyy Ajuo ay1 1eyl quIyl | pue uonedUNW
-W0J pueq JO 1IN0 BWOS WO} 8p0od #2 8yl 186 1snl | dde Aw Ja1sibas 03 |aued ou aney | ‘194 104 wioje|d
UN0JJe Ue 8]eald 1,Ued | ‘194 11 peOJUMOP 1,UBD | INQ SYJ0M 1onpoid 8yl Jeyl Swaas 11 a1ay a19|dwod e 10N sdig o)
19A wiope|d
'319]dWI09 [99) 1,USS0P 11 asnNeI3q SI 194 1,UpINoMm | uoseal Ajuo ayl (:uolepuUsWILLOIY) 219]dwod © 10N sdi] o)

The Philips Remote Al Streaming platform / Version 1.0

128

Eindhoven University of Technology

Bunsay 1un
YUM SI\VHd 1581 01 9|ge 8q 0} SN PaMO||e)1 asnedaq Ajurew uo1BIUBWNIOP By} Ul PaqiIds SERETPENI]
-21d noA se alowAue Aem awes ayl S|\Hd asn Ajjeal 1, upip am ‘padsnou aney Aew noA sy ppv/AljIgeIsaL sdi]
‘|Ie 1e s|qissod Bunsay axyew Ajjesaushb saorIalUI
pue S3sSe[d 810w asn PInod am 0s SBUIY) [RI9ASS J0J SBJRLISIUI SWIOS 3)LIM 0] pey am 0S ppv/ANgeIsaL sdi
159} 11un 01 3jqissodwi yanw Anaid wayl sexew yoiym S|yd uo puadsp $asse|d Jno |Je S80eIBIUI
dARY 81] 10U UBD 3M 0S UOIIONJISUOD SSB|J SWOS Woyiad 0] Saoe)Iajul SWOS 8)1eald 0} pey am ppv/ANIgeISaL sdi
03pIA ey} 01 Spuodsallod si erep ayl YeaA yo ass pue Jayiahol yaeq omy ay adaid
AJ1sea uayl ued noA apis Jayio ay) uo pue Ber 9 193ds Jey) 186 0S[e 11 pue SjauueyIRIRp JBAO
©lep JO PU0IBS BUO puds NoA pue Bey o 193ds e S186 11 pue 08PIA JO PUOIBS BUO Puas NOA a1
ArS 0S sawel) 03PIA JO 18S UIRLISI B 0] Blep awos yulj 1o dnoub Aes Ajises 0] 19n11SU0J € SI
8431 J1 921U 3Q PINOM }I BWII-|eaJ Uo SnJ0y 8yl Yum Ajjerdadss yiim Buiyl auo s aiay) SeA Bsy1o sdi)
*901U 3Q p|NOM Jey} ‘SaA :8amalAlslu] ¢d|ay pjnom Jeyl
‘ssanf | sweauls eIpaw 0S|e pue S|auueyIeIep IN0ge UOITeWIojul 91els aiow Ajjediseq os Aexo Bsy10 sdi)
SIVdd Pue YdUMS3AIT Yloq ules] 01
aAeY 0] aSUAS aXew 10U S30P 1] SIV¥d J0 dauaipne 186Je) Yl YIM 3uly) | S,J1 asnedaq YesA 18Y10 sdi
*901U 8 OS|e P|NOM Jey} 40} dJe)lalul
aWos 0S "asn osje pjnom Auedwod e Jeyl Sanifeuolloun) aJe asoyl JUlyl | pue aseqelep
e Buippe pue uoOIEIIIUBYINE 3Y) 0JUI PBX00| M pue Aleuonoun) alow a1 aAey sAemfe
pInod Arelgij e yeaA - Buissiw Buiylswos sI a1ay) S1 uonsanb e ayji| pey noA 1eyl Jaye axi 18y10 sdi]
"Il punoJe sbuly) aiow
AWOS pasu op NOA 11 [13S NOA 81048Q 1N ‘Pe(S,7eyl MUIY) 1, UOP | pUe 8PISINO 8y} WO} W 0}
SWI99s 11 TeYM 1Sea| 1e ‘owap [ealuyaal 1daauod Jo jooud Buoj Alan A1aA B JO alow S,11 YesA BYo sdi
UM X |e1 0] sbenbue| A1ans
Ul M As e aney NOA Ydlym 10J 1aAIas S Hd e 1snl sem aiayl J1 181U usaqg aA,pinom 11 Ing 18Y10 sdi]
‘Buiyl e Buibexoed jo
poy1awW 158q 3yl S,11 Yuiyl 1, uop | ‘sabexoed 196nu 1o 1eajoun aiam 1eyl salouapuadap pey apn JETNTe) sdi]

129 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

"UBaA 9]qe I1pOW JaIses s,Jey) Buiylawos asn NG S|vHd 8sh 01 10U PUSLLILLOIAI

puswiwodal

PINOM | UIY} | UsY} Juswow SIY} 18 op Jouued S|vHd eyl sbuiyl op 01 pasu noA usymn PINOM }I 8Insun sdi)
SRR
"1l INOCE payje1 Apealje aM 1ng SaJeliaiul aiow ppe agAe ppv/AjIgeIsa L sdi]
saoeyIa)UI
"901U U38Q 9A, P|NOM S8dBJI8IUI BWOS INg ppv/Au|10RISa L sdig
"A119a41p U0 axey ay) puas 1snl pjnod am J1 AJeSSa0au UsaQ aARY 10U PINOM Jeyl
193d S|\ d 98U} JO UOISIBA paxa0w J0 J9ad S|\ Hd dY1 JO UOISIBA 8Xe) SWOS 03 3 L8AUOD pue
193d uno axe] 1snl 1ey) Sasse|d aAeY aMm MOU aSNBIAC SWIY BWOS YUIY) | ‘SN PaAeS aA, PINOM
Jey L "dduelsul 193[0o ue jJou ‘sdegisiul 1aad e puss 01 3 a1Inbal pinoys NoA "aduelsul 10y Jsad S8oeIBUI
e puss 01 Bullinbal Jo peajsul adepisiul ay) spuswiajdwi yeyy Buiyiawos 1daaae i1snl pinoys 1 ppv/AjIgeIsaL sdi)
|nyasn SERETRENI]]
a(pINOM Juss 8q 03 sadAy adeylsiul Buimol|e Jo ‘sedAl 8deyiBlul BuluiN}al BsuUds B Ul 0S ‘SeA ppv/AuN10eISe L sdig
SaoeLIaUl
1IN2 JIp aiow g e s Bunsal ay1 ing ppv/AjIgeIsa L sdi]
saoeyIa)UI
"8]qeIsal 10U s, 1 8seq wyioble pusixa noA J1 0g ppv/AugeIss L sdil
saoeLIaUI
"S30eIBIUI B} 8. ppe pjnom | Jeyl Buiyiswos Jo abueyd pjnom | reyl Buiyiswos ‘Buiyy suQ ppv/ANgeISe L sdiL
‘Ingasn aq pjnom SERERENI]]
Teyl way) a1nnsgns o} ajge Buisq MOYswos pue Sassejd asayl 10) sadeylalul Buiaey Ing ppv/ANIgelss L sdi
SERETRENI]
‘1591 01 Asea Aj|eal 10U S,1| ppv/AljIgeIsaL sdi]
SERETRENI]]
"Asea ss9] 11q & sem Bunsal ppv/AjIgeIsaL sdi]

The Philips Remote Al Streaming platform / Version 1.0

130

Eindhoven University of Technology

asn/uJes| YOUMSOAIT]
"391U S,JBY] OS ‘Y2IIMSSAIT Uey) JaJes]d Aem semliing 01 Jloise3 01 patedwo) sdol
'sBuIYIaWOoS op 01 SAeM QT a4 813Y) YIUMSSAIT Ul Yulyl
| SPOYIBW pue SuonduNy pue SIaIIMIBA0 Auew 00) Aem aAeY Jey) Sasse|d awos aney NoA
UJUMSBAIT] 10} 82ue)SuUl 10) 0S “Auewl 00) 10U aJe Asyj 1ng Spoylaw ybnous Juem noA reym op asn/uJes| YOUMSOAIT]
0} suonouny ybnous ale a1y ‘suonauny Auew Jey 1, uale a1yl Sasse|d ayl UIYIM UdAS puy 0} JoiIse3 01 patedwo) sdo|
'asn 01 Asea Ajjeal s,11 pue op 01 pasoddns aJ, Ay
Jeym ul Jea|d Ajeal ate Aayr suonauny Jo ajdnod e aAey 1snl NoA S|wHd 1e 00| NOA uaym
JIN1S JO puIy 1eyl pue Jaip A8yl Moy a4ns 10u al,noA 1ng sbulyy Jejiwis op suolouny awos asn/uJes| YOUMSOAIT]
pue suoIouUNy JO S10] 81 dARY NOA YJIIMSSAIT e 00| NOA UsyM JO 10| B JOU SeM aiayl O} JoiIse3 01 paledwo) sdo|
uorel YIUMSIAIT
snuoq e 0S[e 1eyl YdoIIMSAAIT UBY) Pajuswiniop Jenaq s,)l -uswnooq Janag 01 pasedwo) sdo
‘Buyiom
Jn1s 106 Ajjen1oe ued noA pue Janag Ajauiu ap S, 11 SIvHd 104 'Syl Saop Ajjenioe uoiouny uonel UOUMSIAIT
sIy1 surejdxa 1ey) uoireluawnoop Jadoid Aue aney 1,U0p NOA []aM Se YoLIMSIAIT 10) asnedag -uswindogJaneg 01 patedwo) sdol
"PIP YOUMSIAIT Jeym uornel YIUMSIAIT
01 paJedwod Buizewe S,11 pue MoU JUBID NS UeY) alow S, 31 qulyl | Ing (:uoneluswindo@) -uswndodJspeg 01 patedwo) sdo|
"YIUMSIAIT Yyum 11 asedwiod 01 Ay noA uaym uone} YOUMSOAIT]
AJ1e199dsa pooh a11nb sI S| Hd 10 UOIIRIUBWINIOP 3yl 1YY MUIY] | OS|e 321U AJjeal Sem UdIYAA -uswndoqJanag 01 pasedwo) sdo|
uorel YIUMSIAIT
"yonuwi Jeyl noA 181 ued | ‘YdalMSBAIT ueyl Janaq s.1 (uoneluawnaop ayl) -uswindoqJaneg 01 paledwo)d sdol
pUBLLIWODBI
"}l PUSWILIODJAJ PINOM | JI 84NS J0U W, | ‘0S pINOM 1 ainsun sdi]
"Jou A|geqoud uay) Juasayip Buiylswos op puUBWILLIOdaI
10 J0IARYSQ aY) AJIpow 01 aAeY NOA usym Inq ‘S|ved puswwodal 1snl pjnom | Apsow oS pPINOM 1 3insun sdi]

131 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

MUIy! | SIvdd yum sbuiyy buipying

uey atay) Apeadje sem dde ayy ybnoyy usns MJom 01 YaumsaAlT Bumab awin alow juads am UOUMSIAIT
pua-1U0JJ AU UO Y1IMSIAIT 01 patedwod 1ng 1eyl padnou ApogAians JI Mouy 1,Uop | puy [elous 01 paredwo)d sdol
‘asn 01 Asea ajdwis AIaA S,11 8snedaq S| Hd Puswiwodal Ajjeal pjnom | uayl
Aouey Ajjeas Bulylou 11 sassadoid eiep awos aAladal puas 1snl 1o yuiyl | siead Auew 00] 10U YOUMSBAIT
YU 4aUMSaAIT yum sbuiyl sjdwis Ajaaireal op 01 sey anbea)|od 1o puaty Aw i 0s ‘Aeo [edous 01 pasedwo)d sdoy
YOUMSIAIT
"Y2UMSIAIT asn 1,uop asea|d Aes pjnom | st Bulyr st syl [|Iamn [eJous 01 pasredwo)d sdo]
YOUMSIAIT
'31qeJayaid Ajauiu ap sI S|vdd Buisn ‘og [eJous 01 paredwo)d sdoy
UOUMSIAIT
"Yo)IMSBAIT 8sn 01 BulAey 10U SI S|WHd IN0ge 158 8yl 81| | Teym [esouss 01 pasedwo) sdo|
"0] JUBM NOA Aem U1 YI10M
01 Ynis 196 noA awinl swos a)nb Jaye Ajuo usyl pue UoIeAISNIY Pl SWOS UOIFeIUBWNI0P
ol BulbBip Ajjuelsuod sem 31 YoIMSSAIT J0) pUe INOY UB J3pun MOUY 1,Uop | ‘8XI| ul unJ asnjules) YoNMSIAIT]
0} ajdwexa 2Iseq e 91| Bumab Jaquiawal | 1eyl 1o} S|YHdd asn pjnom Ajgyuu ap | 0S 0} Joise3 01 pasedwo) sdo|
*2160] ssauisng InoA Bulop Ajjen1oe Liels NoA pue S|wHd 1e Y00o] Ajed
-1Seq 1 SIVHd 404 ‘Ul |111S }18SIN0A 8pod 81e|dis|10q JO 10] B 8)1IM 0} aAeY NOA YdIIMSOAIT asn/ules) YOUMSIAIT
Jo4 sBuiyy sssjpsau uoluido Aw ul ayr Bulop 10u 31,.noA ‘Ajjenioe 10u a1,nN0A asnedeg 01 JloiIse3 01 patedwo) sdo]
"UOITRIIUNWWOI awi-[eas ayy Bulop 1oy
90BLIBIUI 921U B Sey SIY) pue AXoey 11q e S|98) JO puy 31 pue Aem swos 0jul 8pod INoA ooy asn/ules) YOUMSIAIT
0] aAeY pue apod ay) ojul Buibbip ob Ajjeal 01 aney NoA aiaym YouMSaAlT] Jano Aje1oedsg 03 Joise3 0} patedwo) sdol
'SIvdd asn/uies| YOUMSIAIT
Yum yaom 0] Buruses| uey) ajssey e Jo alow Aem sem 11 ‘Buiyl yaumsaai] sy ojul 106 | jaye 0} Joise3 01 patedwo) sdoy
asn/juJes) YolUMSAAIT
"Y2UMSIAIT Uey] JaISea AJa11u ap quiyl | sem 11 ‘I Jo Buey syl 106 | aguo ‘91 Buisn payij| 01 JoiIse3 01 patedwo) sdo

The Philips Remote Al Streaming platform / Version 1.0

132

Eindhoven University of Technology

"alay1 Apeale aJe 11 Woiy uem noA suonauny ayl jje yanw Ansid ssaualg|dwo) SIvydd sdol
"YOUMSIAIT uey) Jo Buey ayl 186 01 Jaises YOUMSOAIT]
Aem sI S|\Hd aseyd [eniul ayl ul Ajjeroadsa ‘awinl JO 10| € SN SaAeS A|g1iu ap 11 JUIY) | ‘SBA awi] Buines 01 patedwo)d sdoy
1a1ea|d 10] © Sem uoIe)
-UBWNJ0p 8y} 8SNeaaq awil JO 10| B SAARS S|\ d eyl ains Ajjeal w,| 0S UoIeIusWNIop pajl YolUMSAAIT
-WI| 8y} JO asnedaq YolMSaAIT Bulpueisiapun J|asAw osfe pue Ajnd JIp JO 10] © Sem aJay L awil Buines 01 patedwo) sdo]
YOUMSIAIT
‘Alqeqoud anu un ‘wiyn (:Buines swiy) awil Buines 01 patedwo) sdoy
|swn UOUMSIAIT
Al 8BS PIP 11 InNq AJ10BX3 MOUY| 1,U0p | ‘YyoNWw MOH ‘Teyl IN0ge aINs W, | ‘BWll aW aAeS pIp | awi] buines 01 pasedwo) sdo|
'ssanb | 308f0.d Sy ul sinoy Qg Inoge
agAe|Al “awi1] JO 11g & 8)IND W 8ABS PINOM SIU) Jey YUIy) | ‘0S "S30p 1 JeyMm an|d ou aAey noA
uolRIUBWINIOP 8y} Je Buyoo] Ing Alljeuonauny Jo SJ0| ‘SUOIdUNY JO S10] SeY YOHMSIAIT axI| YONMSBAIT
‘Ueak ‘oS a|quiIoy Ajjeal Sem 11 pue UOIRIUBWINIOP YIIMSIAIT 8yl 0UI 1Ig 31| B Pax00] | awl] Buines 01 pasedwo) sdo|
0S MUlyl Ajaliu ap | :9aMaIAIBIU| "awl) NOA Sanes YONMSOAIT
Ajlemoe S1wdd Uiyl noA J1 ¥9ayd 01 sem aJay ulod urew ayy ssanb | ‘poob spunos ‘yesA awi] Buines 01 patedwo)d sdol
YIUMSIAIT
"*Jo14adns s,11 s10adse JOo 10| © Ul YuIy} | .11 yeak os [edous 01 pasedwo)d sdoy
‘191584 Aem s,11 Aes pjnom | oS "AJ10al
-102 MJom yd1msaAI Buiney yum sjeap 1eyr Jnis 1o 10] e 1snl aney noA aisym Yolmsani
JO pealsul SvHd yum 2160] ssauisng A1oaJip 1sowfe Ajjoallp S} asnedaq ajgeuleiurew YoNMSAAIT
aI0W SI S|WHd 10} 3p0od 8yl MuIyl | asnedaq Jadlu s,31 unt Buoj 8yl ul qulyl | oS[e puy [esouss 01 pasedwo) sdog
YOUMSIAIT
"y1dap u1 y211msaAIT Bulpueisiapun INOYIIM S\ Hd YU I0M Ued NOA Julyl OS[e | puy [eJous 01 pasredwo)d sdo

133 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

7 '90IU AJ[eaJ SI UOII_IUBLINJOP BY) MUIYl | ‘UBBA UOIRIUSWNI0Q SIvdd sdo| a 7
‘Juswdo|anap Js1se) 10y smojje asnl pue wiayl ybiybiy 01 3Q|
ay1 sdjay Ajeas sjuswiwod JIAX 9S8yl pappe noA 1eyi sdjay osje uoleluawnoop poob ‘YyesA UoRIUSWNI0Q SIvdd sdo| a
7 [[e S.Jeyl ‘181 ued | se ey se a19jdwod A1an are Asy (uoleluswiNdop ay) ‘ON uoneuaWNI0Qg SIvdd sdo| 3 7
'sadA1ei1ep woisna
SPJ02aJ WOISNI SasSe|d W0Isnd Jo 10| & aney noA J1 [nydjay Ajjeioads3 -awil ays |e 98s 1,uop
noA Buiylawos si yaiym sumai 1 reyr adA1 syp Jo uondiidsap e UsAs YIAA SUIN1al poylaw
® 1eym SAes ‘spoylaw ay) asn 01 Moy SAes 1| "uondriosap e sey ssejd A1ans Jo uondiiossp e
sey poylaw A1sng "pa 19ads [jam A1an a1l st BuiyiAians yonw Anaid ale sbulyl 1sow ‘yesA uoneusWNI0Qg SIvydd sdo 3
uoIRIUBWINI0P ay) Mmou 1ybul
uado 1 pajind asnl | ‘()dois'824nos eipaw a1 Buiylawos "Alojeur|dxe-§|9s aJe wayl JO 1SON uoneuawWwnooq SIvdd sdol 3
"uoleIUBWINJOP
AUl Ul 1,Uale Ing 1SIXa Op Jeyl suonouny Aue punoj 3,usAey | ‘uasaid si BuiyiAiens yuiy | uoneIuUBWNI0Q SIvdd sdo| 3
7 "1ead alinb SI S|WwHd J0J UOIRIUBWINIOP ay) [esauab ul ‘ou ‘Ing uoneIUsWNI0Q SIvdd sdo| 3 7
7 19118 11 puelsIapun aw pad|ay 1| "paure|dxa ||am se 1eyy ajdwexa sjdwis eiseaj e esSIaldayl uoneuswnaog SIvdd sdoy 3 7
7 "paure|dxa [|am ax1] ate Jeyy sajdwexa ax1] Ajjenioe alam alayl eyl 10e) ayl axl| Ajjeal | uoneuaWNI0Q SIvdd sdo| 3 7
7 ‘Apjoinb Anaad y4om 01 asoy 106 | “11q e 8soyl Yyrim punole paheld | uoneuawWwnooq SIvdd sdoy 3 7
"9ISUaM S1VHd 3yl
Uo aJam eyl sajdwexa ay) aJe SHI0M S|\ d MOy pueisiapun aw padjay Ajjeas 1eyr buiyr sy uoneuswnioQq SIvdd sdo| 3
7 Apealje papunod Jjam Anaad si 31 1eys yuiyl | ‘Ajjeas 1,uop | Juswouw ayj 1e oN ssauale|dwo)d SIvdd sdo| \V4 7
'SIvHd Jo abeiuen
-pe ay) Aja1iu ap Sem Jeyl 'sh Joj pajuawsajdwi Apealfe aiam Sallljeuollouny ulew ay) pue ssauale|dwo) SIvdd sdol 9
U319 JNS 1eyl MuUIY] | OS "Paau noA
TeYM JO puiy 1eyl ‘SWeasls Jualaylp pue wyiioble pue sisad a1 aAeYy NOA JUBM PINOM
NOA Jey] 10W Yyanuwi 10U OS[e SI 3J3Y) pue aJay) aJe Sanijeuonauny urew ayl ‘aunb s,11 yuiys | ssaualedwo)d SIvdd sdo| g

The Philips Remote Al Streaming platform / Version 1.0

134

Eindhoven University of Technology

‘3o
S. 11 MUIYY | "SIy} 81esauab oine ued 11 asnedag '8pod INoA ul uoneluswnoop Jadoid apew

NoA eyl aw sj||a1 os|e 1eyl asnedaq snid e sAempe s,Jey] "pajesausb olne Ajadiu ‘Jea|d Als/A uoneuswnlog SIvydd sdo \V4
‘sojdwexa ay) yum Buoje Bulob
AJ1e199ds3 11 asn ued am moy op pinoys BuiyiAiana yeym [jam Anaid surejdxa 11 1sea| 1e aw 0} uoneuawnsoq SIvdd sdoyl A4
7 ‘UOIEIUBWINIOP 321U S,JI YUIYL | UOIFEIUBWNI0Q SIvyd sdoj] v 7
7 "uoleuR|dxa [euonppe paau NoA Muiyl 1,uop | 0s |apow ablue| e Ajjeal 10U S,J1 YBaA uoneluUaWNI0g SIvyd sdol q 7
'SIVYdd Ul ale alayl
SuOIIoUNY JO PUIY 1BYM JO MBIAIBAO pue Apainb 196 noA "aunb [emidaouod ay) payi| os|e | uoleuswnoaog SIvdd sdoy q
7 'poof s, 31 xuIyl | (UoneBWND0Q) UoIEIUBWNI0Q SIvdd sdop 4 7
7 "SAA :9aMaIAIBU| ¢nydlay Ajeal alem sajdwexa ay) 0s AeO 'ynyn uoieuswnIog SIvdd sdo| g 7
"PapUBIUI SeM
SIVdd MOy puelsiapun pue pualxa 0] Jalsea Aem sem 11 ajdwexa ue yons yum Builels A uoneuswndog SIvdd sdo| g
7 1109 0y23 8y} ‘quasald sjdwexa ue Apealfe sem alay) eyl ax1| os|e | uoneIUBWNI0Q SIvdd sdo| g 7
7 "Je3]9 SI UOIILIUAWINIOP By} JO asnedaq asn 03 Asea alinb s, uoneBWNI0Qg SIvdd sdol g 7
7 ‘Buiyy e 818819 01 S1 11 ASea moy smoys osfe 3] (:uoneuswndog) uoleuBWNI0Qg SIvdd sdol o) 7
7 "10] & padjay sajdwexa ay1 osje pue 1ealh Anaid Apealje s,xeys Yuiyl | saAk oS uoneuawnsoq SIvdd sdo| o) 7
‘1es|d
S YUYl | 'SIy) d1elauab oine ued 1 asnedag "|apod JNoA ul uolreluswnaop Jadoud apew
noA Jey) aw sj||a1 os|e 1eyl asnedaq snid e sAempe s,Jey] "paresausb olne Ajadiu ‘Jea|d Als/A uoneuswnI0Qg SIvydd sdoy o)
"3Q1 9y Ul [nasn SI YIIYM SIUBLIWIOD TJINX oAy Ayl uoneuswndog SIvdd sdog a
"uinjal
Aay1 1eym pue op Asyi reym noge suondiiosap J1ay) aABY SUOIIOUNY PAIUSLINJOP-|[dM S,J1 ‘0S5 UOIelUsWNI0Qg SIvdd sdol a

135 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

0] JUB}ISaY SJ0W 11q € 3 PINOM | Usy) A9191dwiod saLieiql] Y1og YIm a|gerio)

-W09 3q p|noys noA JI 1nq Jaylo yoeas uo puadap Ayl asnedaq Buiyy poob e osfe si YyaIypn IENEL) SIvydd sdo

7 ‘||eJ19A0 SHI0M 11 Moy ynim Addey a1inb sem | Ajjeas 1ou ‘oN [eJous SIvyd sdol
‘93U PAXJOM Jey | :BaMBIAIBIU| ¢1eyl

Yum sansst Auy 'ssanb | Suoiansul uoiejeisul ayl pamojjol noA ‘abexaed 199nN yeak os IENEL) SIvyd sdoy

7 'SIVHd ynm Buryiom pakolus | I2ENED) SIvdd sdoy.

'S1WHd YlM op 01 Sey Jeyl JO 10] B ‘yeak ‘s .Jeyl yuiy | 891U Ajjeas sem ssaiboid no [eJ8us) SIvyd sdol
"SH9aM
an Ajuo agAew ‘o1 ueyl ssa| ul Buiyy Buiweas gam e pjing Ajjenioe pjnod a10jaq pawwelh

-04d 13A8U aney oym stawwrelBbold awos yum dnoib e 1eyr usweissl poob e s3I quIyl | IENEL) SIvydd sdoy
‘|eob auo 1oy Ajaeajd Alan
aJe Jey} $asse|d Jo Junowre Mo e a1 Buiaey Jo yibuans 1sabbig sy s,Jeyl quiyl | puy bul

-WEaJ1S 09PIA INOCER MOUY 1,USS0P OYM 8UOBWOS 03 ISIXd Sasse|d asayl ||e Aym urejdxa pjnoa | [eJ8uUa) SIvdd sdol
"921U Ajeal

SI Y2IYyMm SOLIBUSIS 1SOW SIBA0D 11 pue 1ealb SI S|wHd ‘sbulyl 21seq op 01 Juem NOA usym [eJousD SIvdd sdoy

SIvdd yum Addey Ajjeas wi,| [[e1ano ‘sax [eJauas) SIvyd sdoy|
3l yse noA JI ob

01 Aem ayy Ajfeal si s1y) uayl D1 gam yum suoiedljdde ajdwis 81eald 01 Juem NoA JI a1 [eJous SIvyd sdol

7 'SIVdd Ynm adusiiadxa poob e pey | Jeys YUy} | [[eJan0 [elsusO SIvVdd sdoL
junowre 1ued 1ubis axI| Ag pabueyd 1o panoidwil aq 01 spasu

SIyl ‘peq si siyl 1| s1 aw 0} Ino padwnl 1eyr sbuiyy Aue Ajeal 1,usiam alayy ‘Ajfeas 10N [eJ8Ud) SIvdd sdo|
"ds110 pue sabewi Jes|d ate sebewl ‘||8) Ued | Se Je) Se Jeyl Ul UoIelols1ap

ou yonw Anaid si a1ay ‘Aenb oapia syl ‘a1eanaoe Alen Ajjelauasb si Ajenb oipne yuiys | IENEL) SIvyd sdoy
‘[19m A1aA wiayy seop 11 ‘op 01 pasoddns s,

1ey) suonoauNny ayl eyl palou | "aamisod Anaad Ajresauab 1ng yanw 12yl 1 YIM JI0M 1, UpIp | JENEL) SIvyd sdoy

The Philips Remote Al Streaming platform / Version 1.0

136

Eindhoven University of Technology

‘uoissasdwii 1s1 Aw Sem 1ey] ‘|aAs] [edluyds) asn-40
e U0 103dxe agAew pinom noA uey) Aem pauljwesns 810w e ul uonouny o1 swaas isnl 11 -aseg/Au01dwis SIvydd sdo o)
'sBuiyy op
01 Asea AJaA 8Qq 01 SWadS U ‘paey Jeyl Waas 1,uUsaop 11 P02 N0 Je %00] NOA JI asnedag apod asn-Jo
1no Jo A1Lie|d 8y Ul SMOYS AJ1eal eyl Uiy | pue Mo| Sasse|d 40 Junowre ay) dasy 0] patl noA -ase3/A101dwis SIvyd sdol o)
asn-Jo
"1ea|d Anaud sI SIvdd MUyl | -aseg/Auondwis SIvdd sdop O
asn-Jo
1590 aY) a1aM Tey sBulyl syl Ajjeal ale asoyl Julyl | "UoIBIUSWNIOP ayl pue Audidwis [lspy - -aseg/Auondwis SIvydd sdoy a
S1Vdd Inoge 1sow paxl] | Jeym sem jeyl Juiyy | ‘ssn
01 pienuopybrens Ajpeas 1snl AjsnouoiyduAse 11 puas A|SNOUOIYIUAS 11 puss uoinauny swos asn-J0
aney noA aiayl Buriserep puas axi| Asea Buiyiswos ‘Buiyiawos 1oy Buiyoo| are noA 1snt -aseg/Au01dwis SIvdd sdol a
asn-Jo
‘Anonjdwis ayy sem S\ d IN0Ge 1530 8yl 81 | Feym ey quiyy | -aseg/Auondwis SIvyd sdol @
asn-40
"SIvdd Yum sbng [eal Aue paislunodua am Uiyl 1, uop | pue asn 01 Ases Aj[eal SI S|vdd -ase3/Auondwis SIvydd sdo a
"pasn am 1ey)
sabenbue] om1 ay1 ate yaiym 1duasadAl pue #O Yyroq ul adusiiadxe ou Sey Oym suoswos 1o asn-Jo
AJe19ads3 ‘|jeisul pue dn 19s 01 Asea AJlie) Sem 11 9ouaLIadXa ||eJaA0 Ue Se Jey) Aes pjnom | -ase3/Auondwis SIvyd sdo| 3
asn-Jo
'3asn 01 pJey leyriou s3] -aseg/Auo1dwis SIvVyd sdo| =
"3SN 0] 921U Udaq AJJeas s,11 ‘1ey pres Apealje | aiow Bulylou ||ap [eJ8uUs) SIvyd sdol \4 7
‘aAIsod s,11 Aes pjnom | (:S1vdd Yum aoustiadx3) [eJsus SIvyd sdo v 7
'31qissod aq pjnom eyl Ji urebe 11 asn pjnom | 0s Sdd Buisn pa | JENEL) SIvyd sdoy q 7

137 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

11 01Ul Y00] pjnoys Asy1 1yl S|\VHd Uonuawi 1ses| 1e Ajaliu ap pInom | ¢siyl ssyoeoidde

1X31U09J U0
Buipuadap pusaw

| 15366ns noA pjnom moy uoneaijdde awos pjing 01 BuilAn w, | Asy ax1] uonuaw isnl Aayp JI -wodal PINOAA SIvyd sdo|
1X8JU0J Uo
"Teyr oui Buryoo] A pjnoys noA Buipuadsp puswi
poob Anaid sem 11 awil auo SIY) SIVHd Yum paxiom | Aay si Aes pjnom | Bulyl puodas ayl -wodal PInopA SIvdd sdoyl
Teyr e
3](e puB]SIapPUN BI0W PUE J31eaU 00| 8P0J 3y} Saxew uoluldo Aw ul os|e 11 81043q pres | axl| asn-Jo
pue Buidojansp yim swin aAes 0] Buiob urebe 11 asnedaq S|\Hd PuswiLWodal pjnom | [|Isgp -ase3/Auonjduwis SIvdd sdoy
asn-Jo
'saulys AJ[eal SIvdd 40 Auorjdwis ayy asaym Ajjeas st siyauiyy | -aseg/Ano1duwis SIvyd sdoy
asn-Jo
‘Aoexa ‘saA :eamalnIau] Audidwis ayy 1 0§ -ase3/Auo1jduwis SIvydd sdoy
"301U AJeal sem asn-Jo0
1yl “Buiyihians sejpuey S|Hdd Usyr pue sjuans 03 Buiguiosgns isnf sem 1 jeys i | 9IYM -ase3/Anonjdwis SIvdd sdoy
asn-Jo
"1SeJ 81inb 11 pooisiapun | Areigije se -ase3/A011dwis SIvyd sdo|
"3W1] JO 10] B SN PAALS Jeyl UIY] | “PaXJ0OM }1 pue Jea|d a1aM SUOIIN|OS ‘B]qepeal Sem asn-Jo
Apisea 1snl 11 ‘paxdom 1snl 11 asnedaq ‘uaddey 1,Upip 1BY) 81aym JaAas ay) uo sued ayl ‘oS -ase3/Auo1dwis SIvyd sdol
‘Inpamod AJaA s.1eyn quiyl | ed 2160] ssaulisng syl a1
"0p PINOYS 11 JeyM poo3siapun A3yl pue as|d auoawos 01 11 MOYS puUR 8p03 SWOS allIM pInod
dUOAWIOS puy ‘padualadxa alam Jey) ajdoad pey os|je am pue #9 10 |[e 18 O YlIIM PayIom asn-Jo
Jans 1,usney ajdoad awos alaym weal e pey am oS Buiyrhiens Bulureidxs ul Aed syl -aseg/Auo1dwis SIvyd sdoy
"SI :99M asn-Jo
-3IAJB1U| "pueISIBpuUN 0] Asea AJaA s,11 1eyl "a91u si Andnjdwis ayl Aes pjnom noA os 1ybupy -ase3/Auonduwis SIvyd sdoy

The Philips Remote Al Streaming platform / Version 1.0

138

Eindhoven University of Technology

‘BunJos paed Bulnp pasn ,spJed, 8yl || 10 18I V 2°C 9|qeL

"Ynyn ‘yeaA :9aMaIAIBIU| ¢SV d Buisn Japisuod Aexo Aes pjnom noA usyy Buiyswos uon

1X81U0J Uo
Buipuadap pusw

-ea1jdde/dde gam Buiweans e uo Buijiom w, | A3y sAes Apogawios ey Buiwnsse | 0s AeyO -wiodal PINOAA SIvyd sdol q
"198l04d A1aA3 Ul asn noA eyl Buiylawos 1X91U02 UO
Aj1eal 10u s, ey ‘Buiweans eipsw 10) 9 193ds aunb s111ng asn 0] Asea a1nb 11 punoy | 82uls Bulpuadap puswi
108(04d Jepiwis e asn pjnom Asyl 4 pusily Jswwelfoid e 0] 11 pUsWIWOID) PINOM | YUIYl | -W0J31 PINOA SIvyd sdo| g
1X31U09 U0
Buipuadap puswi
‘wJoyield | ue BuipjIng Sem dUOBWOS JI S|V d PUBWILIOIA] PINOM | SIaLIeS J04 -W0J3l PINOA SIvdd sdol o)

139 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

K NuGet generation

To de ne what should be included in the PRAIS C# API NuGet package, we use a so-called nus-
pec [30] le (see Figure K.1). In addition to package content, the nuspec le also de nes metadata
such as package name, version, and dependencies. Noteworthy is that the package also includes an
Install.ps1 le (see Figure K.2) that con gures some settings upon NuGet install. To build the NuGet
package, we run nuget pack PRAIS.nuspec from a command prompt in the folder where the nuspec is
located.

The Philips Remote Al Streaming platform 173 /Version 1.0

Eindhoven University of Technology

<?xml version="1.0" encoding="utf 8"?>
<package >

<metadata>
<id>id</id>
<version>$version$</version>
<title>$title$</title>
<authors>Robin Mennens</authors>
<owners>Philips Research</owners>
<requireLicenseAcceptance>false</requireLicenseAcceptance>
<license type="expression">MIT</license>
<projectUrl>https: // healthrtc.org/docs/index.html</projectUrl>
<description>PRAIS C# SDK NuGet Package</description>
<releaseNotes>First version.</releaseNotes>
<copyright>Copyright 2020</copyright>
<tags>PRAIS, C#, SDK</tags>
<dependencies>

<group targetFramework=".NETFramework4.7.2" >
</group>

</dependencies>

</metadata>

<files>
<file src="install.psl" target="Tools"/>
<file src="bin\Release\x.dIll" target="lib\net472"/>

<file src="bin\Release\lib\win_x64\=.dIl" target="content\lib\
win_x64" />
<file src="bin\Release\lib\win_x86\=.dIl" target="content\lib\
win_x86" />
</files>

</package>

Figure K.1: Source code for PRAIS.nuspec

174 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

Sets the ’Copy to output directory ’ property of the dlls in the
lib folder to ’Copy If newer’

param($installPath , $toolsPath , $package, $project)

function MarkFileASCopyToOutputDirectory ($file)
{

¥

$file.Properties.Item (" CopyToOutputDirectory").Value = 2

MarkFileASCopyToOutputDirectory ($project. Projectlitems.ltem (" lib").
Projectlitems.Item ("win_x64").Projectltems.Item ("
libaudioprocessingfm.dll™))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectltems . Item ("win_x64").Projectltems . ltem ("libopenh264fm .
dalir™))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectltems . Item ("win_x64").Projectltems.Item (" libopusfm.dll™))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectltems.Item ("win_x64").Projectltems . Item (" libvpxfm.dlIl"))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectltems . Item ("win_x64").Projectitems . ltem (" libyuvfm.dll "))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectltems . Item ("win_x86").Projectltems . ltem ("
libaudioprocessingfm.dll™))

MarkFileASCopyToOutputDirectory ($project.Projectitems.ltem (" lib").
Projectitems.Item ("win_x86").Projectltems.Item (" libopenh264fm .
dalir™y)

MarkFileASCopyToOutputDirectory ($project. Projectltems.ltem("lib").
Projectltems.Item ("win_x86").Projectltems.Item (" libopusfm.dll"))

MarkFileASCopyToOutputDirectory ($project. Projectlitems.ltem("lib").
Projectlitems.Item ("win_x86").Projectltems.Item (" libvpxfm.dIll"))

MarkFileASCopyToOutputDirectory ($project. Projectlitems . ltem (" lib").
Projectlitems.Item ("win_x86").Projectltems.Item (" libyuvfm.dIll"))

Figure K.2: Source code for Install.psl

The Philips Remote Al Streaming platform 175 /Version 1.0

Eindhoven University of Technology

176 The Philips Remote Al Streaming platform / Version 1.0

Eindhoven University of Technology

L Project management

Figures L.1 and L.2 show a Gantt chart that illustrates the planning of this project. Table L.1 lists all
risks that we identi ed during this project.

The Philips Remote Al Streaming platform 177 [Version 1.0

Eindhoven University of Technology

Z'71 3nBi4 ul pajensn)ji si Led puodas syl bBuruueld 10aloid syl Smoys 1eyl ey nues ayl Jo uedisi ayl T 7 aunbiq

The Philips Remote Al Streaming platform / Version 1.0

178

Eindhoven University of Technology

T'71 a4nBi4 ul pajensnyji st Led 1s1 - sy ‘Buruueld 1938foad syl Smoys 1eyl 1Y NURS ayl Jo 1ed puodss ayl g ainbi4

179 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

SIur yum djay [im
S 8y} JO ssauateme ayl ‘Bum unaq
01 1n0 uim Aayy ased ul Aeme sbuiyl
MOJUY] 01 pleije g 10U p|noys ulgqoy

"pappe aq ued
Alfeuonouny 9 19ads yadym o3 sis
-eq Bu0.IS © 9ARY M 3INS SXeL aM
‘pasinbai Ajg11u ap sI 1eyl Alljeuon
-ouny 2109 Bunusws|dwi 181 Aq
‘os]v "A|Buipiodde uejd pue sarepip
-ued Jenuslod INoge URIOZ/|9IIRIN
01 M[e1 ||IM ulqoy "YSi ay1 a1eb
-mw djgy pm 9jqissod se Ajies
se siapjoysyels Jaylo Buiajoau|

"slapjoyayes
1810 1ns Ajeas 1ou ssop pue
paJojie} wes) AIsA SI UOIN|OS
[eu a8yl eyl uesw Aew Sy
‘Wes) 8yl Ul 8duaLIadxa Jo 10| e
SI 3J3U1 3]IYAA "SISP|OYXelS Se
Wiea] UMO Jno Ajurew ylim wa)
-sAs ay1 Buidojanap 1e1s ||Im |

uedo 9

"OININ pue
SN U93MI3] LOIRIOGR|[0D |NJSS3IINSUN

Ue 0] Spea] XSk SIYyl ‘8sed 1SI0M 3y} u]
"anJeA 1sow a8y} sey osje g sws|d
-WI 01 1S3Isea ay SI Jeyl uonnjos ayl
3o1d 01 wire am ‘[esausb u] “|pews Jo
abue| ag Aew 19edwi ayy Yo1d am uon
-njos [eaIuydal yoiym uo Bulpuadaq

'sn Jo y10q
10} S$)JoMm Jey) uonn|os e osje Ajny
-adoy pue Buipuelsiapun uOWWOI
© 0] aWo09 ABW am ‘sAeY M Sans
-s1 ayy Buissnasip pue DN 01 Bul
-q1e1 Ag ‘A|puodas awrel) Jad sdwie)
-sown Jo Buipiodal ayr Buipaebas
uonnjos 1sagq ayl 3aid pjnoys am
Teyl sueaw siyl sdweisawil ajel
-nooeun Buiney Jo pooylddl] sy
aonpaJ ued am ‘AjIsli4 "8I3y Japis
-uod 01 s)oadse om] ale aJayl

e Joye
Ajeuonouny Buipiodal 8yl
wo4y 1 auaq 10u Aew DININ
‘Apuanbasuo) -Juswalinbal
SIYY || NJ J0UURD aM Teyl XsLI
e Sl 319y} ‘oS ‘pardadxa ueyl
1IN2 JIp alow aq 0} N0 suiny
dwel) 03pIA ydea Jo) sdwel
-sown ajeundoe Buiplodey

usdo 81

(20edwi 8anpau) uonae Aousbunuo)d

(pooy
-1|3X{1] 99npad) uonoe uonebiN

uondiiasag

sniels qal

The Philips Remote Al Streaming platform / Version 1.0

180

Eindhoven University of Technology

"OW3pP 8y} JO J010B) MOM
8y} sednpas YdIym wopues Si indino
wyrioBle ay1 1eyl sI abejuenpesip ayL
"eJep Jo Mo 8y} 818]dwod 01 ybnous
aq pnoys ‘adepdul ayl Ajuo ol
‘suoneuswadwil wyiobe gnis ayl

"uorreuawa|dwi syl Yyum o
diay pinoo | ‘pasdu Jo ased ul ‘ssa|
-9yManaN ‘swiyiiobe ayy uswald
-w1 01 Ajigisuodsal J1ayi sl 11 asned
-9 spuey Aw Jo 1no Ajsow si SIyL

‘swiyiioh
-Je ay1 JOo uoneluawajdwi syl
ysiu 01 abeuew 1ou op Asyl
d3s Bunnp osje 1ey1 Xsu e sl
aId8yl 'SMeIS 43S uaym 18A
aUOP 10U ale [80Y pue eslijey
Aq padojansp swiyiiobie syt

usdo GT

‘swiyiobe [eu
-16110 ayy se sindino swes ay) aonpoud
pue sindul awes ay axel 1eyl swyiioh
-|e .9e), Yylum wsay} sdejdas osfe ued
aM uayl “om 01 swyiLioBbre ayp 186
J0UURD 9M 1Byl INO SUIN} 1 JI ‘8Suds
Teyl Ul 0S ‘8duslayuod B 0Jul 3 Asy)
MOY 1N0ge alow ‘Jjaswayl swyiiobie
3yl IN0ge yonw 00} 3Jed 10U Op S\

Yum
MI0M 0] Buiylawos sn seAIb 11 Ing
‘pasn aq pynoys wyiiobie ue yons
MOY 199 a1 1,USe0p SIYyl ‘8sIn0d
JO ‘wyioBle siy uresy 0) pasn
|90y ey} BIep a8yl SINQLISIP Ued aMm
JayIaym awinl ul 498yd pInoys spn

‘wiyiobe uonoal
-ap 9sod s, es)ifey 40 wyiobye
uonoalap eaude s,ja0y bBulu
-UnJ UBYM S8nssl awos asned
Aew sIyl -9jgejiene indul
A1osuas 10 abel00) Aqeq aney
AJ[eas 10u op Ssepns ayl

usdo g

"0} Y|e} 0} SJ0S
-IAJ8dns Jay10 aney sAemje | ajge|lene
-un sI s10siAledns Aw JO BUO UBYAA
"a|gejieneun AjLieiodwal ale Ayl usym
uane ‘awn ybnous urewsas pinoys
aIay} 9|qissod SI 11 Se UOOS Se uol}
-oeJajul Japjoyaxels Aue Buluueld Ag

"epuabe ayy ul sbunsaw
3INPaYas |[IM | Uayl sajnpayas Asnq
001 anp a9e|d aye] 10uurd Bunssw
JewJogul ‘awn awos Jaye ‘J| (s1d
-wiexs 10J sAepljoy 01 anp) a|qe|leAe
-un aq ||Im Asyl uaym ajgissod se
U0OS Se SIapjoyadeIs A Xse [[IM |

"IN290 Aew sans
-S| ‘Wiay} pssu | Jeyl awn e e
3|qe|IeAR 10U aJe SIap|oyaxeIs
UBYM :92Uasge Japjoysxels

uedo I

"Wy uo sai
-uapuadap Jayio Aue ayeald Jou 0} [en
-uassa Os[e sI 1] ‘1eyl aznuold pjnoys
3aM 0S "DININ 01 1uawAojdsp syl sI
uelly uo Aouspuadap 1596619 oyl

"J]9SALL S3IIAINOR BWOS Op
oS[e ued | ‘a1qissod alaym ‘U0 }Jom
ued 3y 1eym awin ui ubije o1 1A SI
11 0S “Y2am Jad Aep auo Buiyiom aq

Im uelry A8y SI uoneaunwiwo) | 2T

14

€

"3} Ul BUop aq ued
BuiylAiens 10U Jey) Msu e Si
8J3Y} ‘Sa1lIAIOe uleusd Bulop
Wiy uo salouapuadap awWos
a1nb aJe alayl douUIS AW
-ued Bupjiom pauels ueliy

usdo 6T

181 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

194 pauess Jou
Sey 1UapnIS Aud 8yl uaym usns JININ
Te UnJ 1s3] & Op 01 9|ge aq Aew am ‘0S|
"SOAJ9SIN0 WiyLIoBfe Ss1y 1591 01 3|qIs
-sod ||1s s1 11 ‘0S ‘Bumes Aue ui yiom
pinoys yaym ‘wyiiobe Buipiogal e
dojansp 01 SI @sed asn urew a8yl

uapnIs aud syl bul
-1y Jo ssa20.d ay1 dn paads 0] way)
ysnd Aew siyl -soejd ur Ajeuon
-ouny ay) aney Apealje am eyl way)
SMOUS ey} Jojesisuowap AjJes ue si
‘“Janemoy ‘djpy Aew 1eymM ONIN
Aq pany Bursg si uspnis Qud 8y}
asneoaq spuey Aw Jo N0 SI SIYL

Juspnis Jey)
yum Aljeuonouny pajuswsld
-WI 3y} a1enjeAs Jouued | 1eyl
SU e S1 a13y) ‘9ousH "19aloud
Aw JO pua ay) alogeq 1 asn
01 Buiob si uspms Qud 8yl
eyl 194 aaluelenb ou si alayl
ng ‘ONIN 1e 108loud ayy oy
Anjeuonouny Buidojansp Wi, |

aplI
Yum 10B1U0D
ur Apeaie ase
oM ‘parebmN - $T

DN 1e 8|geJdisep 10U Ajaliu
- 9P SI } SN U0 YJOM []IM SIY} B]IYM
‘3]dwexa 1o} ‘awoayD JO UOISISA J1ap|o
ue |[eIsul 01 SI punoJeXIOM JUBIUBA
-uodul Ing Aselodws) ¥ 'SI8sSMmolq
3Yl pue aAeY B8M UOISIBA MuIq3d|
3yl usamiaq Auljigredwosul ue sale
-219 syl (sS1Lq) sjoooioud urens?
JO SUOISIBA Jamau Buisn ale s1asmouq
asneoaq asle Sanssl |edluydal I1SON

"3asuadl| palepdn ue Buiney
10} pasu 8y ssaldxa |jeys | ‘alow
-layun4 snjeis uonisinboe sy pue
3suadl| ay1 Inoqe Bunyse daay ued |

BWN Ul 3suaddl| YUl
ayl 196 jou op am asneaaq
SaNSSI [e21UYI3] 9S8yl SSaippe
J0UURD | TRyl XS B SI a8y}
‘0S "SUOISIaA MUIID| Mau Ul
PAAJOS U33(Q oAy Jeyl Sanssl
[ealuyda) awos Bulislunodus
w,| ‘I31eted uj “paroadxe ueyl
Jabuo] yonw Buiyer sI asuad
-1 YuI321 Mau e Buinboy

usdo /T

‘aredioned 01 Juem jou
op S1uspns Aym suoseal enualod ssno
-SIp [1eys | ‘wodas Aw uj ‘synsai en
-led awos aw aAIb pjnom ey ‘aireu
-uonsanb ay1 ul || AJuo 01 way] yse
ued | uay) ‘eredionted o} Juem lou op
Tey] SIUSpNIS 8y} J0J aNssI ue si awi J|

‘A|reuos.ad
way) yoeosdde o1 pue Bunedionsed
1N0Qe Us10 WAy} puiwal s1 op ued |
IV "spuey Aw Jo 1no Ajpsow si SIyL

‘Apnis A1l
-[1qesn ay} uil 1ed axel wayl Jo
M3J B AJuo ey sl e SI alayL
‘ledioied Ajjenioe 01 sjusp
-Ms d3S 8yl Jo ssaubulfjim
ay1 uo Aja1 am ‘Apuanbasuo)
‘Areyunjon s1 Apnis Alljigesn
Slvdd 8yl ul uonedionted

usdo 9T

The Philips Remote Al Streaming platform / Version 1.0

182

Eindhoven University of Technology

‘wyioBe gepelA ays se sindino
awies ay} saonpoud pue sindul awres ay}
saxe} Jeu) wyioble #0 oxey, e Yum |
aoe|dal 0Se Ued aM UaY) YJOM O] WYL
-oB|e ay1 196 J0UURD BM Teyl IN0 SuIn1 1l
J1 ‘9Suas Jey] Ul 0S "82UdJIa4U0d B OJuUl
S1 1 Moy 1noge alow ‘jasu wyliioh
-e 8y} IN0OQER Yoanw 00} 8Jed J0U 0p)\

"219 ‘sindinoys
-indul 3y ‘1 asn 01 MOH |Ie1ap Ul
wyiioBe ayy surejdxs |90y alaym
[90Y U1IM UOISS3S © dARY ||IM UIQOY

"WIay} dA|0S 0} pJey aq Aew
1 ‘Sanssl [edluyoda) ale alayl
JI 0S5 ‘suels 43S Jaye Buoj
Ae1S 10U ||IM 33NUOIN |90Y

‘uUoyIAd ules)

0l pajuem
9y asned
-8 sdipyd

Joy Bunjiom
anunuod 0l
PapIdsp |80y

‘parebIN

"J31Sea gNH1ID 0] 8AOW 8y}
aew pnoys yaiym ‘Aixsjdwod aonp
-3J Ued am Ajleuonouny @o/10 ajdwis
Buiney Ajuo Ag ‘Ajreur4 1 sredionue
ued am 1eyl yons uaddey |jim uonelh
-1w ay1 Aj19eXa uaym Ino ainb 01 Jue]
-lodwi osje si 3| “Ajfenuew apod sy}
[[e JajSuRI] 0] BARY ||IM M ‘9Se 1SI0M
ayl u] usIndwod S.uIgoy U0 9pod
3yl Jo Adoo [edo| e sAemje sI alayl

‘qnyio
0} 8AOW ® SI 3J3y} ased ul aoedal
01 pJey 00) 3 1,UpjNOYS 11 pue ‘Mou
aoe|d ul awos aAey apn Alljeuon
-ouny @o/1D geHD d1seq asn Ajuo

'sanssI pue suoleal|d
-W09 S8NPOJIUI SIY} Teyl ysii e
sl alay "paresBiw ag 01 spaau
9po2 [[e uiod awos 1e leyl
sueaul Yolym ‘gejis ul sepisal
8po9 e ‘Apusind gnyus ol
geio wouy uonelbiw e aq 01
Buiob s asayp ‘sdijiyd utynm

JndJ0 Jou

pIp ‘parebmN 1T

‘O3 B Se ||aMm
se 10]1d ® Se 410q suop 3 Ued 1ey) ased
asn e uo Jom | Ajjeapt ‘os "sdijjiyd 1e
OWap & Op 0} 30 PINOM 3AITRUI3)R 3U)
Uay) ‘sjuIesIsuod awil ay) UaAIB auop
3g jouued 1011d B Jey) N0 suwiny U J|

'saniunuoddo
lo1d [enusiod BuiAynuapr ur disy
[IIM [92JR[A\l UM SUOISSNISIp AjJeT

0

€

0

"198foud
Aw Bunnp 1051d & op j10uUUed |
sanssi Buluued 01 anp 1eyl s
® Sl 818yl ‘0S 'auop aq pjnom
1 uaym 1noge abpsjmouy ou
os[e sI aJay1 uay) ‘sjqissod aq
PINOM 11 JI UBAB puy 3|qIs
-sod SI 11 Jaylaym urenad jou
st 1 ‘iod siy v (jendsoy
e 1e) 1011d © uni 01 ag Aew
193l0ad Aw Jo speob ayy Jo aup

“OININ Yim
10BJUOD Ul BJe
am ‘parebniN

g

183 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

"199f01d 43S 8y [92uUed 01
aney Aew am ‘||e e walsAs Bulyiom ou
SI 2J3U] UBYM ‘9SBI-1SI0M 8y] U] 'Sh 0}
aNnJeA Sey OS[e pue a|geop ||11S SI eyl
108l04d e yum dn awos 0] [eIUISS3 SI
1 ‘uayl Alljeuonouny swos 1ses| 1e sl
aJ3y} Ing 819]dwod 10U SI WaAISAS 3|ge
-IA [eWIUIW 8y 91 ‘WaISAS a]gexyIom
[ewiuIW e 1Sed| 1e SI alay) Buiwnssy

'su1Baq 108foid 435
ayl nun Aond 1saybiy ayr aney
[1eys Wa1sAs ajgeIA Jewiuiw ay) bul
-ysiu ‘puodas ‘syuawalinbal ayy Jo
sanuond Bulu ap Ag Syl op [eys
ulgoy ‘|enuUasSa SI WAISAS a|geIA
[ewiuIw 8yl Ul papnjoul SI Jeym
uo Buisalbe pue Bulu ap “siI4

19A
Apeal 10U SI WaSAS ayl 1eyl
Msu e s1 a1ay) ‘oS '199loud ayy
9)9|dwod 0] way) 4o} ybnous
poob S)}JOM Jey) UOISISA 8|ge
-IA JeWIUIW B 8g PINOYS alay}
uels Asyl usym Jeyl suesw
YoIym ‘wia1sAs ayl yum Mom
03 @Aey [[IM sjuapnis 43S 8y L

"W} uo
paluswajdwil
9I9M SdIn)es)
paiinbar e
‘parelIIN

4"

‘pajuswis|d
-wi aqg ||IM sued JueAs|al |e Jeys ains
Bunyew o1 A8y s1 uoneznuoud pue bul
-doos Jadoud ‘|jesBsAQ 'swiyiioble 0}
S19SM0.Q 198UU0d 0] Aem swos alinbai
PINOM 8M ‘IS "3J8Y} S Jeyl awns
-se Aldwis 01 pue adods Jo 1IN0 3pIs
-1U3119 By} dARS| 0] 8pIdBp PIN0Y N\

U yum
Jeijiwey ase pue) padojansp Asyl
2ouls ueliy/ueloz wol) djgy awos
186 01 8|q1ssod 8q Aew 11 ‘|dV O1Y
1duosener ay) alepdn 01 pasu op
AM 3SeD U] "OlWap UIeIUNOW UdZ0J}
ayy asn Ajdwis 01 ybnous aq ‘ajdwe
-X3 10} ‘Kew 1] "1V D1H 1duosener
ayl arepdn 0} papassu UaAS SI 1
Jay1aym wes) ayl Ul SSNISIp Ued am
‘drowsyuny ‘1dv D1y wduosener
ayl ajepdn 01 ag pINOM 11 10Y?
yonw Moy Wea) ayl UIYIM SSas
-Se pue SSnJsIp 01 |eIUASSD SI 1

"Joys Juswdojansp
awos aunb saliinbai siyl eyl
3SI B SI 8layl "YdlMSBAIT
UM 87e21UNWIWOI Ued I Jeyl
yons |dv O1¥ Yyosessal ayl
a1epdn 01 aAey OS[e [[IM aMm
‘Auanbasuo) puanoeq ay
Ul YOUMSBAIT 3sn [[IM am
Teyr Ad)I| AJan Swiass 11 ‘1and
-moy ‘wiod siy 1 “|dV J1Y
1duiosener ay) aney Apealje am
asneoaq ‘19smouq ayl o'l ‘apIs
-JUa119 8y} U0 1oya uawdo|an
-op ybiy Asen e aqg 1.upjnom
aiayl ey paoipaid sem 1
adoas 10afoud peurbuio ayy uj

SIvdd

01 XuIn3ol
pappe M
‘0S| ‘owsap
YIUMSBAIT
Hnejsp ayl
paidepe aM
‘pealsul
1duogener ul
YIUMSBAIT
sws|dwi
Jou 0} paplosp
am ‘parebniN

ot

The Philips Remote Al Streaming platform / Version 1.0

184

Eindhoven University of Technology

‘IdV suonediu
-NWIWod pa 1un ay) Aq pade|dal Ajises
ag ued 11 eyl yans |dv D1y 1duiosener
yoseasay ayl uo Aouspuadap Mmoj e sI
alayl Teyr Aem B yans ul walsAs ayl
ubisap ued | ‘asiie Aew Jeyl sanssl |en
-usjod ay1 Bundsdoe ul djay ued sysu
3y} JO ssaualeMy ‘|dV D1y 1diiosener
yoseasay ayl Buisn ul panjoAul SYSH
3yl (uawabeuew uoneadxs) sio
-ploysxels Aw yum Sssnosip ued |

"BuINsuo-awin 8g ued YaIym
‘Bunsey awos aiinbal pjnom siyL
"JIND JIp alow SI awes ay) Saneyaq
Idv 8y} pulyaq ABojouyoasy ayp I
‘Janamoy ‘BululieIag 'sedualapyIp
1ued 1ubIS Aue ale alay) JI 98S 01
Sa0RLIAUI |dV Y10g aJedwiod ued |

"198l04d Aw
Jaye waisAs ayr dojenap Jayl
-Iny 01 81am auo JI 3jqissod aq
PINOM JBUM JO MBIA J11S1[B8IuUn
ue sapinoud 108loid Aw asaym
Olleusds e 0] pes| Aew syl
‘|dY SUOIIedIUNWWO Pa Iun
ayl Aq papinoid 1ou si ey Al
-[euoniouny awos apiroid Aew
IdV D.1Y 1duoseAer yoseasay
ayl ‘sjdwexs 104 uBlayIp
aq ued Ajyjeuonouny ay) osfe
g ‘Jaylp sedepslul ay) Aew
AJuo JON "84N308}1YdJe 3IUBID
-Ja1 ay) 1oy padojanap SI 1ey)
9UO Byl WoJy SaeINGD |dV
D1y 1duosener yoseasey ayL

"JUIRAISUOD
e alow ‘yas
-1 1098loud ayy
01 XS ® 1,usl
sIy) ‘parebmA

‘wiyiobe gepelA ays se sindino
awres ay saonpoud pue s)ndul awres ay}
soxel Jeys wypioble #0 Xy, B YUMm)i
3op|daJ 0S[e uBd am UaL] ‘Y40M 0] LY1LI
-06]e ayj 196 10UUERD M JeY) 1N0 SUIN) I
J1 ‘9SUSS 1eY] Ul 0S "92U3J3JU0J € Olul
S1 11 MOy Inoge aJow ‘}Jjasi wyiiob
-Je 3Y1 INOQR YdNw 001 34ed 10U Op SN

MIoM
11 9ew 0} Moy uo abpajmouy awos
aney Apealle pjnom am Agatayl
‘wyobre sy o) Jaddeim gid
-WIS B 9JUM 0] SaAjesIno An
1S1 PIN02 aMm ‘SMO|[e awil UayYAA

“Jaddeim mau e a1um
0} SJUBPNIS 3y} JOJ SWI} BWOS
e} Aew 1 ‘|ns -a|qissod
SH MOUY 8M 0S ‘81048q Wyl
-0bje gepeN e Jo) Jsaddeim
e uanum sey uelny 'sans
-s1 Aupgiedwosur awos ale
alay) ‘#D ul padojanap SI yJom
-oWel4 Ino aouIS ‘ge IR
ur padojansp Sem Jeyl wuyll
-obe uonoalep eaudy s,]90Y
UM XJOM 0] SJUBPNIS 3yl Juem
am ‘193foud 43S ay1 Buung

‘uoyifd o
wyiioble siy
WOAUOD ||BYsS
[904 ‘peaisu]
‘OeflelN asn
Jou 01 psplosp
am ‘parebniN

185 / Version 1.0

The Philips Remote Al Streaming platform

Eindhoven University of Technology

‘Ajan1oadsal Alio1id moj 01 ybiy Jussaidal 18y) MOJ|BA 01 paJ LLI0J) JUaIpeIb © YIIM Papod J0j0d SI UwNjod 4 a3yl ‘AjgAioadsal
‘A11011d pue ‘1oedw| ‘pooyldqI] ‘48 1uap| uasaidal suwnjod 4 pue ‘| ‘7 ‘@l 8yl -198loid sy Buunp pa 1uapr am Jeyl sysu 8yl T d1qeL

"30 PINOM dAITRUIB)R 159(BY)
Teym s1osialadns Aw Yilm ssnasip |[eys
| ‘uoirenuIuod S Inoge Alurelnsaun si
alay se Buo] sy “anunuod |jim 19aloid
8U} Jaylsym awil ur mou |Im | ‘noT
Yl 108IU0D 9S00 ul Buleq Aq ol
‘aress 109loud 43s ayr Buuonuow Ag

"uanoypuig N1 Aq paziueblo si
1 asneaaq spuey Aw 4o 1IN0 SI SIYL

0

14

"a0e|d axe1 01 Bulob si 198load
d3S 8yl Jayleym ureusoun
SI 11 ‘SNIIARUOIOD 3U) YUAA

auluo

auop aq ||Im

d3s ‘parebmIN ¢ €T

"JAN9
-MOY ‘€# XS1 89S "IdV D1y 1duiosener
yoseasay 8yl asn 0} ag PINOM aAljeu
-19)e ayL ‘186png awos pu Ajenusy
-od ued am Josinladns Auedwod Aw
yum uo Apres 3su siyy Buissnasip Ag

"S# XS Ul pagLIosap aJe yoeoid
~ce s1y) Buixel ul paAjoAUl ‘I9Ad
-MoY ‘sysu 8yl "youeasal sdifjiyd
e juesaid SI eyl |dV eyl yum
3IOM 01 80 PINOM dAIRUIBIR UY

"190foad Aw Joj 3|qejrene
196png ou s1 aIdyl ‘Mmouy| | Sse
Je) S\/ "PAAJOAUL SISO BWOS
9 0S|e Aew 813y} ‘|jom se |dV
Ay} asn 01 pajuem | 4 eyl
suesw Siy] Jay1abol si1s0d
9say) BulIan0d aJe |4V SIy asn
Oy S1awoIsna sdijjiyd ‘Apus.
-InD "$1509 awos Buoje sbulig
yolym ‘orjimp Buisn st 1dv
SUOIRIIUNWIWOD P3 Iun 8yl

IV

D1Y 1duosener
yoseasey ay)

asn

M am
‘parebInN

‘papaau JI |4V 8yl adejdai Aj=191d
-Wod 0] Jalses aqg pjnom 1 os Buiop
Ag "Idv Suoneaunwwod pa Iun ayl
uo Aguapuadap Moj e SI alayl 1eyl yons
Aem e 4yans ul wasAs ayy ubisap ued |

‘(pax way aney Ajjnyadoy pue)
N0 way) iod 01 swn ybnous sw
aAIb pinoys yaiym ‘abeis Ajres ue ul
sanssi Ajnuapl ued | uo Apes |dv
3yl yum dom 01 Buluies| Aq ‘os|v
"80UBApPE Ul ||aMm Sanssi BulAynuapl
ul aw djgy ppnoys 1dv ay1 buido
-]9A8p SI Ty} Wea) syl yum uolrel
-00e[|09 pUB UOIRIIUNWWOI 8S0[D

"pappe ag ued 11 31043 Wil
Buoj e axe1 Aew 1 Bulssiw
sI AJifeuonouny usym eyl pue
‘abueyd |Ins ued |1dv 8yl eyl
‘sbng aq Aew aJay} yey) suesw
SIYL 18K painjew 10U Sey
pue Juawdo|ansp ul ||ns st 1dvV
SUOIeIIUNWIWOY Pa Iun ayl

IV

D1y 1duosener
yoseasey oyl

asn

M am
‘parebiIN

The Philips Remote Al Streaming platform / Version 1.0

186

	Abstract
	Foreword
	Preface
	Acknowledgements
	Executive Summary

