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Abstract�Cooperative Adaptive Cruise Control (CACC) can
increase traf�c �ow by allowing smaller inter-vehicular distances
through incorporating vehicle-to-vehicle (V2V) communication.
As wireless V2V communication is vulnerable to packet loss and
latencies, and there are multiple delays in the CACC control loop,
a system to compensate for communication delays and sensor
delays is proposed. An Extended Kalman Filter (EKF) is designed
where predictions are executed to compensate for sensor and
V2V delays. As automated vehicles typically have several sensors,
these sensors can be made to make separate predictions using
in parallel EKFs which can then be fused. This compensation
system can be combined with a novel control strategy based
on the Morse Potential Function, and the employment of Model
Based Predictions in the lead vehicle, to obtain a complete CACC
system. Simulation results show that the compensation system
improves performance of CACC when faced with sensor delays
and increased latency in V2V communication.

Index Terms�Cooperative Adaptive Cruise Control (CACC),
Latency Compensation, Extended Kalman Filter, Sensor Fusion,
Model Based Predictions

I. INTRODUCTION

The current trend of an increased number of vehicles on
the road and an increased human movement has lead to the
growth of traf�c intensity and demand for motorway travel
[1], [2]. Due to increased traf�c intensity, congestion is ever
increasing, which subsequently reinforces the need for an
increased traf�c �ow. Furthermore, the demand for vehicles to
be more comfortable, safer, less demanding is increasing, and
more sustainable. Cooperative driving is largely researched
[3]�[5] to address these issues and, due to promising solutions,
is receiving attention from government bodies [6].

Cooperative Adaptive Cruise Control (CACC) may answer
desires for an increased traf�c �ow, comfort level, safety,
and decreased fuel consumption [7]. CACC is an extension
of Adaptive Cruise Control (ACC) in which data from a
preceding vehicle is sent to the follower to facilitate a smaller
inter-vehicular distance [3]. The CACC concept de�nes a
system that controls longitudinal velocity with a cooperative
system, be it inter-vehicular (V2V - Vehicle to Vehicle) or
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infrastructure based (V2I - Vehicle to Infrastructure) [8].
This cooperative system is combined with data obtained from
vehicle sensors (mainly radar, lidar and camera) to implement
the CACC strategy [9]. This enables increasing the traf�c �ow
by decreasing the distance between vehicles [7] to time gaps
notably smaller than conventional ACC systems [5]. CACC
systems largely rely on the feedforward input from wireless
communication, generally V2V, and as wireless communica-
tion is prone to failures and increased latencies, the system
is rather volatile [10]. Present research analyses the use of
IEEE 802.11p (Wi-Fi p) and 5G, LTE protocols for vehicle-
to-everything (V2X), mainly V2V, communication [11], [12].
While delays in the V2V-path have been extensively studied
[13]�[15], little attention has been paid to possible delays in
the feedback path. This is delay is present as the sensor system
typically consists of radar and lidars and cameras. Processing
the data from these sensors is a computationally demanding
task which leads to measurement delay.

In this paper, a method in which sensor delays and latency
in wireless communication are compensated with the aim of
improving the performance of the CACC system is proposed.
An Extended Kalman Filter (EKF) is designed to compensate
for sensor and wireless communication delays, to which a
method using Model-Based Predictions (MBP) is applied. This
method is combined with a novel control strategy [5] that
satis�es the control goals of a CACC system. As a joint project
with V-tron, a Deventer based automotive company, the desire
to design and implement a robust CACC system in an existing
test vehicle is present. This research will consider a single lead
and a single following vehicle that communicate through V2V
using On-Board Units (OBUs) designed by V-tron.

The remainder of this paper is organised as follows. In
Section II, the preliminaries of vehicle platoon dynamics,
control strategies and sensor con�guration are presented and
the problem is formulated. Section III describes the derivation
of the error dynamics of this problem, the design of an
Extended Kalman Filter, and the delay compensation strategy.
In Section IV, the results of a simulation study are presented
for several scenarios. Finally, the paper is concluded and
recommendations for future research are given in Section V.
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Figure 1. Lead and ego vehicles in a CACC platoon

II. VEHICLE DYNAMICS AND CONTROL

In this section, we will discuss the platoon dynamics and
control strategies often used in CACC problems. Section II-A
elaborates the vehicle platoon dynamics for a CACC system
as shown in Fig. 1. Subsequently, Section II-B discusses the
control strategy used in previous research and a novel control
strategy considering an Arti�cial Potential Function (APF).
Section II-C notes the sensor con�guration of the test vehicle
and the corresponding latencies. Finally, Section II-D de�nes
the focus of this research.

A. Vehicle Platoon Dynamics

Considering a vehicle platoon, depicted in Fig. 1, with
dynamics as presented in [3], we de�ne a platoon of 2 vehicles
i 2 flead; egog where lead is the lead vehicle and ego is the
following vehicle. The control objective is to make the ego
vehicle achieve a desired distance dr to the lead vehicle given
by

dr(t) = rego + Lego + hvego(t); (1)

where rego is the standstill distance between the lead and ego
vehicles, h the time-headway, vego the ego velocity, and Lego
is the length of the vehicle. From (1), we de�ne the distance
error as

ed(t) = dego(t)� dr(t); (2)

with
dego = slead � sego; (3)

dr as de�ned in (1) and si is the displacement of vehicle i. The
longitudinal vehicle dynamics are described by the continuous
LTI-system [3], [13], [16], given by
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where ai is the acceleration of vehicle i, ui is the desired
acceleration input, and � is a time-constant representing engine
dynamics.

B. Control Loop

The typical control loop for a CACC system [3], [5], [17]
is shown in Fig. 2. The feedforward input ulead is subject to

C P
�

s̃ego(t)

slead(t) uego(t)

�

�
sego(t)
vego(t)
aego(t)

�

�
ed(t)

� ego

ulead(t � � V2V )

qego(t)

dr

Figure 2. Typical control loop ego vehicle

wireless communication delay �V 2V . In Fig. 2, an inverted
headway policy � is present, which is given by

�� :

(
_�i = � 1

h�i + 1
hqego(t)

yi = �i
; (5)

with control action qego. Furthermore, ~sego describes the
position of the ego vehicle including headway policy

~sego(t) = sego(t) + hvego(t) + rego + Lego: (6)

The block C denotes the controller in the control loop. Past
research makes use of a PD-control strategy, ensuring a linear
control action from which, considering linear plant (4), a linear
control loop is the result [3], [18]. Recent researches have
investigated the use of a non-linear control strategy to better
satisfy the multiple non-linear control objectives of a CACC
system (smooth gap closing, vehicle following, and collision
avoidance). In [5], the use of an Arti�cial Potential Function
(APF), speci�cally the Morse Potential Function [19], has been
investigated as a control strategy. The APF is described by

V non(xego) = k1[k3 � e(�k2(xego�ce))]2; (7)

with
ce =

log(k3)
k2

; (8)

where k1, k2, and k3 are control gains and log is the natural
logarithm. In (7), xego is de�ned as

xego := ed + cdev; (9)

where ed is de�ned in (2), ev is the �rst time derivative of ed,
and cd determines the amount of non-linear damping related to
the amount of non-linear proportional action [5]. Substituting
(8) and (9) into (7), the APF function can be denoted as

V non(ed; ev) = k1[k3(1� e�k2(ed+cdev)]2 (10)

from which it can be seen that output V non is dependent of the
distance error and the velocity error. Furthermore, by choosing
ce as (8), V non(0) = 0 as no error requires no control action.
This is seen in Fig. 3. Considering (10), the control action is
de�ned by

dV non(ed(t); ev(t))
dt

=

(�2k1k2k2
3)e�k2(ed+cdev)(e�k2(ed+cdev) � 1); (11)
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Figure 3. Morse Potential Function (a) From (10) (b) From (11)

which represents the gradient of the APF, continuous over all
xego. The working areas of the potential function are shown
in Fig. 3 and the resulting control input becomes

qego = ulead(t� �V 2V ) +
dV non(ed(t); ev(t))

dt

�����
ed(t);ev(t)

:

(12)
In [5], it is proven, through a Lyapunov approach, that system
(4) combined with input (12) has a stable equilibrium at
xego = 0.

C. Sensor Con�guration and Latencies

The current sensor con�guration of the vehicle under con-
sideration is depicted in Fig. 4. The primary sensors for use
of the CACC system are the multi-mode front-facing radar,
the front-facing camera (MobilEyefi6), and V2V communic-
ation. The radar has a narrow far sensing area and a wide
near sensing area. Both the camera and the radar measure
distance dego and velocity vlead. The sensors are subject to
latencies due to measuring time, post-processing time and
communication time. We de�ne �CAM , �RADAR and �V 2V as
the latencies of the camera, radar, and V2V communication,
respectively. Collectively, the latency will be denoted as �J ,
with J = fCAM;RADAR;V2Vg.

Figure 4. Sensor con�guration of the test vehicle

D. Problem De�nition

Due to the latencies in the sensor measurements of the
radar and camera systems, the feedback in the control loop
encounters delays. The control input including this feedback
delay is then noted as

qego(t) =

ulead(t� �V 2V ) +
dV non(ed(t� �J); ev(t� �J))

dt
(t� �J)

(13)

with J = fCAM;RADARg. The latencies in camera, radar,
and V2V communication cause a delayed response in control
action, as the information is received some time after it
has occurred. Where several researches have been oriented
towards compensating for V2V communication delay [13],
[20], investigation into sensor delay and compensation in
CACC is a novel topic.

In [13], a strategy is proposed in which Model Based
Predictions (MBP) are used to increase the robustness of a
CACC system with respect to communication failures. These
communication failures are noted as packet dropping, a packet
is not sent, and increased communication latency, a packet
is sent with a considerable time delay. In original cases of
CACC [3], [5], the lead vehicle sends a single acceleration
value as a feedforward input to the following vehicle. This
method is largely vulnerable to communication failure, as a
dropped or delayed packet sends less useful information to
the following vehicle, by which performance and stability can
be compromised [16]. Using MBP in the lead vehicle, the
feedforward input ulead is extended to an array of predicted
values

ulead(t) =
�
ulead(tk)) ulead(tk+1) : : : ulead(tk+N )

�> ;
(14)

with time t, prediction step k, prediction horizon N , com-
municated over V2V to the ego vehicle and N = max(�J),
with J = fCAM;RADAR;V2Vg. Further, an MBP method
has the ability to virtually upgrade the sample time of com-
munication where the strategy in the lead vehicle computes
predictions using a smaller sample time, before sending the
array of predicted values over V2V [13].

To summarise, we consider in this paper a platoon of 2
vehicles, with plant dynamics (4), controller input (13), sensor
con�guration as described in Section II-C and feedforward
predicitons (14), with the objective to design an algorithm that
compensates for communication and sensor latencies �J .

III. DELAY COMPENSATION USING AN EXTENDED
KALMAN FILTER

In this section, an Extended Kalman Filter (EKF) is con-
sidered to compensate for sensor delays. Section III-A derives
the error dynamics of the system to be used in the EKF,
which are then discretised in Section III-B. In Section III-C,
the design of the EKF is elaborated after which the strategy
of using predictions for delay compensation and the estimate
fusion of these predictions is designed in Section III-D.



A. Error Dynamics Derivation

Combining the systems described in (4), which we denote
as xPego, and (5) we obtain

�
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for the ego vehicle. Similarly, the lead vehicle can be repres-
ented in extended system
�
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Adopting state variables e =
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ed ev ea �ego

�>
, de�ne

ed as (2) and ev = _ed. Considering control input (13), this
leads to error dynamics equations

_ed = _slead � _sego � h _vego = vlead � vego � haego := ev
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from which the closed-loop error dynamics system is denoted
as
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From (18), it is seen that the control input is non-linear due
to the APF function.

�
ed(k � � J )
ev(k � � J )

�

dego(k � � J )

vlead(k � � J )

�

�
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Figure 5. CACC control loop including EKF and Latencies
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B. Discrete-time Model
To allow for the design of a discrete-time EKF, we discretise

the system with sample time Ts = 0:01s for (15), (16) and
(18) according to relation [21] i.e.

Ad = eATs; Bd;i =
Z Ts

�=0
eA�d�B: (19)

The vehicle dynamics are discretised as
�
xPi (k + 1)
�i(k + 1)

�
= Ad

�
xPi (k)
�i(k)

�
+Bd;iui(k) (20)

where k is the discrete time step, and Ad and Bd;i are the
discrete state space matrices. From (18), the discrete error
dynamics are de�ned as

eJk+1 = Ae;deJk +Be;d
�

uV 2V
k

uV 2V
k��V 2V

+ f(edt��J
; evt��J

)

�
; (21)

where Ae;d and Be;d are the discretised matrices of Ae and
Be, respectively. We make use of notation eJk , where subscript
k indicates the time step and superscript J indicates the sensor
source. Similarly, the notation of (14) becomes

uV 2V
k =

�
uV 2V
k uV 2V

k+1 : : : uV 2V
k+N

�> : (22)

The control loop including error dynamics (21) and sensor
latencies is depicted in Fig. 5.

C. Extended Kalman Filter Design
Considering error dynamics (21) and measurements of dego

and vlead, we conclude that an observer is required. Further-
more, sensor fusion and model based predictions are required
for accurate error estimation for which a Kalman Filter can be
designed. From (21), we can observe that the error dynamics
satisfy the following form:

ek+1 = f(ek; uk); (23)

with a non-linear term because of dV non

de as in (13). Therefore,
this observer problem requires an non-linear observer, such as
an Extended or Unscented Kalman Filter. As this problem is
slightly non-linear and a low computation time is required for
online computations, an Extended Kalman Filter chosen [21].
The state transition and observation models are denoted as

ek+1 = f(ek; uk) + wk
zk = h(ek) + vk;

(24)



where f is the state transition function, h the measurement
function for observation zk, and wk and vk are the process
and measurement noise, respectively [21]. Notation ênjm rep-
resents predictions at time step n and updates at time step m,
for m � n. Predictions are computed according to

êJk+1jk = f(êJkjk; uk) (25a)

P Jk+1jk = F Jk P
J
kjk(F Jk )> +QJk ; (25b)

with
F Jk =

@f
@e

���
êJ

kjk;uk

= Aed +
@V non

@e

���
êJ

kjk;uk

;

covariance P Jk and process noise covariance QJk . The update
equations are denoted as

~yJk = zJk � h(êJkjk; ukjk) (26a)

KJ
k = P Jk+1jk(HJ

k )>[HJ
k P

J
k+1jk(HJ

k )> +RJk ]�1 (26b)

êJk+1jk+1 = êJk+1jk +KJ
k ~yJk (26c)

P Jk+1jk+1 = (I �KJ
kH

J
k )P Jk+1jk; (26d)

where
HJ
k =

@h
@e

���
êJ

k+1jk

= Ced;

RJk is the measurement noise covariance, and KJ
k is the

Kalman gain [21].

D. Predictions for Delay Compensation and Estimate Fusion

From Section II-C it is described that the measured states
dego and vego and V2V communication are subjected to
latencies �J . Considering (25), latencies �RADAR and �CAM
can be compensated using model based predictions. Assuming
the radar and camera are functional on the same sample rate
and with differing latencies, from (25) and (26) the Kalman
sequence is de�ned as in Algorithm 1 where J indicates the
sensor from which the measurement originates. Fig. 6 shows
the information �ow concerning parallel Extended Kalman
Filters, where EKF J indicates the single predict and update
step according to lines 1 and 2 and Pred. J indicates the
predictions according to lines 3 through 7 of Algorithm 1.

The predictions loop dynamics (21) for �J iterations using
MBP predictions (14) for the corresponding time step. As
uV 2V
k holds predictions from time step k up to k+ max(�J),

the prediction model chooses uV 2V
k+N��J

for the �rst iteration
and loops until uV 2V

k+N is reached. The feedforward input,
denoted in Fig. 5 as uV 2V

k��V 2V
is selected as uV 2V

k+�V 2V
, as this

is the actual acceleration command of the lead vehicle at time
step k.

The predicted estimates for each sensor are then fused
according to

êfusekjk��J
= (P�1

kjk��RADAR
P�1
kjk��CAM

)�1

(P�1
kjk��RADAR

êkjk��RADAR + P�1
kjk��CAM

êkjk��CAM ); (27)

which can be extended for J sensors [22]. This fusion strategy
considers the covariance P Jkjk��J

individually for each sensor

where the contribution of the estimated prediction to êfusekjk��J
is dependent of the covariance of that corresponding estimate.
By selecting a parallel EKF construction, we enable extensions
to the system for multi-rate situations (sensors functional of
different sampling frequencies) and straightforward extension
of extra sensors is possible.

Algorithm 1 Algorithm for Parallel Kalman Predictions
Input: zJk��J

, P Jk��J�1jk��J�1, êJk��J�1jk��J�1, uV 2V
k��V 2V

Output: P Jkjk��J
, êJkjk��J

1: Predict êJk��J jk��J�1 and P Jk��J jk��J�1 (25)
2: Update êJk��J jk��J

and P Jk��J jk��J
with zJk��J

(26)
3: for i = 1 to �J do
4: Predict:
5: P Jkjk��J

(25b)
6: êJkjk��J

(21) and (25a)
7: end for
8: return P Jk��J�1jk��J�1, êJk��J�1jk��J�1

IV. SIMULATION RESULTS

An evaluation of the system has been executed on simula-
tion level. First, the performance of the EKF with predictions,
designed in Section III-D, is analysed. In Section IV-B a
comparison is made to the results found in [5], where delays
in sensor measurements have been added. In Section IV-C,
system performance for increased latency in V2V commu-
nication in a safety critical scenario is analysed. Finally, the
EKF strategy with compensation and fusion is simulated with
measured data from the test vehicle to analyse the performance
of the system in a real motorway driving scenario.

For comparison purposes, the simulation parameters chosen
in [5], shown in Table I, are used. These parameters have been
selected such that the system requirements are ful�lled [5].

Table I
PARAMETERS AND CONTROLLER GAINS

Parameter Value Unit
*Vehicle length L 3 [m]

*Standstill distance r 2 [m]
*Time constant � 0.1 [s]
*Time headway h 1 [s]

*Communication delay �V 2V 0.05 [s]
Radar delay �RADAR 0.07 [s]
Camera delay �CAM 0.1 [s]

Radar sample time TRADAR 0.01 [s]
Camera sample time TCAM 0.01 [s]

*k1 0.3 [-]
*k2 0.042 [-]
*k3 15.5 [-]
*kp 0.2 [-]
*kd 0.7 [-]
*cd 3.5 [-]

� Values have been adopted from [5].



Table II
INITIAL CONDITIONS TEST SCENARIOS

Scenario Initial Condition Value Unit
Gap Closing slead(t0) 70 [m]

sego(t0) 0 [m]
vlead(t0) 80/3.6 [m/s]
vego(t0) 80/3.6 [m/s]

Vehicle Following slead(t0) 27.22 [m]
sego(t0) 0 [m]
vlead(t0) 80/3.6 [m/s]
vego(t0) 80/3.6 [m/s]

Collision Mitigation slead(t0) 27.22 [m]
sego(t0) 0 [m]
vlead(t0) 80/3.6 [m/s]
vego(t0) 100/3.6 [m/s]
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Figure 7. EKF performance analysis with varying QJ and RJ

A. Performance Analysis of the Extended Kalman Filter

To analyse the performance of the EKF, elaborated in
Sections III-C and III-D, we select the vehicle following
scenario shown in Fig. 8, with initial conditions in Table
II. Considering this scenario, a comparison is made between
the measured errors

�
ed ev ea

�>
and the estimated er-

rors
�
êd êv êa

�>
which are fused according to (27). The

measurements are subject to normally distributed band-limited
white noise with zero mean and random seed. The noise power
is 0:1 for the radar and 0:2 for the camera, and the sensor
and V2V delays are seen in Table I. We vary the values of
the process noise covariance QJ and the measurement noise
covariance RJ with J = fRADAR;CAMg. Four pairs of
values have been simulated

QJ =

2

664

I4 � 10�2

I4 � 1
I4 � 10
I4 � 100

3

775 RJ =

2

664

I2 � 100
I2 � 10
I2 � 1

I2 � 10�2

3

775 ;

of which the results are seen in Fig. 7. A low covariance for
QJ and high covariance for RJ indicates high trust in the
dynamic model of the EKF, which �lters the measurement
noise signi�cantly, resulting in the best performance when
choosing QJ = I4 � 10�2 and RJ = 100. This set is chosen
for further simulation analysis.

B. Effect of Delay Compensation on CACC Performance

The delay compensation strategy and estimate fusion, as
described in Algorithm 1 and (27), and the APF control
strategy (11) are modelled as in Fig. 6. The control loop in
Fig. 2 is used for the benchmark situations, with results from
[5]. Here, controller C is de�ned as (11) for the APF situation
without compensation and for the PD-control situation, C is
de�ned as

qego = 2�(ed + cdev) + ulead; (28)

where 2� = kp and 2�cd = kd. Four sets of results are shown
in Fig. 8:
� Ideal, in which there are no delays and no added noise to

the sensor signals and an APF control strategy is applied
� PD-Control, in which the latencies and noise are added

with the PD-controller described in (28)
� APF - No Comp, in which the APF control strategy is

modelled with latencies and noise, but no compensation
or �ltering is applied

� APF - Comp, in which the APF control strategy is paired
with the EKF prediction and fusion algorithm from Fig.
6 and the feedforward input is applied to the system as
described in Section III-D.

The results shown illustrate three scenarios: gap closing,
vehicle following and collision mitigation for which the initial
conditions are shown in Table II. From Fig. 8 it is seen
that the PD-controller is least adept to �ltering the noise
of the sensor signals. The best performance is achieved by
APF - Comp, where delay compensation, Kalman �ltering
and estimate fusion is applied. This system follows the ideal
situation with the smallest error over time according to the
Root-mean-square error (RMSE) [23] determined by

RMSEc =

vuut 1
n

nX

n=1

err2
k; (29)

where errk = didealk �dck. dideal is the inter-vehicular distance
in the ideal scenario, dc the inter-vehicular distance for each
control strategy with c = fPD-Control, APF-No Comp, APF-
Compg and n is the length of the simulation set. The results
of the RMSE analysis are shown in Fig. 9. It can be seen
that APF control including delay compensation yields the best
results when compared to the ideal situation. The large error
for the PD-controlled system in the gap closing scenario is
due to the aggressive acceleration to close the gap between
the lead and ego vehicles.

C. Increased V2V Latency in a Safety Critical Scenario

The performance of the system has been analysed in a safety
critical scenario when increased V2V latency occurs. In this
scenario, an unexpected emergency stop is executed by the
lead vehicle at a moment where the predictions (MBP) are
incorrect and increased V2V communication latency occurs.
The lead vehicle applies maximum deceleration at time tbrake
until standstill is reached. As this deceleration is unexpected,
the predicted acceleration values uV 2V

tbrake
sent over V2V do not



Figure 8. From left to right: gap closing, vehicle following, collision mitigation. From top to bottom: distance dego, velocities vlead and vego, accelerations
alead and aego. All plots contain four control strategies: ideal APF control, PD-control, APF control without compensation, APF control with compensation
and �ltering.
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Figure 9. Root-mean square error analysis of scenarios gap closing, vehicle
following, collision mitigation with control strategies PD-control, APF without
delay compensation, APF with delay compensation

correspond to the actual situation. From time tbrake � 1 until
tend, �V 2V = 0:12s to simulate increased latency in V2V.
For a period of �V 2V , the ego vehicle receives the incorrect
feedforward input to the EKF. From Fig. 10, it is seen that the
system is able to avoid collision in this safety critical scenario.
When vego = 0, the distance between the ego and lead vehicles
is 6:5m. In this safety critical scenario, the feedback loop is
adept to maintaining a safe inter-vehicular distance.

D. Simulation Results with Motorway Driving Measurements

A simulation study has been executed where measurements
from the test vehicle during motorway operation have been
used as the input to the lead vehicle. In this data set, the ac-
celeration input and velocity of the lead vehicle are measured
using on-board sensors and the displacement is determined
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Figure 10. Increased V2V latency in a safety critical scenario

by integrating vlead over time. A comparison between the
APF control strategy with no delay compensation and the
APF control including delay compensation is shown in Fig.
11. It is seen that the compensated APF strategy yields
the best performance compared to the ideal situation. The
APF control without compensation almost constantly deviates
considerably from the ideal line. This more extreme deviation,
when compared to the scenarios in Section IV-B, is due to the
highly dynamic behaviour in the measurement set. The results
of the RMSE analysis con�rms the compensated set has a
better performance with

�
RMSEAPF (No Comp)

RMSEAPF (Comp)

�
=
�
1:383
0:446

�
:
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Figure 11. Comparison of control strategies APF without delay compensation,
APF with delay compensation for motorway driving measurements

From these results it is seen that the system is adept at coping
with real measurements from the lead vehicle and when the
sensor measurements are subject to noise and delays, which
is promising when future implementation towards a proof of
concept is desired.

V. CONCLUSION

In this paper, we have analysed the use of a prediction
strategy to compensate for sensor and V2V communication
delays in a platoon of two vehicles during CACC opera-
tion. The prediction strategy makes use of parallel Extended
Kalman Filters which compute separate predictions for each
sensor to translate past time signals to present time signals,
which can then fused. The lead vehicle determines predicted
inputs using Model Based Predictions and communicates
these over V2V to the ego vehicle where, based on these
predicted inputs, the delays are compensated. This strategy
is combined with a novel control design and analysed in
simulation experiments. Simulation results have shown that
the proposed method improves the performance of the CACC
system when delays in sensors and V2V communication
are present. Further, with experimental implementation as a
desired extension of this research, simulation results with
measured data have yielded promising results. Further research
into this subject should be directed at extending the platoon
to more than two vehicles, a stability analysis over such a
platoon and the effect of decreasing the time-headway for
smaller inter-vehicular distances.
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