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Executive Summary 
 

The Dutch government has set a goal to reduce 95% of CO2 emissions from the built environment. The 
fulfillment of the target requires a massive transformation from a gas-dependent into a gas-free sector. 
This is done by phasing-out the gas-grids and connecting new buildings to low-carbon centralized 
heating systems, such as heat pump and district heating network. A specific target was rolled out by 
the Dutch government to increase 1.5 million households' connectivity to sustainable district heating 
networks by 2030. In light of the massive expansion, accurate residential heating demand study will 
be critical in the design and operational planning of centralized heating systems.  

This study aims to assess the potential of using a fast and simplified white-box Resistor-Capacitor (RC) 
thermal model for simulating district thermal demand. Specifically, a second-order 5 resistors 2 
capacitors (5R2C) model was developed and compared using TRNSYS dynamic simulation tool as a 
benchmark. The Bouverijen residential area in Breda was used for a case study. This residential area 
was connected to a district heating network operated by Ennatuurlijk.  

Building models were developed as the groundwork for district thermal demand simulation. Three 
multizone reference buildings, i.e., terraced house, semi-detached house, and detached house, were 
modeled as multizone buildings using TRNSYS and white-box RC method. Each reference building 
consists of three thermal zones: the ground floor (GF) zone, the sleep zone, and the attic zone. The 
assessed parameters are thermal load and annual thermal energy, and the key performance indicators 
of the RC model (using TRNSYS simulation results as the reference value) are root mean square error 
(RMSE) and coefficient of variation RMSE (CV-RMSE).  

The RC model gave different performances for simulating thermal load for different zones. The CV-
RMSE values at the zone-level range from 14% to 126%. The error value is affected by the size, 
geometrical configuration, and setpoint temperature fluctuation of the simulated house. In contrast, 
the RC model gave accurate results in simulating annual thermal energy, with 2% CV-RMSE for the GF 
zone and attic zone and 9% CV-RMSE for the sleep zone.  

At a building-level, the thermal load CV-RMSE values are moderated to 42%, 40%, and 30% for the 
terraced house, the semi-detached house, and the detached house, respectively. The model also 
produces accurate annual thermal energy simulation at an average of 2%.  Simulation results of a 
terraced house RC model with different boundary conditions demonstrate similar sensitivity responses 
to TRNSYS.  

The RC model’s thermal load accuracy improves to 38% at a district-level due to aggregation and 
moderation of different load profiles. A comparison of measured data was also made for TRNSYS and 
RC models. Both models' space heating (SH) simulation results were combined with domestic hot 
water (DHW) load to match the measured data. The comparison shows a similar dynamic thermal load 
accuracy for both TRNSYS and RC models at 61%. This similarity indicates that DHW is the dominant 
contributing factor to the error. Improvement of the model to match measured data requires 
segregation of SH and DHW data to calibrate each model.  

The white-box RC model provides significantly faster simulation time compared to TRNSYS. On 
average, the RC building model is 54.71 times as fast as TRNSYS. The study concluded that the RC model 
is suitable for the application in simulating seasonal thermal energy demand. The application of 
dynamic load simulation is limited to simple single-zone buildings with minimum disturbance in the 
system. Nevertheless, the model dynamic accuracy can still be improved by model modification.  
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1. Introduction  
 

1.1. Project background 
As a gas-producer country, the Netherlands is undergoing a radical transformation to be a low-carbon 
country. Through the roadmap “Energieagenda”, the Dutch government announced its gas-free target 
by 2050 in many sectors, including in built environment. The built environment is one of the most 
energy-intensive sectors in the Netherlands. In 2018 the sector consumed 28% of the national energy 
consumption. Building heating took 71% of that portion, and 85% of that demand was supplied by 
natural gas [1].  

In the “Energieagenda”, a target was set for the built environment to reduce 95% of CO2 emission. To 
achieve the target, natural-gas free regulations were rolled out to the entire energy value-chains, 
which includes generation, supply, and consumption. On the consumption part, buildings are required 
to be more efficient. New buildings have to be built according to Bijna Energieneutrale Gebouwen 
(BENG) or Nearly Zero Energy Building (NZEB) criterion. Building retrofitting is also heavily promoted 
on existing buildings to improve its energy rating. On the generation and supply sides, the Dutch 
government mandates for newly constructed buildings to be connected to gas-free heating systems, 
while existing buildings have to be gradually phased out from the gas grid. This requirement brings the 
opportunity for centralized heating systems, such as district heating networks (DHN), to expand in the 
future.  

In the National Climate Agreement 2019, the Dutch government has set a goal of 1.5 million 
households connectivity to sustainable DHN by 2030 [2]. This is an ambitious target of 400% expansion 
within a decade. From a sustainability perspective, DHN is expected to evolve into a more efficient 
system. One of the most anticipated technological developments is the 4th generation DH system that 
supplies low-temperature heat. The development in operational strategies such as heat demand 
flexibility is also on the rise.  

Feasibility studies and pilot projects are required prior to implementing new technologies or 
operational strategies. These studies usually involve modelling and simulation of heating demands at 
different scenarios. At a district-level, the computational efforts are compounded by having several 
buildings that are adequately representing the majority of the building population. 

Heat demand modelling can be done through 3 methods: black-box, grey-box, and white-box. The 
Black-box method is a data-driven modelling technique that requires extensive historical heating data 
for the data training process. The method’s advantage is the relatively lower computational cost and 
its ability to model without information about the system’s physics. In contrast, the white-box method 
is a physics-based model that does not require historical data but requires extensive and accurate 
physical input data about the system. The grey-box method, as its name infers, is a hybrid between 
the two methods.  

The assessment of a new technology or a newly developed area requires a thorough analysis of the 
boundary condition’s effects on the building’s thermal demand. For that purpose, the models have to 
be built using the white-box method. This process entails the modelling of several buildings, which are 
aggregated afterward to generate a district-level demand. White-box models can be built using 
commercial dynamic simulation tools such as TRNSYS and EnergyPlus. These tools have the advantages 
of modularity and good user-interface, with validated library components and numerical solver. 
Therefore, these tools can guarantee reliable results and confidence in their interpretation.  
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Nevertheless, these advantages usually concur with a higher computational cost and the requirement 
for detailed building geometrical data and physical information to provide accurate simulation. This 
simulation effort and computational cost can increase exponentially when the study involves 
numerous buildings simulations.    

The white-box RC model has gained momentum as a potential alternative to commercial dynamic 
simulation tools. In principle, the model is a representation of building heat transfer phenomena as a 
thermal network. The network consists of temperature nodes that are connected by thermal 
parameters resistor and capacitors.  

The white-box RC model’s first advantage is its considerably lower computational cost and required 
fewer input data. It is notably perceived in the application of multiple simulations with various 
scenarios and boundary conditions. Secondly, the model also can be built in any engineering 
programming platform such as MATLAB. Consequently, the model can be integrated with other 
models, such as district heating network models. Finally, the model parameters can be optimized by 
calibrating them against measured data. This feature enables a white-box RC model conversion into a 
grey-box RC model, if desired. Despite the advantages, the lumping and simplified assumptions in the 
model might produce results discrepancy. Depending on the simulation objectives and the error 
magnitude, this discrepancy might challenge the results’ reliability and study validity.  

 

1.2. Problem definition and research questions 
This study is supported by the district heating company, Ennatuurlijk, who provided the measured 
thermal consumption of buildings in the Bouverijen district. The Bouverijen district is a recently 
developed residential area under Breda municipality in Noord Brabant. Following the regulation for 
newly constructed buildings, the area is connected to a centralized heating system provided by 
Ennatuurlijk. In the future, Bouverijen DHN is expected to expand, following the residential area 
expansion to 650 houses by 2024.  

The integration of Bouverijen district in this study serves two purposes. Firstly, the building stocks' 
information in Bouverijen provides realistic building varieties required to generate the simultaneity of 
different heating loads. Secondly, the measured thermal data can be used as a reference to assess the 
possibility of using white-box models to predict dynamic heating demands in the Bouverijen area. 
Therefore, two objectives were defined for this study: to evaluate a white-box RC model performance 
against TRNSYS dynamic simulation tool and to assess RC model applicability for different simulation 
objectives, i.e., feasibility study (using TRNSYS’ results as the benchmarks) and prediction, and 
applications, i.e., individual building and district simulations. As a result, this study answered one main 
research question: 

How does the white-box RC model perform, using commercial simulation tool results, i.e., TRNSYS, 
as the benchmarks, in simulating heating demands at building and district levels? 

The following sub-questions were defined and addressed to provide contexts: 

1. How accurate are the white-box RC simulation results, using TRNSYS results as a benchmark? 
Do the accuracies differ for different building configurations?  

2. What is the computational cost difference between TRNSYS and white-box RC model for 
application in building and district simulations? 

3. For which objective and application does the model perform best?  
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1.3. Thesis outline 
The report is divided into six chapters. Chapter 2 presents the literature review of this study. This 
chapter discussed three topics: different approaches in the district and building energy modelling, 
various RC thermal network models with their applications, and the individual building loads technique 
to simulate district energy. 

Chapter 3 focuses on the methodology of this study: the reference building selection, the principles in 
building physics, the assumptions and calculations of the RC model, and the non-construction input 
values for building simulation.  

Chapter 4 presents the comparisons of simulation results at the building-level. Comparisons are made 
for different simulation times and building configurations. A sensitivity analysis is also included to 
provide a foundation for the district-level simulation. This chapter partially answers research questions 
1 and 2 related to building simulation.  

Chapter 5 provides the comparisons of the results for the district-level simulation. In addition to the 
RC results comparison with TRNSYS as a reference, both the RC and the TRNSYS results were also 
compared to answer the question of white-box models applicability for prediction purpose.  

Finally, chapter 6 provides a holistic discussion that integrates analysis from the previous chapters. In 
this section, the whole research questions are answered and summarized. Finally, the report is closed 
with the conclusion, limitations, and recommendations for future works. 
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2. Literature review 
 
District energy demand modelling in built environment is a field that has been explored extensively. 
Several approaches have been developed according to the modelling application. Several examples of 
its applications are, but not limited to, energy demand prediction for decision-making, design of a new 
area, and assessment of the impact of a specific technology installation on energy requirement. The 
modelling approaches of district energy demand are classified into two categories based on the 
assessment direction: the top-down approach and the bottom-up approach [3].  

The top-down approach uses the lumped energy consumption at a specific region and period, then 
disaggregates it into smaller sections or areas. The top-down approach relies on a statistical correlation 
between the historical aggregated energy use and the affecting parameters. The top-down approach 
utilizes socio-economic factors to support the macro-economic decision-making processes, for 
example, analysis of the influences of fuel prices towards energy demand. The simulation’s temporal 
and spatial resolutions using the top-down approaches are usually seasonal. Moreover, the model is 
built based on constant or rough approximations of technological parameters. As such, this approach 
is deemed unsuitable for investigating the influence of a particular technological development on the 
district dynamic energy profile [4].  

On the contrary, a bottom-up approach simulates the energy use of representative buildings. It then 
aggregates the results to determine the district or regional energy demand via a specific distribution 
method. Unlike its counterpart, the bottom-up approach bases its model on the physical processes 
and phenomena in energy consumption activities. Therefore, this approach can be called an 
engineering approach [5][6]. Consequently, the most significant advantage of this approach is its 
independence from historical consumption data and its flexibility to simulate the effects of changes in 
the boundary condition of the assessed system, which is more suitable for the application of this study. 

Compared to the top-down approach, the district energy simulations by bottom-up approaches 
promise higher accuracy thanks to the minute details required to construct the model. That being said, 
its requirement for quality and exhaustive inputs can affect the accuracy of the results. Often this 
requirement poses a hurdle in the modelling process as much information is not readily available and 
challenging to process, especially when the variables are inherently stochastic. Exacerbated by the 
model’s complexity, this approach is considerably computationally more expensive than the top-down 
approach [5]. 

 

2.1. Building energy modelling (BEM) 
Building energy modelling is the starting point of the bottom-up approach. Based on the characteristics 
of the model parameters and the dependence on the data, the modelling method can be classified into 
three categories: black-box (data-driven) method, grey-box (hybrid) method, and white-box (physics) 
method [5]. The black-box method uses the historical statistical data to attribute the energy demand 
to several parameters that do not necessarily correlate to physical meanings. The data can come from 
national/regional statistic sources, geographic information systems (GIS), or direct consumption 
measurements from a building. Several modeling techniques are categorized under the data-driven 
method, such as statistical regression and artificial neural network. Girardin et al. [7] collected data 
from GIS and developed a linear regression model to predict buildings’ annual energy consumption. 
The statistical method is relatively easy to use once the relevant data and information are gathered. 



Chapter 2: Literature review 
 

5 
Anny Lim – October 2020 

The building detailed inputs are not necessarily required. Thus, its accuracy is not impeded by the 
uncertainty in building parameter values, especially stochastic parameters. Nevertheless, its 
dependency on the exhaustive and good quality historical data prevents its application to study a new 
area or new technological advancement that does not have historical data. 

A grey-box method is a hybrid between data-driven method and physics-based method. The model is 
constructed from simplified physics-based equations with selected parameters using empirical or 
historical data and calibration techniques [8]. One example of a grey-box method is the reduced-order 
RC model representing the system as a network of thermal resistances (R) and capacitances (C) of a 
building. The hybridization factor comes from the calibration of the resistance and capacitance 
parameters to measured data by curve fitting technique.  

Berthou et al. compared four different grey-box models: 2R2C, 4R2C, 6R2C, 6R3C, and 7R3C, to predict 
the indoor temperature and heating and cooling demand of an office building, using TRNSYS as 
synthetic reference data. They concluded that the 6R2C model presents the best trade-off between 
accuracy and computational cost [9]. The higher-order models compromised the simulation accuracy 
due to quantities of parameters that have to be calibrated. Harb et al. [10]evaluated four grey-box 
models of different orders: 1R1C, 3R2C, 4R2C, and 8R3C, to predict the indoor temperature and 
heating load of occupied buildings in Germany and Sweden. Like Berthou et al., they found that the 
second-order model gives better performance than the higher-order model. It was also concluded that 
improvement of efficiency requires monthly parameter calibration. From both studies, the models' 
complexity was reduced by lumping uncertain thermal parameters (such as infiltration loss and 
internal gain) into one or several parameters and then calibrating the parameter values. Nevertheless, 
they also found that reducing complexity affects the model’s accuracy, and tailoring a model to a 
specific dataset might hinder its application to other models configurations. 

The white-box method is a physics-based method that develops the building thermal models based on 
the heat transfer phenomena and energy conservations of the building under investigation. As has 
been emphasized before, this method is more complex and requires a good understanding of physics 
and building component details. Still, it offers independence to simulate a new technology application 
and analyze the effects of changes in boundary conditions. 

Due to its complexity, a white-box model is usually developed on a commercial tool such as TRNSYS, 
IDA ICE, and EnergyPlus. These tools have good user-interfaces that enable users to build 3D models 
and automatically translate the geometrical information into the mathematical model. The main 
advantage of using commercial tools is the modularity in constructing the thermal model from various 
in-built components in their libraries. Moreover, those components were modeled in detail and 
verified, thus assuring proper implementation to the users.  

White-box models have been used in numerous studies, primarily to simulate the building energy 
performance in the early design stage, to assess the changes in building heating demand due to 
technology implementation or changes in the control strategy. Gianniou [3] used the IDA ICE platform 
to develop white-box models to assess heat flexibility effects on thermal comfort and load 
consumption reduction. Rijver [11] used TRNSYS to simulate the performance of a hybrid PVT – heat 
pump system in supplying heat to a terraced house.  

The white-box method had been used for energy prediction as well. Arendt et al. [12] compared all 
three approaches in predicting a building’s thermal demand in Denmark. Two black-box models were 
developed using an autoregression model and a feed-forward neural network; three grey-box models 
were developed using RC models, and one white box model developed using EnergyPlus. They 
concluded that the black-box has the best performance among all methods, while the white-box has 
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the least performance. Nevertheless, they also concluded that the white-box is more suitable to 
monitor the overall building energy performance on various scenarios and longer prediction time.  

 

2.1.1. Commercial building simulation programs 
Many building simulation programs have been developed and enhanced over many decades to 
simulate the thermal (heating and cooling) demand for buildings. While their main application is the 
same, each simulation program has its advantages and disadvantages regarding component 
modularity, user interface, and complexity. This section compares two commonly used building 
simulation programs: TRNSYS and EnergyPlus. 

TRNSYS is a software used to simulate the behavior of transient systems. TRNSYS modelling approach 
is based on the flexible construction of a system from modular components from its standard and TESS 
libraries, on a modelling platform called Simulation Studio [13]. TRNSYS application is not limited to 
building simulation. It can be used for many thermal and electrical transient simulation. TRNSYS 
facilitates the thermal modelling of a multizone building through type 56, which is available in TRNSYS 
standard library. Type 56 is connected to a separate simulation program called TRNBUILD simulates 
the building's thermal behaviors. TRNBUILD also the platform to feed the building’s geometry and 
thermal parameter details. One of TRNSYS' advantages is its plug-in feature in Google SketchUp, 
enabling users to build a 3D model and import it to TRNSBUILD [14]. As the program is not restricted 
to building simulation, TRNSYS’ most remarkable advantage is its application to model and simulate 
the thermal behavior of buildings equipped with other systems such as solar PV, solar thermal collector, 
fuel-cell, etc.  

EnergyPlus is a whole building energy simulation program used to model and simulate buildings' 
energy and water consumption. Similar to TRNSYS, EnergyPlus has a plug-in feature in Google 
SketchUp for building 3D modelling. EnergyPlus tool integrates the thermal balance simulation of a 
building with the electrical system response, occupant comfort, and occupant health calculation. 
Consequently, it can better predict air temperature and other thermal responses, such as moisture 
content. Crawley et al. [15] summarized from their tools comparison that EnergyPlus features give 
advantage to the users to model more complex building components and specific building features, 
such as detailed ventilation system, shading system, economic evaluation such as energy tariff 
calculation.  

Vadiee and Dodoo [16] compared four different building simulation tools, i.e., TRNSYS, EnergyPlus, 
IDA-ICE, and VIP-Energy, to simulate the thermal demands of a Swedish apartment building. They 
found that TRNSYS simulated lower indoor temperature than EnergyPlus, with an average temperature 
difference of 0.6 °C. In addition, EnergyPlus simulated higher annual space heating demand than 
TRNSYS by 0.6 kWh/m2 (15% higher than TRNSYS). They deduced that the lower TRNSYS result was due 
to the simplification of the thermal bridge and the different correlation in estimating the heat transfer 
coefficient between the programs.  

Crawley et al. [15] stated that, in principle, there’s no general conclusion that determines which 
program is the best. The selection of the tool is based on the users' awareness of the simulation 
objective and the feature of the program. In this study, TRNSYS was used as the reference simulation 
tool due to the author's familiarity with the tool and TRNSYS ability to model and simultaneously 
external energy system for future research.   
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2.1.2. RC thermal network model  
In effort to reduce the computational expenses of the white-box method, several studies have been 
done to develop simplified dynamic building thermal models. One of the most explored alternatives is 
the RC thermal network model. In principle, this model is the basis of the RC grey-box model. The main 
distinction lies in the use of analytical parameter values instead of the calibrated ones. From here 
onward, this study uses RC model terminology to refer to the white-box version to avoid confusion. 

The RC model is based on simplifying the system domain into several temperature nodes connected 
by thermal resistance and capacitance parameters. The order of the model follows the number of 
capacitors, and each capacitor corresponds to a state variable of the model. Thus, an increase in model 
order comes with increasing complexity in solving the system of differential equations. Depends on 
this complexity, a high-order RC model might be as computationally expensive as commercial software. 
Based on the number of resistance and capacitance, the model can be termed as RxCy model.  

This literature review started from the simplest RC model:  R1C1 model consisting of one air thermal 
capacitor and one equivalent resistance that connects the indoor temperature to the ambient 
temperature. This model is commonly called the equivalent thermal parameter (ETP) or one node 
model [17]. This first-order model is a very basic model, consisting of an indoor temperature node and 
ambient temperature node connected by an equivalent thermal resistance. Analytically it usually 
cannot simulate the thermal response of a building accurately due to the low capacitance of the air. 
An improved version of ETP model is an R2C2 model with two capacitors of air and building mass, two 
thermal resistances that connect the air temperature node to the mass temperature node, and the air 
temperature node to the ambient temperature node.  

 

Figure 2.1 Thermal network representation of ETP models: (left) first-order, (right) second-order [18] 

Please note that apart from its moniker, this study’s author emphasizes the term of ETP models for 
the aforementioned simple models and differentiates the term from RC models (which are explained 
later), due to their rigid implementation. The rigidity here refers to the exact interpretation of thermal 
network configurations without any change of the temperature node, resistances, and capacitances. 
This rigid implementation vastly differs from the more explorative RC.  

The second-order ETP model has been widely implemented; the most famous one is the 
implementation by GridLAB-D, an open-source tool for the application of smart grid simulation. ETP 
second-order is implemented to simulate HVAC thermal responses (indoor temperature and heating 
load) as a function of grid control activity like demand response [19][20]. Kassas [21] use the same 
second-order model to study the indoor temperature and cooling load-cycle for residential buildings 
in Saudi Arabia. Du et al. [18] implemented the first-order and the second-order ETP models to 
simulate the HVAC load in their book about Demand Response in Smart Grids. Due to the extremely 
simple model, within the context of demand response modelling,  they proposed the application of 
first-order ETP is more suitable as a measured-based (grey-box) approach, while second order ETP can 
give reliable results as analytical-based (white-box) approach. With additional researches on other 
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studies [22][23], this study’s author later observed that ETP models were widely implemented in 
indoor temperature prediction and electrical/ grid system studies.  

As mentioned before, the general field of building thermal modelling using white-box RC models is 
more explorative. Higher-order models were developed using more variations of temperature nodes, 
resistances, and capacitances quantities. Bruno et al. [24] developed a 5R1C model with a single 
building mass capacitance and compared the results with TRNSYS simulation results. Three different 
building types were simulated using Mediterranean weather condition: detached house, terraced 
house, and apartment building. They found that the 5R1C model was more suitable for simple building 
construction, i.e., detached house, with heavyweight construction.  

Tindale [25] developed a third-order model with the third capacitance connected to the outside 
surface node. By comparing the simulation results with the APACHE simulation results, he found that 
this model performed better than a second-order model in simulating a light-weight building. Rouvel 
and Zimmermann [26] developed a second-order model and n-order model that separate the building 
structures into internal partitions and external walls. Their models with capacitances of internal 
partition and external walls give good agreement with the analytical solution of a simple building 
structure. The results also show an insignificant difference between the second-order and the n-order 
results.  

From other literature reviews, it was concluded as well that models with higher-order than a second-
order do not provide a significant increase in accuracy [9][26]. As this study was focused on comparing 
a reduced-order model with a fast computational time, a higher-order model is considered not ideal 
for the application in this study. Thus, a second-order RC model was chosen in this study for 
comparison with TRNSYS.  

 

2.2. Aggregation to district energy simulation 
As mentioned before, the white-box method requires more effort in the model construction. When 
the work has to be escalated into a larger scale, modelling and simulation of each building in a district 
can be very cumbersome and computationally expensive. The modelling efforts can be simplified by 
modelling several representative buildings instead of each existing building [5]. Afterward, the 
representative buildings simulations are extrapolated to calculate the district-level demand. Based on 
the literature review [5], the critical factors in simulating district-level energy demand are: the 
representation of the building stocks by the selected representing building model and the simultaneity 
of different heating profiles in district energy results.  

There are two types of representative buildings: archetype buildings and reference buildings. An 
archetype building can be a non-existing building developed with a set of characteristics that 
represents the average building stock within a cluster. On the other hand, a reference building is an 
existing building that is part of a majority group within a cluster or a district. The selection to use 
archetypes or reference buildings is based on the diversity of the buildings stock [8].  

This study selected reference buildings as representative based on several considerations. Firstly, the 
building stocks consist of a buildings population with similar characteristics, i.e., functions, building 
ages, and construction thermal properties that follow the NZEB requirement. Secondly, non-
construction information was difficult to be collected, thus making the selection criteria based on the 
physical building characteristic.  

The extrapolation of the representative building simulation results entails distribution techniques that 
can represent the district. Several studies implemented simple aggregation technique by multiplying 
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the reference buildings simulation results of a single input combination, with multiplying factor (for 
example, floor area, number of occupants, etc.) [5]. To overcome the gross error from the results, 
calibration techniques are employed on the averaged results. Sensitivity analysis was done prior to the 
calibration to select the influencing input parameters to the energy demand.  

Yamaguchi et al. [27] used a Bayesian calibration technique to simulate the energy demand of 35 
supermarket buildings in the UK. The process involves multiple hierarchical calibrations from broader 
spatial and temporal resolutions to smaller resolutions. They found that the proposed calibration 
method can consider the overall characteristic of the building stocks and seasonal factors.  
Nevertheless, the author of this thesis found this technique is not suitable for several reasons. Firstly, 
the technique is more suitable for the simulation of quasi-steady-state outcomes such as weekly 
energy demand. Secondly, the continuous calibrations require measured data for a longer duration. 

Kazas et al. [28] had proposed a methodology to model the space heating demand at a district scale 
that incorporates uncertainties in occupants behavior. Representative buildings are selected from 
building stocks and modeled. For each representative building, various load profiles are generated 
from various combinations of input values, such as setpoint temperature, internal gain, etc. Moreover, 
the load profiles are scaled-up by the ratio of actual building area to reference building area to improve 
the representation of buildings stock. Kazas et al. applied this methodology to simulate an urban 
district in Turin. The simulated results match quite well with the actual thermal load data.  

The methodology developed by Kazas et al. is selected in this study for several reasons. Firstly, the 
dynamic load at high temporal resolution can be aggregated, compared to the aggregation process 
proposed by Yamaguchi et al. Secondly, the process is not dependent on the historical data. Thirdly, 
the method incorporates a variety of heating demand profiles that can satisfy the concerns with 
uncertainties and simultaneity of district energy simulation at a higher time resolution. And finally, the 
procedure is generic and can be applied easily to other districts. 
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3. Methodology 
 
This section presents this study's structure, the formulas, and the assumptions taken for the 
calculation, as well as the software descriptions. The structure of this study can be divided into three 
main stages: the selection of representative buildings, the simulation of building-level heating load 
profiles, and the simulation of district-level heating load profiles. Figure 3.1 illustrates the project 
workflow. 

  

Figure 3.1 Flow chart of the study methodology 

In details, the workflow is explained in the following points: 

1. The work was started with field data collection of buildings in the Bouverijen. Information about 
building types, energy labels, and surface area was collected from drimble.nl [29], while several 
building blueprints and construction details were collected from Breda municipality. 

2. From the collected information, the building stock was analyzed statistically. The reference 
buildings were selected based on statistical analysis and blueprints availability. Details of this 
process are available in section 3.1. 

3. The selected reference buildings were modeled using TRNSYS and RC methods. The assumptions 
and mathematical model details can be read further in section 3.3. Both models were simulated 
using the same boundary condition, and the simulation results were analyzed and compared. The 
simulation results comparison was performed at an individual zone level and a whole building-
level. Details of the analysis can be read further in section 4.1 to 4.4.  

4. A sensitivity analysis was performed on both models by varying the input parameters' values with 
a high degree of uncertainty. The analysis was focused on the simulation results trends and the 
discrepancy of the results between both models. Details of the analysis and the selected 
parameters can be read further in section 4.5. 

5. From the sensitivity analysis, the sensitive input variables were identified and used for generating 
the heating profiles database. The heating profiles database consists of various heating profiles/ 
scenarios simulated from a combination of input variables. One database is generated for each 
building configuration. The building configuration itself is a combination of building type and 
orientation, such as a North-facing terraced house.  

6. Individual building thermal load profiles were determined by assigning a heating profile scenario 
using the Monte Carlo distribution method. Thereafter, the loads were aggregated to calculate a 
district-level heating profile.  
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7. The calculated district heating profiles of TRNSYS and RC were compared. Further details can be 
read in section 5 

 

3.1. Reference buildings selection 
The assessed building stock in the Bouverijen DHN consists of 85 residential buildings with A-level 
energy labels [30]. Those buildings have similar construction configurations and thermal properties, 
following the requirement of Nearly Zero Energy Building. The most distinct building parameters are 
the building types and floor area.  

There were three building types in the district: a detached house, a semi-detached house, and a 
terraced house. The illustration of the building models is displayed in Figure 3.2.  

 

Figure 3.2 Sketches of the reference buildings. From left to right: Detached house, semi-detached, and terraced house 

 Detached house (vrijstaande woning) 
A detached house is a building that is not attached to another building at any façade. It is the 
largest house model with respect to the floor area. One detached house exists in this district, with 
the building floor area 201 m2 and a usable floor area 152 m2.  

 Semi-detached house (twee-onder-een -kap) 
A semi-detached house is a building attached to another house at the left or right façade, forming 
a pair of buildings that share a common roof. It is the second biggest house model in the surface 
area. There are in total 19 semi-detached houses with building floor areas ranging from 143 m2 to 
191 m2. The average floor area is 183 m2

 and the usable floor area is 135 m2.  
 Terraced house (tussenwoning).  

A terraced house is a building attached to other buildings’ facades with similar structures at left 
or right. Those attached houses share a common roof and form a building series consisting 
minimum of three buildings. This building type has the smallest surface area among the three 
types. There are 65 houses with building floor areas ranging from 107 m2 (without garage) to 184 
m2 (including garage). On average, a terrace house has a total building floor area of 138 m2 and a 
usable floor area of 110 m2. From a building modelling perspective, the building position in the 
series can affect its energy demand. Therefore, this study differentiated the configuration of 
different house positions, i.e., the middle or the end of the series (corner house).  

Table A.1 in Appendix A presents the building inventories for semi-detached and terraced houses 
based on orientation and position. Figure A.1 represents the building stocks usable area's percentile 
distribution. This information was used to assess the selection of the reference building for each 
building type. In principle, the reference building represented the majority of building stocks. The 
selection parameters were the mean values, the quartile values, and the availability of the actual 
houses' blueprints. The summary of the reference building selection is presented in Table 3.1.  
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Table 3.1 Reference building summary 

 Reference building 
floor area [m2] 

Building usable area (Ag) distribution 
[m2] 

Building type Total Usable Mean 25th 50th 75th 
Detached house (RB,DH) 201     152  147 145 152 149 
Semi-detached house (RB,SDH) 181     134  136 134 136 140 
Terrace house (RB,TH) 142     109  102 97 103 109 
 

The construction documents from Breda municipality do not provide the detailed thermal properties 
of the construction material. The main pertaining information is the overall thermal resistance (R-
value) of opaque envelopes (roof, external wall, window, and ground floor) and the solar absorption 
factor of window (g-value), which follow the Dutch Building Decree requirement for new buildings. 
This information is not sufficient to model a heavyweight building. A detailed material composition 
with thermal capacity is required to develop a detailed model of a heavyweight house. Building 
composition from Rijver [11] was used as a reference for both TRNSYS and RC models. The details of 
the reference buildings' thermal properties are available in Table B.1 and Table B.3 in Appendix B. 

Each building type consists of three stories: ground floor, which has an open kitchen, a living room, 
and a toilet; first floor, which has a bathroom, an overloop, and three sleeping rooms; and an attic with 
a slanted roof. For simplification, the simulations were focused on three thermal zones: ground floor 
(GF), sleeping room (sleep), and attic. The sleep zone represents the total three sleeping rooms, 
assuming they have exact setpoint temperatures and occupancy schedules. In this study, only the 
heating requirement of GF, sleep, and attic were calculated.   

 

Figure 3.3 Thermal zones division in a building (left) and thermal zones division on the first floor (right) 

Figure 3.3 illustrates the division of thermal zones in a building. GF and attic zones respectively occupy 
the entire ground floor and top floor. The sleep zone is located on the first floor, which is highlighted 
by the red line. Unlike the other two zones, the sleep zone shares the floor with two unassessed zones: 
bathroom and overloop. Sleep zones and the other unassessed zones are divided by internal partitions. 
Thus, compared to GF and attic, the sleep zone is less exposed to the ambiance. In hierarchical order, 
the attic zone has the highest surface areas exposed to the ambient, followed by the GF zone and the 
sleep zone.  

In TRNSYS, the unassessed zones were modeled with no heating system; thus TRNSYS simulated free-
floating temperatures for these zones. In the RC model, these zones are not modelled at all.  
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3.2. Measured dataset 
The measured dataset was taken from 85 buildings in Bouverijen that were occupied recently since 
the end of 2019. The earliest record follows the start of the buildings’ occupations on 29th November 
2020 and the latest dataset availability is from 20th March 2020. Since this area was recently 
constructed, the occupation dates of the buildings are relatively recent and erratic. As a recently 
developed residential area, the buildings’ occupancies were scattered in the beginning, resulting in 
initial intermittent heating loads. Consistently measured data was observed from 10th February 2020. 
Thus, the comparison between simulation and measured data was performed from this date onwards.  

One measured data is identified with a meter serial-number of a building to maintain the customers’ 
data protection. The measured dataset consists of cumulative thermal energy, supply flowrate, 
cumulative volume, supply temperature, and return temperature. The dataset for each building is 
measured in hourly intervals. Based on the fluid volume (𝑉௧), the supply temperature (𝑇௦,௧), and the 
return temperature (𝑇,௧) of a certain time and its previous times, the measured thermal load at a 
specific time (�̇�௧) is calculated using Equation 3.1. 𝜌௪is the water density and 𝐶𝑝௪is the water heat 
specific capacity. 

Equation 3.1 

�̇�௧ =
(𝑉௧ − 𝑉௧ିଵ)

(𝑡௧ − 𝑡௧ିଵ)
× 𝜌௪ × 𝐶𝑝௪ ×

൫𝑇௦,௧ − 𝑇,௧൯ + ൫𝑇௦,௧ିଵ − 𝑇,௧ିଵ൯

2
 

It is important to note that the acquired dataset is a total thermal demand for space heating and DHW. 
Thus, the measured dataset is used only to validate the sum of space heating and DHW demand,  not 
for standalone space heating models.  

 

3.3. Heat transfer phenomena in a building 
A dynamic building energy simulation is based on the heat balances in a thermal zone(s). Various heat 
transfer phenomena occur and alter the internal energy of the air and masses. Consequently, the 
heating system responds accordingly to match the zone air temperature with the predefined setpoint 
temperature.  

 

Figure 3.4 The illustration of heat transfer phenomena of a thermal zone [8] 
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The schematic of heat transfer phenomena in a thermal zone is illustrated in Figure 3.4. Only 
convective heat fluxes directly affect the air's internal energy, while radiative and conductive heat 
fluxes affect the building masses' internal energy. Thus, conductive and radiative heat fluxes can only 
affect the air balance through convective and radiative coupling between air and surfaces. The heat 
transfer phenomena are listed down as followed: 

 Convective heat transfers due to infiltration and ventilation.  
These fluxes are carried by outside airflow through cracks in building envelopes and ventilation 
systems.  

 Convective heat transfers with adjacent zones/ inter-zones 
These fluxes are carried by the airflow from/ to adjacent zones. For simplification purposes, this 
study assumed that inter-zones convective heat transfer is negligible due to similar temperatures 
among zones and low air velocity inside a building.   

 Convective heat transfers between air and inner surfaces of a zone  
These heat fluxes are carried by the zone airflow from/ to the inner surfaces.  

 Heating system gain (thermal load) 
This gain is the heat generated by the heating system to maintain the zone air temperature at the 
preferred comfort level (setpoint temperature).  

 Solar gains through the glazing 
These solar gains are the absorbed and transmitted solar irradiation by the windows into the 
thermal zone. The gains are transmitted in two ways: convective transmission directly to the air 
and radiative transmission directly to the thermal zone's inner surfaces. 

 Internal/ casual gains 
Internal gains are the heat generated by the thermal zone components, such as humans, 
appliances, and lighting. Similar to solar gain, these heat gains are transmitted as convective heat 
and radiative heat.  

 Longwave radiations among inner surfaces 
These are longwave radiations transmitted from a surface to other inner surfaces within a zone 
and air node. 

 Convective heat transfers between outside surfaces and ambiance 
These heat fluxes are between the ambient air and the outside surfaces. 

 Solar gains on opaque surfaces 
These solar gains are the solar irradiations absorbed and transmitted by outside surfaces 

 Longwave radiations from outside surfaces 
These are longwave radiations emitted from outside surfaces to the surrounding.  

 Conductive heat transfers from outside surfaces to inner surfaces of building envelopes 
These are the heat fluxes transmitted conductively between outside surfaces and inner surfaces.  

The heat balance of the air is expressed in Equation 3.2. This heat balance defines the ideal sensible 
heating requirement without considering the latent heat of moisture content in the air. 

Equation 3.2 

𝐶

𝑑𝑇

𝑑𝑡
= �̇�௧ + �̇�௩, + �̇� + �̇�௩௧ + ൣ�̇�௦,௩ + �̇�,௩൧ 

Tin is the zone air-node temperature, and Cair is the thermal capacitance of air of a zone. �̇�ு௧ is the 
thermal load of a heating system. �̇�௩, is the convective heat flux between zone air and the inner 
surface. The calculation methods of �̇�௩, are explained further in section 3.3.1 and section 3.3.2 
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due to differences of approaches between TRNSYS and RC models. �̇� and �̇�௩௧ are heat fluxes due 
to the infiltration and ventilation. They are expressed in Equation 3.3 and Equation 3.4.  

Equation 3.3 

�̇� = 𝑞  × 𝜌 × 𝐶,[𝑇 − 𝑇] 

Equation 3.4 

�̇�௩௧ = 𝑞௩௧ × 𝜌 × 𝐶,[𝑇௩ − 𝑇] 

qinf and qvent are the air flowrates of infiltration and ventilation respectively, expressed as L s-1 m-2. ρair 
is the air density [1.204 kg m-3] and Cp,air is the specific heat capacity of air [1012 J kg-1 K-1]. Tv is equal 
to ambient temperature if the ventilation system is not equipped with heat-recovery. Otherwise, Tv is 
calculated using Equation 3.5 [31], where ηHR is the efficiency of the heat recovery system.  

Equation 3.5 

𝑇௩ = 𝜂ுோ × 𝑇 + (1 − 𝜂ுோ)𝑇 

Qsolg and Qig are heat fluxes from solar gain through the glazing and the internal gain, respectively. 
Those heat fluxes are calculated independently from Tin.  The solar radiation on a surface consists of 
direct and diffuse radiation. The magnitude of the direct irradiation depends on the slope of the 
surface and the incident angle, which is a function of solar angles (details of the calculations are 
available in appendix D). On the other hand, diffuse radiations consist of diffuse irradiation from the 
sky and diffuse radiation reflected by the ground. Several models can be used to calculated diffuse 
radiations. This study adopted the Isotropic model on both TRNSYS and RC models because this model 
is quite simple, and the accuracy is at par with other models [32]. Therefore, the total solar radiation 
intensity on a surface is expressed by Equation 3.6:   

Equation 3.6 

𝐼் = 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠𝜃 + 0.5 × 𝐷𝐻𝐼 × (1 + 𝑐𝑜𝑠𝛽) + 0.5 × 𝐺𝐻𝐼 × 𝑅ீ(1 − 𝑐𝑜𝑠𝛽) 

IT is the total solar irradiation on a surface, θ is the incidence angle, DNI is the direct normal irradiance, 
DHI is the diffuse normal irradiance on a horizontal surface, GHI is the global horizontal irradiance, β is 
the tilt angle, and RG is the ground albedo. TRNSYS default value of 0.2 is used as RG. By calculating IT, 
using Equation 3.6, the absorbed and transmitted solar gain by the surface is calculated using Equation 
3.7, in which α is the solar absorption coefficient of a surface, and Aout is the outside surface area. A 
constant α value of 0.5 was adopted from TRNSYS default value.   

Equation 3.7 

�̇�௦ = 𝐼் × 𝛼 × 𝐴௨௧ 

Equation 3.8 

𝐶

𝑑𝑇

𝑑𝑡
= −�̇�௩, − �̇�௪, + ൣ�̇�௦,ௗ + �̇�,ௗ൧ + �̇�௩,௨௧ + �̇�௦௫ − �̇�௪,௨௧ − �̇�ௗ 

Tm is the reference temperature of masses, and Cm is the thermal capacitance of the building masses. 
�̇�௪,  is the longwave radiation exchanged between two inner surfaces. �̇�௦,ௗ  and �̇�,ௗ 
respectively are the radiative solar gain and internal gain. �̇�௩,௨௧  is the convective heat transfer 
between external surfaces and the ambiance. �̇�௦௫  is the absorbed solar gain on outside opaque 
surfaces. The calculation is similar to �̇�௦. �̇�௪,௨௧is the longwave radiation emitted by the outside 
surfaces to their surroundings. �̇�ௗ  is the heat conduction through the building envelope. It is 
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calculated by assuming a one-dimensional heat transfer. Those components' calculation details are 
elaborated further in sections 3.3.1 and 3.3.2 due to different approaches and assumptions between 
TRNSYS and RC models.   

 

3.3.1. RC model 
RC model defines the heat transfer problems in buildings as thermal networks equivalent to an 
electrical circuit.  A thermal network consists of temperature nodes, heat fluxes, thermal resistances, 
and thermal capacitances. Several major simplifications were taken to solve the problems [33][34]: 

 Heat transfers are assumed to happen in 1-dimension. 
 The thermal properties of building components are lumped and constant.  
 Heat transfer problems are treated as linear ordinary differential equations using constant 

heat transfer coefficients. 
 No convective and conductive heat transfer occurs between adjacent thermal zones.  

Second-order 5R2C (5 resistors and 2 capacitors) models were developed in MATLAB to represent the 
multizone reference buildings, as illustrated in Figure 3.5. The model consists of thermal capacitances 
of interior air (Cair) and building envelope mass (Cm). There are four temperature nodes defined in this 
model: the indoor temperature (Tin), the temperature of the building interior surface (Tm), the sol-air 
temperature (Tsa), and the dry-bulb ambient temperature (Tamb). Tin is convectively coupled with Tamb 
through ventilation (Rvent) and infiltration (Rinf) thermal resistances. Tin is also coupled to Tm via 
convection and longwave radiation through a constant combined thermal resistance (Rcomb,in). The solar 
heat gain Qsolg,conv and internal heat Qig,conv affect the air temperature and inner surface temperature 
directly through different phenomena. The convective fraction Qsolg,con and Qig,con go to the air node 
while the radiative fraction Qsolg,rad and Qig,rad go to the surface.   

 

Figure 3.5 Thermal circuits representations of 2nd order 5R2C model 

The conductive heat transfer of the building envelope occurs between Tm and Tsa. The heat flux is 
governed by Rcond, the lumped conductive thermal resistance of total building envelopes in a zone. Tsa 
is a fictitious solar-air temperature representing the outdoor temperature at the interface of outside 
surfaces, which has taken into account the effects of solar gain on opaque surfaces and longwave 
radiation (between outside surface and the surrounding) [35]. In this study, Tsa represents the outside 
surface temperature of a zone, and Rout is the convective heat transfer coefficient. The implementation 
of Tsa in the models simplifies the incorporation of solar gain (Qsol-m) and the longwave radiation (Qlw,irr) 
heat fluxes on the envelope external surfaces. The same approach was also adopted by ASHRAE and 
Stephenson and Mitalas transfer functions [36].  
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The air heat balance of the second-order model is expressed by Equation 3.9. 

Equation 3.9 

𝐶

𝑑𝑇

𝑑𝑡
=

(𝑇 − 𝑇)

𝑅,
+

(𝑇 − 𝑇)

𝑅
+

(𝑇௩ − 𝑇)

𝑅௩௧
+ �̇�௦,௩ + �̇�,௩ + �̇�௧ 

The values of constant parameters Cair, Rinf, and Rvent are calculated using Equation 3.10, Equation 3.11, 
and Equation 3.12 

Equation 3.10 

𝐶 = 𝑉௭ ×  𝜌 × 𝐶𝑝 

Equation 3.11 

𝑅 = 𝑞௩, × 𝐴,௭ × 𝜌 × 𝐶𝑝,/1000 

Equation 3.12 

𝑅௩௧ = 𝑞௩,௩௧ × 𝐴,௭ × 𝜌 × 𝐶, × 𝐶𝑜𝑒𝑓𝑓௩௧/1000 

Ag,zone is the useful floor area of a zone. Coeffvent is the coefficient of mechanical ventilation operation 
with the values of 0 when it is not operating and 1 when it is operating. The operation schedule is 
defined in section 3.4.5. Tv was calculated using Equation 3.5. For a zone with i number of structures 
(walls, ceilings, windows, etc.), Rcomb,in is the equivalent resistor parameter of a zone to calculate the 
combined convective and longwave radiation heat fluxes between inner surface and air node. It was 
calculated using Equation 3.13. Ain,i, and Uin,i, respectively, are the total inner surface area of a zone and 
the combined convective and longwave radiation heat transfer coefficient of structure i. A constant Uin 
of 7700 W m-2 K-1 was adopted from TRNSYS. This value was used by TRNSYS as a  default value for 
massless structure calculation. 

Equation 3.13 

1

𝑅,
= 𝐴,ଵ × 𝑈,ଵ + 𝐴,ଶ × 𝑈,ଶ + ⋯ + 𝐴, × 𝑈, 

The value of Qsol-g,conv is calculated using Equation 3.14, while Qig,conv value is determined by the profiles 
in section 3.4.6. In this study, it was assumed that fsa is zero. Thus all solar gains that are transmitted 
from the window enter as radiative gains. 

Equation 3.14 

�̇�௦,௩ = �̇�௦  × 𝑓௦ 

The building mass heat balance of the second-order model is expressed by Equation 3.15. 

Equation 3.15 

𝐶

𝑑𝑇

𝑑𝑡
=

(𝑇 − 𝑇)

𝑅,
+

(𝑇௦ − 𝑇)

𝑅ௗ
+ 𝑄௦ି,ௗ + 𝑄,ௗ 

Thermal capacitance Cm of a zone is calculated by summing up each inner surface thermal capacitance 
in a zone. Each surface thermal capacitance is calculated by summing up the capacitance of the inside 
layers. For example, a zone consists of x number of walls. Each wall s consists of n layers of different 
materials. Thus the thermal capacitance of the zone is calculated using Equation 3.16. dk is the 
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thickness of layer k , Ak is the area of layer k, ρk is the density of layer k, and Cpk is the specific thermal 
capacity of layer k.  

Equation 3.16 

𝐶 =   𝑑 𝐴  𝜌 𝐶𝑝



ୀଵ

௫

௦ୀଵ

 

The equivalent conductance resistance of a zone, Rcond, is calculated by lumping the thermal 
conductance of total outside surfaces in a zone, following the Kirchhoff’s law for parallel resistors 
configuration defined by Equation 3.17. And for each outside surface p with n layers of material inside, 
the conductance resistance Rcond,p is calculated by using Equation 3.18. Ap is the outside surface area 
of each structure, and λi is the thermal conductivity of layer k. 

Equation 3.17 

1

𝑅ௗ
= 

1

𝑅ௗ,

௫

ୀଵ

 

Equation 3.18 

1

𝑅ௗ,
= 

𝑑

𝐴𝜆



ୀଵ

 

Equation 3.19 

𝑇௦ = 𝑇 + ൣ�̇�௦௫ − 𝜖𝜎൫𝑇
ସ − 𝑇௦௬

ସ ൯൧ × 𝑅௨௧ 

Tsa is calculated using Equation 3.19. 𝜎 is the Stefan-Boltzmann constant [5.67 × 10-8 W K-4]. Tsky [K] is 
the effective sky temperature for longwave radiation calculation (taken from TMY2 weather data). αout, 
ε, and Rout are thermal properties of the surfaces, which respectively are the solar absorption fraction, 
the emissivity factor, and the combined convective and radiant thermal resistance. The values used in 
this study were taken from TRNSYS default values, which respectively are, 0.5, 0.9, and 40. The 
calculated lumped thermal parameters are summarized in Table 3.2.  

Table 3.2 Calculated thermal parameters for each zone of reference buildings 

 Middle terraced house Semi-detached house Detached house 
Parameters GF Sleep Attic GF Sleep Attic GF Sleep Attic 
Rin [K/kW] 0.7297 1.0276 0.8483 0.5687 0.7056 0.6556 1.0731 2.0748 1.5872 
Rcond [K/kW] 34.78 94.12 101.05 17.93 43.62 52.50 10.13 27.97 33.38 
Rinf [K/kW] 57.14 89.21 56.99 46.02 59.65 42.02 33.26 25.41 45.41 
Rvent [K/kW] 20.73 32.44 41.45 16.74 21.69 33.47 12.09 69.88 33.03 
Cair [kJ/K] 168.15 109.66 126.72 227 175.24 175.97 307.57 146.42 175.52 
Cm [kJ/K] 63208 33235 34953 81535 47095 37407 105040 40792 37522 

 

3.3.1.1. Numerical solutions of the models 
The system of ordinary differential equations (ODE) was solved by using the backward Euler method, 
as expressed in Equation 3.9 and Equation 3.15. By taking a constant time interval Δt, Equation 3.15 
was discretized and written down as Equation 3.20. This equation was restructured to give Tm,t+1 as a 
function of Tin,t+1, as expressed by Equation 3.21. 



Chapter 3: Methodology 

19 
Anny Lim – October 2020 

Equation 3.20 

𝑇୫,୲ାଵ = 𝑇୫,୲ +
Δ𝑡

𝐶
ቆ

൫𝑇,௧ାଵ − 𝑇,௧ାଵ൯

𝑅,
+

൫𝑇௦,௧ାଵ − 𝑇,௧ାଵ൯

𝑅ௗ
+ 𝑄௦,ௗ,௧ାଵ + 𝑄,ௗ,௧ାଵቇ 

Equation 3.21 

𝑇,௧ାଵ = ൬𝑇,௧ ×
𝐶

∆𝑡
+ 𝑄௦,ௗ,௧ାଵ + 𝑄,ௗ,௧ାଵ +

𝑇,௧ାଵ

𝑅
+

𝑇௦,௧ାଵ

𝑅ௗ
൰ / ቆ

𝐶

∆𝑡
+

1

𝑅,
+

1

𝑅ௗ
ቇ 

By implementing the same method, the inner surface thermal balance Equation 3.9 was discretized 
into Equation 3.22. This equation was restructured into Equation 3.23  to give Tin,t+1 as a function of 
Tm,t+1. Equation 3.23  was restructured to Equation 3.24 to defined Qheat,t+1 as a function of Tin,t+1 and 
Tm,t+1.  

Equation 3.22 

𝑇,௧ାଵ = 𝑇,௧ +
Δ𝑡

𝐶
ቆ

൫𝑇,௧ାଵ − 𝑇,௧ାଵ൯

𝑅,
+

൫𝑇,௧ାଵ − 𝑇,௧ାଵ൯

𝑅 
+

൫𝑇௩,௧ାଵ − 𝑇,௧ାଵ൯

𝑅௩௧,௧ାଵ

+ 𝑄௦,௩,௧ାଵ + 𝑄,௩,௧ାଵ + 𝑄௧,௧ାଵቇ 

Equation 3.23 

𝑇,௧ାଵ =

𝑇,௧ ×
𝐶
∆𝑡

+ 𝑄௦,௩,௧ାଵ + 𝑄,௩,௧ାଵ + 𝑄௧,௧ାଵ +
𝑇,௧ାଵ

𝑅
+

𝑇,௧ାଵ

𝑅
+

𝑇௩,௧ାଵ

𝑅௩௧,௧

൬
𝐶
∆𝑡

+
1

𝑅
+

1
𝑅௩௧

+
1

𝑅,
൰

 

Equation 3.24 

𝑄௧,௧ାଵ = 𝑇,௧ାଵ × ቆ
𝐶

∆𝑡
+

1

𝑅
+

1

𝑅௩௧
+

1

𝑅,
ቇ

− ቆ𝑇,௧ ×
𝐶

∆𝑡
+ 𝑄௦,௩,௧ାଵ + 𝑄,௩,௧ାଵ +

𝑇,௧ାଵ

𝑅,
+

𝑇,௧ାଵ

𝑅
+

𝑇௩,௧ାଵ

𝑅௩௧,௧ାଵ
ቇ 

If Qheat,t+1 is known and Tin,t has to be solved (see Figure 3.6 for further details), then Equation 3.21 and 
Equation 3.23 are restructured and solved as a matrix problem to solve Tm,t+1 and Tin,t+1 simultaneously, 
as defined by Equation 3.25. The implementation structure of Equation 3.23, Equation 3.24, and 
Equation 3.25 will be explained in section 3.3.1.2. 

Equation 3.25 

⎣
⎢
⎢
⎢
⎡
𝐶

∆𝑡
+

1

𝑅,
+

1

𝑅ௗ
−

1

𝑅,

−
1

𝑅,

𝐶

∆𝑡
+

1

𝑅
+

1

𝑅௩௧
+

1

𝑅,⎦
⎥
⎥
⎥
⎤


𝑇,௧ାଵ

𝑇,௧ାଵ
൨

=

⎣
⎢
⎢
⎢
⎡ 𝑇,௧ ×

𝐶

∆𝑡
+ 𝑄௦,ௗ,௧ାଵ + 𝑄,ௗ,௧ାଵ +

𝑇௦,௧ାଵ

𝑅ௗ

𝑇,௧ ×
𝐶

∆𝑡
+ 𝑄௦,௩,௧ାଵ + 𝑄,௩,௧ାଵ + 𝑄௧,௧ାଵ

𝑇,௧ାଵ

𝑅
+

𝑇௩,௧ାଵ

𝑅௩௧,௧⎦
⎥
⎥
⎥
⎤
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3.3.1.2. The heating system control function 
There are in total three variables of interest and two equations. In principle, the heating system 
operation was based on a control function governed by Tin as defined in TRNSYS manual document. 
Based on the operational regime, one of the variables will be known, leaving two unknowns to be 
solved. Thus the calculation differs for different operational regimes, as described in the following 
points. The calculation algorithm is illustrated in Figure 3.6. 

I. When the indoor temperature is lower than the setpoint value, the heating system operates 
to increase the air temperature to the setpoint (Tin(t) <Tsp,(t+1),). The calculation assumes that 
the setpoint temperature can be reached at the next timestep. Thus the heating load is 
calculated using Equation 3.24. Suppose the calculated heating load exceeds the maximum 
capacity. In that case, the air temperature and inner surface temperature are solved 
simultaneously as a matrix using Equation 3.25 with heating load equals to maximum capacity. 

II. When the indoor temperature is equal to the setpoint, the heating system operates to 
maintain the air temperature. The calculation assumes that the setpoint can be maintained at 
the next timestep (dTin/dt =0). The calculation procedure follows the procedure of regime I. 

III. When indoor air temperature at current timestep is higher than setpoint temperature at 
future timestep, the heater is not operating, and Tm,(t+1) and Tin,(t+1) are solved simultaneously 
using Equation 3.25 with thermal load input Qheat,(t+1) = 0.  

 

Figure 3.6 Calculation algorithm for different heating system operational regime 

 

3.3.1.3. RC model verification 
This section presents the verification of the RC model that has been described in section 3.3.1.1, to 
ensure the proper implementation of the numerical discretization presented in Equation 3.21, 
Equation 3.23, Equation 3.24, and Equation 3.25. The verification was done by comparing the results 
of analytical and numerical solution of a simple room. The room is assumed with no solar and internal 
gains, no infiltration and ventilation losses, and a constant solar-air temperature. The sketch simplified 
model is illustrated by Figure 3.7. The parameter values are presented in Table 3.3.  

Table 3.3 Parameter values for RC model verification 

Cair [J K-1] Cm [J K-1] Rcomb,in [K W-1] Rcond [K W-1] Tin,t=0 [°C] Tm,t=0 [°C]  Tsa [°C] 
1.67x105 6.321x107 7.298x10-4 0.03478 21 19 10 
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Figure 3.7 Simple zone for RC model verification 

The energy balance equations of Equation 3.9 and Equation 3.15 were simplified into a new system of 
ODE by implementing the specific room condition, as expressed in Equation 3.26 and Equation 3.27  

Equation 3.26 

𝐶

𝑑𝑇

𝑑𝑡
=

(𝑇 − 𝑇)

𝑅,
+ �̇�௧ 

Equation 3.27 

𝐶

𝑑𝑇

𝑑𝑡
=

(𝑇 − 𝑇)

𝑅,
+

(𝑇௦ − 𝑇)

𝑅ௗ
 

The verification was done during the periods when the heater has to maintain the room at Tsp 21°C 
(minute 0 to minute 60), and when the Tsp was reduced to 19°C (minute 60 to minute 120). In the first 
period, with Cair dT/dt = 0 and Tin = 21°C, initial Tin = 21°C, and initial Tm = 21°C, the analytical solutions 
were expressed  in Equation 3.28 and Equation 3.29.  

Equation 3.28 

𝑇 = 20.7739 − 1.7739𝑒ି.ଶଶଵଷଶ௧ 

Equation 3.29 

�̇�௧ =
(21 − 𝑇)

7.298 × 10ିସ
 

In the second period, the heater didn’t operate as the Tin is higher than Tsp. With �̇�௧=0, initial Tin is 
21°C and initial Tm is Tm at the end of the first period, the analytical solutions were expressed in 
Equation 3.30 and Equation 3.31. t is expressed in second.  

Equation 3.30 

𝑇 = 1.0000551𝑒ି.ସହଷ௧ × (10𝑒.ସହଷ௧ + 9.14075)

− 379.61871𝑒ି.଼ଶହଵ௧ × (0.0000014484𝑒.଼ଶହଵଷ௧ − 0.00489634) 

Equation 3.31 

𝑇 = 𝑒ି.ସହଷ × (10𝑒ି.ସହଷ + 9.14075)

+ 𝑒ି.଼ଶହଵଷସ௧(0.000001448𝑒ି.଼ଶହଵଷସ௧ − 0.0048963) 

The analytical solutions were compared against the numerical solutions of 3 different timesteps: 1 
second, 3 minutes, and 6 minutes, as shown in Figure 3.8. The solid blue line represents the analytical 
solution, while the dash lines represent the numerical solutions. It can be seen that the numerical 
method calculated the same solution values when there’s no abrupt change in the system. The 
numerical solutions differ at the beginning of the simulation and when there’s an abrupt change in the 
system, i.e., the heating system was stopped (minute 60). The differences are because of the time 
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increment of the numerical method. In this case, a bigger timestep results in a slower time response 
in calculating the thermal load and air temperature. However, the numerical solution with 1-second 
timestep shows exact results with the analytical solution. Through this comparison, it is concluded that 
the developed RC model is verified.  

 

Figure 3.8 Comparison of calculated thermal load between manual calculation in Excel and MATLAB simulation 

 

3.3.2. TRNSYS model 
This section describes the models used in TRNSYS 17.0 for dynamic building simulation. The reference 
buildings 3D models were built using Google SketchUp 2017 and then imported to TRNBUILD. Figure 
3.9 shows the graphical overview of the TRNSYS model.  

 

Figure 3.9 Graphical overview of TRNSYS model  
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In principle, heat transfer phenomena in TRNSYS are treated as a 1-dimensional problem. The heat 
balance of thermal zone air node and the building masses considers all the heat transfer phenomena 
except for convective coupling from adjacent zones (which is assumed to be negligible) that have been 
described in section 3.3.  

Similar to the RC model, only one air node is considered within a zone. However, the distinction 
between TRNSYS and RC models takes place on solving the heat balances of building constructions. 
Firstly, the RC model lumps all surfaces within a thermal zone and calculates equivalent thermal 
parameters. On the other hand, TRNSYS solves the individual heat balance of each surface in a thermal 
zone.  

Secondly, to solve a conduction problem, TRNSYS adopts the conduction transfer function (CTF) 
method by Mitalas and Arsenault to solve transient conduction problems in building [14]. CTF is a 
black-box discrete time-series function that calculates the heat fluxes from outside surfaces �̇�௦ and 
the heat fluxes to the inner (�̇�௦), based on previous values of temperatures and heat fluxes [37]. The 
illustration of the energy balance of building mass is displayed in Figure 3.10.  

 

Figure 3.10 illustration of energy balance in a wall (adapted from TRNSYS multizone building manual [14]) 

For a thin structure without thermal mass such as a window, the time-series coefficients are not 
calculated. The conduction problem is redefined as a 2-nodes model of inner and outside surfaces, and 
thermal resistance in-between [14]. Apart from the calculation tool to solve building masses energy 
balance, the assumption difference between TRNSYS and RC models is that TRNSYS CTF algorithm 
inherently considers all inter-zone conduction heat fluxes in internal partitions. On the contrary, the 
RC model simplifies the problems by assuming the heat fluxes are negligible. 

 

Figure 3.11 Star network in TRNSYS type 56 multizone building 
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Thirdly, to incorporate longwave radiation between inner surfaces into the air heat balance, TRNSYS 
uses the Star-network method. The star network employs a fictitious temperature node (Tstar), 
representing the air node altered temperature due to convective and net long-wave radiation heat 
transfers from all inner surfaces. The star network configuration is illustrated in Figure 3.11, and the 
air heat balance in TRNSYS is defined as Equation 3.32 (adapted from [14]). 

Equation 3.32 

𝐶

𝑑𝑇

𝑑𝑡
=

(𝑇௦௧ − 𝑇)

𝑅௦௧
+

(𝑇 − 𝑇)

𝑅
+

(𝑇௩ − 𝑇)

𝑅௩௧
+ 𝑄௦ି, + 𝑄, + 𝑄௧ 

Finally, TRNSYS and the developed RC model differ in the selection of the numerical method. TRNSYS 
adopts modified Euler method to solve the first-order system of ODE. Modified Euler method predicts 
the temperature at a future time step by using the current timestep value and current and the future 
derivative. The general mathematical equation of Modified Euler. The calculations of the derivative 
values are done by assuming a linear temperature change and constant energy fluxes within a 
timestep, which are evaluated at the average value of 𝑇ത.  

 

3.3.3. Summary of model assumptions 
In summary, the fundamental differences between TRNSYS and the developed RC model are presented 
in Table 3.4.  

Table 3.4 Summary of differences between TRNSYS and RC model 

Parameter TRNSYS RC model 
Thermal 
parameters 

Thermal parameters were not lumped.  Thermal parameters were lumped for all 
surfaces in a zone.  

Conduction 
problems 
solver 

TRNSYS uses a time-series conduction 
transfer function (CTF) by Mitalas & 
Arsenault to solve a conduction problem in 
each surface.  

RC model lumped all surfaces. The 
equivalent conduction thermal resistance 
is calculated using Kirchhoff’s Law.  

Outside 
surface 
temperature  

The actual outside surface temperature is 
solved using CTF. 

The outside surface temperature is 
represented by sol-air Temperature (Tsa), 
that is independent of Tm. 

Surfaces 
temperatures 

Each surface temperature is solved 
individually.  

The inner surface temperatures are 
lumped into a node. The solved Tm value is 
valid for all surfaces in a zone.  

Adjacent 
zones 
conduction 

CTF considers inter-zones conduction heat 
fluxes 

RC model assumes negligible inter-zones 
conduction heat fluxes  

Calculation of  
convective and 
longwave 
radiation 
fluxes 

TRNSYS model employed star network 
which uses an artificial temperature node, 
Tstar, as a representative node, to 
accommodate the longwave radiation 
exchanges between surfaces, and parallel 
flows of convective and longwave heat 
fluxes from all inner surfaces to air node 

RC model directly connected Tin to Tm. The 
calculation uses a constant combined heat 
transfer coefficient.  

Numerical 
method 

TRNSYS uses the Modified Euler method, 
which employs the average air temperature 
between timestep 𝑇ത, to calculate the heat 
components in energy balance. 

RC model used the Backward Euler 
method, which employs the future air 
temperature Tin,t+1 to calculate the heat 
components in energy balance. 
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3.4. Non-construction input parameters 
This section describes the assumptions and justifications of the models' input parameters that are not 
related to the building structures. These input values are incorporated in both TRNSYS and RC models 
to ensure the simulation results' comparability. 

3.4.1. Weather data 
The TMY2 weather file of the city De Bilt was imported into TRNSYS Simulation Studio. This city is 
located 70 km North-East from Bouverijen, the closest available weather data in TMY2 format. The 
values of dry bulb temperature, solar irradiation, wind speed, humidity, and effective sky temperature 
are extracted and converted into a MATLAB matrix for the RC simulation. 

  

3.4.2. Space heating system  
Each GF zone of the reference building has a heating system capacity of 95 W.m-2 (per floor area), as 
stated in the energy assessment document provided by Breda municipality [30]. However, the 
document does not provide further information for the sleeping room and the attic. Therefore, it is 
assumed that each sleeping room is installed with a 1200 W hydronic radiator (the sleep zone 
represents three sleeping rooms), and the attic is installed with 1600 W. A constant 0.93 radiator 
efficiency was used for simulation, based on previous research [38]. The summary of space heating 
capacities for each thermal zone and reference building is presented in Table 3.5. 

Table 3.5 Summary of the heating capacities in each thermal zone [W] 

Zone TH SDH DH 
GF 3800 3600 1600 
Sleep 4700 3600 1600 
Attic 6400 3600 1600 

 

3.4.3. Occupants influence 
This study specified two parameters: the number of occupants per household and the occupancy 
profile, to provide a realistic diversity of building energy demand. Those two parameters, directly and 
indirectly, govern the input values of other critical input variables, such as temperature setting, internal 
gains, DHW consumption, etc. The overview of the occupant’s parameters influence over other 
parameters are available in Appendix C. This study considered three types of household size: 2-person, 
3-person, and 4-person. These variations are based on Dutch 2019 household size statistical data [39]. 
The detailed justification of the selected household size is available in Appendix C.  

The occupancy profiles' variations were based on how frequent occupants stay at home. The discerning 
variable is the value of the occupancy factor at a specific hour of the day. The occupancy factor itself 
is a coefficient with a value between 0 and 1, indicating the ratio of people present in a zone with total 
people in the household. For instance, an occupancy factor of 0.5 in a 2-person household means a 1-
person occupation in the defined zone. Three types of occupancy profiles were defined based on the 
profiles adopted by Rijver [11]: the Reference profiles, Mostly Away proflöes, and Mostly at Home 
profiles. Within a week, the average occupancy of Reference, Mostly Away, and Mostly at Home 
scenarios, respectively, are 75%, 55%, and 95%. The occupancy profiles for each scenario can be seen 
in Appendix C, Figure C.2, Table C.1 Figure C.3, Figure C.4, and Figure C.5. All three occupancy profiles 
were defined for each relevant thermal zone in the building (ground floor, sleeping room, and attic) 
and differentiated between weekdays and weekend. 
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3.4.4. Setpoint temperature 
Setpoint temperature is a critical variable that affects building energy demand. However, the accurate 
quantification of this parameter for building simulation is challenging as it differs depending on the 
occupants’ thermal comfort level. This study adapted the setpoint temperature profiles for building 
dynamic simulation proposed by Guerra-Santin and Silvester [40]. The values are based on the 
statistical analysis of thermostat input from 4490 households in the Netherlands. A unique 
temperature profile was defined for each thermal zone in this study. The profile was also differentiated 
based on the household size. The setpoint temperature profiles are summarized in Table 3.6.  

Table 3.6 Setpoint temperature profiles 

 Setpoint temperature [°C] 
 2-person household 3-person/ 4-person household 
Duration GF Sleep Attic GF Sleep Attic 
23:00-06:00 19 21 19 20 22 19 
06:00-09:00 19 19 19 20 20 19 
09:00-18:00 20 19 19 20 20 19 
18:00-23:00 22 21 19 21 22 19 

 

3.4.5. Infiltration and Ventilation 
The airflow rate for infiltration is assumed to be 0.4 L s-1 m-2. This value is the same value for EPC 
calculation (Berekening Energieprestatiecoefficient) report done by Nieman Raadgevende Ingenieurs 
for the houses in Bouverijen [30]. The airflow rate for ventilation is assumed to be 1.1 L s-1 m-2 (when 
ventilation is operated) in the GF zone and the sleep zone, which is above the minimum airflow rate 
requirement in Building Decree 2012 (0.9 L s-1 m-2) [41]. The infiltration and ventilation airflow rates 
are converted into air exchanged rates per hour for TRNBUILD input. The conversion is expressed by 
Equation 3.33. ACH is the air exchange per hour, q is the airflow rate, Vzone is the zone volume, and 
Agzone is the zone usable floor area. 

Equation 3.33 

𝐴𝐶𝐻 = 3.6 × 𝑞 × 𝑉௭ × 𝐴𝑔௭ 

This study assumes that the ventilation system is operated during a specific period: 14:00 to 18:30 
during winter, 07:30 to 18:30 during summer, and 11:00 to 18:30 during spring and autumn. The 
calculated air exchanged rate for infiltration and ventilation are presented in Table 3.7. 

Table 3.7 Calculated air exchange rate due to infiltration for each zone inside the buildings 

House type 
ACH – infiltration [-] ACH – ventilation [-]1 

GF Sleep Attic GF Sleep Attic 
Terrace house 0.21 0.28         0.37  0.46  0.62  0.41  
Semi-detached house 0.34  0.34         0.44  0.76  0.76  0.50  
Detached house 0.35  0.35         0.46  0.79  0.79  0.52 

1 The ventilation ACH is applicable when the ventilation system is operated; otherwise, the value is zero 

According to the building information provided by Breda Municipality, each house type is equipped 
with a mechanical ventilation type C, in which the air inflow is naturally supplied while the air outflow 
is through a mechanical exhaust. The ventilation system is also equipped with a heat recovery system 
with an efficiency of 0.95 [42]. 
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3.4.6. Internal gains 
The building’s internal heat gains are attributable to the radiative and convective sensible heat from 
occupants’ metabolism, lighting, and appliances. Internal gains simulation input is open to 
interpretation because it is a function of occupants’ behaviors. In this study, the internal gain was 
modeled as a function of pre-determined occupancy schedule and component heat loads. The internal 
gains consist of 3 types: occupants’ metabolic gain, lighting gain, and appliances gain.   

The occupants’ metabolic gain is expressed as a multiplication of the number of occupants with the 
metabolic heat gain per person. This value is dynamic, depending on the zone (which was translated 
into activity levels) and the seasonal factors (translated into clothing level or CLO). For instance, the 
sensible metabolic heat gain value in the sleeping room is from resting activity, while the ground floor 
and attic values are from light work. Moreover, the clothing level is higher during winter, compared to 
summer.  All values were adopted from ISSO 32 – temperatuursimulatieberekeningen, and summarized 
in Table 3.8. 

Table 3.8 The value of sensible metabolic heat gain [W] per person for each zone [43]  

Season GF/ attic Sleep 
Winter (CLO = 1) 80 60 
Spring/ autumn (CLO = 0.6) 90 70 
Summer (CLO = 0.4) 100 75 

 

The heat gain load of the lighting component was assumed to be 3 W.m-2. This value was taken from 
the recommended installed capacity in residential buildings [44]. The lighting is switched on in the 
evening between 5 PM to 12 AM and when there is an occupant’s presence.     

Like metabolic and lighting internal gain, the appliances heat gain is also modeled as a function of 
occupancy. When there’s no occupants' presence, the standby load is applied: 100 W for the GF zone 
and 50 W for the sleep zone and the attic zone, as recommended by ISSO 32 
temperatuursimulatieberekeningen [43]. Extra heat gain values are added to the occupant’s presence. 
The values are based on the recommendation in the book Sun Wind and Light [4].  The heat gain values 
per floor area for the GF zone, the sleep zone, and the attic zone, respectively, are 6 W.m-2, 2 W.m-2, 
and 6 W.m-2.  

The internal heat gains were transmitted through convective and radiant heat transfers. The division 
of the heat flux is determined by a radiative fraction. Essentially, it is the fraction of the heat flux that 
is transmitted radiantly. The remaining fraction is transmitted convectively. The value of radiative 
fraction for each gain source was adapted from ISSO 32 temperatuursimulatieberekeningen. They are 
0 for appliances, 0.3 for lighting, and 0.5 for metabolic gain [43].  

 

3.5. Model validation 
This section describes the structure of the model validation. Two kinds of model validation were 
performed in this study: 

1. Validation of individual building results of the RC model by using TRNSYS results as the reference 
data.  
The assessed output parameters in this step are thermal load and cumulative thermal energy. The 
key performance indicators used for the validation are root mean square error (RMSE), which 
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indicates the magnitude of the error, and coefficient of variation of RMSE (CV-RMSE), which 
provides a normalized value of the error.  This validation process is integrated with the analysis in 
section 4.1 until section 4.5.  

2. Validation of individual building annual thermal energy from TRNSYS and RC simulation against 
Dutch statistical data.  
The statistical dataset is taken from the natural gas consumption for heating of A-rated energy label 
buildings constructed after 2017 [45]. In principle, this step is a qualitative process to ensure that 
the simulation results fit the range of population heating requirements. The result of this validation 
is presented in section 4.6.  

 

3.6. Sensitivity analysis  
Comprehensive and accurate information is essential in the building white-box modelling. The quality 
and quantity of data and assumptions determine the quality of the simulation results. However, the 
process of data acquisition and interpretation can be very long and expensive. In many instances, its 
nature might not allow the data to be accurately quantified. Thus, the input values are based on 
educated assumptions. Nevertheless, this practice brings uncertainties to the simulation results. 
Therefore, it is necessary to perform a sensitivity analysis to understand how input values' variations 
might alter the simulation results.  

There are two main objectives of sensitivity analysis in this study. The first objective is to investigate 
how the input value variations affect the simulation result of TRNSYS and RC models. This analysis is 
essential to determine the parameter selection to develop the thermal load profiles database in 
section 5. The second objective is to analyze how the trend of error between TRNSYS and RC models 
for different input values. From this trend, a conclusion can be taken about the applicability of RC 
models in specific scenarios.  

The sensitivity analysis was done using the north-facing middle terraced house model with 2-person 
occupancy and Reference occupancy scenario. The criterion of the variable selection is uncertain 
variables that directly change the energy balances. The selected parameters and their selection 
justifications are explained in detail in the following paragraphs. The summary of the variable base 
scenario and varied values is presented in Table 3.9. 

1. R-value (thermal resistance) 

The model reference scenario was based on the minimum R-value by the 2012 Dutch Building 
Decree [41]. In reality, the building's actual R-values might vary from the recommended values. 
Furthermore, many houses in The Netherlands were built before the implementation of the latest 
Building Decree with lower thermal resistance values.  

2. Thermal capacitance 

Thermal capacitance is a critical property of a building to control the air temperature diurnal 
variation. Like R-value, it is quite challenging to determine the actual thermal capacitance values 
as no reference was given in the reference buildings' construction documents. Dutch Building 
Decree also doesn’t regulate this parameter. The uncertainty is also exacerbated by a wide 
variation of solid interior objects such as furniture.  

3. Setpoint temperature  

Setpoint temperature is an input variable of a building energy model that significantly impacts the 
simulated energy demand. The value is dynamic and involves a wide range of possibilities based 
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on occupants’ preferences. The determination of setpoint temperature for building simulation is 
quite challenging due to its stochastic nature.  

4. Ventilation and infiltration rates  

Ventilation and infiltration rates realistically are dynamic variables, despite the recommended 
values given for simulation purposes. It’s affected by the air pressure, wind velocity, structures of 
the surrounding.  

Table 3.9 Summary of sensitivity analysis input variation 

Parameter Base scenario value Variation of input value from the base value 
R-value Reference value (Table B.3)  70% to +110% 
Thermal capacitance Reference value (Table B.3) 80% to 120% 
Setpoint temperature Reference value (Table 3.6) -2°C to 2°C 
Infiltration & vent. rate 0.4 L s-1 m-2 & 1.1 L s-1 m-2 80% to 120% 

 

3.7. Domestic hot water (DHW) 
Domestic hot water is an integrated heating component in the Bouverijen DHN. Therefore DHW load 
was calculated to perform relevant comparisons with measured data. The DHW load profile is a 
function of hot tap water temperature Tw,h, cold tap water supply temperature, Tw,c, draw-off flow rate 
(�̇�), and the overall heat transfer efficiency from district heating supply (𝜂ுௐ), as expressed in 
Equation 3.34.  

Equation 3.34 

�̇�ுௐ(𝑡) = ൣ�̇�(𝑡) × 𝐶,௪ × ൫𝑇௪,(𝑡) − 𝑇௪,(𝑡)൯൧ 𝜂ுௐ⁄  

The value of Tw,h is assumed to be constant at 60°C, following the Dutch regulation in production and 
storage of domestic hot water. In contrast, the value of Tw,c is adopted from dynamic soil temperature 
at pipe depth (approximately 1 meter). This assumption considers the seasonal factor of cold water 
supply temperature. This assumption was taken based on the study by Blokker and Pieter-Quirijns [46]. 
Using De Bilt data, the ground temperature ranges from 8°C in winter to 17°C in summer.  

While the DHW is heated and stored at 60°C, the end-use draw-off can be classified into two types: 
tempered draw-off that mixes the hot water with tap water (e.g., sinks, shower, etc.) and untampered 
draw-off, which is not mixed with tap water in its application (e.g., washing machine, dishwasher) [47]. 
For tempered draw-off, the flow rate is calculated using Equation 3.35 in which �̇�ସହ is the end-use flow 
rate and the 10°C is the average cold tap water temperature, and  �̇�  is the hot water draw-off rate 
from the supply at 60°C temperature. 

Equation 3.35 

�̇� = �̇�ସହ

(45 − 10)

(60 − 10)
 

In reality, the DHW draw-off rate profile is stochastic. Occupants’ behaviors heavily influence the load 
magnitude and timing. This study has taken the most realistic draw-off rate assumption based on 
statistical research of the average EU draw-off rate [47]. To address DHW profile stochasticity and 
simultaneity, this study generated a set of draw-off rate profiles for each occupancy scenario and no. 
of occupants in the household. These profiles were generated using the DHWcalc tool and calibrated 
manually to fit the measured data. The flowrate input for DHWcalc is the rate of hot water preparation 
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at 60°C temperature, �̇�. Detailed explanation about DHWcalc and the input to generate profiles are 
available in Appendix C.3. 

 

3.8. Heating profiles database and aggregation of heating demand  
The generation of a district heating load profile requires an unbiased distribution of heating profiles to 
each building. Monte Carlo distribution was selected for application in this study because minimum 
information is found about the actual occupant's heat consumption behavior in a district or population. 
Monte Carlo involves random probability distributions multiple times. In this study, a random value is 
selected for each input parameter. Assuming the setpoint temperature and the ventilation rate are the 
varied parameters in the heating profile database, a random selection of value is selected for each 
parameter.  

For clarity, the aggregation process can be broken down into the following steps: 

1. Generate heating profiles databases using the reference buildings’ boundary conditions.  
2. For each actual building in the district, assign a random value for each input parameter. The 

selected values form a combination of parameters associated with a specific heating profile or 
scenario (from the database). The assigned heating profile is multiplied by the ratio of actual 
building area to reference building area to get a better-representing load profile. 

3. Aggregate the profiles of the individual buildings into a district profile. 
4. Step 1 to 3 were repeated for n number of times to avoid a bias/ random aggregation results. 

The calculated results were averaged to gain a representative heating profile.  

There is a slight difference in the aggregation procedure sequence between TRNSYS and RC. TRNSYS 
heating profiles databases were generated before distributing the heating profile scenario to each 
building (step 1 and then followed by step 2). On the other hand, the RC aggregation procedure was 
started by step 2 and then followed by step 1.  

The generation of various heating profiles require executing multiple simulations of a same model with 
variation of input parameters. This process was automated using Python script to reduces manual 
works. Thus the process duration and human errors were reduced. The Python script is an open source 
script developed by Tol and Rijvers [48]. Moreover, the random distribution and aggregation codes for 
TRNSYS and RC were developed in MATLAB.  
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4. Results of buildings heat demand simulations 
 

4.1. The dynamic thermal responses at a zone level 
This section aims to observe the differences in dynamic thermal behavior between TRNSYS and RC 
models. The analysis is focused on the transient responses of indoor air temperature and thermal load. 
The assessed system in this analysis is the GF zone of a north-facing middle terraced house. The 
simulation scenario is a 2-person household with a base scenario setpoint temperature and ventilation 
rate of 1.1 Ls-1m-2. The simulation was run for a 1-year duration with a 6-minutes time step. 

 Figure 4.1 illustrates the comparison of TRNSYS’ and RC model’s thermal response during winter (1st 
March) for 36 hours. The top chart represents the thermal load of the heating system, the middle chart 
represents the indoor air temperature (left axis) and ambient temperature (right axis), and the bottom 
chart represents the temperatures of inner surfaces (for the case of TRNSYS, Tm represents the 
weighted average inner surface temperature).  

 

Figure 4.1 Dynamic simulation result of middle terraced house, ground floor zone, in winter 

As explained before in section 3.4.2, the thermal load was calculated as a function control of air node 
temperature at current timestep (Tin,t) and setpoint temperature at the future timestep (Tsp,t+1). In 
general, the observation of dynamic thermal load behavior during the heating season can be split into 
3 points following the heater operational regimes: 

1. Increase in air internal energy (Tin,t-1 < Tsp,t)  

This point was notably apparent from hour 1457.9 to hour 1458 (6 P.M.), when Tsp was increased 
by 2°C. In addition to compensating the heat losses from air to ambiance and inner surfaces, the 
heating system was operated to match Tin value to Tsp (dT/dt >0), which led to an instantaneous 
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heat flux/ load spike. The TRNSYS model calculated 2.045 kW, while the RC model calculated 2.882 
kW.  

The main cause to RC’s higher load spike is the difference in the numerical solutions. TRNSYS uses 
the modified Euler method to calculate the energy balance's heat components using the average 
temperature in a timestep. On the other hand, the RC model implements the backward Euler 
method, which calculates the heat components using temperature at the end of the timestep, 
Tin,t+1. In this case, the RC model dT is 1.5 °C, while TRNSYS dT is 1 °C. Therefore, the modified Euler 
implementation in TRNSYS averages the simulated air internal energy and heat losses, which 
results in a lower load spike.  

 
2. Constant air internal energy (Tin,t-1 = Tsp,t ) 

This period is notably apparent from hour 1458.1 to hour 1463. Once Tin reaches Tsp, the heater 
operates only to maintain the air node temperature at Tsp value (dT/dt = 0). A sudden drop in 
thermal loads is observed immediately. The heating system operates to compensate for the heat 
losses from the air node. During this period, the difference between Tin and Tm drives a heat flux 
from air to inner surfaces until both temperatures reach an equilibrium point (ideally, Tm 
continues to rise until it reaches equilibrium with Tin). Thus, the thermal load decreases following 
the rising Tm value. 

The thermal load of the RC model is approximately 0.35 kW higher than TRNSYS. For the same Tin 
value, the infiltration and ventilation heat fluxes are equal in both models. Therefore, the thermal 
load discrepancy is caused by the difference in convective and longwave radiation heat flux 
between the air temperature and the inner surface. This deviation comes as a result of the 
simplification of the longwave radiation calculation in the RC model. 

The RC model's longwave radiation was calculated using a combined convective and longwave 
radiative heat transfer coefficient. This simplification implies that all longwave radiations of inner 
surfaces are exchanged with the indoor air temperature only. On the other hand, TRNSYS adopts 
the Star network model, which considers the exchanges of longwave radiation among the 
surfaces, and the longwave radiation with air node. As a consequence, the longwave radiation 
heat fluxes in the RC model are overestimated. The “excess” heat fluxes are translated into 
additional heat losses, which requires a higher thermal load. This analysis is in line with the 
conclusion by Vivian et al. [26]. 

Vivian et al. compared simulation results of 2 RC models. The first one was a 7R2C model with two 
capacitors representing the thermal mass of adiabatic surfaces (internal partition or inner surfaces 
connected to adjacent zones) and non-adiabatic surfaces (inner surfaces connected to the 
ambiance). The second one was the 5R1C model with one capacitor representing total thermal 
capacitance. They observed the 5R1C model gives overestimation of thermal load during the 
heating and cooling seasons. They concluded that this overestimation is linked to the existence of 
2 inner surface temperature nodes and capacitors in the second-order model. The temperature 
nodes segregation results in temperature difference that enables longwave radiation exchanges 
among surfaces [26].  

 

3. Decrease in air internal energy (Tin,t-1 > Tsp,t)  

This period is notably apparent from hour 1463 (11 P.M) to hour 1470. As setpoint Tsp is reduced 
to 18°C, the heater goes off, and free-floating temperatures occur (the air temperatures fluctuate 



Chapter 4: Results of buildings heat demand simulations 

33 
Anny Lim – October 2020 

with no influence from the heating system). As a consequence, Tin drops sharply due to the sudden 
loss of thermal load. This sharp drop is a response of relatively small air thermal capacitance. 
Afterward, Tin gradually decreases following Tm. Similar to observations at point 1, a discrepancy 
is observed in indoor air temperature drop at hour 1463.1. The lower Tin drop of TRNSYS results 
from the difference in the TRNSYS and the RC model's discretization technique, as explained in 
point 1.  

It is essential to analyze how the models differ in different weather conditions. Figure 4.2 illustrates the 
simulation results in early spring (left) and the end of spring or the end of the heating season (right). In 
the early spring, the simulated thermal loads of TRNSYS and RC models match (the period from hour 
1938.1 to hour 2183, 6 P.M. to 11 P.M.), and by the end of spring, the RC model underestimates the 
thermal load (hour 2778 to hour 2781).  

  

Figure 4.2 Dynamic simulation results of middle terraced house, GF zone in early spring (left) and end of spring (right) 

The comparison of dynamic simulation results shows that the longwave radiation simplification 
significantly affects the RC model's dynamic result. This discrepancy is dynamic and weather 
dependent. In this case study, that discrepancy leads to overestimated thermal load during peak 
winter, matching load in the early spring, and underestimated load by the end of the heating season. 
Nevertheless, the annual energy demand is not significantly affected as the load overestimation is off-
set with underestimation. 

 

4.1. The model performance for different thermal zones  
This section compares the RC model's simulation results against TRNSYS for different thermal zones. 
This comparison analyzes how the model works for zones with different configurations and how 
building characteristic affects the results. Two variables are compared: thermal load and cumulative 
thermal energy. Moreover, CV-RMSE and RMSE were used as KPIs.  

Figure 4.3 provides a visual comparison of performances between different thermal zones in a middle 
terraced house, using TRNSYS as the reference data. The scenario used for this comparison is the same 
scenario used in section 4.1. The left bar group represents the thermal load, while the right bar group 
represents the cumulative thermal energy.  
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Figure 4.3 CV-RMSE of thermal load and thermal energy of a middle terraced house 

The performance of the RC model varies among the zones. In terms of thermal load, the attic zone has 
the smallest CV-RMSE (0.14), followed by the sleep zone (0.80) and the GF zone (1.26). In this case 
study, the variation is influenced by several factors: the magnitude of thermal load, the frequency of 
the peak loads (load spikes), and the internal partition ratio.  

As previously observed in section 4.1, observation no. 1, the load highest error occurs when the heating 
system has to increase the air temperature to a higher setpoint value, which results in a load spike.  In 
this study, a higher load spike results in a higher load error. By referring to Table 4.1, it’s shown that 
GF is the zone with the highest peak load discrepancy. In addition to the magnitude of the load spike, 
the GF zone also has the most frequent setpoint temperature fluctuation, followed by the sleep zone 
and the attic zone (the setpoint temperature profiles are provided in section 3.4.4). The combination 
of the magnitude and the frequency of load discrepancy increases the error significantly. 

Table 4.1 Summary of building parameters and simulation results of a middle terraced house 

Building parameters GF Sleep Attic Building 
Volume [m3] 138 90 104 332 
Outside surface area [m2] 31.54 15.77 67.04 114.35 
Internal partition ratio [-] 0.452 0.467 0.360 0.571 
Average setpoint temperature [°C] 19.7 19.9 19 N/A 

TRNSYS 
Average inner surfaces temperature [°C] 21.89 21.31 19.30 N/A 
Maximum thermal load [kW] 2.6398 1.736 1.5585 5.6520 
Annual thermal energy [kWh] 1781 1547 2332 5660 

RC model 
Average inner surfaces temperature [°C] 22.83 22.10 19.19 N/A 
Maximum thermal load [kW] 3.68 1.94 1.5616 6.483 
Annual thermal energy [kWh] 1834 1420 2350 5604 

Key performance indicators (KPIs) 
Thermal load RMSE [kW] 0.2575 0.1412 0.0374 0.2718 
Thermal load CV-RMSE [-] 1.267 0.8 0.14 0.421 
Cumulative thermal energy RMSE [kWh] 28.29 79.18 24.16 77.88 
Cumulative thermal energy CV-RMSE [-] 0.027 0.091 0.019 0.024 
 

Another possible cause of the thermal load discrepancy is the internal partition ratio, which is defined 
as the ratio between the internal partition area (the area of the inner surface connected to adjacent 
zones) to the total inner surfaces area. This ratio correlates with the discussion about adiabatic and 
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non-adiabatic surfaces in dynamic observation point no. 2, section 4.1. Adiabatic surfaces are 
represented by the internal partitions, while non-adiabatic surfaces are represented by the surfaces 
connected to the ambiance (external partitions). In this RC model, a higher ratio value indicates a 
higher error of RC’s longwave radiation heat fluxes from TRNSYS’. Table 4.1 shows that the attic is the 
zone with the least ratio value, followed by the GF zone and sleep zone, whose ratio values are 1.25 
times and 1.3 times higher than attic zone’s, respectively. This considerable ratio difference between 
sleep zone and attic zone contributes to the difference in thermal load CV-RMSEs. 

Despite the vast error in thermal load simulation, the developed RC models gave accurate annual 
thermal energy. Figure 4.4 shows the simulated cumulative energy or RC and TRNSYS models. This 
chart shows that RC’s GF zone and attic zone results are very accurate throughout the year, while it 
underestimates the sleep zone's simulated energy. The thermal energy discrepancy quantification is 
expressed as CV-RMSE, which is summarized in Table 4.1. The attic zone has the smallest CV -RMSE 
(0.019), followed by the GF zone (0.027) and the sleep zone (0.091). 

 

Figure 4.4 Cumulative thermal energy of a middle terraced house 

The thermal energy CV-RMSE trend could also correlate with the internal partition ratio. As explained 
in section 3.3.1, the RC models were simplified by considering no conductive flux between adjacent 
zones. The primary assumption is that the difference in surface temperatures of adjacent thermal 
zones is marginal. Thus the conduction heat flux is negligible. Therefore, a zone with a higher inner 
partition gives a higher error in cumulative thermal energy. 

In the case of the sleep zone, the CV-RMSE value is significantly higher because the simplification error 
is exacerbated because the sleep zone shares the inner partition walls with two unassessed thermal 
zones: bathroom and overloop (please see section Figure 3.3 for illustration). As mentioned before, 
the unassessed zones are not equipped with a heating system, resulting in the lower surface 
temperatures of those zones. TRNSYS simulated those non-heated zones and considered their surface 
temperatures to solve the sleep zone conduction problem. In contrast, the unassessed zones were not 
simulated by the RC model. Consequently, TRNSYS considers inter-zone heat fluxes from the sleep 
zone to bathroom and overloop zones, yielding additional thermal load.  

In practice, measurements of actual building energy consumption by utility companies are done at a 
building-level. When the model performance is compared at the building-level, the errors are 
moderated. In this particular scenario, the mid terraced house thermal load and cumulative thermal 
energy CV-RMSEs are 42.1% and 2.4%, respectively.  
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4.2. The effect of simulation timestep to the simulation results 
This section elaborates on the effects of simulation timestep on the simulation results on the thermal 
load, precisely when the air temperature is be increased to match setpoint temperature. To do so, five 
different timesteps were simulated in the RC model and TRNSYS: 3 minutes, 6 minutes, 15 minutes, 30 
minutes, and 60 minutes. The dynamic analysis is focused on GF zone simulation at hour 1458 to 1463 
(6 P.M. to 11 P.M).  

 

Figure 4.5 Thermal loads comparison for different simulation timesteps 

Figure 4.5 displays the simulation result of different timesteps (the timestep was increased from the 
left chart to the right chart. The dash lines represent RC model simulation results, while the solid lines 
represent TRNSYS simulation results. The figure shows that the simulation timestep affects the peak 
load magnitude. The peak load magnitude increases when the time resolution is increased. This trend 
is expected because a smaller timestep means a faster temperature change (dT/dt), which requires a 
higher thermal flux to achieve so. This behavior is observed in the TRNSYS and RC simulation results 
and agrees with the study by Tabares-Velasco [49]. Tabares-Velasco compared the EnergyPlus 
simulated cooling loads from various timesteps against measured data. He observed the larger 
timestep tends to underestimate the peak load. The peak load underestimation is worsened when 
simulating a heavyweight building. The peak loads difference between TRNSYS and RC results also 
infers the importance of numerical method selection. In this study, the backward Euler method 
overestimates the peak load due to heat fluxes evaluation at the end of the timestep. This discrepancy 
is exacerbated at a smaller timestep.  

CV-RMSE of the thermal load was calculated for each timestep to understand how simulation timestep 
affects the RC model's accuracy relative to TRNSYS. Figure 4.6 provides a visual correlation between 
thermal load CV-RMSE and simulation timestep. A consistency of trend was observed in all zones, in 
which the model accuracy increases linearly when the simulation timestep is decreased. This trend is 
in-line with the results of a study done by Santos and Mendes, 2004 [50] in analyzing the effect of the 
timestep in indoor temperature prediction accuracy. It was also observed from Figure 4.6 that the most 
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significant effect of timestep in model accuracy is observed in the GF zone, and that is because GF has 
the most frequent setpoint temperature fluctuations among all zones. The GF zone thermal load CV-
RMSEs for all timesteps are presented in Table 4.2. 

  

Figure 4.6 Effects of simulation timesteps on CV-RMSE and simulation times 

Nevertheless, the computational time increases when the timestep is decreased. The left chart of 
Figure 4.6 represents the CPU time for the entire building. The blue line is the RC simulation time, while 
the red one is the TRNSYS simulation time. All simulations were performed using the processor Intel(R) 
i5-4300U, 1.9 GHz CPU. It can be seen that the CPU time increases exponentially when the simulation 
timestep is reduced, as summarized in Table 4.2. 

Table 4.2 Comparison of thermal load CV-RMSE and CPU time for different simulation timesteps 

 3 min 6 min 15 min 30 min 60 min 
GF Thermal load CV-RMSE [-] 1.26 1.267 1.303 1.356 1.467 
RC  CPU time  [s] 13.92 8.77 6.84 5.25 4.09 
TRNSYS CPU time [s]  689.47 558.12 403.83 323.39 162.61 

 

The most significant CPU time reduction of RC model is observed from 3 minutes timestep to 6 minutes 
timestep, with a reduction of 5.15 seconds. Despite the doubling in CPU time, the accuracy of the 
simulation result error increases by 0.067. Thereafter, the CPU times from 6 minutes to 60 minutes do 
not decrease by 4.68 seconds, but the error increases by 0.2. While the magnitude of time difference 
is insignificant for simulation of a building,  this difference is strongly distinguished when the model is 
used for a larger scale simulation such as urban or district- level. Therefore, 6 min simulation timestep 
is considered as the most optimum timestep. 

It can be seen that the RC model is much superior to TRNSYS in terms of simulation time, as TRNSYS 
simulation time is on average 54.71 times slower than the RC model. The simulation time difference 
between the two models will be further discussed for the application of district-level simulation in 
chapter 5.  

 

4.3. The model performance for different building types 
This section compares the simulation results between RC and TRNSYS for four different building types 
that had been described in section 3.1: middle terraced house (mid TH), corner terraced house (corner 
TH), semi-detached house (SDH), and detached house (DH). The three major parameters that 
differentiate each building are the building volume, the outside surface area, and the internal partition 
ratio. The parameters are summarized in Table 4.3.  
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Table 4.3 Summary of building parameters  

Parameter Mid TH Corner TH SDH DH 
Building volume [m3] 332 332 481 513 
Outside surfaces area [m2] 114.35 176.03 206.81 350.42 
Internal partition ratio [-] 0.571 0.3808 0.398 0.329 

 

  

Figure 4.7 Simulation results of different building types (middle terraced house, corner terraced house, semi-detached house, 
and detached house): (left) maximum thermal load and (right): annual thermal energy 

Figure 4.7 provides a visual results comparison for different building types. The left side of the chart 
shows the trend of maximum thermal load, and the right side of the chart shows the trend of annual 
thermal load. Both result parameters follow the same pattern: the building volume increases the heat 
demand and annual energy requirement. A consistency is observed in both RC and TRNSYS simulation 
results. TH has the lowest heating demand, followed by SDH and DH. Despite having the same building 
volume, corner TH heating demand is higher than middle TH because it has more exposed areas to the 
ambiance. A higher exposure to the ambiance is translated into a higher heat loss, which has to be 
compensated by the heating system.  

 

Figure 4.8 Model performances of different building types 

Figure 4.8 shows the comparison of RC simulation results accuracy compare to TRNSYS’s. Mid TH has 
the highest error, followed by SDH, corner TH, and DH. The CV -RMSE values among mid TH, corner 
TH, and SDH range between 0.37 to 0.42. The trend of thermal load CV -RMSEs is consistent with the 
discussion in section4.1. While mid TH’s thermal load is the smallest, it has the highest value due to its 
inner surface ratio. For a similar inner surface ratio, corner TH has a lower error than SDH because of 
its smaller load. SDH has the lowest CV -RMSE because it also has the smallest inner ratio value among 
all. The annual thermal energy errors are similar for mid TH, corner TH, and SDH, which are at the range 

6.48

5.65

6.83

5.75

8.75
8.42

10.21

9.14

mid TH Corner TH SDH DH
0

2

4

6

8

10

12
RC
TRNSYS

5605 5660

6759 6596

8583 8433

11016

9658

mid TH Corner TH SDH DH
0

2000

4000

6000

8000

10000

12000
RC
TRNSYS

0.42

0.38
0.40

0.30

0.02 0.02 0.02

0.15

Thermal load Cumulative thermal energy
0

0.1

0.2

0.3

0.4

0.5
mid TH
Corner TH
SDH
DH



Chapter 4: Results of buildings heat demand simulations 

39 
Anny Lim – October 2020 

of 0.2. However, an exception happened for DH, whose CV -RMSE is 0.15. The gap in thermal energy 
simulation might be caused by different building shapes, but this will need further investigation with 
different building models.  

 

4.4. The model performance for different building orientations 
The orientation of a building affects the solar radiation incidence angle on a non-horizontal surface. 
An orientation that maximizes solar radiation's incidence angle also maximizes the solar radiation 
intensity on a surface, contributing to the lowering of heating system load. Many studies have been 
done in the past about the effects of orientation on building energy demand. Those studies share a 
general conclusion that a south-facing building located in the northern hemisphere requires the least 
heating demand. In contrast, a north-facing building located in the southern hemisphere requires the 
highest heating demand [51][52].  

This analysis aims to see how solar radiation's magnitude affects the RC model accuracy in simulation 
energy demand. The orientation is based on the front façade. Four different orientations are simulated 
on a middle terraced house, i.e., north, east, south, and west. Orientation was translated into a 
quantitative input variable called the azimuth, which the value of 0°, 90°, 180°, and 270°.  

The left side of Figure 4.9 shows the annual energy demand for the individual zone and the entire 
building. Each result agrees with previous researches that the north-facing building has the highest 
heating demand, and the south-facing building has the lowest heating demand. East-facing and west-
facing buildings have similar energy demands [51].   

  

Figure 4.9 Influences of different building orientation on: simulation results (left) and accuracy of RC middle TH model (right) 

The right side of Figure 4.9 shows the thermal load CV-RMSE of zones and building cumulative. The 
figure shows that the highest results error occurs at the south-facing building. This behavior is 
influenced by two parameters: the magnitude of solar gain. The GF zone has the highest error among 
all zones, followed by the sleep zone and attic zone. The critical building configuration that governs 
this error is the window area, which controls the solar gain magnitude into the zone.  

The GF zone window area is 6.36 m2, 1.44 times as high as the sleep zone window area. Thus the higher 
solar gain in the GF zone led to a higher error in a south-facing building. On the other hand, attic zone 
energy demand is not sensitive to its orientation because this particular model was designed with no 
window installation in the attic zone. Therefore, solar radiation falls only on the roof and outside wall 
surfaces. Compared to solar gain from opaque surfaces, the solar gain from the window is more 
influential to building mass temperature as the flux can directly reach the inner surfaces without being 
impeded by its conductance resistance. 
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4.5. Sensitivity analysis 
4.5.1. The influences of thermal resistance (R-value) variation  

This section aims to analyze the effect of thermal resistance variation on simulation results. The 
variation of the R-value is presented as the percentage of the base scenario value. Five ratio values are 
observed in this analysis, i.e., 70%, 80%, 90%, 100%, 110%. The variation of R-value was done by 
multiplying the percentage value to the conductivity of each material in the building structures.  

Figure 4.10 illustrates the influences of R-value on the simulation results and accuracy. The left chart 
displays the trends of simulated maximum thermal load and annual thermal energy of TRNSYS and RC 
models. From this chart, it can be observed that a higher R-value reduces the thermal load and annual 
energy consumption. This trend is expected because a more insulated building envelope can minimize 
the heat loss to the environment. This result is in agreement with the findings by Mitalas. His study 
also infers that the peak load reduction varies depending on several factors, such as climatic conditions 
and heating strategies [53].   

   

Figure 4.10 Influences of different R-value on: total thermal loads and energies (left) and accuracy of RC middle TH model 
(right) 

In this case study, the peak thermal load reductions from 70% to 110% are marginal, ranging from 
0.308 kW and 0.526 kW for RC and RNSYS models. On average, the max thermal loads are reduced by 
approximately 0.077 kW and 0.1315 kW per 10% increase in R-value. The trend of the maximum load 
reduction is nonlinear for both models. The load reduction is more significant at a lower R-value and 
seems to reach an asymptote once reaching a threshold. The small peak load reduction has a 
considerable impact on the energy demand. Annual thermal energy demands are reduced by 1376 
kWh and 1391 kWh for RC and TRNSYS models, respectively. On average, the demand is reduced by 
approximately 344 kWh and 347.75 kWh per 10% increase in R-value. 

The right chart of Figure 4.10 illustrates the accuracy of the RC model against TRNSYS for different R-
value. The key parameters in this analysis are CV-RMSE of thermal load and cumulative energy of the 
building. The chart shows that the model gives a higher discrepancy for higher R-value, in which CV-
RMSE of the thermal load increases from 38.88% to 42.33%. On average, the error is increased by  0.8% 
for every 10% increase in R-value. By referring back to the left chart, the TRNSYS model is more 
sensitive than the RC model to R-value variation.  

The position of the insulation could be one of the reasons for this trend. Yuan et al. [54] compared the 
effects of insulation position in a wall to the heating peak load. 2 walls were compared: wall 1 with 
insulation on the outside and wall 2 with insulation on the inside. Firstly, they found that the heating 
and cooling peak loads are reduced with increasing insulation, which agrees with this study's finding. 

M
ax

. t
he

rm
al

 lo
ad

 [k
W

]

A
nn

ua
l t

he
rm

al
 e

ne
rg

y 
[k

W
h]

T
h

e
rm

a
l l

o
a

d
 c

v-
R

M
S

E
 [-

]

C
u

m
u

la
tiv

e
 e

n
e

rg
y 

cv
-R

M
S

E
 [-

]



Chapter 4: Results of buildings heat demand simulations 

41 
Anny Lim – October 2020 

Secondly, they observed that wall 2 (with inside insulation) gives faster load reduction for higher 
insulation value. This result is similar to the faster peak load reduction of TRNSYS simulation results. 

The correlation of Yuan et al.’s finding [54] with this study is in the RC model's lumping simplification. 
While TRNSYS simulation demonstrates the effect of insulation position on dynamic results, the 
developed RC model doesn’t discriminate against the position due to the lumping of thermal 
resistance into a single temperature node. Consequently, the model couldn’t demonstrate the same 
effect as TRNSYS.  

 

4.5.2. The influences of thermal capacitance  
This section analyzes the effects of mass capacitance variation on simulation results, using the 
percentage of base scenario value as the input variation. 5 values were simulated: 80%, 90%, 100%, 
110%, 120%. The variation of thermal capacitance was done by multiplying the material’s specific heat 
capacity with the percentage value. 

  

Figure 4.11 Influences of different thermal mass on: total thermal loads and energies (left) and accuracy of RC middle TH 
model (right) 

Figure 4.11 illustrates the influences of thermal capacitance on the model performances of a north-
facing middle terraced house. The left chart displays the trends of simulated maximum thermal load 
and annual thermal energy consumption of the building. It shows that TRNSYS and RC simulation 
produce lower thermal loads and energy demands when the capacitance is increased. The reduction 
of thermal load is very marginal, in which RC maximum thermal load was reduced approximately 
0.0275 kW for every 10% increase of capacitance. In comparison, TRNSYS's maximum load was reduced 
by approximately 0.0182 kW for every 10% increase. The reduction of annual thermal energy was even 
less, with average reductions of 9.5 kWh and 7.75 kWh per10% increase of capacitance for RC and 
TRNSYS results, respectively.  

Many studies found that the effects of thermal capacitance on building dynamic simulation are not 
straightforward. Thermal capacitance works cohesively with three factors: building insulation, climatic 
condition, and heating strategy. The results can differ for different combinations. The effects of 
thermal load reduction depend mainly on the building insulation and heating strategy. For a building 
with good insulation (high R-value), building thermal capacitance works well as a heat storage and 
dampens the heating load in a case of continuous heating [55]. While reduction might still be 
experienced, the effect is minimized when an intermittent heating strategy is adopted.  

Arumi, 1975, found from his simulations for four different cities in the US that increasing thermal 
capacitance reduces the total energy demands. However, he also observed that the reduction is 
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notably much lesser for building with higher thermal resistance [53], which is quite relevant for this 
study reference buildings. While high insulation helps minimize heat loss to the environment, it also 
impedes external solar gain to be transmitted, thus minimizing the building’s heat storage effect. 
Nevertheless, high thermal mass doesn’t always guarantee energy saving. Leslie found that a 
combination of high thermal mass with low insulation and continuous heating strategy at cold climate 
conditions increases the total heating demand [56].  

The right chart of Figure 4.11 shows the RC CV-RMSE of thermal load and CV-RMSE of annual energy. 
The results show that the load discrepancy is reduced with higher thermal capacitance, which is in 
agreement with the findings by Bruno et al. [24]. This trend can be analyzed by looking at the right 
chart of Figure 4.1, which shows that the difference between simulated thermal loads of RC and 
TRNSYS is smaller for higher thermal capacitance. On average, the thermal load accuracy improves by 
0.4575% for every 10% increase in thermal capacitance. On the other hand, the cumulative thermal 
energy accuracy is reduced by 0.027% per 10% increase in thermal capacitance. While this behavior 
contradicts the accuracy of thermal load, the change in thermal energy is negligible.   

 

4.5.3. The influences of the setpoint temperature  
This section aims to analyze how the uncertainty of setpoint temperature affects the simulation results 
and the RC model's accuracy. The variation of setpoint temperature is represented as a 1°C change 
from the base setpoint temperature (dTsp) that has been defined in section 3.4.4. The simulated dTsp 
values are -2°C, -1°C, 0°C, 1°C, and 2°C.  

Figure 4.12 illustrates the maximum thermal load (left axis) and annual thermal energy (right axis) at 
the building-level. The TRNSYS and RC model's results are consistent: the thermal load increases when 
the setpoint temperature is increased. As a consequence, the annual thermal demand increases 
accordingly. The increase in thermal load is quite subtle. On average, for every 1°C increase in setpoint 
temperature, the maximum load increases by 2.4% and 3.8% for RC and TRNSYS models, respectively. 
In contrast, the increase in annual thermal demand is quite significant. On average, the annual heat 
demand increases per 1°C of increase are 15.5% and 15.9% for RC and TRNSYS models, respectively. 

  

Figure 4.12 Influences of change in setpoint temperatures on: simulation results (left) and accuracy of RC middle TH model 
(right) 

The right chart of Figure 4.12 illustrates the accuracy of the RC model against TRNSYS. It shows that 
the thermal load error decreases by 1.25% for every 1°C. in this case study, this trend might correlate 
with the effect of the insulation position that has been discussed in section 4.5.1. Specifically, TRNSYS 
simulated a faster thermal load reduction for lower heat loss magnitude (lower setpoint temperature), 
while this RC model doesn’t discriminate against the effect of insulation position. Consequently, the 
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peak load discrepancy increases when the heating loss is lower (setpoint temperature is higher). 
Meanwhile, the annual energy demand accuracy doesn’t demonstrate a coherent trend when the 
setpoint temperature is increased.  

 

4.5.4. The influences of infiltration and ventilation rates 
The variation of infiltration and ventilation rates is presented as the percentage of the base case airflow 
rate. The variation is done by multiplying the percentage value by the reference scenario values of the 
infiltration rate (0.4 L s-1 m2) and ventilation rate (1.1 L s-1 m-2). Three input values were simulated: 
80%, 100%, and 120%. 

Figure 4.13 illustrates the maximum thermal loads (left axis) and annual thermal energy (right axis) at 
the building-level. The TRNSYS and RC model's thermal load trends are consistent: thermal loads 
increase when the rate increases due to increasing heat losses. The RC and TRNSYS simulated the 
thermal load increases by 2.42% and 3.81%, respectively, for every 10% of a rate increase, while the 
annual thermal energy demand increases by 18.6% and 18.12%, respectively. Meanwhile, the trend of 
the RC model error decreases with an increasing rate. Nevertheless, the change in CV-RMSE is very 
insignificant. The thermal load error decreases by 0.75% change per 10% increase in rate, while the 
annual thermal demand error decrease is very minute: 0.15% per 10% increase in rate. 

 

Figure 4.13 Influences of change in ventilation and infiltration rate on: simulation results (left) and accuracy of RC middle TH 
model (right) 

 

4.5.1. Variables selection for the thermal load profiles database 
The simulation of realistic district-level heat demand requires the simultaneity of different heating load 
profiles. The database is developed for each building configuration that consists of building type and 
building orientation. The selection of demand profiles is based on a combination of highly sensitive 
input variables. The sensitivity of those variables is visually summarized in Table 4.4. The sensitivity is 
measured by the percentage of change in output values for every 10% change in input variables.  

Table 4.4 Change in outputs per 10% change in input variables 

Parameter Max thermal load Annual thermal energy 
RC TRNSYS RC TRNSYS 

Thermal resistance (R-value) 1.17 % 2.25% 2.09% 2.11% 
Thermal capacitance 0.42% 0.32% 0.30% 0.29% 
Setpoint temperature 2.42% 3.81% 18.6% 17.9% 
Ventilation rate 5.08% 6.00% 9.38% 9.57% 
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Among all assessed variables, setpoint temperature is the most sensitive parameter concerning the 
annual thermal energy, with a change between 17.9% to 18.6%. Meanwhile, the ventilation rate is the 
most sensitive parameter concerning the thermal load, with a change between 5.08% to 6%. Thus both 
parameters have to be included as permutated variables in thermal load profiles databases. On the 
other hand, R-value and thermal capacitance do not significantly impact the thermal load and thermal 
energy. Specific to the application of simulation in the Bouverijen district, the buildings were mostly 
constructed using similar materials. Therefore, R-value and thermal capacitance were not considered 
in the database. 

The previously analyzed parameters affect the building energy demand in the magnitude of load and 
energy. However, simultaneity also requires variation in time. The time variation is provided by the 
number of household and occupancy scenarios. Therefore, these parameters are included as the varied 
input variables. The selected parameters for each building configuration database are illustrated in 
Figure 4.14. A total of 81 profiles were generated for each building configuration database.  

    

Figure 4.14 Parametric scenario structures for semi-detached and terraced houses 

 

4.6. Simulation validation against statistical data  
This section aims to ensure that the simulation results from the range of scenarios chosen for the 
parametric analysis fit the statistical data for space heating in the Netherlands. Thus the developed 
thermal load profiles databases can be considered reasonable for the district energy simulation. The 
simulation results are presented in the form of range from minimum to maximum scenarios of heating 
demand.  

Table 4.5 presents the comparison of annual space heating demand between simulation results against 
statistical data. The referred statistical data is natural gas consumption specific for A-label houses that 
are constructed after 2017. The calculation of the space heating demand assumed that 79% of the 
consumption is for space heating. In general, the range of simulation results fits within the statistical 
ranges above the 5th percentile. In detail, the model for semi-detached house represents about the 
first 50th percent of the same house population, and the model for terraced house represents about 
the first 75th percent of the same house population. Thus it can be concluded that the scenario 
selection can be used to represent general households in the Netherlands.  
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Table 4.5  Comparison of space heating energy demand between simulation results against statistical data 

Model House 
type 

Simulation 
results [kWh] 

Statistical gas demand for heating and DHW [kWh] 
[5] 

Min Max Mean 5% 25% 50% 75% 95% 

TRNSYS 

Mid TH 3650 7120 5304  3138  4183  5155  6275  7844  
Corner TH 4312 7498 5304  3138  4183  5155  6275  7844  

SDH 6324 10930 8237  4796  6569  8028  9592  12095  

DH 6966  11538  8896  5736  7374  8779  10184  12408  

RC 

Mid TH 3532 7498 5304  3138  4183  5155  6275  7844  
Corner TH 4281 8086 5304  3138  4183  5155  6275  7844  
SDH 6225 11036 8237  4796  6569  8028  9592  12095  
DH 6111 13244  8896  5736  7374  8779  10184  12408  
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5. Results of district heat demand simulation 
 
This section presents the aggregation of 85 buildings’ load profiles in Bouverijen into a district-level 
demand. The aggregation was performed in MATLAB using a yearlong simulation with 6 minutes 
timestep for TRNSYS and RC models. The simulation was done 25 times to avoid bias in the random 
distribution of heating profiles. 

The first discussion in this section focuses on comparing the aggregated space heating load between 
TRNSYS and RC. Figure 5.1 provides a visualization aid for thermal load comparison. The blue line 
represents the TRNSYS simulation, while the red line represents the RC simulation. The discrepancy at 
baseload (when the heater is used to maintain air temperature) is minimal, with TRNSYS results tend 
to be lower than RC results. A maximum discrepancy is observed during peak load when the heating 
system is used to increase air temperature. The discrepancy ranges from 20 kW to 50 kW. This 
significant discrepancy is also observed in each model's maximum thermal, as shown in Table 5.1.  

The thermal load RMSE and CV-RMSE values are respectively 23.8 kW and 0.353. It can be seen that 
the load discrepancy is reduced from an individual building-level. Meanwhile, the aggregated annual 
energy demand for TRNSYS and RC are 600 MWh and 619 MWh, respectively. This very close value is 
expected because the discrepancy at the building-level is also minuscule. The RMSE and CV-RMSE of 
the annual energy demand are respectively 7.07 MWh and 0.0213. 

 

Figure 5.1 Comparison of simulated space heating load in March between TRNSYS and RC 

Table 5.1 Summary of aggregated simulation results and accuracy 

Parameter  TRNSYS RC 
Maximum load [kW] 476.85 512.33 
Annual thermal energy [MWh] 600 619 
Thermal load RMSE (relative to measured data) [kW] 83.51 81.4 
Thermal load CV-RMSE (relative to measured data) [-] 0.6298 0.614 
Cumulative energy RMSE (relative to measured data) [MWh] 6.14 6.42 
Cumulative energy CV-RMSE (relative to measured data)  [-] 0.0314 0.0334 
Total CPU time (including data base generation and aggregation) [CPU hour] 63.99 1.37 
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Apart from accuracy, the CPU times were also compared. This CPU time includes the time required to 
simulate the heating profiles databases and aggregate the profiles for a specific district configuration. 
TRNSYS aggregation process required 63.99 CPU hour, while the RC aggregation process required 1.37 
CPU hour to be completed. Apart from the significantly faster building simulation time, the key 
characteristic that caused this monumental difference is the integration of heating profiles with the 
aggregation step in the RC model. In the TRNSYS aggregation process, the heating databases must be 
generated before distributing a random heating scenario. In this case study, a total of 567 profiles (8 
profiles for seven building configurations) were simulated within 63.4 CPU hour. 

In contrast, RC heating profiles simulation can be done after the random distribution of heating 
scenarios. Thus the RC aggregation process involves only simulating the heating profiles according to 
the number of buildings in the district. This significantly lower simulation time is a significant 
advantage, especially if the space heating models have to be calibrated manually to fit the district 
measured data.  

Nevertheless, it is essential to note that once the heating profiles databases are finalized, the 
aggregation process alone only requires 2.24 min. The number of aggregated buildings in the district 
will not make a significant difference in the aggregation time. On the contrary, RC heating demand 
simulation and aggregation are integrated. It means that the number of aggregated buildings directly 
affects the aggregation time. Moreover, the TRNSYS aggregation process might be more advantageous 
if the aggregation process has to be repeated.  

 

Figure 5.2 Comparison of aggregated simulation results against measured data in the month of march 

Figure 5.2 shows the comparison of district-level thermal load of TRNSYS and RC against measured 
data. The loads include space heating and DHW loads. The accuracy of white-box models using TRNSYS 
and RC are presented in Table 5.1. Despite the space heating loads discrepancy, TRNSYS, and RC 
models simulated similar high error when the results are compared to measured data. The load CV-
RMSE for both TRNSYS and RC model respectively are 0.6298 and 0.614. That being said, the DHW 
model has significant influences on the accuracy against measured data.  

1680 1692 1704 1716 1728 1740 1752 1764 1776 1788 1800 1812 1824 1836 1848 1860 1872

Hour of year

0

50

100

150

200

250

300

350
Measured
TRNSYS
RC



Chapter 5: Results of district heat demand simulation 

48 
Anny Lim – October 2020 

The addition of DHW into the total load creates additional load spikes. High load spikes are usually 
associated with activities with high draw-off rate, such as showering. In contrast, short load spikes are 
usually associated with activities with low draw-off rate such as tapping. The effect of DHW load is 
most prominent during activities with high-withdrawal rates, such as shower and bath, which usually 
happens at around 6 AM to 8 AM and 7 PM to 8 PM. By observing Figure 5.2, it was observed that the 
developed DHW profiles managed to represent most of the peak draw-off timing. The discrepancy of 
the peak draw-off occurs in terms of magnitude, which is inherently caused by stochasticity of the 
draw-off rate and temperature.  

On the contrary, the developed DHW profiles couldn’t capture the small draw-off timings as the draw-
off mostly occurs arbitrarily. The frequent mismatches of small draw-off profiles contributed 
significantly to the discrepancy of the results. Finally, the combination of the magnitude and profile 
timing mismatches result in the gross error of the white-box simulation results.   

In addition to DHW profiles inaccuracy, error in space heating models was also identified by observing 
the simulation results' baseload values. TRNSYS and RC model baseload values are mostly lower than 
measured data. That being said, the most probable cause of the lower simulated results is the 
underestimation of sensitive input variables, such as setpoint temperature and infiltration rate.  
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6. Conclusion, limitations, and recommendations  
 

6.1. Discussion & conclusion 
This study has performed dynamic and non-dynamic comparisons between TRNSYS and RC models for 
different zones, building configuration, and boundary conditions. The dynamic comparison was done 
by analyzing the thermal load profiles of the GF zone during winter. Meanwhile, the non-dynamic 
comparisons were done by comparing the cumulative thermal energy and maximum thermal load.  

In general, TRNSYS and RC models' dynamic load profiles follow the same trends throughout the entire 
simulation. However, the thermal load magnitude differs during the transient and quasi-steady-state 
conditions. This difference results in significant errors in thermal load CV-RMSE of a zone. The value 
ranges from 0.14 to 1.267. The magnitude of the difference is affected by the weather conditions, the 
building type, and the zone's heating strategy. In contrast, the RC model demonstrates high accuracy 
in simulating periodical thermal energy demand. The accuracy is consistent in the GF zone and attic 
zone, but a considerable error is observed in the sleep zone.  

At a building-level, the load and energy discrepancies of the RC model are moderated. The CV-RMSE 
values for different building types are also evaluated. The CV-RMSE values are similar for the terraced 
house and semi-detached house, but not with the detached house. The results simulations are also 
consistent in different boundary conditions. In summary, the causes of discrepancies in this study are 
identified as: 

 The difference in numerical methods 
The difference in numerical methods affects the magnitude of the instantaneous heat load to 
increase the air temperature. This gap occurs only during the rise of air temperature. Thus for a 
long simulation time, the numerical method difference doesn’t affect the CV-RMSE significantly. 
However, the loads’ gap is exacerbated by a smaller simulation timestep and frequent setpoint 
temperature fluctuation.  
 

 The simplification of combined longwave radiation and convective heat transfers. 
This simplification has significant effects on the simulated load after the system responds to the 
increased setpoint temperature in the zone, and the air temperature was maintained at setpoint 
temperature. It leads to load overestimation during peak winter and underestimation by the end 
of the heating season in the reference scenario. The discrepancy is notably experienced in a 
harsher weather condition that creates a significant outdoor-indoor temperature difference and  
a zone with a high portion of inner walls connected to other zones (internal partition). The 
demonstration of the surface radiation exchange requires the segregation of inner surfaces into 
a minimum of two different temperature nodes, which was not demonstrated in this study. 
 

 The lumping of thermal resistance into a single node 
The lumping of thermal resistance into a single node doesn’t properly simulate the effect of the 
insulation position within a wall. Consequently, the RC model overestimates the thermal load of 
a highly insulated building with the insulation position inside the wall.  
 

 The assumption of no inter-zone conduction heat flux. 
The assumption of no inter-zone conduction heat flux applies if the zones share isolated an 
internal partition and have similar indoor temperatures. However, this assumption does not 
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properly work for zones with vast temperature differences, such as the case of the sleep zone 
connected to unassessed thermal zones (bathroom and overloop). 
 

At the district simulation, the aggregation of different space heating load profiles can moderate the 
building-level discrepancies. The thermal load CV-RMSE improves from an average building value of 
0.400 to an aggregated value of 0.353. However, the aggregation doesn’t affect the simulated thermal 
energy demand.  

To compare TRNSYS and RC model's performance relative to measured data, the space heating profiles 
were combined with aggregated domestic hot water loads. Both models demonstrate similar accuracy 
in both thermal load and cumulative thermal energy compared with measured field data.  In this study, 
this similarity indicates that DHW load accuracy is a dominant factor in the combined load accuracy. 
The accuracy improvement requires more realistic information on DHW consumption and segregation 
of space heating and DHW data from the total measured load.  

Concerning simulation time, the magnitude is affected by the simulation timestep. Smaller simulation 
timestep provides higher accuracy of RC results relative to TRNSYS results and higher simulation time. 
The optimum simulation timestep that balances the trade-off between simulation time and accuracy 
is the 6 minute timestep. The comparison of simulation time between TRNSYS and RC shows massive 
differences. At a building-level, averagely TRNSYS simulation time is 54.71 times higher than RC’s. The 
magnitude in simulation times difference is exponentially increased in district-level simulation. RC 
simulation requires 1.37 CPU hour, while TRNSYS simulation requires 63.99 CPU hour.  

RC’s superior simulation time and simplicity of the model promise a more convenient process to the 
users. Nevertheless, the results’ quality and reliability are still the priority feature. For a feasibility 
study application, the developed RC model is a suitable tool for assessing quasi-steady-state 
parameters such as daily energy demands at both building-level and district-level. The current model 
application in dynamic simulation is limited to single-zone buildings or multizone buildings with 
minimum zones segregation and instantaneous disruptions within the building boundary. 
Nevertheless, the potential of the model’s improvement might increase its accuracy relative to 
TRNSYS. Moreover, the lumping of the parameters and building structures makes this method 
unsuitable for a simulation that requires a detailed model of a specific building element.  

The applications of white-box models to simulate occupied buildings and prediction requires high-
quality field data input and data segregation between space heating and DHW. Nevertheless, an RC 
model's advantage is its possible development into a grey-box model by calibrating the model 
parameters with good quality measured data. In this case, the RC model can be used later for 
operational predictive applications.  

Finally, this study answered the main research question that the RC model performance compared to 
TRSNYS is subjective to the simulation objective and applications. The model can be used to simulate 
building and district thermal demand. In this case study, the model performs very well in simulating 
periodic thermal energy, thus making it suitable for non-dynamic parameters assessment. The 
application of dynamic thermal load simulation is limited to simple zone/ building design with 
minimum dynamic input values. Nevertheless, further model improvement has the potency to give 
satisfactory results in dynamic simulation. 
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6.2. Limitations and recommendations for future researches 
This study has several limitations regarding the model, climate scenario, and validation against real 
data. Firstly, the simplification of heat flux components such as longwave radiation and lumping of the 
parameters affected the results' accuracy. In this case, further research can be done on different RC 
network configurations, such as increasing the number of surface temperature nodes and 
incorporating the thermal bridge (inter-zone conduction) in multizone building modelling. By doing so, 
the effect of thermal resistance/ insulation distribution can be evaluated as well.  

Simulations were limited to the Dutch maritime climate condition. Further research can be done on 
various climate conditions with distinct characteristics, such as tropical climate or continental climate, 
to observe its performance in different weather conditions. Besides, this study didn’t explore various 
numerical methods to solve the differential equations; thus, future studies might be done to compare 
the effect of different numerical approaches to the simulation results. For comparison against a real 
system, the model can be simulated using actual weather data, such as KNMI weather data.  

Lastly, the study was limited in field information collection for the reference building modelling. The 
validation was also limited to non-dynamic annual energy validation, resulting in the inaccuracy of 
dynamic results. Future works can be improved by collecting more detailed information about the 
buildings, occupant behaviors, and especially DHW draw-off profiles. In addition, improvement of the 
models required validation of separate SH and DHW model against each measured data. One 
alternative that can be proposed in the future is to separate the DHW data from total measured data 
using non-parametric Kernel smoother technique.  
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APPENDIX 
 

A. Building inventories 
Figure A.1 shows the percentile distribution of the building floor area in the Bouverijen while Table A.1 
summarizes the building inventories in the Bouverijen Phase 4 district. The inventory was done based 
on the orientation and position of the building in a series. 

 

Figure A.1 Percentile distribution of usable area for each building type 

 

Table A.1 Inventories of semi-detached and terrace houses based on the orientation and position 

Front façade 
orientation 

Detached 
house 

Semi-Detached Terrace house 
Left Middle Right Left Middle Right 

North 0 0 0 0 2 3 2 
East 1 3 0 3 2 18 2 
South 0 0 0 0 7 15 6 
West 0 6 0 7 2 3 3 
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B. Buildings constructions details 
This section provides detailed building geometrical and construction elements of the reference 
buildings. The building's geometrical information is summarized in Table B.1. The numbers were based 
on the actual reference building blueprints of a terraced house, a semi-detached house, and a 
detached house. Table B.2 provides the minimum R-value for newly constructed buildings as governed 
by the 2012 Building Decree [41]. Table B.3 summarizes the building construction details as the model 
input, adopted from [11]. 

Table B.1 Area of reference buildings constructions components [m2] 

Building component  Detached 
house 

Semi-detached 
house 

Terraced 
house-corner 

Terraced 
house-middle 

Front façade  64.47 46.11 31.54 31.54 
Rear façade  64.47 46.11 31.54 31.54 
Left façade  63.28 64.47 70.66 - 
Right façade  63.28 64.47 - - 
Total façade  255.5 221.16 133.74 63.08 
Floor area  201.00 181.00 142.00 142.00 
Roof  141.14 83.61 33.53 33.53 
Windows  45.89 24.08 14.03 14.03 

 

Table B.2 Recommended thermal properties for A-rated energy label residential buildings 

Building element R-value [m2 K/W] g-value [-] 
External walls 4.5 - 
Ground floor 3.5 - 
Roof 6.0 - 
Partition walls 3.0 - 
Window – glazing 1.2 0.605 
Window – frame  3.0 0.6 
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Table B.3 Details of reference buildings thermal properties 

Building 
structure 

Layer type Layer 
thickness 
[m] 

Layer 
density 
[kg/m3] 

Conduct. 
[W/m.K] 

Specific 
capacity 
[kJ/kg.K] 

Eq. R-
value  
[m2.K/W] 

Thermal 
capacitance 
[kJ/m2] 

External 
wall 

Brick 0.1 1900 1.2 0.84 0.083 159.60 
XPS 0.12 35 0.027 1.47 4.444 6.17 
Brick 0.1 1900 1.2 0.84 0.083 159.60  

0.32 
   

4.61 325.37 
Adjacent 
wall 

Brick 0.1 1900 1.2 0.84 0.083 159.60 
XPS 0.075 35 0.027 1.47 2.778 3.86 
Brick 0.1 1900 1.2 0.84 0.083 159.6  

0.275 
   

2.944 323.05 
Ground 
floor 

Cement screed 0.11 1350 0.5 0.84 0.22 124.74 
Concrete 0.2 2500 1.9 0.84 0.105 420 
XPS 0.09 35 0.027 1.47 3.333 4.63  

0.4 
   

3.658 549.37 
Ceiling Cement screed 0.11 1350 0.5 0.94 0.22 139.59 

XPS 0.08 35 0.027 1.47 2.963 4.116 
Concrete 0.12 2500 1.9 0.84 0.063 252  

0.31 
   

3.246 395.70 
Roof Plasterboard 0.01 850 0.23 0.84 0.012 7.14 

XPS 0.16 35 0.027 1.47 0.109 8.23 
wood 0.02 550 0.14 1.88 0.011 20.68 
 0.19    6.112 36.05 
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C. Occupants related input parameters 
 

C.1. Household sizes 
The variation in the number of occupants is based on the Netherlands household statistical data and 
Bouverijen locality. As explained before, the Bouverijen district is a family-oriented locality. Therefore, 
a single-person household was not considered in this study. CBS 2019 statistical data of private 
households in the Netherlands was used to derive the selection of study input, which is displayed in 
Table C.1 [39].  As can be seen, the distributions of household size at the national, the province, and 
the municipality levels are quite similar. Thus the household size distribution in the Bouverijen district 
was assumed to be of a similar pattern. On average, a household in Breda consists of 2.04 people. 54% 
of the multi-person households is 2-person, while 3-person and 4-person households have similar 
composition of approximately 19%. Therefore, this study considered three types of household size: 2-
person, 3-person, and 4-person.  

Table C.1 Statistical household composition in the Netherlands [39]. 

Regions Average no. of 
person/ household 

Percentage of household distribution based on its size 
2-person 3-person 4-person > 5-person 

The Netherlands 2.13 52.93% 19.09% 19.66% 8.32% 
North Brabant 2.17 53.55% 18.48% 20.25% 7.72% 
Breda 2.04 53.99% 18.72% 19.57% 7.72% 

 

C.2. Occupancy profiles 
This study specified two parameters: the number of occupants per household and the occupancy 
profile, to provide a realistic diversity of building energy demand. Those two parameters, directly and 
indirectly, govern the input values of other critical input variables, such as temperature setting, internal 
gains, DHW consumption, etc. They were incorporated in models through a deterministic approach 
using justified assumptions from statistical data and previous research. Figure C.1 illustrates how 
occupants influence other model components in this study.  

No. of occupants in 
a household

Occupancy 
scenario/ profile in 

a zone

Occupancy factor in a 
zone (presence)

DHW Setpoint 
temperature

Metabolic 
gain Lighting gain Equipment 

gain
Ventilation 

opening
Setback 

operation  

Figure C.1 The schematic of occupants influence on building model's components 

Three occupancy scenarios are defined for each zone: Reference scenario, Mostly Away scenario, and 
Mostly at Home scenario. Each scenario consists of 2 profiles that distinguished between weekends 
and weekdays, as shown in Figure C.2, Figure C.3, Figure C.4, and Figure C.5 
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Figure C.2 Occupancy profiles of the GF zone and the sleep zone for the  Reference scenario 

 

 

Figure C.3 Occupancy profiles of the GF zone and the sleep zone for the Mostly Away scenario 
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Figure C.4 Occupancy profiles of the GF zone and the sleep zone for the Mostly at Home scenario 

 

 

Figure C.5 Occupancy profiles of the GF zone and the sleep zone for all  occupancy scenarios 

 

C.3. Domestic hot water draw-off distribution profiles 
DHWcalc is an open-source tool to generate DHW profile consumption based on probabilistic 
distribution. It distinguishes different draw-off categories such as shower, sink, bath, etch. The tool 
simulates the draw-off flow rate in high time resolution up to 1 min based on the input parameters 
such as draw-off flow rate, draw-off duration, and volume distribution in a day. DHWcalc has been 
widely used in many studies. Braas et al. 2020, simulated a comparable DHW thermal load profiles to 
the actual measured data for a district heating network in Germany [57].  

The DHW distribution profiles in a day were adapted from Rijver [11]. These profiles are unique for 
each occupancy scenario and different between the weekdays and weekends. The profiles distribute 
the volume draw-off at a particular time interval. In the simulation process, these profiles were later 
calibrated manually so that the combined simulated space heating and DHW fit the measured data as 
best as possible.  Table C.2 shows the summary of the hot water draw-off rate, duration, and volume, 
and Table C.3. shows the volume distribution profiles. 
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Table C.2 DHW draw-off input data to generate draw-off profiles 

Parameters Shower Sink Bath Dishwash Total 
End-use draw-off temp [°C] 45 45 45 60 - 
Flowrate @ end-use  [L/min] 5 1 7 5 - 
Flowrate @ T60 [L/min]        3.45        0.69        4.82  5.0 - 
Duration/ draw-off [min] 8 0.5 3 3 - 
Average no. of draw-off  per person[-] 1.5 10 1.5 1 or 21 - 

DHW data of 2 people household 
Daily end-use volume [L] 120 10 21 15.8 166.8 
DHW preparation vol @ T60 [L]    124.04  10.34       21.71  31.6 187.6 
Volume distribution 69% 5.7% 12.1% 13.2% 100.0% 

DHW data of 3 people household 
Daily end-use volume [L] 180 15 31.5 31.6 258.1 
DHW preparation vol @ T60 [L]    124.04       10.34       21.71  31.6 187.6 
Volume distribution 66.1% 5.5% 11.6% 16.8% 100.0% 

DHW data of 4 people household 
Daily end-use volume [L] 240 20 42 31.6 333.6 
DHW preparation vol @ T60 [L] 165.38 13.78 28.94 31.6 239.7 
Volume distribution 69.0% 57% 12.1% 13.2% 100% 

1. The dish washer number of events are determined by number of occupants. Once per day for 2 person household and twice per day for 
3 or 4 person household. 

 

Table C.3 DHW draw-off distribution for each occupancy scenario 

 Weekdays Weekends 

Re
fe

re
nc

e 

Time interval Draw-off % Time interval Draw-off % 
23:00 07:00 5 23:00 08:30 5 
07:00 08:30 30 08:30 11:00 30 
08:30 12:00 10 11:00 18:00 25 
12:00 17:00 15 18:00 20:00 10 
17:00 19:00 10 20:00 22:00 25 
19:00 23:00 30 22:00 23:00 5 

M
os

tly
 a

t H
om

e 

Time interval Draw-off % Time interval Draw-off % 
23:00 08:30 5 23:00 08:30 5 
08:30 10:30 25 08:30 10:30 25 
10:30 13:30 15 10:30 13:30 15 
13:30 16:30 15 13:30 16:30 15 
16:30 19:30 15 16:30 19:30 15 
19:30 23:00 25 19:30 23:00 25 

M
os

tly
 A

w
ay

 

Time interval Draw-off % Time interval Draw-off % 
23:00 06:30 5 00:00 07:30 5 
08:30 08:30 35 07:30 09:30 35 
11:30 11:30 5 09:30 12:30 5 
14:30 14:30 5 12:30 15:30 5 
18:30 18:30 10 15:30 22:30 15 
11:30 23:00 40 22:30 00:00 35 
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D. Solar angles calculations 
 

The continuous earth rotation on its axis and its annual revolution around the sun governs solar 
irradiation's dynamic incidence angle on earth surfaces. The determination of incidence angle involves 
a set of solar angles calculations based on sun-earth geometry. The solar angles formulas used in this 
study are expressed in Equation D.1 until Equation D.9 [58][59]. All angles are expressed in radian. 

E is the equation of time that expressed the difference between local standard time and solar time 
(tsol). ω is the hour angle, which is the time that has passed since the sun crossed the sun meridian. δ 
is the declination angle between the surface and the equatorial plane. θz is the solar zenith angle, γs is 
the solar azimuth angle, γ is the surface azimuth angle, and θ is the incidence angle of the solar 
irradiation to the normal of a surface. 

Equation D.1 

𝐵 = (𝑛 − 1)
2𝜋

365
 

Equation D.2 

𝐸 = 229.2(0.000075 + 0.001868 𝑐𝑜𝑠𝐵 − 0.032077 𝑠𝑖𝑛𝐵 − 0.014615 cos 2𝐵 − 0.04089 sin 2𝐵) 

Equation D.3 

𝑡௦ = 𝑡 +
𝜓௦௧ − 𝜓

15
+

𝐸

60
 

Equation D.4 

𝜔 =
𝜋

12
(12 − 𝑡௦) 

Equation D.5 

𝛿 = 0.006918 − 0.399912𝑐𝑜𝑠𝐵 + 0.070257𝑠𝑖𝑛𝐵 − 0.006758𝑐𝑜𝑠2𝐵 + 0.000907𝑠𝑖𝑛2𝐵

− 0.002679𝑐𝑜𝑠3𝐵 + 0.00148𝑠𝑖𝑛3𝐵 

Equation D.6 

𝑐𝑜𝑠𝜃௭ = sin 𝛿 sin 𝜙 + cos 𝜙 cos 𝛿 cos 𝜔 

Equation D.7 

𝑠𝑖𝑛𝛾௦ =
cos 𝛿 sin 𝜔

𝑠𝑖𝑛𝜃௭
 

Equation D.8 

γ =
(𝐴𝑧𝑖𝑚𝑢𝑡ℎ − 180)

180
𝜋 

Equation D.9 

cos 𝜃 = 𝑠𝑖𝑛𝛿𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛿𝑐𝑜𝑠𝜙cosγ 
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E. MATLAB code 
 

E.1. MATLAB code for solving RC discretized differential equations 
 

function[Zone2Output] = ETP2ndOrderTsaFunV2(HOY,Zone,Tamb,dt,Eff_hr,EffRad) 
 
Qheat2= zeros(numel(HOY),1); 
  
Uinf = Zone.para.Uinf; 
Uvent = Zone.para.Uvent ; 
UAin = Zone.para.UAin ; 
UAout = Zone.para.UAcond ; 
Tsp = Zone.para.Tsp; 
Qmax_zone = Zone.para.Qmax; 
Tsa = Zone.para.Tsa; 
  
thao_GF = dt/Zone.para.Cair; %just a replacement variable to minimize the 
inputs 
thaoM_GF = dt/Zone.para.Cm; 
alpha_GF = 1/thao_GF + Uinf + Uvent + UAin ; 
beta_GF = 1/thaoM_GF + UAin + UAout; 
  
Tin2 = zeros(numel(HOY),1); 
Tin2(1) = 20; 
Tm2 = zeros(numel(HOY),1); 
Tm2(1) = 20; 
Tv = zeros(numel(HOY),1); 
Tv(1) = Tamb(1); 
  
QgainAir2 = Zone.Qinput.QsolgCon + Zone.Qinput.QigCon; 
QgainMin2 = Zone.Qinput.QsolgRad + Zone.Qinput.QigRad; 
QgainMout2 = Zone.Qinput.Qsolx - Zone.Qinput.Qlw; 
 
%t = 1 equals to at time 0 
for t = 2:length(HOY);   % 8760/dt + 1 
             
    if Tin2(t-1) >= 24;  % heat recovery in mechanical ventilation is off 
        Tv(t) = Tamb(t); 
    else                    % heat recovery in mechanical ventilation is on 
        Tv(t) = (1-Eff_hr)*Tamb(t)+Eff_hr*Tin2(t-1); 
    end 
               
           if Tin2(t-1) >Tsp(t)  ; 
            Qheat2(t) = 0;  % [kW] 
             
            A = [beta_GF -UAin; UAin alpha_GF(t)]; 
            B = [(Tm2(t-1)/thaoM_GF+QgainMin2(t)+ UAout*Tsa(t)); (Tin2(t-
1)/thao_GF + QgainAir2(t)+Qheat2(t)+Uinf*Tamb(t)+Uvent(t)*Tv(t))]; 
            T = linsolve(A,B); 
             
            Tm2(t) = T(1); 
            Tin2(t) = T(2); 
                       
        else  
         
            Tin2(t) = Tsp(t); 
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            Qheat2(t) = Tin2(t)*(alpha_GF(t)-UAin^2/beta_GF) - (Tin2(t-
1)/thao_GF+QgainAir2(t)+Uinf*Tamb(t)+Uvent(t)*Tv(t)+... 
                UAin/beta_GF*(Tm2(t-1)/thaoM_GF+QgainMin2(t)+ 
UAout*Tsa(t))); 
             
            Tm2(t) = 1/beta_GF*(Tm2(t-1)/thaoM_GF + 
UAin*Tin2(t)+UAout*Tsa(t)+QgainMin2(t)); 
                   
            if  Qheat2(t)>=0 & Qheat2(t)<=Qmax_zone; 
                Qheat2(t) = Qheat2(t); 
                                                                      
            else 
                Qheat2(t)= Qmax_zone; 
                 
            A = [beta_GF -UAin; UAin alpha_GF(t)]; 
            B = [(Tm2(t-1)/thaoM_GF+QgainMin2(t)+ UAout*Tsa(t)); (Tin2(t-
1)/thao_GF + QgainAir2(t)+Qheat2(t)+Uinf*Tamb(t)+Uvent(t)*Tv(t))]; 
            T = linsolve(A,B); 
             
            Tm2(t) = T(1); 
            Tin2(t) = T(2); 
                                  
            end 
                                           
        end 
  
Zone2Output.Tin = Tin2; 
Zone2Output.Tm = Tm2; 
Zone2Output.Qheat = Qheat2;     % only sensible heat 
Zone2Output.QsupHeat = Qheat2/EffRad; % considering the radiator efficiency  
Zone2Output.EsupHeat = cumsum(Zone2Output.QsupHeat)/(3600/dt); 
 

        end 
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E.2. MATLAB code for solar angles calculations 
 

%% solar Incident angle (teta) function 
  
function [teta] = IncidentAngleV2 (lat, long, longSTD, slope, 
Orient,tresolution) 
  
deltat = tresolution/60; % simulation time increment, 6 min [hour] 
nd = cell(365,1); 
nd{1} = ones(24/deltat,1); 
  
    for d =2:365; 
    ntemp=d*nd{1}; 
    nd{d} = cat(1,nd{d-1},ntemp); 
    end 
  
nDays = cat(1,nd{365,1},1 
  
HOY = 0:deltat:8760;  % hour of year 
HOY = round(HOY',2); 
TOD = 0:deltat:(24-deltat);  % time of day 
TOD = round(repmat(TOD',365,1),2); 
TOD = cat(1,TOD,24); 
  
B = 2*pi*(nDays-1)/365; 
dt_EOT = 229.2*(0.000075+0.001868*cos(B)-0.032077*sin(B)-0.014615*cos(2*B)-
0.04089*sin(2*B)); 
 
  
DST = zeros(numel(HOY),1);      % daylight saving time 
idx_DST = find(HOY > ((88*24)+2) & HOY <((298*24)+3));  % DST starts from 
29 March 2 AM to 25 Oct 3 AM 
DST(idx_DST) = -1; 
  
  
tsol = TOD + (longSTD-long)/15 + dt_EOT/60;  % solar time 
omega = pi/12*(12-tsol);        % hour angle 
  
% Angle calculation 
  
decli = 0.006918-0.399912*cos(B)+0.070257*sin(B)-
0.006758*cos(2*B)+0.000907*sin(2*B)-0.002679*cos(3*B)+0.00148*sin(3*B); 
zen_sol = 
acos(cos(lat/180*pi).*cos(decli).*cos(omega)+sin(lat/180*pi).*sin(decli));         
azim_surf = (Orient-180)/180*pi;             % surface azimuth angle,  
azim_sol = cos(decli).*sin(omega)./sin(zen_sol); 
 
teta 
=acos(cos(slope/180*pi).*cos(zen_sol)+sin(slope/180*pi).*sin(zen_sol).*cos(
azim_sol-azim_surf));      % incidence angle (teta) [rad] 
idx_obtuse=(find(teta>pi/2));       % find the index where the incident 
angle is more than 90 deg 
teta(idx_obtuse)=pi/2; 
  
end 
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E.3. MATLAB code for TRNSYS heating profiles randomization and aggregation 
 
function 
[SubDisEtot,ESHh_sim,EDHWh_sim,Etoth_sim,SubDisPtot,PSHh_sim,PDHWh_sim,Ptot
h_sim] = 
RandomDistMonteCarlo(ESH_conf,EDHW_conf,PSH_conf,PDHW_conf,Aref,AgH,nh,nr) 
  
ESHh_sim = cell(nr,1);       
EDHWh_sim = cell(nr,1);      
Etoth_sim = cell(nr,1);      
PSHh_sim = cell(nr,1);       
PDHWh_sim = cell(nr,1);      %  
Ptoth_sim = cell(nr,1);      %  
  
 for r = 1:nr;        
    for h = 1:nh 
         
    Noc = randi([2 4],r,h);            % randomize the number of occupants 
    Osc = randi([1 3],r,h);            % randomize the occupancy scenario 
    dT = randi([1 3],r,h);            % randomize the setpoint change [1: -
2degC, 2: 0 degC, 3: 2degC] 
    VR = randi([1 3],r,h);          % randomize the ventilation rate 
    Tt = randi([1 3],r,h);          % randomize the tapping time profile  
    TR = 0.1*randi([5 10],r,h);     % randomize the flow rate  
       
    SHCode(r,h) = 
str2num(strcat(num2str(Noc(r,h)),num2str(Osc(r,h)),num2str(dT(r,h)),num2str
(VR(r,h)))); % the random parametric scenario code for SH  
    DHWCode(r,h) = 
str2num(strcat(num2str(Noc(r,h)),num2str(Osc(r,h)),num2str(Tt(r,h)))); %  
     
    % Thermal energy [kWh] 
    ESHh(:,h)= AgH(h)/Aref * 
ESH_conf(2:end,find(ESH_conf(1,:)==SHCode(r,h)));   
    EDHWh(:,h)= 
TR(r,h).*(EDHW_conf(2:end,find(EDHW_conf(1,:)==DHWCode(r,h))));   
    Etoth = ESHh + EDHWh; 
    SubDisEtot(:,r)=sum(Etoth,2);   
    ESHh_sim{r}=ESHh;             
    EDHWh_sim{r}=EDHWh; 
    Etoth_sim{r}=Etoth;             
     
    % Thermal load [kW] 
    PSHh(:,h)= AgH(h)/Aref * 
PSH_conf(2:end,find(PSH_conf(1,:)==SHCode(r,h)));  % the SH demand of each 
house  
    PDHWh(:,h)= 
TR(r,h).*(PDHW_conf(2:end,find(PDHW_conf(1,:)==DHWCode(r,h))));  % the DHW 
demand of each house  
    Ptoth = PSHh + PDHWh; 
    SubDisPtot(:,r)=sum(Ptoth,2);  % sum of all houses load/ energy per 
timestep per simulation 
    PSHh_sim{r}=PSHh;             
    PDHWh_sim{r}=PDHWh;           
    Ptoth_sim{r}=Ptoth;            % 
       end     
end 
end 


