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of the codes, it is only the B; to which Theorem 2 applies
directly.

REFERENCES

[1] C. W. Curtis and 1. Reiner, Representation Theory of Finite Groups
and Associative Algebras. New York: Wiley, 1962.

[2] P. Delsarte and R. J. McEliece, “Zeros of functions in finite
Abelian group algebras,” Amer. J. Math., vol. 26, pp. 145-153,
1971.

[3] L. Dornhoff, Group Representatwn Theory. New York: Dekker,
1971.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 3, MAY 1983

[4] B. Huppert, Endliche Gruppen I. Berlin: Springer-Verlag, 1967.

[5] F.J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correct-
ing Codes. Amsterdam: North-Holland, 1977.

[6] J. Milnor and D. Husemoller, Symmetric Bilinear Forms. New
York: Springer-Verlag, 1973.

[71 N.J. A. Sloane, “Self-dual codes and lattices,” in Relations Between
Combinatorics and Other Parts of Mathematics (Proc. Symp. Pure
Math. 34). Providence, RI: Amer. Math. Soc., 1979, pp. 273-308.

[8] H. N. Ward, “Combinatorial polarization,” Discrete Math., vol. 26,
pp. 185-197, 1979.

[9] ——, “Divisible codes,” Arch. Math. (Basel) vol. 36, pp. 485-4%4,

1981

——, “Multilinear forms and divisors of codeword weights,” Quart

J. Math Oxford Ser. (2), vol. 34, no. 133, 1983.

[10]

On the Preparata and Goethals Codes

RONALD D. BAKER, JACOBUS H. VAN LINT, aND RICHARD M. WILSON

DEDICATED TO JESSIE MACWILLIAMS ON THE OCCASION OF HER RETIREMENT FROM BELL LABORATORIES

Abstract— Simple descriptions of Preparata and Goethals codes are
provided.

I. INTRODUCTION

N a paper on the partitioning of affine planes [1] the

first author pointed out that some of his methods also
lead to a simple description of the Preparata codes (cf. [2],
[6], [7]). Since the known descriptions of these codes in-
volve rather messy calculations it seems worthwhile to give
this simple description. We shall show that the same ideas
can be used to treat the Goethals codes (cf. [3], [6]). Several
authors have observed that a Hamming code can be parti-
tioned into extended Preparata codes (cf. [1], [8]). The
methods of this paper allow us to also show this fact in a
simple way. »

11. PREP{ARATA CODES

In the following m is odd (m > 3),n = 2" — 1. Let F be
the field GF(2™) and let x — x° be an automorphism of
F, ie., o is a power of 2. We require that both x — x°*!
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and x — x°~! are one-to-one mappings, i.e., (6 + 1,2” —
1) = 1. (This is true, for example, for ¢ = 2.)

For the admissible values of o we shall define a code
P(o) of length 2n + 2 = 2"*!. The codewords will be
described by pairs (X, Y), where X C F, Y C F. As usual
we interpret the pair (X, Y) as the corresponding pair of
characteristic functions, i.e., as a (0, 1)-vector of length
2m*+1 We shall let the zero element of F correspond to the
first position in the X-part.

Definition 1: The extended Preparata code P(o) of

- length 2™*! consists of the codewords described by all

pairs (X, Y) satisfying

a) |X|iseven,|Y|is even,

b) X x= Xy

x€X yeY
o+1
C) Z x9+! +( Z X) — Z yo+l_
x€X x€X ye€Y

The code ¥P(0) is obtained by deleting the first coordi-
nate.

Remark: It is not difficult to check that the usual com-
plicated definition of the Preparata codes (cf. [2]) actually
coincides with Definition 1 for ¢ = 2.

For a discussion of the properties of these codes we
make the following conventions concerning notation. The
symmetric difference of two sets X;, X, is denoted by
X,A X, (this corresponds to addition of codewords). The
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set {x + a|x € X} is denoted by X + a. Many of the
calculations depend on the following equality:

(a+b)" =a*" +a% +ab° + b (1)

We shall show that the Preparata codes are nearly per-
fect and hence completely regular. The weaker assertion
that %(o) is distance invariant can be proved directly.

Theorem 1: The code Q—P(o) is distance invariant.

Proof: We compare a codeword (X, ;) with (&, &)
=0. Let @ =X, xx. The mapping (X,Y)~ (U, V),
where U = (X2 X,) + a, V = YAY, is clearly one-to-one.
We show that if (X, Y) is a codeword then so is (U, V) and
vice versa. For Definition 1 a) and b) this is trivial: We
check Definition 1 ¢). Using (1) we find

5 gy ( > x)a+1

x€el xeyvu
_ o+1 o+1 o+l
=Y (x+a)"+ Y (x+a)T +|{ X x+a
xeX x€ X, x€X
— Z xa+1 + Z xa+1 +( Z x)a+1 +ao+1
xeX xEXO\ x€X
= Z ya+1 + Z yo+1 = E yu+1
ye€Y YEY yev

]

The proofs of the main properties of these codes become
simpler if we first find some automorphisms of the codes.

Theorem 2: The group Aut (o) contains the permuta-
tions

a) (X,Y)=»(X+c¢,Y+¢), c€F,
b) (X,Y)- (7, X),
c) (X,Y)» (aX,aY), acF*,
d (X,Y)- (X°,Y%), ¢ € AutF.
Proof: In the case of a) one checks Definition 1 c¢)
using (1). All the other properties are trivially true. O

We remark that the permutations a) and b) generate all
the translations of the (m + 1)-dimensional vector space
V=F & GF(2). The complete group Aut P(0) was de-
termined by W. M. Kantor [4].

Theorem 3: @’(a) has minimum distance 6.

Proof: By Theorem 1 it is sufficient to show that the

minimum weight is 6. There are obviously no words of -

weight 2. So we must show that weight 4 can not occur.
There are two cases:

1) If ({(x;, x50, {¥1, »»)) is a codeword we may assume
that x, = 0 (by Theorem 2). Then Definition 1 ¢)
yields

yl o+1 + yo+1 — O
and then the condition on ¢ implies that y, = y;, a
contradiction.
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2) By Theorem 1 and Theorem 2 it remains to check the
possibility [X|=4, Y= &, where X = {0, q, b, ¢}.
From Definition 1 b) and ¢) we find

a+b+c=0,
ao+1+ba+l+ca+l=0‘

Substituting the first equation into the second,
using (1), yields ab(a°~' + b°" 1) =0, ie, a=b, a
contradiction; (here we use the fact that x —» x°~!is
one-to-one). Finally we show that there are indeed
codewords of weight 6. Given a, b, c (distinct), define
y by y°*tl=4a"t + p°*1 4+ ¢°F! and define x by
x=a+b+c+y Then ({0, x){a,b,c,y) is a
codeword. O

From the original definition of the Preparata codes one
immediately finds the number of codewords. In the case of
Definition 1 this is more difficult.

Theorem 4: |9(o)| = 2%, where k = 2"*! — 2m — 2.

Proof: In Definition 1 we can choose the set X in 2"
ways, satisfying a). We count how many sets Y C F*
satisfy b) and c) and to each such set add the element O if
necessary to satisfy a). Let w be a primitive element of F
and m;(x) the minimal polynomial of «’. The two equa-
tions, Definition 1 b) and c), for the elements y are
equations over F. Considering F as m-dimensional space
over GF (2) these become 2m linear equations over GF (2).
We claim that these equations are independent. This is so
because (o + 1, n) = 1 and hence m,_ (x) has degree m,
i.e., the cyclic code over GF (2) with length » and generator
m(x)m, (x) has dimension n — 2m. It follows that for
each choice of X the equations, Definition 1 b) and c), have
2"~2m solutions Y with ¥ C F*. This proves our assertion.

O

From Theorem 3 and Theorem 4 it follows that the
codes P(o) are nearly perfect (cf. [2]). In the next section
we shall show that the extended Hamming code is a union
of translates of P(o).

The arguments above do not show that different values
of o produce different codes. However it was shown by
W. M. Kantor that P(o) and P(r) are equivalent if and
only if ¢ = 7 or o7 = 2™ (cf. [4]).

III. A PARTITION OF THE HAMMING CODE INTO
TRANSLATES OF %(0).

. We define a number of translates of P(o) as follows. Let
@, = P(0) and if & € F* then let C, be the code obtained
by adding the word corresponding to ({0, a},{0, a}) to the
codewords of P(o). '

Lemma 1: The code C, has minimum weight 4, (o €
F*).

Proof: By Theorem 1 and Theorem 3 we only have to
show that no word has weight 2. Weight 2 is possible only
if %(0) contains a word of the form ({0, a},{0, a, ,8 ). By
Definition 1 b) this is not so. O
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By Theorem 3 the codes C,, where a € F, are pairwise
disjoint. We define

= U C,. (2)
aclF
From Theorem 4 we find | 9| = 2”|9(o)| = 22" " which is
the cardinality of the extended Hamming code of length
2n + 2.
Lemma 2: HCis a linear code.

_ Proof: Let (X,,Y)) and (X,,Y;) be codewords in
P(o) and let a € F, B € F. We define 5, =X, cxx (i =
1,2). For y € F we define X and Y by

Xa{0a{y} = X0 X, 0{a}a( B},

Y a(0)a(y) = Y,aY,a{a)a(B).

We must show that there is a choice for y such that
(X,Y) € (o). For each choice of y the sets X and ¥
satisfy Definition 1 a) and b). Substitution in Definition 1
¢) yields the equation

o+1

(s, +s,+a+B+7y)" " =s{T+s57

which has a unique solution y. O

Theorem 5: IC is the extended Hamming code of length
2m+R

Proof: I is linear and it has the required minimum
distance and cardinality. O

We remark that the fact that P(¢) is nearly perfect with
minimum distance 5 and wordlength = 0 (mod 3) implies
that we can obtain the Hamming code of the same length
by taking the Preparata code and all words which have
distance 3 from this code (cf. [2], [8]).

IV. Two LemMMaAs oN CycLic CODES

At the Oberwolfach Meeting on Information Theory in
April 1982 a new bound for the minimum distance of
cyclic codes was presented by C. Roos. It turned out that
the following two lemmas are both applications of this
bound. They have been included as examples in the paper
by C. Roos ([9] elsewhere in this issue). As a consequence
the proofs which we give below are too difficult for the
present problem, but since they are of independent interest
we have not changed them.

Let m = 2¢ + 1 and let @ be a primitive element of [F.
Letp=2""0=2r=p+1s=0+1

Lemma 3: The cyclic code % of length n, generated by
m (x)m (x), has minimum distance at least 5.

Proof: Among the zeros of any codeword we find w’
with j respectively r, s, 2r=s+ 1, s - 27! = 25 — 1,25,
p-20t2 =202 4 1 The values s, s + 1, and 2s — 1,25
show, using the Hartmann—-Tzeng bound (cf. [5]), that D
has minimum distance at least 4. We now follow an idea of
Goethals [3]. Suppose x' + x/ + x* + x' is a codeword of
weight 4 in 9. Let S = {«', w/, &¥, &'} and let (S) be the
linear space spanned by S. Define the linearized poly-
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nomial 7(y) by
4
a(y)= Il b-8=2X =y, az0,7,+0.
£e(S) u=a

Define S, by
S =

2:£I+T.

¢esS

We saw above that S, =0forv =¢— 1,7, ¢+ 1,7+ 2.
From the equation

~b 4
0= ¥ &(n(8))" = X Spru
tesS u=ua
it follows that if S, = 0 for four consecutive values of »
then S, = 0 for all values of ». This would imply that
S,=S5,=5,=0, ie, v, &, & are zeros of our code-
word, contradicting the Bose—Chaudhuri-Hocquenghem
bound. m|

Lemma 4: The cyclic code )’ of length n, generated by
m,(x)m,(x)m (x), has minimum distance at least 7.

Proof: First suppose that there is a codeword of weight
6, say with nonzero coordinates in the positions a, S, v, 8,
€, b, where p = a + B+ v + 8 + €. Then we have a” + "
+ "+ 8 + ¢ = p and a similar equation for the expo-
nent s. An easy calculation shows that this implies that the
word with nonzero coordinates in the positions a + e,
B+e y+e 8+€ a+ B+ v+ 38 also belongs to the
code. By Lemma 3 it is now sufficient to show that %" does
not have minimum distance 5. In the same way as in the
proof of Lemma 3 we assume that there is a codeword of
weight 5 and look at the space spanned by the nonzero
coordinate positions. Because m (x) divides the generator,
this space has dimension at most 4. The proof of Lemma 3
shows that this leads to a contradiction. O

V. Tue GOETHALS CODES

We use the notation of the previous section. The Goethals
code is the intersection of ¥(p) and ¥P(¢), without the
restriction on p and o which we made in Section II. A
direct definition analogous to Definition 1 is the following.

Definition 2: The Goethals code § of length 2"*' con-
sists of the codewords described by all pairs (X, Y') satisfy-
ing

a) |X|iseven, |Y]|is even,

b)) Yx=X
xeX yeyY

9 Lx+(Lx)=Xy
xeX xeX yE€EY

d) Exx+(2x)=2ys.
xeX x€X yeY

From the proof of Theorem 1 we see that § is also
distance invariant. The automorphisms of Theorem 2 are
clearly also in Aut §.
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Theorem 6: § has minimum distance 8.

Proof: Again it is sufficient to show that § has mini-
mum weight 8. By Theorem 3 there are only two possibili-
ties which we must con51der The first of these is X = @,
Y| > 6. In this case Y corresponds to a codeword in GD’,
so |Y| > 8 by Lemma 4. The second possibility is | X| = 2,
[Y] > 4. The automorphisms a) and ¢) of Theorem 2 show
that we may assume without loss of generality that X =
{0, 1). From Definition 2 ¢) and d) we find that ¥ corre-
sponds to a codeword in ), ie., |Y|> 6 by Lemma 3.
Finaily we observe that | X| = |Y| = 4 is possible by taking
X=Y={,aB a+p). O

To find the cardinality of § we can use exactly the same
method as in the proof of Theorem 4. Since (n,ry=(n,s)
= 1 the polynomials m,(x) and m (x) have degree m.
Hence )’ has dimension n — 3m. The argument of Theo-
rem 4 now shows that |G| = 2/, where / = 2”*! — 3 — 2.
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On the Inequivalence of Generalized
Preparata Codes

WILLIAM M. KANTOR

DEDICATED TO JESSIE MACWILLIAMS ON THE OCCASION OF HER RETIREMENT FROM BELL LABORATORIES

Abstract—1If m is odd and 6 € Aut GF (2™) is such that x — x° ~ ! is
1 — I, there is a 2! — 1,2"*' — 2 — 2] nonlinear binary code P(o)
having minimum distance S. All the codes P(¢) have the same distance and
welght enumerators as the usual Preparata codes (which rise as P(o) when
x% = xz) It is shown that P(0) and P(7) are equivalent if and only if
=%, and Aut P(0) is determined.

I. INTRODUCTION

N [13], Preparata introduced a family of [27*! — 1,

27*1 — 2m — 2] nonlinear binary 2-error correcting
codes, where m is odd and m > 1. These have remarkable
combinatorial properties:: they are nearly perfect codes
(Goethals and Snover [7 [7]; Cameron and van Lint [4, ch.
16]) and, in particular, they are uniformly packed (Sema-
kov, Zinovjev, and Zaitsev [14]); they give rise to designs
[14], [15], [7], [12, p. 473], [4, pp. 89-90]; and they produce
parallelisms of the lines of PG(m,2) [15]; [1]. The pub-
lished descriptions of these codes [13], [15], [12, § 15.6], [4]

Manuscript received September 11, 1981; revised March 23, 1982.
The author is with the Department of Mathematics, University of
Oregon, Eugene; OR 97403,

x> x°

are complicated and difficult to work with. Fortunately,
Baker and Wilson [2] have found a relatively simple de-
scription which led to a generalization of Preparata’s codes.

Let m be odd, m > 1, and let o e Aut GF (2™), where
"is 1 — 1. (Thus, if x° = x?' for all x then i and
m are relatively prime.) Baker and Wilson constructed a
code P(o) having the same parameters as Preparata’s
codes (cf. (1)), and hence having the same combinatorial
properties. Moreover, their description makes a group of
(2™ — 1)m automorphisms very visible. We will show that
this group is precisely Aut(P(o) when m > 3, and that
two generalized Preparata codes P(o) and P(T) are equiva-
lent if and only if r = ¢ *'. Similar results are obtained for
the extended codes P(o) of length 21,

All the codes P(o) (for fixed m) have the same distance
and weight enumerators (by Goethals and Snover [7, p.
85]). One of the many curious properties of the extended
Preparata codes is that their weight enumerators are re-
lated to those of the Kerdock codes [11] in exactly the same
manner as are the enumerators of a linear code and its dual
[111, [7], [12, p. 468]. This naturally leads to speculations as
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