First-ever measurements of ion energy distribution functions in EUV induced plasma

Citation for published version (APA):

Document license:
Other

Document status and date:
Published: 16/03/2016

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
FIRST-EVER MEASUREMENTS OF ION ENERGY DISTRIBUTION FUNCTIONS IN EUV INDUCED PLASMA

T.H.M. van de Ven1, P. Reefman1, E.A. Osorio2, V.Y. Banine1,2, J. Beckers1
1Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2ASML, De Run 6501, 5504 DR Velhoven, The Netherlands

t.h.m.v.d.ven@tue.nl

Introduction

The EUV sources for ASML’s next-gen lithography tools allow us to investigate EUV induced plasmas, which up to recently, have been exclusively investigated by astronomers.

EUV-induced plasmas are of significant importance with respect to the lifetime of components in EUV lithography tools. An important parameter is the ion energy distribution function (IEDF).

For the first time ion energy distribution functions (IEDFs) have been measured in an EUV induced plasma.

Surface interactions

IEDFs have been measured with the EQP in parallel and perpendicular configurations. In the perpendicular configuration EUV light hits the EQP sample plate. In the parallel configuration there are no surfaces exposed to EUV.

• Broad distribution
• Energy cut-off at 18 eV

Parallel

Perpendicular

• Bulk has low energy (<5 eV)
• Energy tail up to 22 eV
• H+ density much lower than H++
• H++ is converted to H++ by collisions with background: H++ + H → H + H++
• Secondary electrons reduce the T_e and V_per and thereby the ion energy

Spectral effects

The spectrum produced by the EUV source also contains substantial amounts of lower energy Vacuum UV. A spectral filter, with a pass band of 10-20 nm can be used to reduce this out of band radiation.

- IEDFs of different species react similar to change in spectrum
- VUV increases the ions density due to larger ionization cross section
- Addition of VUV doesn’t change IEDF shape
- High spectral power creates a high energy shoulder

References


Outlook

• Verify numerical (PIC) models made by D. Astakhov (ISAN, Russia)
• Quantification of ion fluxes to assess EUVL tool lifetime
• Investigate scaling laws to deduce ion dynamics