First-ever measurements of ion energy distribution functions in EUV induced plasma

Citation for published version (APA):

Document license:
Other

Document status and date:
Published: 16/03/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
FIRST-EVER MEASUREMENTS OF ION ENERGY DISTRIBUTION FUNCTIONS IN EUV INDUCED PLASMA

T.H.M. van de Ven1, P. Reefman1, E.A. Osorio2, V.Y. Banine1,2, J. Beckers1
1Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2ASML, De Run 6501, 5504 DR Veldhoven, The Netherlands
✉ t.h.m.v.d.ven@tue.nl

Introduction
The EUV sources for ASML’s next-gen lithography tools allow us to investigate EUV induced plasmas, which up to recently, have been exclusively investigated by astronomers.

EUV-induced plasmas are of significant importance with respect to the lifetime of components in EUV lithography tools. An important parameter is the ion energy distribution function (IEDF).

For the first time ion energy distribution functions (IEDFs) have been measured in an EUV induced plasma.

Surface interactions
IEDFs have been measured with the EQP in parallel and perpendicular configurations. In the perpendicular configuration EUV light hits the EQP sample plate. In the parallel configuration there are no surfaces exposed to EUV.

Parallel

EUV induced plasma

Perpendicular

- Broad distribution
- Energy cut-off at 18 eV
- H_3^+ is converted to H_2^+ by collisions with background: $H_3^+ + H \rightarrow H^+ + H_2^+$
- Secondary electrons reduce the T_e and V_{th}, thereby reducing the ion energy

Spectral effects
The spectrum produced by the EUV source also contains substantial amounts of lower energy Vacuum UV. A spectral filter, with a pass band of 10-20nm can be used to reduce this out of band radiation.

- IEDFs of different species react similar to change in spectrum
- VUV increases the ions density due to larger ionization cross section
- Addition of VUV doesn’t change IEDF shape
- High spectral power creates a high energy shoulder

References

Experimental setup
The setup consist of an EUV source, collector vessel and measurement vessel. The EQP can be positioned in multiple configurations.

- Source
- Collector
- Measurement vessel
- EQP
- Filter
- Detector
- Optical setup
- Sampling orifice
- Mass filter
- Plate
- Ion optics
- Vacuum UV. A spectral filter, with a pass band of 10-20nm can be used to reduce this out of band radiation.

- IEDFs of H$^+$ measured with and without Spectral Purity Filter. The filter reduces the total power with 70%, therefore a measurement is done with a reduction plate of 30%.

- IEDFs of different species react similar to change in spectrum
- VUV increases the ions density due to larger ionization cross section
- Addition of VUV doesn’t change IEDF shape
- High spectral power creates a high energy shoulder

Outlook
- Verify numerical (PIC) models made by D. Astakhov (ISAN, Russia)
- Quantification of ion fluxes to assess EUVL tool lifetime
- Investigate scaling laws to deduce ion dynamics

Contact
T.H.M. van de Ven, T.H.M.v.d.ven@tue.nl

First ever measurements of ion energy distribution functions in EUV induced plasma.

Science
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Spectroscopy
- VUV
- Vacuum UV
- EUV
- EUV-induced plasma
- EUV source
- Collector
- Measurement vessel
- EQP
- Filter
- Detector
- Optical setup
- Sampling orifice
- Mass filter
- Plate
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Research
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Industry
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Academic
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Software
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Programming
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Science
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Technology
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Science
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Academic
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Industry
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

Academic
- EUV-induced plasma
- Ion energy distribution function (IEDF)
- Ion dynamics
- EUV lithography
- EUV induced plasma
- EUV source
- Collector vessel
- Measurement vessel
- Electrostatic Quadrupole Plasma analyser (EQP)
- Mass filter
- Ion optics
- Vacuum UV
- Spectral filter
- Filter Transmission Calibration Certificate
- Physikalisch-Technische Bundesanstalt (PTB)
- Braunschweig and Berlin, 2015

References