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Abstract

Controlling physical systems using powerful methods of the Linear Time-Invariant (LTI)
framework is wide-spread in the industry, due to its generic, systematic, easy-to-use and
intuitive design tools and methodologies. Moreover, approximating the (inherently nonlinear)
physical systems with an LTI model has been sufficiently accurate as long as the operating
conditions of the system are in the (small) region where this approximation holds. As the
performance demands are growing, the operating conditions are progression beyond this region
of approximation. This causes the uncertainty (inaccuracy) of the LTT model to increase due
to the nonlinearities in the physical system, which leads in turn to either an infeasible LTI
control problem or unacceptable performance degradation of the (robustly) controlled system.
Hence, analyzing and accounting for the nonlinear effects in these physical systems becomes
increasingly more important.

This thesis aims at defining a systematic control design framework for nonlinear systems,
which is generic, systematic and intuitive, just as the LTI control framework, such as global
stability and performance guarantees, computationally attractive controller design methods
and an intuitive performance shaping framework. The three key ingredients that are required
to accommodate such a systematic control framework are: 1) A global dissipativity analysis
tool, to have global stability and performance analysis for nonlinear systems. 2) Synthesis
tools, for the design of optimal controllers, which can ensure global stability and performance
properties of the closed-loop system. 3) A shaping framework for nonlinear systems that allows
to intuitively formulate performance specifications for the closed-loop nonlinear system.

By analyzing the trajectories of the nonlinear system using the incremental framework, a
global dissipativity analysis tool is derived for which the analysis conditions can be convexi-
fied using a differential parameter-varying inclusion. These results allow for convex, global
dissipativity analysis, and hence for global and computationally attractive (signal-based) per-
formance analysis of nonlinear systems. The synthesis tools result from combining existing
synthesis algorithms with the developed dissipativity analysis tools. This yields the possib-
ility to synthesize controllers for nonlinear systems with convex optimization, which globally
guarantee stability and performance of the closed-loop system.

Moreover, this thesis sets the first steps towards a nonlinear shaping framework by investigat-
ing the possibilities and limitations regarding frequency domain characterization of nonlinear
systems, while retaining an LTI intuition for the performance characterization. By using sim-
plified nonlinear model structures, approximate shaping methodologies are established, which
allow to shape Wiener and Hammerstein structured models with LTI shaping filters. While
the shaping methodologies established in this thesis may not apply to general nonlinear sys-
tems, the results give new insights for further development of a nonlinear shaping framework
and may serve as a stepping stone to reach new insights.
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Chapter 1

Introduction

The goal of a control engineer is very often to control a physical system in such a way
that the controlled system admits a desired behavior. Suppose this system is the mass-
spring-damper (MSD) system depicted in Figure The dynamics of this system can be

Figure 1.1: A Mass-Spring-Damper system, i.e. the PATO setup at the TU/e.

accurately described by a Linear Time-Invariant (LTT) differential equation. The problem
of controlling this system can be solved with the help of the powerful methods of the LTI
framework. The LTI framework has grown into a systematic and easy-to-use framework for the
control, modeling and identification of physical systems. Furthermore, the framework builds
on consisting theories on stability (e.g. Lyapunov theory) and performance (e.g. dissipativity
theory ), and allows for extensive and systematic methodologies for convex stability and
performance analysis, evaluation of LTI system behavior, and optimal controller synthesis.
Additionally, the easy-to-use and intuitive shaping tools, analysis concepts (e.g. pole-zero
analysis, Nyquist, Bode, etc.) and the wide array of control design methods from PID to
optimal gain control makes the LTI framework attractive to use in practice, as there is a
tool available for every level of complexity. Moreover, while there exists no physical system
that can be truly described using LTI dynamics, a large class of physical systems can be
modeled sufficiently accurate using the LTI framework, for example the system in Figure[L.1
So far, the application of LTI tools on the physical (inherently nonlinear) systems have been
able to meet the required performance specifications in industrial applications ranging from
high-tech wafer-steppers , to large-scale chemical plants, to a nation its power grid .
However, the growing performance demands in terms of accuracy, response speed and energy
efficiency, together with increasing complexity of the to-be controlled systems to accommodate
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CHAPTER 1. INTRODUCTION

such expectations, are progressing beyond the capabilities of the LTI framework in terms
of modeling and control tools. Especially when the system is operated continuously in a
transient mode, or with rapid transitions between different operating points, the controlled
system cannot serve the desired performance and can even yield unstable behavior when the
LTT approximation of the system is used. Therefore, stability and performance analysis of
the full (nonlinear) behavior of a physical system becomes increasingly more important. Over
the years many controller design methods have been developed for nonlinear systems, such as
e.g. backstepping, feedback linearization and input-output linearization. However, these tools
often involve cumbersome computations and require restrictive properties on the nonlinear
systems. Therefore, the question raises, is it possible to have a systematic and easy-to-use
modeling, control and identification framework for nonlinear systems, with the same favorable
properties as the tools of the LTI framework. To answer this question, the key ingredients
of such a systematic framework must be analyzed, where the focus in this thesis is only on
analysis and controller design.

Let the goal be to systematically design a controller for the LTI dynamics of the system in
Figure such that it behaves optimally with respect to the user-defined specifications,
where the optimality is based on the Ho-norm of the (weighted) closed-loop system. The
first step in the systematic design procedure is to model the system as a generalized plant.
With a generalized plant, it is possible to describe the main system dynamics and all the
additional aspects, like sensor and actuator dynamics, additional subsystems etc., and collect
all disturbance, performance, measurement and control signals, which can be interconnected
‘arbitrarily’, in a single plant, such that a controller may be found that can internally stabil-
ize the plant. Next, the generalized plant is weighted with filters that describe the expected
frequency behavior of the disturbance channels and the desired behavior of the performance
channels. An example of the weighted generalized plant is shown in Figure where 7(t),
d(t) and 7j(t) are the disturbance channels, &(t) is the performance channel, u(t) is the control
channel and y(t) is the measurement channel. The next step is to synthesize an Ly-gain

W, é(t) d(t) W, d(t)
U109 ol K0 ;{

Figure 1.2: A possible weighted generalized plant for the MSD system, where the orange part
is the weighted generalized plant.

optimal Hs, controller using convex computation tools that ensure the performance char-
acteristics for the closed-loop system, specified by the weighting filters. Implementing the
synthesized controller on the physical system will ensure this performance in the operating
range where the LTI system is an accurate model of the physical system.

Analyzing this systematic approach, there are three key ingredients which make the systematic
control design procedure possible in the LTI framework:
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1.1. BACKGROUND

1. Dissipativity analysis — Stability and performance analysis
2. Synthesis tools —  Optimal controller generation
3. Shaping framework —  Encoding performance specifications

It must be noted that the computational ease of the above key ingredient is an overall key
aspect. Therefore, this thesis investigates whether it is possible to have the above key ingredi-
ents available for nonlinear systems, while ensuring computational efficiency of the resulting
tools.

1.1 Background

The first key ingredient is a dissipativity based analysis tool for nonlinear systems. Dissip-
ativity, introduced by Willems [1], is a (local) system property, and represents the flow of
(conceptual) energy through the system. In some cases, this conceptual energy represents the
actual energy in the system (e.g. the kinetic energy), hence dissipativity allows for a connec-
tion between the mathematical model and physical properties of the system. If a system is
dissipative, there can never be more energy stored in the system then there originally was,
plus the energy supplied to the system. Expressing this mathematically gives the following

inequality [1],
t1

V() = V) < [ s(r)dr,
to

where V and 8 are the functions representing stored and supplied energy, respectively, i.e. the
storage function and supply function. In case of positivity of V, the notion of dissipativity
connects to stability and performance, as finite energy infers that the system is stable and it
also indicated how fast energy is dissipated in the system that can be understood as perform-
ance of the system. By the superposition principle, dissipativity for LTI systems is a global
system property [4] and can be analyzed in a convex setting when the storage and supply
function have a quadratic form, which resulted in e.g. the Bounded Real Lemma [5] and
the Positive Real Lemma [6]. Now the question may rise, is there such a global and convex
dissipativity analysis tool for nonlinear systems? The answer to this question is non-trivial,
as dissipativity for nonlinear systems is often seen as a local property when the storage and
supply functions are chosen in a quadratic (i.e. convex) form. This classic notion of local
dissipativity introduced by Willems does not suffice for general performance characterization
of nonlinear systems, as for example in case of reference tracking, global notions of stability
and performance properties are required. Therefore, new notions of dissipativity or dissip-
ativity related properties are introduced, such as equilibrium-independent dissipativity [7],
incremental passivity [8] or differential passivity [9]. Equilibrium-independent dissipativity
analyzes dissipativity w.r.t. a predefined set of equilibrium points, hence is not a global
property. The works on incremental and differential passivity only focus on a special case of
dissipativity, and are therefore not generic. As part of the research trajectory of this thesis,
dissipativity is analyzed using the differential and incremental framework, which considers
variations in or between system trajectories, respectively, dissipativity becomes a more global
system property [10]. Therefore, the work in [10] serves as the basis for the research on the
first key ingredient.

The second key ingredient is a controller synthesis tool for nonlinear systems. The analysis
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CHAPTER 1. INTRODUCTION

tools from the first key ingredient give conclusions on the dissipativity properties of a (closed-
loop) system. However, from a control engineer’s perspective it is desirable to have a tool that
can generate a controller, such that the closed-loop admits the desired dissipativity property.
Therefore, the analysis tools must transformed into controller synthesis tools. As the storage
and supply functions are chosen in a quadratic form, the problem becomes similar to the
synthesis problem for Linear Parameter-Varying (LPV) systems. LPV systems, introduced
by Shamma [11], are linear systems [12], where the dynamical relationship depends on a so-
called scheduling signal. Often the variation of the scheduling signal is restricted to a convex
polytope. Nonlinear systems can be modeled using the LPV framework by embedding the
nonlinear behavior into the solution set of an LPV system representation |12}/13]. The exist-
ing results on controller synthesis tools for LPV systems, see e.g. |[14] for an overview, serve
as the concepts behind the synthesis tools developed in this thesis. Extending the concepts
of the LPV framework towards the differential and incremental framework together with the
novel dissipativity analysis tools, yields the second key ingredient; a convex controller syn-
thesis tool to synthesize controllers for nonlinear systems based on incremental dissipativity.
The challenges associated with this key ingredient lie with the realization of an incremental
controller |[15H17] and actual implementation of the controller. In this thesis, an existing
synthesis and realization methods are generalized for the incremental case and implemented
in the form of a MATLAB toolbox.

The third and last key ingredient required for a systematic control design approach for non-
linear systems is to have a shaping framework for nonlinear systems. Since the early 1960s,
research has been done on sensitivity reduction of controlled nonlinear systems [18-20], which
can be seen as the first step towards shaping nonlinear systems. However, these works only
focus on the sensitivity function and do not quantify performance in terms of specifications,
and thus do not allow to shape the closed-loop. Hence, a concrete shaping framework for
nonlinear systems, as there is available for LTI systems, has not been developed yet. The
shaping framework for (multivariable) LTI systems (see |21] for an elaborate overview) uses
the notion of weighted generalized plants (as in Figure and linear dissipativity theory
to ensure performance of the LTI system. Furthermore, by the Kalman-Yakubovich-Popov
lemma (see e.g. [6,[22,23]), the time domain-based dissipation inequality is linked with neces-
sary conditions to a frequency domain-based dissipation inequality. Hence, for LTI systems
there is an one-to-one relationship between dissipativity-based performance characterization
in the time domain and the frequency domain. Moreover, as the behavior of an interconnected
LTI system is predicable, due to the superposition principle, encoding the desired behavior
in an LTI shaping filter is intuitive. Therefore, there is a lot of intuition in shaping any
interconnection of LTI systems. The main problem with a shaping framework for nonlinear
systems is the lack of this intuition for (interconnected) nonlinear systems. The predictable
behavior and the intuitive link with the frequency domain are properties of LTI systems that
do not hold for nonlinear systems. Therefore, there are two problems to be tackled for a
nonlinear shaping framework; nonlinear system behavior characterization in the frequency
domain and shaping filter definition. This thesis aims to tackle both problems, to set the first
steps towards a generic shaping framework for nonlinear systems.

4 Incremental Dissipativity based Control of Nonlinear Systems



1.2. RESEARCH QUESTIONS

1.2 Research questions

This thesis aims at defining the three above discussed key ingredients for nonlinear, time-
invariant systems and therefore the main research question of this thesis is:

How to define a systematic and computationally attractive controller design framework for
nonlinear systems with global stability and performance guarantees?

The research questions can be subdivided per key ingredient into the following sub-questions:
1. Key ingredient 1 — Dissipativity analysis for nonlinear systems:

a. Is there a global and computationally attractive dissipativity concept for nonlinear
systems?

b. Isit possible to decrease the conservatism in the analysis results of [10] by extending
the results with parameter-dependent storage functions?

c. What is the link between the differential form of a storage function and the original
form (primal form) of the storage function?

2. Key ingredient 2 — Incremental controller synthesis tools for nonlinear systems:

a. How to synthesize a controller for a nonlinear system that yields the closed-loop
system incrementally dissipative?

b. How to realize and implement a differential controller on a nonlinear system?
3. Key ingredient 3 — Performance shaping framework for nonlinear systems:

a. Is it possible to have a shaping framework for nonlinear systems, while the intuition
of the LTI frequency domain interpretation is retained?

b. How to characterize the behavior of a nonlinear system in the frequency domain?

c. How to encode performance specifications of a nonlinear system using LTI weight-
ing filters?

d. Do the intuitive LTI shaping methods on mixed-sensitivity and signal-based shap-
ing using LTI weighting filters hold for nonlinear systems?

1.3 Outline

In the subsequent chapters, the aforementioned key ingredients will be discussed in detail.
While this chapter (the introduction of thesis) gives a rough overview of the topics that are
being discussed in this work, every following chapter will have its own introduction. The
introduction of the individual chapters give a more elaborate overview of the subject and
dive deeper into available literature. Moreover, the subsequent chapters will end with a short
summary and discussion on the subject. Chapter [2] discusses the first key ingredient, i.e.
the incremental dissipativity analysis for nonlinear systems and gives a convex computation
method for incremental dissipativity for nonlinear systems. The second key ingredient is
discussed in Chapter (3| and takes the analysis results of Chapter [2| and reformulates them as
controller synthesis algorithms. The chapter discusses output feedback controller synthesis,
which are optimal in terms of incremental L£o-gain, incremental passivity, incremental £.,-gain

Incremental Dissipativity based Control of Nonlinear Systems 5



CHAPTER 1. INTRODUCTION

and the incremental generalized Ha-norm. Moreover, a realization method for incremental
controllers is discussed. Chapter |4] elaborates on the third key ingredient, and thus aims
at setting the first steps towards a shaping framework for nonlinear systems. A frequency
domain approach for nonlinear systems is used to propose a shaping methodology, which will
give insight into how the shaping filters should be defined to realize the intended performance
objectives. Finally, in Chapter [5 the conclusions of this thesis are presented and several
suggestions for future work are given.

1.4 Notation

R is the set of real numbers, while R™ C R is the set of non-negative real numbers. The zero-
matrix and the identity matrix of appropriate dimensions are denoted as 0 and I, respectively,
if the matrix dimension is not clear from the context, it will be noted explicitly. If a mapping
f:RP — R?is in C", it is n-times continuously differentiable. The notation ‘(x)’ is used
to denote a symmetric term, e.g. (¥)'Qa = a'Qa. The notation A = 0 (A = 0) indicates
that A is positive (semi-) definite, while A < 0 (A < 0) indicates that A is negative (semi-)
definite. 25" denotes the signal space containing all real-valued square integrable functions

f: RT — R", with the associated signal norm |||, := 1/ [~ [If(t)[|?dt, where || - || is the

Euclidean (vector) norm. £7 denotes the signal space of functions f : RT — R™ with
finite amplitude, i.e. bounded |/ f||,,:= sup;>q || f(¢)||. The Fourier transform operator is
denoted as F{-}, while the inverse Fourier transform operator is denoted as F {-}. The
Fourier transform of a signal is denoted with a capital letter, e.g. Y (jw) = F{y(t)}, with
j = +/~1 the imaginary number and w the frequency in radians per second. Furthermore, the
notation col(x1, . ..,x,), denotes the column vector [z{ -2, ]". The convex hull of a set S

n

is denoted as co{S}. The notation [f, ¢g](x) indicates the Lie-bracket of f(z) and g(z) and
[f, 9)(z) = 52 f(x) — GLg(x).

6 Incremental Dissipativity based Control of Nonlinear Systems



Chapter 2

Incremental Dissipativity Analysis

This chapter discusses the first key ingredient for systematic controller design for nonlinear
systems, which is a global and convex dissipativity analysis tool for nonlinear systems. This
chapter summarizes and extends the work on incremental dissipativity in [10], by discussing
the different notions of dissipativity and introducing the differential and incremental frame-
work. The details of the extensions on incremental dissipativity are documented in [24].
Furthermore, a convex computation tool is given, as well as a discussion on how the different
forms of the storage functions are related.

2.1 Introduction

Over the years, many modeling frameworks and analysis tools have been developed to cope
with the nonlinearities in physical systems. As stability of a system is often the first analysis
objective, a large variety of stability analysis tools have been introduced. Think of e.g. Lya-
punov theory [25], dissipativity theory [1] or contraction theory |26]. Lyapunov based control
design methodologies are developed to stabilize the behavior of the nonlinear system, such
as backstepping, input-output or feedback linearization [25]. However, these methodologies
often involve cumbersome computations and restrictive assumptions on the system, and do
not take the performance of the nonlinear system into account. Dissipativity theory allows
for simultaneous stability and (signal-based) performance analysis of a nonlinear system. The
main problem with stability and performance analysis using classical dissipativity theory for
nonlinear systems is that dissipativity with the use of a computationally attractive storage
and supply functions is in general only valid in a neighborhood around the point of natural
storage (usually the origin) of the nonlinear system. Therefore, conclusions on stability and
performance of the nonlinear system are only valid locally. Hence, there is need for a com-
putationally attractive dissipativity analysis tool, which yield dissipativity conclusions on a
global level, substantiated by a unified theory for general nonlinear systems.

Several frameworks have been introduced to simplify and/or convexify the analysis of non-
linear systems. Think for example of hybrid systems, Linear Time-Varying (LTV) systems,
gain scheduled systems, Linear Parameter-Varying (LPV) systems, Fuzzy systems, etc. While
all these systems were successful in their own domain, they did not serve as a general
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CHAPTER 2. INCREMENTAL DISSIPATIVITY ANALYSIS

framework for convex and global stability and performance analysis of nonlinear systems.
Some methodologies even gave undesired closed-loop behavior when the operation point was
not around the point of natural storage, while this was not expected in the design proced-
ure [27],28], which endangered the general applicability of these methods. The introduction of
the differential and incremental framework extended the stability [29] and performance ana-
lysis to a global level and showed that the use of incremental stability, solved these problems
of undesired behavior [30]. The differential framework analyzes the infinitesimal variations in
a system trajectory of the nonlinear system, while the incremental framework analyzes the dif-
ference between two arbitrary system trajectories. While dissipativity in the differential and
incremental framework is mentioned in literature, the concrete results are only on differential
passivity [9,131,[32] and incremental passivity [8]. Hence, there were no concrete dissipativ-
ity analysis results in literature for either the incremental or the differential framework. And
how the notions of differential dissipativity, incremental dissipativity and general dissipativity
were connected remained an open question. This is where |[10] comes into the picture. In this
work, a convex dissipativity analysis framework is build up, which connects the notions of
differential dissipativity, incremental dissipativity and general dissipativity, using quadratic
storage and supply functions.

The first question this chapter answers is: Is there a global and computationally attractive
dissipativity concept for nonlinear systems? This question is answered by discussing the
work in [10]. The second question this chapter answer is: How does a parameter-dependent
storage function fit in the developed incremental dissipativity theory in [10]? This question
is answered by slightly modifying and extending the results in [10], for which the full details
(which are ommitted in this thesis) are published in [24]. The final question that is treated in
this chapter is: What is the link between the differential form of a storage function and the
original form (primal form) of the storage function? This question is approached by applying
differential stability theory on an autonomous nonlinear system.

This chapter is build up as follows, first the results of [10] and [24] are summarized. Following,
the concept of parameter-varying inclusion of a nonlinear system is introduced, which allows
for convex dissipativity analysis for nonlinear systems. This concept is closely related to
the Linear Parameter-Varying (LPV) framework (see e.g. [12] for a detailed overview on the
LPV framework). Next, performance analysis is introduced, as well as a brief introduction
to performance shaping. A detailed and more elaborate overview for these concepts for LTI
systems can be found in [21]. Furthermore, some attention is payed to the interpretation of
the different introduced storage functions and how these might be connected. Finally, a brief
discussion on the contents of this chapter is given.

2.2 System definition

In this thesis, continuous, nonlinear, time-invariant systems are considered, which are of the

form
5. {:'cu) = Fla(t),u(®));
y(t) = h(z(t), u(t)),
where z(t) € X C R™ is the state vector, u(t) € Y C R™ is the input vector and y(t) €
Y C R™ is the output vector of the system. The sets X', i and ) are open sets containing

(2.1)

8 Incremental Dissipativity based Control of Nonlinear Systems



2.3. NOTIONS OF DISSIPATIVITY

the origin and the mappings f: X xU — X and h: X x U — Y are in C'. Moreover, only
the solutions of which are forward complete, unique and satisfy in the ordinary
sense are considered. The trajectories of are restricted to have left compact support,
i.e. Itp € R such that the solution of the system is zero outside the left-compact set [tg, 00).
The set of solutions for is defined as

B .= {(x,u,y) € (X xUx y)R’ z € Ctand
(Z,u,y) satisfies (2.1]) with left-compact support} . (2.2)

The solutions in B take values from a value set § := X xU x Y. € = co{F} is the convex hull
of § C €. In this thesis, the form presented in (2.1) will be referred to as the primal form of
the nonlinear system and B will be referred to as the bundle of solutions.

2.3 Notions of dissipativity

In 1972, Willems introduced the concept of dissipativity [1] for general dynamical systems.
From the notion of dissipativity, many system properties can be derived such as stability,
performance characteristics and conceptual power consumption. Moreover, dissipativity al-
lows to link the mathematical description of a system with the physical interpretation and
interconnections in a system (think of port-Hamiltonian systems [33]). Formalizing the notion
of dissipativity gives the following definition for dissipativity;

Definition 1 (Dissipative systems [1]). A system of the form (2.1)) is dissipative with respect
to a supply function 8§ : U x Y — R, if there exists a storage function V : X — RT, with

V(0) = 0, such that
t1

V() — V(z(t)) < / S(u(t), y(t))dt, (2.3)

to
for all ty,t; € R, with g < t;. The latter inequality will be referred to as the dissipation
inequality.

The function V is the storage function, which can be interpreted as a representation of the
(conceptual) energy in the system. The function 8 is the supply function, which can be inter-
preted as a representation of the total (conceptual) energy supplied to the system or extracted
from the system. If V is differentiable on X, can be rewritten in its differentiated form,
i.e. the so-called differentiated dissipation inequality:

< (v (a)) < S(u(t). y(0). (24)

Dissipativity analysis of using Definition (1| will be referred to as general dissipativity
analysis. Furthermore, note that general dissipativity is a system property with respect to
the origin of the nonlinear system, as the energy of the system in the origin is required to be
zero, and therefore, the origin must be an equilibrium point of .

An extension to this concept is applying the dissipativity concept on the difference between
two arbitrary trajectories of a (forced) system. This gives insight in the energy flow between
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two arbitrary trajectories of a nonlinear system. This extension is called incremental dissip-
atiwity. From this it is possible to conclude that if both the system trajectories have the same
input trajectory, and the system is incrementally dissipative, the energy difference between
two trajectories is always less than the difference of the supplied energy for the two trajector-
ies. Hence, the trajectories will eventually lose the transient behavior and converge towards
each other. Therefore, the concept of incremental dissipativity is quite similar to convergence
theory [34] and contraction theory [26]. The definition of incremental dissipativity is taken
from [24] , as an extension of the definition of incremental passivity in [35].

Definition 2 (Incremental Dissipativity [24]). Let the pairs (z,u,y) € B and (Z,4,7) € B
both be arbitrary trajectories of . The system is said to be incrementally dissipative
with respect to the supply function 8 : U x U x Y x Y — R if there exists a storage function
V:X x X — R", with V(x,2) = 0, such that for any two trajectories in B

t1

V(@(tr), #(t1)) — V(a(to), #(t0)) < / S(u(t), a(t), y(t), 5(1)) dt, (2.5)
to

for all tg,t; € R, with tg < ¢;. The latter inequality will be referred to as the incremental

dissipation inequality.

Note that since x can be any arbitrary trajectory of (2.1)), incremental dissipativity is a global
system property.

A second extension of general dissipativity can be found in literature as dissipativity analysis
of the variations of an arbitrary trajectory. For this extension, the infinitesimal variations of
a system trajectory are considered. By taking the derivative of the state, input and output
trajectory with respect to the state, input and output at a fixed time, respectively, the
infinitesimal variation tangent to an arbitrary trajectory can be analyzed. This concept has
been introducedlﬂ in [32,136,[37] as variational dynamics, which describe the variation along

an arbitrary system trajectory over time. The variational dynamics of the nonlinear system
(2.1) are described with,

0i(t) = gh(a(t),a(t)) 6x(t) + G (2(t), u(t)) Su(t);
— —
5 A(t) B(t) (2.6)
oy(t) = Gh(z(t),u(t)) dx(t) + Gu(x(t), a(t)) Su(t);
C(t) D(t)

where (Z,1) € 73,8, with 7, denoting the projection (z,u) = 74 (2, u,y). Furthermore,
ox(t) € R™, du(t) € R™ and dy(t) € R™. Analogous to the primal form, solutions of
the variational system are considered in the ordinary sense and are restricted to have
left-compact support. In this thesis, the form presented in will be referred to as the
differential form of the nonlinear system ([2.1).

Dissipativity analysis of the differential form of a nonlinear system, i.e. (2.6)), yields the notion
of differential dissipativity. From [31] and |24], differential dissipativity is defined as follows:

Definition 3 (Diffential dissipativity [24,31]). Consider a system X of the form ({2.1) and
its differential form (2.6)), X5. X is differentially dissipative with respect to a supply function

In [19], this concept is also considered as the so-called ‘first variation’ of a system.
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§ : R™ x R™ — R, if there exists a storage function V : X x R™ — R™  with V(z,0) = 0,

such that
t1

V(Z(t1),6z(t1)) — V(Z(to), dz(to)) g/ $(du(t), dy(t))dt, (2.7)

to

for all trajectories (z,u) € 7, and for all tg,t; € R, with ¢y < ¢;.

Differential dissipativity can be interpreted as the energy dissipation in the trajectory vari-
ations, which are not forced by the input. If the energy of these trajectory variations decreases
over time, the trajectory variation will eventually only be determined by the input of the sys-
tem. Hence, as the unforced variations vanish over time, the trajectory of the primal system
will converge to an arbitrary forced equilibrium point or arbitrary reference trajectory, which
may can be thought of as the particular solution of the nonlinear system. Therefore, diffential
dissipativity is a global system property as well.

Remark 1. When the storage functions V(z,z) and V(z,0x) are differentiable, it is possible
to define the differentiated form of (2.5) and (2.7)), respectively, similar to (2.4]).

2.4 Dissipativity analysis results

This section gives an overview of the results obtained in [10] and discusses the extensions
on [10], which are documented in [24]. The formal proofs and derivations of the analysis
results are ommitted in this thesis, however for some results, the concept or intuition behind
the proof is given. The aim of [24] was to have convex dissipativity analysis for nonlinear
systems, therefore only quadratic storage and supply functions are considered.

Starting with differential dissipativity analysis, the differential storage function is choserﬂ as
V(z(t), 6z(t)) = 6z(t)"M(z(t))dx(t), (2.8)

for which the following assumption holds

A1 The matrix function M (z(t)) € C is real, symmetric, bounded and positive definite for
all z(t) € X.

The differential storage function represents the energy of the tangent variations of the state
trajectory z. The differential supply function is chosen as

$(u(t), dy()) = (f;;ggf (& ) (Gun). (2.9)

with real, constant, bounded matrices R = R', Q@ = Q" and S. The differential supply
function represents how much energy is supplied to or extracted from the variations in a
system trajectory. The following result is obtained from [24];

Theorem 1 (Differential dissipativity [24]). Consider the system in primal form (2.1) and as-
sume A1l This system is differentially dissipative with respect to the quadratic supply function

2One of the main extensions discussed in [24], compared to [10], is the use of a matrix function M(Z),
instead of a constant, bounded matrix M.
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(2.9), and the quadratic storage function (2.8) if and only if

sy 25) (ot *8) (a0 ma) (57 0)

with M(z) = 20 A(z,9) = 9(z,q), B(z,a) = %(z,9), C(z,q) = 2(z,a) and
D (z,u) = (%, a), holds for all (T,1) € 7y,B and t € R.

Note that the time-dependence in (2.10) is omitted for brevity. Furthermore, one may also
note that this (nonlinear) matrix inequality is very similar to the matrix inequalities for LPV
systems with quadratic performance, see e.g. [38, Theorem 9.2].

Continuing with incremental dissipativity analysis, the incremental storage function is chosen
as

V((t), 2(t) = (x(t) — &(1) M (x(t), #(1)) (x(t) — &(1)), (2.11)
for which the following assumption holds

A2 The matrix function M (z(t), Z(t)) is real, differentiable, bounded, symmetric and pos-
itive definite for all z(t),Z(t) € X.

Furthermore, the incremental supply function is considered in the quadratic form:

_ o (u® —a®\ [ Q S\ [ut) —alt)
stua0.00.30) = (0 750) (& 7) (o 5tn) @12

with Q@ = QT, R = R and S real, constant, bounded matrices. Furthermore, for the
incremental dissipativity analysis, a non-unique mapping ¢ : X x X — (0, 1) is required, such
that for all x,z € 7,8

M(z,2) == M (% 4 ((2,2)(z — &) = M(z). (2.13)
The details for this part of the analysis are omitted, but can be found in [24]. The following
assumption is made on (,

A3 (el

With the function ¢, the incremental dissipativity analysis is applied on the trajectory (z, 4, ¥),
which lies somewhere betweenﬂ the trajectories (z,u,y) € B and (z,4,y) € B. The con-
sequence is that the analysis must be done in a convex setting, as shown in the next result
from [24], which gives a condition for incremental dissipativity characterization with the con-
sidered storage and supply function.

Theorem 2 (Incremental dissipativity [24]). Consider the system in primal form (2.1) and
assume Ag and A3 The system is incrementally dissipative with respect to the quadratic

3Note that it is not guaranteed that (Z, %, §) € B, as § might not be convex.
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supply function [2.12), with R = R" <0, and the quadratic storage function (2.11)), if

<A(i,u) B(S:,u)>T<M(2:i) Méj)> <A(aI:,u) B(g,u)>+<M(§x) 8)

for all (2(t),a(t)) € mpu€, with A(7,a) = 9(z,a), B(z,a) = 9L(z,a), C (z,a) = &(z,q)
and D (z,1) = 3(z, ).

Note that the time-dependence in (2.14)) is omitted for brevity.

Sketch of the proof of Theorem[d The differentiated version of is explicitly written out,
which is an unattractive, non-quadratic form. Inspired by [34], the Mean-Value Theorem
(MVT) is applied on the expression, which yields a quasi-quadratic form. Applying the MVT
implies that there exists an equivalent expression in between the trajectories (z,u,y) € B and
(z,u,y) € B, i.e. (T,u,y), which is not necessarily an element of B, therefore, the analysis
must done in €. The function ¢ transforms the state-dependent matrix functions to a function
of Z, such that the inequality can be written in terms of the (maybe non-existent) trajectory
(Z,1,7). By restricting R = RT < 0, it is possible to have a clever transformation, yielding
the inequality in quadratic form, resulting in . The detailed proof is given in [24]. W

With the latter results, the connection between differential dissipativity and incremental
dissipative is made.

Theorem 3 (Link differential and incremental dissipativity [24]). Consider a nonlinear sys-
tem in its primal form , with its differential form and assume —A@. If for all
(z,1,7) € €&, the differential form of the system is dissipative w.r.t. the storage function
and the supply function , with R < 0, then the primal form of the nonlinear system

is incrementally dissipative w.r.t. the storage function (2.11) and the supply function (2.12)),
equally parametrized.

With this result, it is possible to conclude that the primal form of a nonlinear system is
incrementally dissipative, whenever the differential form of the same system is dissipative for
all points in €. Similarly, the implication holds between incremental dissipativity of a system
and general dissipativity of a system. The following result from [24] connects incremental
dissipativity and general dissipativity.

Theorem 4. Consider a nonlinear system in its primal form (2.1)) and suppose (&, u,y) € B
is a (forced) equilibrium point of the system, i.e. (Z(t),u(t),y(t)) = (c1,ca,c3) for all t, with
(c1,¢2,c3) € (X xU x V). Suppose the system is incrementally dissipative w.r.t. the storage

function (2.11)) and the supply function (2.12)). Then for every (forced) equilibrium point, the
system is dissipative w.r.t. the same, equally parametrized storage and supply function.

The intuition behind the proof for this last result comes from the fact that if a system is
incrementally dissipative, then for a given input, its trajectories (with different initial state
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conditions) converge towards each other. If the given input is such that it yields a (forced)
equilibrium point of the system, then all trajectories with the same input, but different initial
state conditions, converge towards the forced equilibrium point.

The chain of implications that can be made using these theorems is depicted in Figure [2.1
The black arrows point towards the implications and equalities that do hold only when the

Differential dissipativity <= (2.10)

If R<0and
V(Z,u) € 7y, C”

N\

Incremental dissipativity <= (2.14)

l

General dissipativity

ﬂ47

!
|
|
> =
I
!
!
|

Figure 2.1: Chain of implications for the result on dissipativity analysis of nonlinear systems.
These implications hold for the considered storage and supply functions.

conditions in the box are fulfilled. It must be noted that the implications are always with
respect to the considered quadratic storage and supply functions.

The next questions would be, how to apply these results? And is it possible to determine
whether a nonlinear system is incrementally dissipative by simple computations? In [10}24]
the results are applied to some well-known notions relating to dissipativity, e.g. incremental
extensions of Lo-gain and passivity, which are given (without proofs) in Appendix for
completeness. The second question is answered in the next section.

2.5 Parameter-varying inclusions

As may noted, for verifying differential or incremental dissipativity of a nonlinear system, one
must solve a nonlinear matrix inequality for an infinite number of points in the set 7, ,,&, which
is impossible to perform. In this section, the notion of parameter-varying (PV) inclusions is
introduced. The idea is to embed the nonlinearities in the differential form of as time-
varying parameters, which vary in a convex set. Using the PV inclusions, it is possible to
recast the nonlinear matrix inequalities into linear matrix inequalities (LMIs). From [24] and
inspired by [12,[39], the differential PV inclusion of a nonlinear system is defined as follows.

Definition 4 (Differential PV inclusion [24]). The PV inclusion of (2.6) is given by

(2.15)

Sy 02(t) = A(p(t))ox(t) + B(p(t))du(t);
| 9y(t) = Clp(t)dx(t) + D(p(t))du(t).

where p(t) € P C R™ is the scheduling variable, and (2.15)) is an embedding of the differential
form of (2.1)) on the compact region P D ¥(X,U) V (Z(t),u(t)) € X x U, if there exists a
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function v : R™ x R"™@ — R™ the so-called scheduling map, such that:
A@W(@, ) = §(z,9), B(@ ) = Gz 0,
C(z, 1) = (2. ), D(¥(z,u)) = iz, ),
implying that p(t) = ¥(z(t), u(t)).

The convex set P is usually a superset of 7, ,§ or even a superset of 7, &, hence the PV em-
bedding of a nonlinear system introduces conservatism in the dissipativity analysis. However,
this is considered to be the trade-off for convex stability and performance analysis of non-
linear systems. To reduce the conservatism of the PV embedding for a given preferred
dependency class of A,...,D (e.g. affine, polynomial, rational), it is possible to optimize
Y (with minimal n,) such that co{y(X,U)} \ ¢(X,U) has minimal volume [12]. Note that
only using a differential PV embedding not necessarily solves the computational issue, since
P might still have an infinite number of vertices, which results in needing to solve an infinite
number of LMIs. The PV embedding serves as an important tool to convexify the problem.
The LPV framework then can serve as a computational tool to transform the possibly infinite
set of LMIs over P to a finite set of LMIs which can be solved using a semi-definite program,
e.g. using grid-based, polytopic or multiplier based methods [14]. Also note that the last step
again introduces conservatism in the analysis, in return for computational ease.

2.6 Performance analysis and performance shaping

This section explains the connection between performance analysis and dissipativity, and
hence justifies the development of the analysis tools in the previous sections. First, the
concept of a generalized plant introduced, which helps to think about systems in a systematic
manner. Then, performance using dissipativity is explained and at last the shaping part is
discussed. A more detailed explanation of performance analysis for LTI systems can be found
in e.g. [21].

Suppose there is a dynamical system 3, containing two subsystems 31 and 32. Moreover, 3
is provided with control inputs and measurement outputs. The system is subject to some
disturbances (e.g. reference, external disturbances, etc.) and must be controlled such that
it has a desired behavior. Let w, u and y denote the disturbance inputs, control inputs and
measurement outputs, respectively, and let z be the performance channel, used to charac-
terize the performance of the system (in terms of e.g. tracking error, control effort). The
full interconnection of 3 (for example as in Figure , with all incorporated signals is the
generalized plant. The expected disturbance and the desired behavior can be encoded in
so-called weighting filters, which are applied to w and z signal, such that the input @ of the
disturbance weighting W1 and the output z of the performance weighting Wy are confined
in a unit ball, as shown in Figure E Using the generalized weighted plant 3, it is possible
to analyze the performance of the system for a certain controller . Consider the dissipa-
tion inequality , then it is possible to define a supply function that indicates a certain
performance measure. If for example the desired behavior may only contain a fraction of
the disturbance, one may define the supply function a S(w(t),z(t)) =42 |lw@®)]* = |Z®)|1?,

4This is the supply function that indicates a certain Lp-gain, see e.g. 135
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Figure 2.3: Weighted generalized plant.

with v a performance indicator. If v < 1, then § € [-1,1], as w and Z are confined in a
unit ball. Hence, the energy supplied into the system is bounded, and therefore the energy in
the closed-loop system is bounded. It can be concluded that, when the disturbance satisfied
the behavior defined by W1, the system will have the acceptable performance defined by Wg,
and the stored energy in the system will not blow up towards infinity, as the stored energy is
upper bounded by the supply function (and the initial stored energy). This shows that the
concept of dissipativity is a very important notion in performance analysis of general systems.

The introduced weighting filters allow for shaping the performance of a system, by having
the desired performance, i.e. the desired behavior when a certain disturbance behavior is
expected, encoded in a weighting filter. This concept of shaping is a well-known method in
the LTI framework, i.e. when 3 is an LTI system. Because of the linearity of the operators and
the clear interpretation of signal behavior in the frequency domain, defining LTT weighting
filters and interconnecting these with the LTI system allows for linear analysis, for which
an extensive framework is available. While for LTI systems all these properties allow for
intuitive and relatively straight forward performance shaping, nonlinear system do not have
these properties. Hence, a proper and complete shaping framework for nonlinear systems is
yet to be developed. Chapter [4] aims at setting the first steps towards a shaping methodology
for nonlinear systems.
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2.7 Explicit relation between primal and differential storage

In the previous sections, differential, incremental and primal storage functions have been
introduced. By the results in [10}/24], the defined primal storage function is a valid storage
function for the nonlinear system if the differential storage function is a valid storage function
for the dissipative differential form of the same system. However, how these functions are
connected and how the differential storage function can be interpreted in the primal form
remained an open question. This section aims to give these functions a stronger connection, by
giving a characterization of the differential storage function in the primal form for autonomous
nonlinear systems. Autonomous nonlinear systems are of the form,

b= i), (2.16)
where z(t) € X CR™ and f € C'. The differential form of (2.16)) is defined as
0x = %(f) ox := f(ox). (2.17)

where 0x(t) € R™. Since these systems are autonomous, and the notion of dissipativity is
defined for I/O systems, the concept of (differential) stability is used in this section. A system
is (differentialy) stable if the derivative of the storage function (or Lyapunov function) along
the flow of the (differential) system is negative, see e.g. [40] for the mathematical details.

In this section, the storage functions are taken parameter-independent, i.e. the differential
storage function is defined as

Vs(6x) = 0" Méx,  with M = 0, (2.18)
and the primal storage function is defined as
V(z) =z Mz, with M > 0. (2.19)

The intuitive interpretation of the differential storage function in the primal form is to have
dx = &, as differentiating over time yields . This intuitive idea does hold if f is
a full rank linear map, i.e. d& = Adz, rank(A) = ny. Then the differential storage function is
of the form Vs = & M& = 2" ATM Az, and its derivative yields

Vs=a  ATATMAz + 2" ATMAAz
. (ATATMA + ATMAA) <0 forz#0
— ATATMA+ATMAA <0
— AT (ATM+MA>A<0
— A'M+MA=<0 if A full rank.

Hence, if A is full rank, the differential storage function Vs can be interpreted as V5 = ' M,
which only takes signals in the primal form.

The question is whether it is possible to apply the same intuition on nonlinear systems. To
show that this is indeed possible, the result from Wu in [41] is required. A slightly modified
version of the result is given below.
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Theorem 5 (Linking the differential and primal storage [41]). Suppose the system
is stable with a differential Lyapunov function Vs(n), therefore 1s differentially stable.
Hence, has an equilibrium point x. and since differential stabiltity implies stability by
the results in [24)], is stable. Therefore, by the converse Lyapunov theorem [25], there
exists a Lyapunov function W(x) for the system. Given a function h(z) € C' on X for which
it holds that [f,h](z) =0 Yz € X and[]

kid(z, 2.0 < [[h(2)]| < kad(z, 22) ¢ 21, kpngy >0

with || - || the induced norm of X and d(z,x.) a distance function, which is a geodesic. Then,
the function W(x) = Vs(h(zx)) is a Lyapunov function for the system.

Proof. First, it is shown that W(z) is indeed a candidate Lyapunov function. Given, Vs, W
will be of the form
W(z) = h(z) " Mh(z), M =0,

so W is a strictly positive function for  # z, and W(x,) is clearly zero. Therefore, W(z) is a
valid candidate Lyapunov function. Next, the derivative of W is taken along the flow of the

system (2.16|) to show it is a Lyapunov function for ([2.16)),

2) = IVs(h(x)) Oh(z)
Oh(x) Ox

f(x)

Because of the property [f, h] = 0, it holds that 8g—(a:)h(a;) = 8g—§f)f(:v). Therefore,

T

- 8\;57577) 825:)" = LV5(n) = Vs(h(z)) < 0 for @ # ..
7

Hence, the derivative of W along the flow of f is strictly negative when x # x,, therefore the
system ([2.16) is stable with Lyapunov function W, which concludes the proof. |

The link between the primal Lyapunov function and the differential Lyapunov function can
be made by applying Theorem [5| First, the following assumption is made on f in (2.16):

A4 fis a mapping f: X — X, where X C R™" and with the following property:
kyllz = 2l < If @) < ke lle— 2.5, (2.20)

with kg1 9y > 0, ¢ > 1, Q some weighting matrix and z. € X an arbitrary equilibrium
point of (2.16)

®Note that for Eucledian metrics, this condition is equivalent to ki||z—z. % < ||h(z)|| < kaol|lz—z. |y, ¢ >
1 and @ some weighting matrix.
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Now, the following result is obtained that characterizes the differential storage function ([2.18))
in the primal form.

Theorem 6. Consider a system of the form (2.16|) for which holds. The system s
differentially stable with differential Lyapunov function (2.18|) if and only if the system is
stable with Lyapunov function V(z) = f(x)" M f(x) with M > 0.

Proof. Tt is trivial to see that Vs and V(z) = f(z) M f(z) are indeed a valid candidate
Lyapunov function, as M = 0 and holds. Application of Theorem [5] yields the proof
of this theorem. Note that by and the fact that [f, f] = 0, the function f satisfies the
conditions for the function h(x) in Theorem[5] The application of Theorem [5|with h(z) = f(z)
yields

v oV
L) = aix)f (2) = 8;:6) i
T
- 3}7((:35)) ajt;irx)x - ’ (waiwx) 8@5;33)% Change of variable: & = dx
0 (6xT M6 )
B ( x&sx x) ag;x) 0z = g:;;f@x) = »CfV(s < 0.

Hence, the time derivative of Vs along the solutions of (2.17) is negative definite, if and
only if the time derivative of V(z) = f(x)" M f(x) along the solutions of (2.16) is negative
definite. |

It remains an open question how the differential storage function and the primal storage func-
tion relate with a parameter-dependent M (Z) or what the relationship between the storage
functions is for driven systems of the form ([2.1)).

2.8 Discussion

This chapter discussed the first key ingredient for a general framework for incremental dissip-
ativity based control of nonlinear systems, i.e. incremental dissipativity analysis of nonlinear
systems. The (extended) analysis results of [10] are discussed as well as a convex computation
tool to analyze the different notions of dissipativity in a convex setting. Moreover, an inter-
pretation of the differential storage function in the primal domain is given for autonomous
Systems.

The developed analysis results now allow for development of incremental controller synthesis
algorithms, as the matrix inequality forms of the incremental analysis recover the existing
forms for the LTI and LPV dissipativity results. As will be discussed in the next chapter,
the existing synthesis algorithms can be used to formulate incremental controller synthesis
algorithms.

How the dissipativity based performance criteria in the differential and incremental framework
can be interpreted and and how the nonlinear system can be shaped accordingly will be
discussed in Chapter [4
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Chapter 3

Incremental Dissipativity based
Controller Synthesis

In the previous chapter, the analysis tools for the different notions of dissipativity are dis-
cussed, which give insight in the dissipativity properties of a general nonlinear system. It
is shown how various incremental stability and performance specifications can be expressed
using incremental dissipativity theory, in terms of matrix inequalities. These matrix inequal-
ities can then be solved using a differential PV inclusion of the differential form of a nonlinear
system. This chapter is dedicated to the goal to design a feedback controller for the non-
linear system that can ensure the desired dissipativity properties of the nonlinear system
interconnected with a controller, as shown in Figure [3.1

—> Nonlinear >
System
u(t) y(t)
Controller

Figure 3.1: Closed-loop system.

3.1 Introduction

Since the concept of LMIs became solvable, the synthesis of optimal controllers based on a
multivariable optimization problem became a usable methodology to design controllers for
complex LTT systems. This started off with the synthesis of Linear Quadratic Regulators, see
e.g. [42] and it quickly evolved towards the theory of robust controller synthesis, which started
in the late 1970s and early 1980s [43]. The robust control theory serves as a foundation for
the optimal controller synthesis algorithms for LPV systems, which in turn is a foundation
on which the synthesis algorithms discussed in this chapter are build. In literature on LPV
systems, there are several well-known methods for LPV controller synthesis available, one of
which is the reparametrization and full block S-procedure or full block multiplier approach,
see [38./44]. Packard approached the LPV synthesis problem from a robust control point of
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view and obtained synthesis results in the gain scheduling framework, see e.g. [45]. Apkarian
focused on polytopic systems in works as |46] and payed attention to the practicality of the
implementation of the synthesis algorithms in e.g. [47]. Wu aimed at developing a generalized
LPV system analysis and control synthesis framework by combining the previously mentioned
works, see e.g. [4849]. A more recent synthesis approach by Sato is introduced for LPV models
with inexact scheduling parameters, see e.g. [50]. Sato also worked on an LPV controller
synthesis method where the closed-loop Lyapunov function is parameter-dependent, while
the controller is not dependent on the derivative of the scheduling variable [51]. Furthermore,
as mentioned before, [14] gives an elaborate historical overview of the advancements over the
years.

In this chapter, the goal is to transform the analysis results of Chapter |2 into synthesis al-
gorithms. Therefore, the first question that is being answered in this chapter is; How to
synthesize a controller for a nonlinear system that yields the closed-loop system increment-
ally dissipative? This question is answered by combining the theory of [24] and (some of)
the aforementioned synthesis methodologies, such that a computationally efficient synthesis
algorithm for incremental dissipativity based control design is formulated. Next to the syn-
thesis algorithm, the realization of the controller is discussed. For the analysis part, the
differential form of the system is used, and hence the synthesis algorithm will synthesize a
differential form of the controller, while the controller must be implemented in the primal
form. Therefore, the second question this chapter treats is; How to realize and implement a
differential controller on a nonlinear system? By the author’s knowledge, three methodolo-
gies are given in literature for differential controller realization in the primal form. In [17],
the controller realization is as an LTI controller with an additional input for the scheduling
variable. In [16], the controller realization is based on differentiated and integrated controller
inputs and outputs, respectively. A novel methodology described in [15] realizes the control-
ler using a path-integration over the differential trajectory. This chapter discusses one of the
aforementioned realization methods. The focus of this chapter is only on output feedback
problems and problems with parameter independent closed-loop storage functionsﬂ Exten-
sions for state-feedback controller synthesis and observer synthesis for such systems will not be
discussed. Hence, there are a lot of potential incremental controller synthesis and realization
methods to develop and compare.

This chapter is build up as follows. First, the concept of (differential) generalized plants
is extended for nonlinear systems. Next, the way how these systems can be represented
in a polytopic (convex) setting using PV inclusions is discussed. Following, the synthesis
algorithms for different performance measures are worked out, followed by the controller
construction method. Finally, some notes on the actual implementation are given as well as
some examples, illustrating the effectiveness of the algorithms.

3.2 (Generalized nonlinear plants

In the LTI framework, the systematic controller synthesis methods, such as H, and Ho
based synthesis, are based on the concept of a generalized plant, as discussed in Section
Moreover, the assumptions on the input/output signals are such that these are confined in a

M in (2-§) is a constant, bounded matrix
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sphere with a unitary radius. These assumptions serve the systematic method of performance
shaping of LTT systems using weighting filters, representing the expected and desired behavior.
However, a systematic framework to shape the performance of nonlinear systems, in either
primal or differential form, has not been constructed yet. Therefore, it is not possible to draw
conclusions on the actual interpretation of these weightings (this will be to point of discussion
in Chapter {4)). Therefore, the generalized nonlinear plants discussed in this section will not
have this assumption on the signals.

The concept of a nonlinear generalized plant is defined as a ‘new’ nonlinear system, which is
an extension of . The ‘new’ nonlinear system is a time-invariant nonlinear generalized
plant with a disturbance input channel w(t), a control input channel u(t), a performance
output channel z(¢) and a measured output channel y(¢). This system is described as

N CORTACORTORTOE
Sp i { 2(t) = g (@(t), u(t), w(t)) ; (3.1)
y(t) = h (e(t), u(t), w(t):

where z(t) € X C R™ is the state vector, w(t) € W C R™ is the disturbance input vector,
u(t) € U C R™ is the control input vector, z(t) € Z C R™ is the performance output vector
and y(t) € Y C R™ is the measured output vector of the system. The sets X', W, U, Z and Y
are open sets containing the origin and the mappings f: X xUXW = X, g : X xUXW — Z
and h: X xU x W — Y are in C!. Moreover, only the solutions of which are forward
complete, unique and satisfy in the ordinary sense are considered. The trajectories of
are restricted to have left compact support. The bundle of solutions of is denoted
by B and defined as

9]

B = {(x,u,w,y,z)G(XxenyxZ)R ‘xECl

and (&, u, w, y, z) satisfies (3.1)) with left-compact support}. (3.2)

If the differential form of ¥p over some trajectory in a projection of the bundle (z,u,w) €
Tzu,w'D is calculated, the differential form of the generalized nonlinear plant is obtained as

5i(t) = of (z,u,w) sa(t) + of (z,u,w) su(t) + of (z,u,w) Sw(t):
0x ou ow
A(z,1,w) Bu(,u,) By (2,,w)
ey = 20 gy 29T D) gy 9T g,
Xp Ox ou ow (3.3)
Cy(Z,1,1) D (Z,1,w) Do (Z,U,W)
Sy(t) = Oh (Z,u,w) Sa(t) + Oh (Z,u,w) Sult) + Oh (Z,u,w) Sw(t).
ox ou ow
Cy (2,0,0) Dy (Z,1,m) Dy (,1,)

The goal is to find a controller for this system that is incrementally stable and has a in-
cremental performance as described in Chapter 2] The controller is assumed to be of the

form
s {&ccu) = Ac (&, 1, w) 6xc(t)

+ )
Su(t) = Ce (z, 1, W) 0xc(t) + De (T, U, W) 6y(t); (34)
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where dz.(t) € R represents the infinitesimal variations of the controller state. In this thesis
it is assumed that the closed-loop is well-posed, which is guaranteed by having I — Dy, D, non-
singular for all (z,u,w) € ﬂx,u,w%. In this thesis it is assumed that Dy, = 0, for simplicity.
Omitting the dependence on (Z, @, w), the closed-loop system will be of the form

) A+ B,D.C, B,C ByD.Dyw + B

5Xt:< u~=cvy uC>5Xt+<uCyW W>(5U}t,
(1 5O, A )@ BoDo (t)

62(t) = (Cp + DyuDeCy  DypCe) 6x(t) + (Dyw + DyuDe Dy ) Sw(t);

5Yer (3.5)

where x = col(z, z.). The closed-loop system will be denoted throughout this chapter as

0z(t) = €(z,u,w)0x(t) + 2(z,u, w)ow(t); (36)

54(t) = (7,5, B)0X(1) + B(F, 5 ©)Fw(t);
60Xl :
for brevity, where <7, 2, ¢, & are (non)linear matrix functions of the trajectory (z,u,w) €
Tz u,w'D.

3.3 System representations with parameter-varying inclusions

In order to have computationally attractive controller synthesis for the nonlinear system ,
the parameter-varying inclusions as discussed in Section are applied. Applying Definition
to , with p(t) € P as the scheduling variable, yields the closed-loop system with a
parameter-varying inclusion as

5gn.¥ﬂﬂzﬂwwﬁﬂw+%@@wmm
| 82(t) = Cp(t)dx(t) + Z(p(t))dw(t).

For this system it is possible to define several dependency classes for &7, ..., 2. The most
common are affine or polytopic, polynomial and rational, which all are studied within the
LPV framework (see e.g. [14] for an overview). The mentioned dependency classes can be
rewritten as either state-space affine (SSA) representations or Linear Fractional Representa-
tions (LFRs). In this thesis the synthesis methods for incremental SSA systems are worked
out and implemented. Moreover, the synthesis method for LFR systems discussed in [44] is
briefly discussed. The worked out synthesis methods are based on existing methods for affine
representations (e.g. [14,138,/46]). The purpose of including this in this document is to show
that these methods can be used for incremental synthesis and give an overview of incremental
norm-based synthesis methods. There are some synthesis methods available for systems with
polynomial dependency [52], but these will not be investigated in this thesis.

(3.7)

3.3.1 Affine and polytopic systems

This section discusses the relation between affine and polytopic systems. State-space sys-
tems with an affine dependency have system matrices that affinely depend on the scheduling
variable p, i.e.

A(p) =Ag+piAL+---+ PnpAnp' (3.8)
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In general, these scheduling variables are confined in a bounded, one-dimensional set p; €
[Pi,min, Pi,max), such that A(p) is confined in an n,-dimensional hyper-cube. Polytopic systems
are systems for which the system matrices can be captured in a polytope. Note that a hyper-
cube is also a polytope, but not vice versa. Polytopes, which have for example a hyper-
tetrahedral form, can capture more complex constraints on the scheduling variables (which
might reduce conservatism). Polytopic systems satisfy the following conditions [53]:

e P is a polytope, i.e. P = co{py1,pv2, " ,pvs}, with s the number of vertices of the
polytope and py; the vertices of the polytope. This implies that

S S
p= Z%‘Pvi, Zai =1, a; > 0}
i=1 i=1
e The system depends affinely on p. Thus,

e Bl X[ 8] wer

P:{pER””

where Ai, éi, Ci, D; are vertices of P, enclosing the LTT systems that are generated when
p ranges over P.

It is possible to convert a polytopic system to an affine system and vice versa. For the
implementation of this conversion step, the ROLMIP toolboxﬂ is used. In [54], the conversion
between the two system representations is explained.

3.3.2 LFR systems

This section discusses linear fractional representations of nonlinear systems that are rewritten
using differential inclusions. The concept of this section comes from [38], where more details
on LFR systems can be found.

Suppose the differential form of an autonomous nonlinear system has the form

5i(t) = F(p(t))dx(t), (3.9)

where dz(t) € R™ is the state vector and F' is a real-valued matrix function, dependent on
the scheduling variable p(t) € P. (3.9) is an LFR system if it can be represented as

SE(t) = M ox(t) + N oy(t)’ an(t) = A(p(t)) 5&(1), (3.10)

{550(75) = K 6x(t) + Lon(t)
where A is a function that depends linearly on p and K, L, M, N constant, bounded matrices
of appropriate size. One of the key properties of LFRs is that any system of the form ,
where F' depends rationally on p, can be written into an LFR form. For the LFR system to
be well-posed, I — NA(p) must be non-singular for all p(t) € P. It is trivial to extend
for systems of the form (3.3]).

2The MATLAB toolbox can be found at https://rolmip.github.io/
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3.4 Synthesis for quadratic incremental performance

For incremental dissipativity-based synthesis, the differential form of the closed-loop system
(13.6) must satisfy a certain performance index, characterized by real, symmetric () € R™v*"w,
0= ReR"™ " and S € R"™*"  Ag discussed in Chapter the system is stable and satisfies
this performance index when the following inequalities hold for the differential form of the
closed-loop system

M0 <%I(p) %(Zp)f </?/l /B/l) (»‘Z/I(P) %’?p)) -

<‘5(()P> @l(rp)y(é2T fi) <<5?p) @@))”v VpeP. (311)

This criterion is clearly not linear for a constant p, due to the structure of the closed-loop
system matrices <7 (p), B(p), € (p), Z(p) in (3.5). This problem is solved using the repara-

meterization method, given in [38].

3.4.1 Reparameterization method
The reparameterization method can be applied when the considered system satisfies the fol-
lowing assumptions:
A5 The system matrices By, Cy, D,, and Dy, are constantﬂ i.e. independent of p.
A6 The pair (A(p), By) is quadratically stabilizable over P.
AT The pair (A(p), Cy) is quadratically detectable over P.
First, the second inequality in is rewritten as

I 0 T/70 o1 o I 0

0 I 0 Qlo s 0 I
M) MAG) | | T 0 [0 0 || Moy Mz | S G2
€(p)  2(p) 0 ST|0o R €p)  2(p)

Next, the congruence transformation from [38] is used to recast (3.12)) into an LMI (when p
is fixed). Let M and its inverse be partitioned as

X U _ Y V
M = <UT *) and M 1 = (vT *) 5 (313)
such that XY + UV T = I holds. Moreover, define
(Y I (1 0 Toag
V= (VT 0> and Z = <X U) , such that V' M = Z. (3.14)

Next, a congruence transformation is applied on (3.12)) and on the condition ‘M > 0’. Trans-
forming ‘M > 0’ yields
Y I

VMY = <I X) = 2 = 0. (3.15)

3There are synthesis methods that do not fully require this assumption, such as the method in |55].
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Consider the congruence transformation on (3.12)), the transformation is applied on the lower
blocks of the outer matrices, i.e.

M (p) MZB(p)
< 5 2p) > (3.16)

Transforming (3.16)) yields

() (e ) () - Casy ) = (G g,

(20 80 Aoy ;‘jl )
Cp)Y Calp) | D

O

a(p b(p I 0
éDozu t(p) 0(p)><0 Cy
e(p

(6 29 -[(5 2) (A8 5) (23 9+ (47 ). o

The latter transformation yields the synthesis inequalities
T

I 0 0 01|71 0 I 0
0o I 0 Q|0 S 0 I
“A(p) B() 70 10 0 Ap) B | <% 2o (3.20)
Clp) D(p) 0 ST|0 R C(p) D(p)

which can easily be transformed in to linear matrix inequalities over P for a given performance
index, using e.g. the linearization lemma from [38, Lemma 4.1], which is given in Appendix

A2

3.4.2 Application to norm and gain-based synthesis

In this section, incremental controller synthesis for specific performance indices are discussed.
The analysis part for these specific incremental performance indices are discussed in [10}24]
and Appendix The following synthesis methods are algorithms for incremental passiv-
ity, incremental Lo-gain, incremental L,-gain and incremental generalized Ho-norm based
synthesis.

Incremental passivity based synthesis

A closed-loop system is incrementally passive if (3.12)) holds with @ = R =0 and S = —1I [10].
Using the results of Section the following synthesis inequalities can be obtained
T

I 0 0 011 0 I 0
I 0 0|0 —TI 0 I

Alp) Blp) I 0]0 0 A By | 7% 270 (3:21)

C(p) D(p) 0 —I/0 0 C(p) D(p)
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which can be rewritten as

Alp)T +A(p)  B(p) —Clp)"
(B(ﬂ)T ~C(p) —D(p)" — D(ﬂ)) <0 &0 (322)

If the matrix functions A(p),...,D(p) depend affinely on p, the system can be transformed
to a polytopic system with s vertices. The incrementally passive synthesis inequalities then
result in

Al +A B -/
Z = 0; t o d t, < 0; ,=1,---,s. 3.23
(Bj—ci -D] - b ' ’ (3.23)

Lio-gain based synthesis

A closed-loop system has Lip-gain « if (3.12) holds with Q@ = 7%, R = —I and S = 0 [10].
Rewriting (3.12]) with the performance index for £i>-gain and applying the Schur complement
on the inequality yields

Alp)" +Alp) B(p) C(p)"
B(p)" —~2I D(p)T | <0, Z =o0. (3.24)

C(p) D(p) I

This inequality can similarly be transformed into a finite set of LMIs when the matrix func-
tions A(p),...,D(p) can be confined in a polytope for all p € P.

”Higz-norm based synthesis

By [10,24], the closed-loop system has the positive value y as upper bound of the incremental
generalized Ho-norm, if for all p € P following matrix inequalities hold:

T T
M0, (d(p)%ﬂ(//l);j\\/l/ld(p) Mfﬁﬁ)) 0, ((gf‘(//‘)) (g(fj) )»0. (3.25)

Note that by definition, there cannot be feed-through in the closed-loop system, i.e. Z(p) =0
for all p € P. Similar to incremental passivity and Lis-gain synthesis, the first and the second
matrix inequalities in (3.25)) can be transformed using the results in Section ie

A(p)" +A(p) B(p)
( B(o)T _7[> <0, 2 =0. (3.26)

For the third matrix inequality in (3.25]), the same congruence transformation as in Section
is applied, i.e.

(9 (G @ D-Ca )= )

0 1) \%p) 0 I ¢ (p)Y I Clp) I '
(3.27)

The Hf-norm synthesis inequalities are given by (3.26) and (3.27), which are linear in p.

Similarly, the synthesis inequalities can be transformed into a finite set of LMIs, e.g. using a

polytopic description of the differential system.
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Lico-gain based synthesis

Following [10,124], the closed-loop system has an upper bound 7 on its Li-gain, if for all
p € P, the following matrix inequalities hold,

AM 0 Al
(y=mI Z(p
“(p)  Z(p) VI

)T
)] =o.

p

M50, <427(p)T./\/l + M (p) + M M%(p)) <0,

B(p)' M —pl
(3.28)

Again, the congruence transformation matrices used in Section are applied. The first in-
equality in is pre- and post-multiplied with YT and ), respectively. The second inequal-
ity in is pre- and post-multiplied with diag{)", I'} and diag{) T, I}, respectively. The
last inequality in is pre- and post-multiplied with diag{)}'",I, I'} and diag{)Y",I, I},
respectively. These congruence transformations yield the following inequalities

]
AT +Alp) 22" B(p) A 0 o)
Z =0, < B(p)" _,UI> <0, C?p) (WD(;;)I D,(YPI) = 0. (3.29)

Note that for a fixed p, the second and third inequality are still not linear, due to the decision
variable . To solve this system of matrix inequalities for a fixed p, one has to perform a line
search over A, because the inequalities are linear for a fixed A. There are several methods
to obtain the optimal value for 7. For the implementation of the L, synthesis algorithm, a
golden section search over \ is used.

3.4.3 Eliminating the controller matrices

In order to solve the synthesis LMIs, the solver must find symmetric X, Y and for every
vertex the matrices a, b, ¢, 0, such that the inequalities hold for all vertices of the polytope.
When the number of vertices grows, the number of decision variables grows four times as fast,
which leads to increasing computation time or numerical problems. Therefore, it might be of
interest to reduce the number of decision variables in the problem. This section discusses this
reduction problem, with the incremental passivity synthesis results as a leading example.

In the previous section, it can be noted that the synthesis inequalities can be written in a
symmetric form. If the first inequality in (3.22) is considered, it is possible to rewrite this as

(") (0 s+ (6 o) (& sen] <o e
By reconsidering and rewriting the first term of as
¢ ) )-GO (19 Sl ).

g

(p)
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D (1) @ G g
€

= @(p) + &) §, (3.31)

the matrix inequality (3.22)) can be rewritten as

(p)+0(p)" + &P & +& Q)T EL <0 (3.32)

This formulation allows to project away the controller matrices. For this elimination proced-
ure, the Projection Lemma from [56, Lemma 3.1]E] is used.

Lemma 1 (Projection Lemma [56]). Given a symmetric matric ¥ = W' € R™, and two
matrices G € R™P and H € R™™? of dimension n. Consider the problem of finding some
matriz A € RP*4, such that

U+GAHT + HATGT <. (3.33)

Denote by Wg, Wy any matrices whose columns form bases of the null spaces of G and H,
respectively. Then (3.33)) is solvable for A if and only if

W UWg <0, (3.34)

Wy UWy < 0, (3.35)

where the columns of W form a basis of the null space of G' and the columns of Wy form
a basis of the null space of H' .

Proof. See [506] [ |

If in (3.32), ®(p) + (p) ", &u, & and Q(p) are selected as ¥, G, H and A, respectively, it is
possible to analyze the existence of a controller that yields the system incrementally passive
by verifying

N (D) (20 +2()T) (D) <0
M(&) (200) + 20T N (&]) <0,

where N (-) denotes a basis of the null space. Thus, using the projection lemma, the controller
matrices are eliminated from the problem, and thus the number of decision variables is reduced
with 4s, where s is the number of vertices.

Z + 0,

This approach can be applied to all the synthesis methods. The intuition behind this approach
is that the bases of the null spaces of &, and &, expose the parts of the system that cannot
be influenced or measured by the controller. If these parts are not stable or sufficiently
performing, the controller will never be able to stabilize or guarantee performance of the
overall closed-loop system.

*See [57, Sec. 2.5] for more variations on this lemma.
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Remark 2. Note that this methodology requires to solve the problem in two steps. First, the
existence of a controller is verified by solving the problem with eliminated controller variables.
This gives the closed-loop Lyapunov matrix 2. As a second step, the numerical value for 2~
can be substituted into the synthesis inequalities for a specific vertex, which allows to solve
for the controller matrices on the specific vertex. It is also possible to immediately solve for
the controller matrices as a second step (without having to solve an LMI), see [58] for more
details.

3.5 Controller construction

Up to now, only the synthesis problems are given, which only show that there exists a certain
differential controller that ensures differential stability and performance of the differ-
ential closed-loop system. This section discusses the construction of the differential form of
the controller, i.e. obtaining A.,...,D. in , and shows how to realize this controller in
the primal form. The realization methodology is adapted from [16]. As mentioned earlier,
alternative controller realization methods are given in [17] and [15].

3.5.1 Constructing the differential form of the controller

The synthesis inequalities yield values for 2~ and for every vertex a pair <:((Z )) ggz g ), which

are defined in (3.15)) and (3.19)), respectively. The controller matrix functions (éz((:; )) g‘z((’; ))>

can be obtained by finding a U and a V such that XY + UV T = I. A possible choic for V
isVI =V =Y, then U =Y "' —X. With U and V defined, it is possible to uniquely solve
for the controller matrices on every vertex,

(0 5o = (5 P [ o= (40 D] (& §). e

Similarly, the closed-loop differential storage function matrix for the system can be obtained
as follows .
-1 Y vV (I 0
_ T _
M_(y ) z_<I 0) <X U). (3.37)

3.5.2 Realizing the controller in the primal form

All the discussed synthesis problems consider systems in their differential form, while the
controllers must be realized in their primal form. Hence, the conversion from differential
form to primal form as depicted in Figure must be implemented. The realization of the
primal form of the controller, based on its differential form, is discussed in [16, Section 3.4].
Combining the results of [24] with Theorem 18 from [16], the following result is obtained,

>The choice for U and V is free, as long as the identity XY + UV = I holds. In [47] an alternative is
proposed, including a motivation for their practical validity. In this work, the use of a parametrically dependent
Z is considered as well.
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dw(t) 0z(t) w(t) z(t)
6Xp | =
duft) dy(t) u(t) y(t)
(52]{ < YKk [

Figure 3.2: Conversion from the differential form to the primal form.

Theorem 7 ( [16]). If the solution set of ¥p is restricted to (z,y,z, w,u) € (cl x Céy xCl x
Ch NZL xCL ), then the behavior of 0¥ p is equal to a system Yp, described by [B.1)), with
its inputs integrated and outputs differentiated.

Proof. See [16]. [ ]

Figure [3.3]| shows a depiction of Theorem

dw(t) 0z(t) ow(t) | T Jw(t) z2(t) 11 92(t)
v I 9 d |1

Su(t) J Xp Sy(t) ¢ ) u(t) | / u(t) Xp y() | dt |1 oy
g L[

e 0%

Figure 3.3: Depiction of Theorem .

With this result, the realization of the controller is as depicted in Figure The state-space

ult) Xp

ou(t dy(t
[ 1< o5 < g

Figure 3.4: Realization of the primal controller.

realization of X is derived in [16] as

. Ac(p(t)) 0> <AC(P(t))Bc(p(t))—BC(P(t))>
To(t) = ze(t) + : y(t);
s 10 = (G000 0) 0+ (G iy Doy ) ¥
u(t) = (0 I) ze(t) + De(p(t))y(t).
Note that the controller depends on the scheduling variable and its derivative. This might
be difficult to implement in practical cases. This problem could be prevented by restricting

the matrix functions B. and D. to be independent of p. However, this might be at the cost
of performance.

(3.38)
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3.6 Implementation

The above discussed algorithms are implementedﬁ] in the LPVCORE software toolbox[] for
MATLAB. As noted before, the bookkeeping for the conversion from SSA to a polytopic
system representation is implemented by the ROLMIP toolbox [59]. The LMI parser that is
used in the LPVCORE toolbox is the open-source toolbox YALMIP [60]. The LMI solvers for
semi-definite programs used in the LPVCORE toolbox are the (free) SDPT3 solver [61] and
the (commercial, but free for academia) MOSEK solver. It must be noted that MOSEK is
in general the most stable solver, as some problems are not feasible with SDPT3, while they
are feasible with MOSEK. The analysis results on incremental L2-gain, incremental L£.o-gain,
incremental passivity and the incremental generalized Ha-norm from [24] are implemented in
the LPVCORE toolbox as well. This allows for verifying e.g. the Lis-gain of a differential
system interconnected with a differential controller, which is demonstrated in the following
example.

Example 1. Consider the following differential system, where time is omitted for brevity:

5I.1 0.1p2 —1 0 0 —4 1 5$1
0o 0 0.4p2 — 2 0 1 2 0z
0T3 = —-0.4 0 0.05p1 | 0.1p2 | 0.1 oxs , (3.39)
0z 1 —0.125 1001 | —p1 | O dw
5y 1 5 2 [ -1 10 Su

where p; € [—1, 1] and py € [—2, 0]. Using the previously discussed synthesis algorithm
for Lio-gain outputs a controller that guarantees a bound of 1.25901 for the Li»-gain of the
system. When the synthesized differential controller is interconnected with the differential
system, the bound for the Lio-gain of the differential closed-loop system is 1.25900. This
verifies the implementation of the synthesis algorithms. Note that this example does only
use the differential formulation. Similar examples can be given for the other gain-based and
norm-based synthesis methods] <

The next example shows a simulation example for the incremental synthesis procedure using
the LPVCORE toolbox, showing that the implementation of the algorithms yields satisfying
results. This example is a slightly modified version of the example given in |16, Section 4.2]ﬂ

Example 2. This example discusses an unbalanced disc setup from [62]. The nonlinear
dynamics of the unbalanced disc are described by

{9(75) = w(t);

o(t) = M sin(9(t)) — Lw(t) + Emu(t),

T

(3.40)

where the physical parameters can be found in Table The differential form of (3.40) is

as follows .
{M@:M@;

dw(t) = @ cos(0(t))66(t) — Léw(t) + %&L(t). (3.41)

5The controller elimination approach is not (vet) implemented.

"A beta release can be found at https://tothrola.gitlab.io/LPVcore/.

8The LPVCORE toolbox contains an example system that works for all the methods.
9This section is from the version of the paper from September 7**,2020.
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Table 3.1: Physical parameters of the unbalanced disc from [16].

Parameter H g ‘ J ‘ Ky ‘ l ‘ M ‘ T
Value || 9.80 | 2.44-107% | 10.51 | 0.041 | 0.0762 | 0.398

The differential form can be embedded using a parameter-varying inclusion by choosing
p(t) = cos(0(t)) as scheduling variable, with P = [—1,1]. Suppose this system must have a
certain H%-norm when it is following a zero-mean square-wave reference with an amplitude of
/2 and a frequency of 1/8 Hz, while subject to an input disturbance of 5 V. Furthermore, the
plant only allows inputs between -10 V and 10 V. The generalized plant for which a controller
is synthesized is given in Figure The weighting filters for the generalized plantIE are

1

7‘+ €

y,
=

Figure 3.5: Generalized plant for the unbalanced disc example.

defined as

107 0.50125s + 4 s +40
Wi(s) = 520’ Wy, (s) = 0.5, Ws(s) = Ts1004 Wy (s) = s+ 4000°

The controller synthesis algorithm synthesizes a controller which yields the closed-loop H%,-
norm 4.303. Hence, for all (weighted) input signals with an Lo-norm of 1, the worst-case
peak the (weighted) outputs can have is 4.303. Plots of the reference and the output, and the
plant input over time are given in Figure which shows desired behavior using a controller
which is synthesized by the algorithm in the LPVCORE MATLAB toolbox. <

3.6.1 Notes on implementation for LFR systems

The first sections of this chapter pay some attention to LFR systems. The reason why these
are not discussed anymore is because of two reasons; first of all, the methodologies described
in Section [3.4] also work for systems in LFR form. Secondly, the aforementioned method by
Scherer [44] has not been successfully implemented in MATLAB. Despite the latter fact, the
aforementioned method is briefly discussed in this section.

LFR systems allow for a less conservative parameter-varying inclusions compared to SSA
system representations. This is because LFR systems allow rational dependencies on the
scheduling variable as well. The full block multiplier synthesis method, introduced by Scherer

10Tt is assumed here that LTI shaping techniques work on nonlinear systems. Whether this assumption holds
is not known yet, as will be discussed in Chapter [4l However, this methodology is followed for simplicity.
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Figure 3.6: Simulation results for the unbalanced disc example.

in 2001 uses the S-procedure and fully unstructured scalings to encode the constraints on
the scheduling variables in a less conservative manner. The reduction in conservatism comes
from the fact that this method does not enforce structure on the function A in , due to
the unstructured scalings. Via dualization and the use of extended multipliers, the problem
can be recasted as a finite LMI test. The controller (which is an LFR system) construction
consists of two parts. The first part is obtaining the LTI part of the LFR controller by
solving an additional LMI. The second part consists of defining the scheduling function for
the controller, which is dependent on the scheduling function of the system, i.e. A.(A).
The construction of this scheduling function is not successfully implemented in MATLAB.
Moreover, this methodology had issues regarding the numerical conditioning of the LMIs in
MATLAB. Therefore, LFR synthesis methodologies are only briefly discussed in this thesis.
For more details on Scherer’s method see the original paper or chapter 9 in for a
more elaborate explanation.

3.7 Discussion

This chapter showed one methodology to synthesize a controller based on incremental dissip-
ativity and how to realize and implement this controller. As mentioned in the introduction
of this chapter, there are plenty of synthesis algorithms in literature for LPV systems. As
the PV system representation discussed in this thesis is similar to an LPV representation, the
mentioned synthesis methodologies can all be seen as potential incremental controller syn-
thesis methods. Hence, this allows for further exploration of the incremental and differential
synthesis framework.

On the controller construction side of the discussion, there remains quite some exploration as
well. The methodology discussed in this thesis was chosen because it was the most straight-
forward method. However, it might be of interest to compare the aforementioned controller
realization methods, as there are no works in literature that elaborate on comparing these
realization methods.

Furthermore, as already briefly mentioned in Example a proper incremental controller
synthesis framework might not be used to its full potential when there is no full understanding
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of performance shaping of (differential /incremental) nonlinear systems. As there is almost no
literature available on a nonlinear performance shaping framework, this thesis aims at setting
the first steps towards shaping for nonlinear systems in the next chapter.
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Chapter 4

Towards Shaping of Nonlinear
Systems

In Chapter |2 the analysis tools to characterize performance of nonlinear systems in a convex
setting have been introduced. In Chapter[3|these tools have been used to synthesize controllers
which can guarantee quadratic performance of the closed-loop system. However, one may
ask, what do these notions of performance mean with respect to the closed-loop system in
practice? How can we interpret the concept of nonlinear performance to design objectives in
engineering, such that performance can be guaranteed by design? And is it possible to shape
the overall behavior such that the closed-loop system satisfies the performance specifications?
This chapter aims at defining the third key ingredient, i.e. a shaping framework for nonlinear
systems, where the engineering intuition developed in the LTI framework and the frequency
domain can be successfully used.

4.1 Introduction

When a control engineer is assigned to design a controller for a system, the first question
he or she often asks is, what are the specifications? According to these specifications, the
controller for the to be controlled system is designed. During the design procedure, the
specifications, or wishes from the customer must be translated into technical performance
specifications, such that these can be used in the control design in a more systematic fashion.
The third key ingredient for a systematic control design procedure for nonlinear systems is
on the translation of these technical performance specifications to systematic mathematical
concepts. With these mathematical concepts and the first two key ingredients, one will be
able to shape the desired behavior of the closed-loop system by finding a controller, which is
synthesized with the constrains that are imposed by the technical performance specifications.

Hence, the concept of shaping is to define the controller for the system such that the resulting
closed-loop operation has a desired behavior in the sense that it satisfies the performance
specifications. These performance specifications can be translated to systematic mathem-
atical concepts in the time domain via e.g., step response characteristics or a cost function
definition like in LQG control, and in the frequency domain, via desired frequency content
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of the signals or desired transfer function characterization. As already briefly mentioned in
Section performance shaping for LTI systems has many well-established methods. In
classical LTI control theory, there are four well-known approaches that are used to realize
the performance specifications: a signal-based approach, which by using weighting filters that
encode the expected behavior of both the disturbance and the performance channels turns
the shaping problem into a signal norm (e.g., Lo, Ho, L1, etc.) based minimization prob-
lem of the filtered transfers, loop-shaping [63], where the open-loop transfer is shaped in the
frequency domain (often using rules of thumb), mixed-sensitivity shaping [64}/65], where the
frequency behavior of important closed-loop transfer functions (e.g., the sensitivity function,
the complementary sensitivity function, etc.) is shaped, and via model matching [66], where
the closed-loop system is shaped as close as possible (in terms of a norm) to a given desired
closed-loop behavior. All these methods build on the concept of the systematic use of a nor-
malized generalized plant, as already briefly mentioned in Section By normalizing the
LTT generalized plant using weighting filters, the mathematical equivalents of the perform-
ance specifications can be generalized using frequency domain defined shaping filters, which
embed the performance specifications in a mathematical fashion. The normalized general-
ized plant has disturbance channels and performance channels that are captured in a unit
ball. The shaped generalized plant has shaping filters connected to these channels, which
express the specifications of the respective channels. Due to the intuitive link between the
frequency domain behavior and time domain behavior for LTI systems, the frequency domain
representation of the interconnection of the generalized plant with the shaping filters is an
LTT transfer (matrix) function. If the H,.-norm of this transfer function is less or equal to 1,
the mapping between the disturbance channels and the performance channels is unitary, and
hence the performance specifications are satisfied. Thus, the intuition of frequency domain
representations of LTI systems allows for straight forward and intuitive performance shaping
via frequency domain defined shaping filters. Moreover, frequency domain based performance
shaping is a well-known and widely used methodology in the industry. Hence, for a shaping
framework for nonlinear systems, one would need a proper frequency domain representation
concept for nonlinear systems and a intuitive shaping filter design procedure.

This chapter aims at defining and realizing these two objectives by taking the LTI intuition
as a starting point, hence the main question is: Is it possible to have a shaping framework for
nonlinear systems, while the intuition of the LTT frequency domain interpretation is retained?
To answer this question, first the frequency domain characterization of various classes of non-
linear systems, such as Wiener and Hammerstein structured nonlinear systems, is investigated
using various approaches. Moreover, an overview of the work on nonlinear frequency domain
characterizations is given. With one of these available characterizations, the first steps to-
wards performance characterization for nonlinear systems using LTT weighting filters is taken.
Additionally, it is analyzed whether the LTI shaping methodologies also hold for nonlinear
systems.

The reason why for nonlinear systems, the above mentioned objectives are non-trivial ex-
tensions of the LTI shaping framework, is that nonlinear systems do not have the favorable
properties, such as superposition, which LTI systems do have. The fundamental property that
makes the shaping framework for LTI systems so intuitive is that LTI systems cannot shift
energy from one frequency to the other (by the superposition principle). When a nonlinear
system is subject to a simple sinusoid, the response can be a multi-harmonic and obscure
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signal. In |67], these nonlinear effects that can occur are discussed, such as: 1. Gain compres-
sion/expansion, where the system gain is dependent on the input magnitude. 2. DispersiorE],
where the energy at a certain frequency in the input is divided over multiple frequencies in
the output. 3. Intermodulation, where input frequencies are combined to produce new fre-
quencies in the output. 4. Harmonics, where one frequency in the input generates frequency
components in the output, which all are multiples of the input frequency. Hence, there is
need for a frequency domain representation for nonlinear systems that can capture all these
nonlinear effects. In [67], some representation methodologies are discussed, such as describing
functions [681|69], Best Linear Approximations [70] and the Generalized Frequency Response
Function |71]. Next to the methods which are mentioned in [67], there exists also the Wereley
Frequency Response Function, introduced by Wereley [72| and the Nonlinear Frequency Re-
sponse Function [73|74], which is developed for infinite dimensional nonlinear systems. The
latter is also known as the Inverse Scattering Transform. The aforementioned methodologies
are further introduced and discussed later in this chapter. On the definition of shaping filters
for nonlinear systems is no literature available, by the author’s knowledge.

This chapter is outlined as follows. First, the formal shaping problem for nonlinear systems
is formulated. Next, the frequency domain characterization of nonlinear systems is discussed,
where it is motivated that the generalized frequency response function is used to define the
frequency characteristics. This is followed by a simplification of the shaping problem, which
allows to define shaping techniques using the generalized frequency response and give insight in
the challenges in the problem. Using this simplification, a shaping methodology is worked out
for two types of nonlinear systems with a special structure. The effectiveness of these shaping
techniques are demonstrated by means of an example. The chapter ends with discussing
possible extension of the results to general nonlinear control problems and reviewing the
open questions regarding the nonlinear shaping framework.

4.2 Problem formulation

As there is no (standardized) shaping framework for nonlinear system, and almost no literature
on the shaping of nonlinear systems, this thesis first focuses on defining a nonlinear shaping
framework based on the LTI shaping framework by defining the behavior of the nonlinear
system in terms of Weightingﬂ filters. The objective is to establish such a framework, such
that the steps towards integrating shaping into control methodologies can be taken. Hence,
suppose there exists some (controlled) nonlinear system which is stable and performing as
desired. Then the goal is to properly define and understand the choice of weighting filters at
the input and the output that characterize mathematically the desired operation. The input
weighting filter 201 and the output weighting filter 205 must be defined such that when the
input of 27 is confined in a unit ball, the output of 2y is confined in a unit ball as well, for
all possible unitary realizations of the input. This shaping setup is shown in Figure In
this setup, the nonlinear system is defined as in , 2z is the input weighting filter and 20q
is the output weighting filter. Both the signals w and z are confined in a unit ball denoted

'Tn [67], this effect is referred to as ‘desensitization’
2Throughout this chapter, the terms weighting filters and shaping filters are used interchangeably.
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Figure 4.1: Shaping setup.

as 1, which is mathematically defined as
1= {a ‘ loll, <1, |F{e}h(w) <1 vw e R} (4.1)

It must be noted that this is a different definition than the unit ball definition used in the
LTI Hoo control theory, where the Lo-norm or the RMS-norm are used, while both are used
in . A unit ball in terms of the Lo-norm, confines signals in the time-domain. The
RMS-norm is defined as the average of the magnitude of all the sinusoidal components of a
signal, hence a unit ball in terms of the RMS-norm confines signals in the frequency domain.
The key relationship that makes the L£o-norm and the RMS-norm attractive to use in the LTI
framework is the sub-multiplicative property of the Hoo-norm [75], i.e. ||z[ly < [|Glly_ [lwll,
and | z|lgps < (Gl [wllgass With G the transfer function of an LTI system, i.e. the worst-
case peak magnitude of the system is immediately extracted from the relationship. This
property yields a direct connection between the properties of the mapping G in the frequency
domain and the time domain. The H,-norm is not defined for nonlinear systems, but there
is the induced Lo-gain that can be seen as a nonlinear analogous system property. However,
a similar sub-multiplicative property with the Lo-norm and the RMS-norm does not exist for
nonlinear systems as the initial condition must be taken into account as well. Therefore, the
unit ball definition in is used for the nonlinear shaping concept.

As discussed earlier, in the case where the system in Figure[4.I]is an LTI system, the definition
of the weightings is relatively intuitive, as for every possible input, the output of the LTI
system is predictable, due to the superposition principle. However, for nonlinear systems
the superposition principle does not hold, i.e. a small change in the input might result in
a completely different output. Hence, the LTI way of thinking about shaping does not hold
for nonlinear systems. Therefore, the problem is to define the shaping filters 201 and 20q
that can encode the available information on the disturbances and expected behavior of the
performance channels, such that for all possible realizations of w € 1, the output z is an
element of 1 as well.

To solve this problem, there are two main issues to be addressed. The first issue is frequency
domain characterization of nonlinear systems, which is far from trivial compared to LTT sys-
tems, because interconnections of nonlinear subsystems are not multiplicative in the frequency
domain, due to the invalidity of the superposition principle. This issue is motivated by the
fact that the frequency domain interpretation of signal behavior is a well-understood method
for LTI systems. Moreover, filtering actions defined in the frequency domain are widely used
and taught in the systems and control community. The second issue is to formulate a meth-
odology to define the weighting filters 201 and g, such that these encode the information
on the expected disturbance and desired performance, respectively, while preserving the LTI
interpretation. The following sections will address these issues in detail.
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4.3 Frequency domain characterization of nonlinear systems

4.3.1 Overview

This section discusses the first issue with shaping of nonlinear systems, which is the char-
acterization of nonlinear systems in the frequency domain. As discussed in the introduction
of this chapter, there are several frequency domain analysis tools available for nonlinear sys-
tems, see |67] for an overview. However, only a few of these methods focus on the frequency
domain characterization of nonlinear systems with general inputs. For example, the so-called
‘Higher-Order Sinusoidal Input Describing Functions’, introduced in [69], describe the fre-
quency behavior of the nonlinear system when it is subject to a single sinusoidal input. For
some general input with a certain spectrum, this method cannot be used. The extensive
review in [67] compares the discussed frequency domain methods for different input classes,
and only the Generalized Frequency Response Function (GFRF) can describe the nonlinear
frequency behavior for multisines and Gaussian inputs, i.e. general inputs [67, Table 3].
The methods which are not mentioned in |67] are the frequency domain analysis tools using
the Wereley Frequency Response Function [72] and the Nonlinear Frequency Response Func-
tion [73]. However, from the three aforementioned methods, only the GFRF and the Wereley
response are promising tools for the application in this thesis, because these methods can
characterize the behavior of (finite dimensional) nonlinear systems when subject to general
inputs. The other methods fail to accomplish this because these methods only focus on the
output response when subject to a single sinusoidal input or focus on infinite-dimensional sys-
tems that lie outside the scope of this thesis. In this thesis, the GFRF is used to gain insight
in the frequency domain behavior of nonlinear systems. The two reasons for choosing the
GFRF over the Wereley response are because 1) the GFRF is often using in a discrete-time
Fourier transform setting with sampled signals, such that the frequency domain convolutions
can be broken up to matrix multiplications. However, for a general characterization the
Wereley response seems no better method than the GFRF. 2) Over the years, quite some the-
oretical results published on the GFRF, while there is not much literature on the theoretical
applications of the Wereley response, by the author’s knowledge.

4.3.2 The generalized frequency response function

The generalized FRF [71] has been developed for a specific class of nonlinear systems that
can be described in a neighborhood of an equilibrium point by a Volterra series [76]. The
Volterra series are a generalization of the linear convolution concept, and can be seen as the
Taylor series for functions that involve memoryﬂ The Volterra series expansion of order N
of a single input, single output (SISO) nonlinear I/O map u(t) — y(t) around an equilibrium
output is

N 0o 00 n
w0 =+ > [ [harm) [Jute - (1.2)
n=1Y"° oo =1

where y(t) and u(t) are the output and input of the nonlinear system, hy,(11,...,7,) : R* - R
is the n'M-order Volterra kerne and N is the order of the Volterra series expansion. The

3See e.g. chapter 4 in [77] for an insightful discussion on the Volterra series.
It must be noted that the calculation of the Volterra kernels can be quite cumbersome, see e.g. [78].
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term g is without loss of generality set to zero throughout this thesis. The order N can be
seen as the maximum order of the system nonlinearities, i.e. every element in the sum has a
contribution to the nonlinearity in the system output. While this class of nonlinear systems
might restrict the applicability for general nonlinear systems, the class of nonlinear systems
that can accurately be described using a Volterra series expansion is still a considerably large
class, as discussed in |79]. This restriction will be briefly discussed in Section

Using the Volterra series, the theory on the GFRF is briefly explained. Suppose the nonlinear
system is excited by a general input u(t), which can be described as

u(t) = — /OOU(jw)ejwtdw, (4.3)

(e o]

where U(jw) is the frequency spectrum of the input. Note that denotes the inverse
Fourier transform. Furthermore, note that this gives the restriction on the input that « must
be absolutely integrable. The derivation of the GFRF is obtained from [80], and starts with
rewriting the elements in the sum in as

yn(t) = / hon (71, . Hu 7;)dT;

/ U(jw)ej“’(t_”)dw> dr;
)

1 oo oo
— ]wz(t Tz)
(277-)”/—00“'/ hn (11, .-, / / ||ij e dw;dT;
1 (o0
= JwiT; Jwit
(277)"/—00 / / / n(Tiy ooy T )”e dTlIije dw;

Il
—
g 8
|\
g 8
>
3
)
s
=
N
I\D‘H

=1 =1
. (21 n/OO.../OOHn(jwl,...,jwn)ﬁU(jwi)ejwitdwi (4.4)
™" S 0 i=1
= (2717)" /_: .. /_:Yn(jwl, o jwp )@t Eentqy L dw,, (4.5)
where .
Yo(jwi, ..., jwn) = Ho(jwr, ..., jon) [ JUGes), (4.6)
=1

is the n''-order output spectrum of the nonlinear system, and

n

H,(jwi,...,jwy) = / / n(Tiy ey T n)Hefj“iTidTi (4.7)

i=1
is the n''-order GFRF of the nonlinear system. Note that the GFRF is constructed out of
the Volterra kernels in (4.2)). Furthermore, when (4.6)) is considered for n = 1, the expression

resembles to the output spectrum of the linear part of the system, where H;(jwi) is then the
transfer function of the linear part.

While the expressions in (4.4)—(4.7]) are strong mathematical concepts, actually calculating
the Volterra kernels and GFRFs can be quite cumbersome. Hence, a lot of research has
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been done on deriving system properties from these expressions. In [81], the theory in [80]
is extended by deriving a methodology to determine which frequencies will appear in the
output spectrum for a given input spectrum. While in [82], influence of the model parameters
on the output frequency spectrum are derived, when the model is expressed using a NARX
structure. A first step towards modifying the model parameters (i.e. controller parameters)
to obtain a desired output spectrum is discussed in [83]. However, the expressions for Y, (jw)
are derived using a data-based approach, hence this does not give insight in the nonlinear
frequency behavior. In [84] a recursive function is derived that gives the relation between
the parameters of the nonlinear model and the n'" order GFRF, which gives more insight
in what the contribution of the n'™™ nonlinearity is in the system output. It also shown
that under specific conditions, the analytic expressions for Y,,(jw) can be determined after
cumbersome recursive computations. In [85] some explicit computation the GFRF's of block-
oriented nonlinear systems are derived. This paper will be the starting point of the analysis in
this thesis. The above works are summarized in the book by Jing and Lang [86]. The research
on the GFRFs for discrete-time nonlinear systems is briefly discussed in Section From
the aforementioned works and derivation, it is possible to conclude that the GFRF analysis
can quickly become computationally unattractive. Therefore, the problem is simplified, such
that the first steps can be taken towards a nonlinear shaping framework.

4.3.3 Simplifying the problem

Throughout this thesis, the considered nonlinear systems admit a state-space realization of the
form , for which it is not guaranteed that there exists a global, analytic I/O realization,
see e.g. |87, Section 2.1] or 88| for more details on this problem. Therefore, to overcome this
conversion step, the following proposition is used

Proposition 1. Consider a nonlinear system of the form (2.1), where the functions f and h
are analytic. This nonlinear system can be expanded into a finite set of Wiener, Hammerstein,
Wiener-Hammerstein and/or Hammerstein- Wiener SISO systems.

Wiener systems are composed of an LTI dynamical system, where the output propagates
through a static (analytic) nonlinearity ¢, as depicted in Figure Hammerstein models
are composed of an LTI system with a static nonlinearity as well, however the nonlineary is at
the input of the nonlinear system, as depicted in Figure Combining the aforementioned
model structures give the Wiener-Hammerstein model structure, depicted in Figure and
the Hammerstein-Wiener model structure, depicted in Figure For the simplification of
the problem, the following assumption is made for the systems discussed in this chapter,

A8 Proposition [1| holds for all the considered systems.

Moreover, without loss of generality, for the systems depicted in Figure [4.2]it is assumed that

A9 The static nonlinearities are centered around zero, i.e. p(0) = 1(0) = p2(0) = 0.

The model structures in Figure are also known as block-oriented nonlinear systems, which
is also why the work in [85] is considered to be the starting point of the analysis.

The main advantage of using the Wiener and Hammerstein model structures is that the
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LTT system
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(a) Wiener model structure.

LTI system

y(t) = Ca(t) + Di(t)

(b) Hammerstein model structure.

LTT system 1 ~ ~ LTT system 2
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u(t) = Cx(t) + Du(t) y(t) = Cz(t) + Dy(t)

(¢) Wiener-Hammerstein model structure.
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(d) Hammerstein-Wiener model structure.

Figure 4.2: Simplified nonlinear model structures.

Volterra kernels for these systems are relatively easy to derive. The combined model structures
(Figures and are more involved. Based on the analysis in |77], the following is
obtained. First consider the Wiener model structure, and let the nonlinearity be represented
by a power series as

K
e(G(t) =Y ar (G(t)". (4.8)
k=1

Note that by A@, the 0" term in the sum is zero, i.e. for k = 0, a, = 0. Then by the
derivation in [77, Sec. 4.3.1.1], the k*" order Volterra kernel of the Wiener model is

hi(T1y ..y Tk) = aghi(T1)hi(m2) - - - hi(Tg), (4.9)

where hp is the impulse response function of the LTI system in Figure Similarly for
the Hammerstein model structure, let the nonlinearity be represented by a power series as in
(4.8). Then based on the analysis in [77], the k'™ order Volterra kernel of the Hammerstein
model is expressed as,

hi (71, .o i) = aphi(T1)0r 700y 75+ * Oy 7 (4.10)

where 9; ; is the Kronecker delta and h is the impulse response function of the LTI system
in Figure (4.10) makes it evident that the Volterra kernels of a Hammerstein model are
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all zero except at the diagonal of the kernels, i.e. (4.10]) can be rewritten as

aghi(m) ifrp=m=--=m

hi(T1,0 00, T) = { (4.11)

0 otherwise.

The Volterra kernels of Wiener-Hammerstein models have approximately the same structure
asin (4.9). Let f(t) be the impulse response of LTI system 1, and g(¢) be the impulse response
of LTT system 2 in Figure then the k'"-order Volterra kernel of a Wiener-Hammerstein
model is described by

o0

mu(rrsom) = | 9(0)f(n = 0)f(r2 = o) f(n — o) (4.12)
-0

Hammerstein-Wiener models do not have a simple formula to determine the higher-order
Volterra kernels as the two nonlinearities interact. In |77], the first and second order kernels
are derived, which are long expressions that contain binomial coefficients. Moreover, it is
states that there is no general formula for the higher order kernels. For this reason, the focus
in this thesis is only on Wiener and Hammerstein models. The next section discusses the
shaping problem for Hammerstein models.

4.4 Shaping Hammerstein structured systems

If the shaping setup in Figure is again considered, then substituting a Hammerstein model
yields the interconnection shown in Figure which will be the interconnection structure
investigated in this section. Note that it is assumed here that 201 and 2y are LTI weighting
filters, which is not necessarily required for the general case (depicted in Figure . As

| |
(t) | (t) ”(t) | LTI system (t) (t)
w u U Al _ Yy z
— L 3 E ! ! i > ul(t L 3| J@(t) = Az(t) + Ba(t) > 2 ! ! i 2 5
| I 4,0( ( )) ! {y(t) = Cx(t) + Du(t) 0
| |
L a

Figure 4.3: Shaping setup with a Hammerstein structured nonlinear system. The orange
box indicates where the shaping concept interacts with the nonlinearity. The orange box is
therefore the main point of interest.

the output shaping filter can be ‘merged’ with the LTI system, the main point of interest
in this setup is at the orange box, which contains the nonlinearity structure. Hence, for
analyzing the shaping of a Hammerstein structured nonlinear system, a Wiener structure
must be considered.

4.4.1 Conceptual idea

Following the analysis in the last section, the nonlinearity can be expanded using a power
series, yielding the block diagram in Figure[£.4] The power series can be e.g. the Taylor series
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w(t u(t

(1) | QHI (t) > o
FUQ
}u3

Figure 4.4: Hammerstein shaping setup with expanded nonlinearity.

or McLaurin series of the nonlinearity, as long as A9 holds. As the goal to relate the nonlinear
shaping problem somehow to an LTI shaping problem, the next step is to ‘push’ the weighting
filter_through every branch and capture the nonlinearity of every path in an LTI weighting
ﬁlte Qﬂ[In], which is parametrized according to 201, as depicted in Figure The definition

w(t)

Figure 4.5: Hammerstein shaping setup with expanded weighting filters, capturing the non-
linearity. With the theory on Volterra series, the GFRF and the convolution theorem, it
would suggest that this block diagram is equivalent to the block diagram in Figure

of QI][In] thus depends on the original weighting filter 201 and the frequency behavior of the
nonlinearity. Furthermore, since the system in Figure is a linear system, its differential
form is equivalent to the primal form [89], which has the potential of connecting this shaping
concept to differential and incremental analysis, in Chapter [2, The GFRF of the nonlinearity
for every path can be derived using the convolution theorem [90] or using [85].

The convolution theorem states that convolution in the time domain is equivalent to mul-

®In Appendix it is shown that if 21 is an LTI filter, then the n-dimensional convolution of 2U; in the
S [n] .
frequency domain, i.e. 20; , yields an LTT filter.
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tiplication in the frequency domain, and multiplication in the time domain is equivalent to
convolution in the frequency domain. Hence, for e.g. the second order path, the signal ua(t)
can be described as

iig(t) = ag - ((rog  w)(t)) - ((vog *w)(t)), (4.13)

where wz(t) is the impulse response of 21(jw), and ‘x’ denotes the convolution operator.
The Fourier transform of (4.13]) then yields

F{aug(t)} = f{ag . ((mI * w)(t)) . ((mI * w)(t))}
Us(jw) = as (wIW * %W) (jw)

= / "W GOW ()2 (7w — )W (ji(w — ), (4.14)

where W (jw) is the Fourier transform of w(t).

Remark 3. Note that an integral of the form , where the function inside the integral is
(complex) rational, exists when the rational function inside the integral has a relative degree of
at least 2. In the convolution case of , this implies that the rational function describing
the spectrum 201 (jw)W (jw) must have at least one more pole than zeros.

By considering , the conclusion can be drawn that the GFRF for the second order path
is ag. Comparing this to the results in [85], where the GFRF for an n*-order polynomial is
derived, the derivation using the convolution theorem yields the same answer for the quadratic
nonlinearity. Extending to higher orders, both methods will yield the GFRF

Hn(jwla--'ajwn) = Aap. (415)

The method in [85] uses the (harmonic) probing method [91] to derive the GFRF of a non-
linearity.

Now that the GFRFs of the Hammerstein shaping problem are determined, the shaping
problem can be analyzed. With the currently established concepts, it is expected that the
block diagrams in Figure and Figure are equivalent, which is not the case, as will be
shown later in this chapter. For the Hammerstein shaping problem there are yet two open
questions; What property does guarantee performance for all possible realizations of w € 17
How to define mﬂ{” ?

4.4.2 Guaranteeing performance with the shaping filter

The LTI way of thinking about shaping is that for all possible realizations of w € 1, the
performance/behavior of 7 is guaranteed whenever z € 1, considering Figure Translating
this way of thinking to the conceptual idea discussed in Section yields that for all w € 1,
the behavior of @ (in Figure |4.4)) must be contained within the behavior of @ (in Figure {4.5)).
This is quite an awkward formulation, as the containment is not clearly defined in terms of
signal properties. Therefore, the intuitive behavior interpretation in the frequency domainlﬂ
is used. Translating the containment property to the frequency interpretation yields the

SThis is extensively used in the LTI framework.
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following objective: For all possible realizations of w € 1, with Fourier transform F{w(t)} =
W (jw), the absolute value of the spectrum of @ must be upper bounded by the absolute value
of the spectrum of , i.e.

Y W (w)| < 1, ‘(?(jw)( < |U(jw)| Yw. (4.16)
As the system in Figure is a linear system, an upper bound for ’U ( jw)} is the spectrum
of & when w is unitary, i.e. W(jw) = 1. Let |Ug(jw)| denote the spectrum of % when the
spectrum of w is unitary. Then (4.16]) can be simplified to

VW) £ 1, |UGw)| < |01 ()| Ve (4.17)

The derivation in the previous sections allows to formulate (4.17)) for every path in Figure
As W (jw) = 1, the spectrum of i, (t) in the n'" order branch is defined as

Upn(jw) = @%ﬁ /OO- . /Ooml(jfl) W(j&1) -+ Wr(§€n—1) W(j€n-1) X
&:1__09 1 e
X Wi(jlw—E& = = &1) W(ii(w =& — -+ = &1)) dér ... A€
=1
= o [ [ (i)
n—1

X wl(](w — fl — e — én—l))dgl e dfn_1W(jw) (418)
= 2y (ju) W (jw) = 207 (jw). (4.19)

Similarly, the spectrum of 4, (¢) in the n*® order branch can be defined as

U (joo) = (2;‘)21/_m.../_ooﬁnl(j&)W(ﬁn---m(jén1)W(j|§<nll)x
n—1 - =
X Wr(j(w—& = = &G-) Wiilw =& = —&-1))d& ... d&p.
[-]<1

(4.20)

Hence, the desired property is that for all spectra W (jw) with a magnitude bound of 1, the
absolute value of is an upper bound for the absolute value of for all frequencies.
Therefore, the question is, does this property holds for any type of weighting filter, subject
to any type of input satisfying |W| < 1?7 If this can be proven for a general case, the shaping
problem can be partially solved. The following example gives some promising results:

Example 3. Consider the subsystem contained in the orange box in Figure (which is
a Wiener system, as depicted in Figure , where the nonlinearity is described as y(t) =
d(G(t)) := (§(t))?, i.e. az = 1 and a,, = 0 for n # 2, and the LTI system is described with the
following transfer function:

P(s) = . (4.21)
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For U(jw) = 1, the output spectrum Y (jw) can be calculated using residue calculus (see
e.g. for a detailed description of the methodology; more details are also given in Example
, which yields

1

T jw+ 2’

Y (jw) (4.22)
implying that QB:[[Q](S) = SJ%Q Next, the output spectrum of the response of the Wiener
system subject to a unitary multisine and a unitary signal (U(jw) = 1) is determined using
simulations. The input spectra are shown in Figure [{.6al Figure [£.6b] shows the spectrum

1 1071 &

o
;
—
S
&

=]
=
T

1073 L

Magnitude [-]

I
IS
T

Magnitude (normalized) [-]
=

=]
&)
T

0 L L L L L L
107! 10° 10! 102 101 10° 10! 102
Frequency [Hz| Frequency [Hz|

(a) Input spectra |U(jw)|, with the unitary input (b) Output spectra of Wiener system with unitary
in blue (—) and the unitary multisine in orange input (—, i.c. ¥3) and multisine (—), and 20 (s)
(—)- with unitary input (- -) and multisine (- - ).

Figure 4.6: Simulation results with a second order shaping filter and a squared nonlinearity.

of the Wiener system output (solid lines) and the spectrum for the output of the LTT filter
Qﬁ[f] (dashed lines). The trivial conclusion is that the unitary response for both the Wiener
system and the LTI filter are equivalent. Furthermore, this plot shows that for this case, Qﬂ?]
is indeed an upper bound for an input for which it holds that |U(jw)| < 1. <

4.4.3 A counterexample

While Example [3| gave promising results, the following example shows that the desired rela-
tionship does not hold in general. In this example, the focus is on the second path, and it is
assumed without loss of generality that as = 1. Figure [£.7] shows the setup used in Example

@

LONNY,); 8 VIONEN R REAG y o0 Qﬂ[f] s (1)

Figure 4.7: Second order path used for the counterexample.
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Example 4. Suppose 2z is a weighting filter of the form

1
Wi(s) = ——. a>0, (4.23)

where a is a positive real number, hence 207 is a stable LTI filter. The second order weighting
filter Qﬂ?] can be calculated by having the spectrum of w(¢) unitary, i.e. F{w} = W (jw) = 1.
With s = ¢ 4 jw and letting o = 0, the spectrum of the signal g is described by

9]

Ualii) = 5 [ WaGOW (G20 — )W (i — €))de

1 1 1 v, .
“5 | Geraiemg T Ve .
=W, (jw)W (jw) = Ua(jw), if W(jw) = W(jw) = 1. (4.25)

(4.24]) shows how Qﬁ[f] (jw) can be calculated and (4.25) links the spectra of the signals s and
g when w and w both have a unitary flat spectrum. First, the integral in (4.24)) is solved
using residue calculus. Hence, the integral of the complex function f(z) is solved (z € C),
with f(z) defined as

1
(z—ja)(z +ja—w)’

which is the function in the integral is first written with & explicitly (i.e. such that &
is not multiplied by e.g. j), followed by the substitution { = z, such that z appears explicitly
as in . The complex function f(z) is integrated over the contour ICE in the complex
plane. The contour is defined as K}, = [~ R, R] 4+ C};, with R a positive real number and CE
a semicircle in the upper half complex plane. Figure shows the contour in the complex
plane. The idea is to let R — oo, such that

f(2) = (4.26)

Jm

Ch

—R 0| R Re

Figure 4.8: Contour ICE

/_:f(é)dﬁ = lim /_if(&)df = lim {/}C;f(z)dz — /C;‘f(z)dz}. (4.27)

Note that f(z) is a rational function of the form p(z)/q(z), where deg{q(z)} — deg{p(2)} > 2.
Moreover, note that f(z) has singularities at z; = ja and z9 = w — ja. By Theorem 3.3.1
in [92], is equivalent to j27 times the sum of the residues of f(z) in the upper half
complex plane (denoted by Res,—;, f(z)), if

1. f(z) is analytic in the upper half plane, except for a finite number of points
2. [0+ f(z)dz = 0 as R — .
R
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The first condition trivially holds true, as f(z) is analytic on C, except for the points z; and
z9. The second condition holds by Lemma 3.3.2 in [92], due to the property deg{q(z)} —
deg{p(2)} > 2 of f. Therefore,

| reae = jom (Res £+ Res £1). (4.29

Furthermore, as a > 0, 21 = ja € IC?;L and zo = w—ja ¢ IC};, the second order weighting Qﬁ[f]
can be calculated using (4.24)), (4.25)), (4.28) and Lemma 2.5.1 in [92] as

(2], . 1 [ 1 1
in (]Ld) = 27['/—00]54-(1](0.)—5)—{-&(167

= S <j27T Res f(z)> ,
27 =21

= sz;?% zf—(zj?a’ <Where f(z) = zfytz—w)
— jf(ja) = — : (4.29)

ja+ja—w  jw+2a
Hence, the spectrum of Uy 2(jw) is described by . For the relationship in (4.17) to
hold, all possible output spectra Us (jw) where |W(jw)| < 1 must be upper bounded in terms
of magnitude by the second order weighting filter defined in . Suppose the system
on the left in Figure [£.7] is subject to an input @ that has a magnitude bound of 1 in the
frequency domain. To avoid singularities on the contour in Figure the input is selected
as w(t) = e sin(bt) - 1(t), with ¢ < 0, b > 0 and 1(¢) the unit-step function. The input can be
expressed in the frequency domain by taking the Laplace transform of the signal w(t), which

yields
v b
W(s)= .
(5) (s—c)2+ b2

Similarly, letting s = ¢ + jw with ¢ = 0 gives the spectrum of o in the frequency domain
described by

B R 1 b b
Palio) = 27r/_ooj§+a Jw—9+a Ge—oP 1P Gw-9-—prrl U

As the calculation is similar to the calculations done earlier, but a bit more involved, the
details are omitted. Solving (4.31)) using MATHEMATICAD yields

(4.30)

uo 202 (2a — 4c¢ + 3jw)
aljw) = (jw—i—Qa)(jw—20)(]’@}—2‘7’6—20)><

1
X .
(Jw+2b—2¢)(jw+a—jb—c)(jw+ ja+b—c)

(4.32)

To show that the inequality (4.17)) does not hold in general, a set of values a, b, ¢, w must be
found, such that for these values |Ua(jw)| > |Uy 2(jw)|. Considering

a=0.06, b=0.76 c=-05 w=0.672,

"The integral (£.31)) is solved using the Integrate command in MATHEMATICA.
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and substituting these values into (4.29)) and (4.32)) yields

‘Un,z(j0.672)‘ — 1.465 ,

(I?Q(jo.672)‘ — 1.492
i.e. |Us(jw)| > |Up2(jw)|. This yields the conclusion that (&17) does not hold in general. <«

Now that it is shown in Example [4 that the shaping concept of Figure [£.5] does not hold for
general inputs with a magnitude bound of 1, the question raises, what can be done such that
the shaping concepts in Figure [4.5| could be utilized?

4.4.4 Continuing the analysis

The solution to Hammerstein shaping problem that is proposed in this section rests on the
conceptual idea of expanding the nonlinearity and approximate the resulting polynomial non-
linearities with an LTI weighting filter that is parametrized according to the original LTI
weighting filter. The required property discussed in the previous subsections can be satisfied
by (at least) two minor modifications to the the conceptual idea, which are the following,
1) Redefinition of the weighting filter, which ensures that the relationship holds, 2) Re-
strict the input w(t) such that the relationship holds.

Redefinition of the weighting filter

Reconsider the left block diagram in Figure [£.7] In order to ensure an upper bound for the
spectrum of ug(t), the following properties are used.

Property 1. Let s = 0+ jw. Consider a function f : C — C. The function f(s) can be written
as f(s) = fm(o,w) + jfs3(0o,w) such that fr :RxR—-Rand f3:RxR—>R

Property 2. Consider a function f: R — C. The following property holds for the integral of
f from w=atow=">0:

/ bf(w)dw‘ < [irenas (433)

Proof. Let A denote the complex number ff f(w)dw, for brevity. Furthermore, let 6 be the
principle argument of A, such that A can be expressed as A = |A|e/?. Hence,

b b b
|A| = Ae™90 = ( f(w)dw) e = | flwedw < [ |f(w)|dw. [ ]
/ / : /
S

Property 3. Consider two functions fi(s) : C — C and fa(s) : C — C, with s = 0 + jw. For
these functions, the following holds: |fi fa| = |f1]|f2]-
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Proof. f1 and f2 can be rewritten as f;(s) = u;(o,w) + jvi(o,w), i = 1,2 using Property
Expanding | f1 f2| yields,

|f1fa] = |(u1 + jv1)(ue + jva)| = [(uru2 — viva) + j(urve + ugvy)|

= \/(ullLQ — Ulvz)Q + (u1v2 + U2U1)2

= \Judu3 + v?02 + w3 + udv? + 2ugugvive — 2uiuv v = \/(u% + v?)(u3 + v3)

= A1l f2l;

where the dependence on ¢ and w is omitted for brevity. |

The absolute value of (4.20) for n = 2 can be upper bounded using

()] = |32 [ B GOW OBl - )W (i - e <
< ol [ w9 it — W (it — )] =
= el [ jame)] - W) - i - )] - [ (i - )]ds <
< 2l [ ()| Ja (i - €l =

= el [ et - e (131

Furthermore, note that (4.34)) is also an upper bound on |Us(jw)| and |Uy 2(jw)]|, by Property
Therefore, (4.34]) is a joint upper bound for the block diagrams in Figure ie.

GGl ) e
OaG)l <52 [ it - )]s (435)
|Un2(jw)] -

When the n-dimensional convolution integrals are rewritten as an integral over an
n-dimensional hyperplane, as in in [80], similar statements made for the higher order paths
using Holder’s inequality [93]. However, for to exist, the function 21 (j€)Wr(j(w —¢&))
must be absolutely integrable, which is a highly restrictive property. Furthermore, in case
the upper bound exists, the upper bound is a real function of w. Hence, the connection to
the LTI interpretation of the weighting filters is lost, as the weighting filter is not described
with a rational (complex valued) transfer function.

Remark 4. Billings et al. elaborated on the bound in for discrete-time nonlinear systems
in [94] and [95]. In these papers a scalar bound on the magnitude characteristics of the GFRF
is derived. Furthermore, a method for calculating the integral in is given, using the
discrete-time inverse Fourier transform. The derived magnitude might be thought of as a
nonlinear systems equivalent of the H,,-norm.
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Figure 4.9: Hammerstein shaping setup with expanded weighting filters and separate inputs.

Restricted input sets

For the second option, the shaping setup depicted in Figure is modified such that every
path has its separate unitary input, as shown in Figure [£.9 If for every path, the inequality

()| < [T n(i)| (4:36)

holds, then (4.17) is guaranteed to hold. While (4.36)) may not hold in general for a joint
w(t), it may hold for a separate, restricted input space, specifically designed for every path.
Let this restricted input set be defined as follows,

Wy = {w, |w, €1,and (4.36) holds for all w € R}. (4.37)
Furthermore, if the weighting filter QUE[H] is defined as in (4.18)), i.e.

[n] Gn

W (jw) = (277)"—1/_ /_ Wi (j&1) -+ Wi (j€n—1) %
XWi(jlw—E& — - —&po1))dér ... dEp—1,  (4.38)
[n]

with impulse response w7 " (¢), then it is always possible to find a realization w,, € %, such
that (m[ln] * wn) (t) = an (u(t))", where u(t) = (1 x w,) () and w1 (t) the impulse response
of Qﬂl.

Then the admissible set of inputs for the original system can be expressed as
W= NH0---NHWn. (4.39)

With this restriction on the input space for the original nonlinear system, the shaping problem
of the nonlinear system can be reformulated as the shaping problem of a multi-input-single-
output (MISO) LTI system, where the shaping filters are dependent on each other, i.e. a
structurally restricted LTI shaping problem. This shaping method is applied to a Hammer-
stein system in the following example.
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Example 5. Consider the block diagram in Figure Suppose this is a system which
needs to have a desired desired behavior, when u is disturbing the system with some known
frequency content. Moreover, suppose that ¢ is described by the function

(u) := arctan (u%ﬂ) e, (4.40)
and suppose the LTI part consists of two sub-systems, where the first sub-system is an LTI
system that can be freely chosen, and the second sub-system is an MSD system. The MSD
system is described by the differential equation ‘mg(t) + dy(t) + ky(t) = &(t)’, where m = 3
is the mass, k = 2 is the stiffness, d = 1 is the damping and Z(t) is the signal coming from
the LTI system that can be chosen freely. Let the expected behavior of the disturbance be
described by the weighting filter 2071, defined as

_ s+ 0.27
524+ 0.45 + (0.04 + 72)’
which represents a second-order low-pass filter with a resonance peak at approximately 0.5Hz.
Let the desired behavior be (inversely) described by the weighting filter 20g, defined as
_0.5012s + 0.8299
s+8.299-1073 "
which represents a first-order low-pass filter. The Taylor series around u = 0 of (4.40|) only has
terms with odd powers. For this example the 1%, 3'4 and 5% order weights are determined.

Expanding the nonlinearity in the system using the restricted input sets yields the block
diagram in Figure The objective is to select the free-to-choose LTI system Y such that

wI(S)

(4.41)

Wo(s) (4.42)

(1]

Figure 4.10: Block diagram for the system in Example [5| with expanded weighting filters and
separate inputs.

the mapping from col(w;, w3, ws) to z is a unitary mapping. As the system in Figure is
a MISO system, the Hoo-norm is used to obtain 5. First, the higher order weighting filters
are calculated using MATHEMATICA via the convolution integral. The bode magnitude plots
of QIT[I”, ?ZIT[I3] and QH[IS] are shown in Figure 4.11, Brute-force computatio a in MATLAB yields
a system i, such that the Ho-norm of the expanded system (in Figure is equal to
1.0001, i.e. the block diagram is a mapping from 1 to 1. Based on simulation data, which is
obtained by simulating the original weighted Hammerstein system (as in Figure with w(t)
a unitary signal, the transfer function between w and z is obtained. As the Hoo-norm of the
expanded system is 1, the data based transfer function of the original weighted Hammerstein

system should be upper bounded by 1 in terms of magnitude. The results are shown in Figure
4. 12

8Brute-force computation in this context is using a random LTI system generator (rss in MATLAB), and
find a random seed which yields the desired system.
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Figure 4.11: Bode magnitude plots of QUE[”» Figure 4.12: Data based transfer functions for
m}[;] and m][f’] when ¢ is defined as in (f.40). multiple realizations of w(t).

This figure shows that the magnitude of the transfer functions, based on the simulation data,
is indeed less then 1. This figure also shows that this shaping method, with using the restricted
input sets, might be a conservative shaping methodology, as the peak magnitude of the data-
based transfer functions is approximately nine times smaller than the peak magnitude (i.e.
the Hoo-norm) of the expanded LTI system. Some extra figures for this example are given in
Appendix [B] <

4.5 Shaping Wiener structured systems

The next problem is to analyze LTI systems preceding an output nonlinearity, i.e. Wiener
structured nonlinear SISO systems. Reconsidering Figure and Figure the shaping
setup for Wiener structured nonlinear systems yields the block diagram depicted in Figure
Following the line of reasoning for the Hammerstein shaping problem, the goal is to

LTI system

|
e Wy [ [t | o) [ W
|

y(t) = Cx(t) + Du(t)

Figure 4.13: Shaping setup with a Wiener structured nonlinear system.

redefine the blocks in the orange box, such that the behavior from g(¢) to z(¢) can be intuitively
understood. Redefining the contents of the orange blocks will be called the Wiener shaping
problem. The Wiener shaping problem can be seen as an inverse convolution problem, or as
an nonlinear inversion problem. First, the inverse convolution problem is discussed.

4.5.1 Inverse convolution problem

When shaping a system, one wants to have a certain desired behavior of y(t), which is inversely
encoded in Wy, such that z(¢) € 1. The inverse convolution problem considers the question,
what should the frequency content of 3 be, such that after 3 is propagated through the
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nonlinearity ¢, y(t) has the desired behavior?

Again, the conceptual idea here is to expand the nonlinearity as with the Hammerstein shaping
problem, hence the content of the orange box in Figure is considered. The behavior of
7, i.e. the input of the orange box, can be encoded in a weighting filter 20y. Shaping the
input of the orange box (i.e. ) results in the block diagram in Figure where r(t) is a
unitary, virtual input signal. Note here that as signal r(¢) € 1, the block diagram represents

— Wy o elih) [ W >

Figure 4.14: Redefinition of the contents of the orange box in Figure Note that r(t) € 1,
and hence the block diagram represents a mapping from 1 to 1, when 2y is designed correctly.

a mapping from 1 to 1, when shaped correctly. Moreover, note that the free ‘variable’ in this
block diagram is 2y.

Let the goal be to find the weighting filter 207 (in Figure , such that with a given Wiener
system (LTI system and nonlinearity), the behavior defined in 2g is achieved. If one can
find a 2y that yields the block diagram of Figure [4.14] a unitary mapping, the inverse of Wy
can be used for shaping a linear system as depicted in Figure The goal is then to either
verify (in analysis) whether the mapping from w to Z is unitary, or the with the objective to
find 21 (in e.g. synthesis) such that the mapping is unitary. Analysis or synthesis with the

LTT system

w(t) fni u(t) i(t) = Az(t) + Bu(t) y(t) —11 2
I {g(t) = Ca(t) + Du(t) QUY

Figure 4.15: Wiener shaping problem transformed into a LTI shaping problem using the
inverse of 2Wy.

block diagram in Figure 4.15| is a well-known problem, hence the main question is, how to
choose Wy such that the block diagram in Figure can be used for shaping?

Similar as in Section the nonlinearity ¢ can be expanded using a power series, as
depicted in Figure Furthermore, as with the Hammerstein shaping problem, the filter
Wy is ‘pushed’ through every path, such that the squared, cubed and higher order powers
in the paths can be approximated with LTI weighting filters QII‘[;], which are parametrized
according to Wy, as depicted in Figure [4.17

Posing this as a mathematical problem gives insight in why this is called the inverse convo-
lution problem. Let the spectrum of 7(¢) be unitary, i.e. R(jw) = 1. Furthermore, let Z(jw)
be the spectrum of z(¢). Then, Z(jw) can be described as

Z(jw) = Wo(jw) (Zm ) R(jw) = Wo(jw) <Zmﬂ"] ) (4.43)

with N the maximum order of the power series expansion of ¢. Moreover, for this problem
it is assumed that if R(jw) is unitary, then 2y (jw) must be chosen such that Z(jw) is upper
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Figure 4.16: Block diagram resulting from expanding the nonlinearity of the block diagram

in Figure
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Figure 4.17: Block diagram resulting from capturing the expanded nonlinearity with LTI
weighting filters QBE;], which are parametrized according to 2Wy.

bounded by a unitary spectrum in terms of magnitude, in order for the mapping r — z to be
1 — 1. This assumption yields the following mathematical problem

N
‘mo(jw) (Z 20, <jw>>
n=1

N

> any (jw)

n=1

<1 = < |@o(u)) . (a4

Section gives that the weighting filter QIIE;] (jw) can be described using the convolution
integral, i.e.

[n] Gn

Wy (jw) = (27T)nl/:m/:wv(j&)"'QﬂY(jfn—QX
—_—

n—1

X Wy (j(w =& =+ —&-1))dér ... A& (4.45)

Hence, the mathematical problem is to find an LTI weighting filter 2y(jw), such that the
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following inequality holds

N o N
;:1(2:)7;_1/_OO"'/_OOQBYU&)"‘an(jén_l)x

X Wy(jlw—& =+ = &n-1))d&y ... d&n

< ‘(Qﬁg(jw)) ‘1( . (4.46)

As Wy is the functiorﬂ that is being convolved, as well as the function to solve for, this
problem is called the inverse convolution problem.

The mathematical problem given in is a very hard problem, for which it is not known if
there exists a solution, to the author’s knowledge. Furthermore, the expansion concept shown
in Figure[4.17]is similar to the Hammerstein shaping concept, and is shown to be inaccurate in
Example|d. Therefore, the following methodology is proposed, named the inverse nonlinearity
problem.

4.5.2 Inverse nonlinearity problem

The inverse nonlinearity problem considers the problem of choosing 2g such that the mapping
between w and z is a linear and unitary mapping. The most straight-forward choice for 20
would then be

Wo := Wop (y), (4.47)

where 20 is an LTI filter. This methodology is often applied in control, think of feedback
linearization control [96] or see e.g. [97] for an application with nonlinear model predictive
control. The resulting block structure is shown in Figure The main problem with this

/—> QU[] >

/ \
/ \
0 0 e 0 0 0 | 0
w(t u(t N A y(t ~ y(t Z(t z(t
7 5 > #(t) = Az(t) + Bu(t) > a(t > 1 t >
W e () 9 (1) Wy ——
\ /

N\ /7
() D 5(t)

Figure 4.18: Wiener shaping setup with the inverse nonlinearity incorporated in the output
weighting filter.

approach is that the behavior of ¢ is being shaped, instead of the behavior of the output of
the system y, as the desired behavior of § is encoded in 2Wgy. Furthermore, it is not guaranteed
that the inverse of the nonlinearity exists analytically. The latter problem can be solved using
series reversion.

9To be completely accurate, the output signal of 20y, when subject to a unitary input signal (dirac delta
signal), is convolved. The spectrum of the output signal of 2y can in that case be described with the function
Qny (]w)
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There are multiple solutions for finding the series expansion that converges to the inverse of
an analytic function. The Lagrange inversion theorem, also known as the Bliirmann-Lagrange
series, states that the inverse of any (complex) function can be expressed as a power series
with a non-zero radius of convergence [98], where the coefficients of the power series are
calculated using a complex limit. When the series expansion of the nonlinearity is known,
another methodology known as series reversion [99] can be applied. Series reversion is the
computation of the series coefficients of the inverse function, given the coefficients of the
forward function. Thus, let the nonlinearity be described by the following series

y = ax + ba® + ca® +dat + ... a# 0. (4.48)
Then the coefficients of the reversed series,
r=Ay+ By +Cy® + Dyt + ..., (4.49)

can be determined using [100, pp. 11] as,

il po b
a a
1 1

C = ;(262 — ac), D= $(5abc —a?d — 5b3).

For more coefficients, see [100, pp. 11] and references therein. The above series reversion
technique is applied in the following example.

Example 6. Consider the static nonlinear function f(z), which is defined as

—3 —x
e ® x0.5

y=flz)= arctan (H%) +1 L (4.50)

The coefficients in the series expansion of (4.50) and its inverse are shown in Table The

Table 4.1: Series expansion coefficients of f and f !

Coefficient H a/A ‘ b/B ‘ c/C ‘ d/D ‘ e/E ‘ f/F ‘ g/G
f(x) -1 1 —% -1.35981 | 0.252921 1.50269 -0.689385
f iy | 1 1 -2 | 0.30686 | 6.57261 | -30.01132 | 82.97716

nonlinearity and its inverse are plotted for x,y € [-1,1] in Figure This figure shows
that while the radius of convergence is nonzero, it is less then 0.3. If the series reversion is
used for defining the shaping filter, the radius of convergence must be taken into account. <«

4.5.3 Approximate shaping for Wiener structured systems

The inverse convolution problem, discussed in Section [4.5.1] is a very hard mathematical
problem to solve, however the conceptual idea retains the LTI shaping intuition. The inverse
nonlinearity problem is a useful method when the radius of convergence of the inverse series
is sufficiently large. However, the conceptual idea is on shaping the output of the LTI part,
instead of shaping the output of the Wiener system. Both ideas are combined as the proposed
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Figure 4.19: Series reversion applied to the nonlinearity defined in (4.50)).

shaping methodology for Wiener systems, which will be referred to as approximate shaping.
The term ‘approximate’ is used, because this methodology uses the series reversion technique
to approximate the desired behavior of ¢, given the desired behavior of y. Moreover, the
series reversion technique is an approximation of the analytic inverse of ¢ as well.

The approximate shaping methodology consists of the following steps:

1. Define the desired behavior of y, using a bi—propeﬂ LTT weighting filter 20g. Note that
Wy represents the inverse of the desired behavior of y.

2. Determine an approximation of the inverse of the nonlinearity using series reversion.
The inverse nonlinearity approximation is denoted by ®(y(t))

3. Simulate the block diagram in Figure [£.20 with unitary realization of z.

Figure 4.20: Block diagram to simulate for step

4. Determine the transfer function §(t) — z(t) using the simulation dataE gained in step
This transfer function will be referred to as H(jw), where w € Q and Q a finite set
of frequencies for which H(jw) is derived.

5. Design a bi-proper LTI filter Wy, such that for all w € Q, |H(jw)| < |20, (jw)|.

6. Determine the weighting filter 207, such that Wy = X, Wr, where X, is the transfer
function of the LTI part of the Wiener system. In this step, one may have to adjust 2y
such that 201 is a proper and stable weighting filter.

Remark 5. Note that step[6]is only required if the aim is to design a filter 21 for some known
Wiener system and known output filter 20g.

10The weighting filter and its inverse must both be proper and stable, as both are used for simulation.
"Note that the transfer function can not be determined analytically using the convolution theorem, as
convolution integrals of bi-proper filters are not convergent.

Incremental Dissipativity based Control of Nonlinear Systems 61



CHAPTER 4. TOWARDS SHAPING OF NONLINEAR SYSTEMS

The following example shows an application for approximate shaping.

Example 7. Consider a set of Wiener systems with an arbitrary LTI part and the nonlinearity
defined as

o(§(t)) = 6§(t) + 0.1 (e‘ﬂ('f)2 - 1) — 3(sin(0.15(1)))® — 0.35(t)°. (4.51)

The output weighting filter 2y is designed@ such that the gain at w = 0 is 40dB, the gain
at w = 27 is 0dB and the gain at w = oo is —3dB. The inverse of ¢ is determined up to the
seventh order, and yields the following polynomial
®(y(t)) = 0.167y(t) + 4.63 - 10 1y (t)? +2.36 - 10 "4y () — 3.17 - 10 Cy(t)*+
+9.14- 10 y(t)° +2.09 - 10 By (t)® + 6.47- 10 %y (¢)", (4.52)

which approximates the inverse of (4.51)) sufficiently well for |y| < 1.5. Figure shows the
results of step for several uniform noise signal realizations of z(¢). The magnitude of the

Wy (jw)

——m Transfer functions § — z b
— 100 B W\ o A
. . N ST AW
) ) \,/—"*{ A /
::E: 10! i E % \
S S
= ,\_ =

107
10° 10! 10? 107 10! 107
Frequency [Hz| Frequency [Hz|

(a) Results of step where the blue line (—) (b) Magnitude of the transfer functions w — z,
is the inverse of 2y and the other lines represent which are derived using the simulation data ob-
the transfer functions between g and z for different tained by simulating the individual Wiener sys-
noise realizations of z. tems, where w is a unitary noise realization.

Figure 4.21: Results with approximate shaping for a set of Wiener systems.

designed weighting filter 20y is shown in blue, and is for the limited set of frequencies indeed
upper bounding the data-based transfer functions, derived in step I The weighting filter 201
is calculated for the set of LTI systems. The set of Wiener systems is simulated for a random
unitary input w. Figure [£.21D] shows the magnitude of the transfer functions between w and
z for the individual Wiener systems. The figure shows that the obtained transfer functions
are approximately a unitary mapping in terms of magnitude upto approximately 100 Hz. In
Appendix [B] some additional figures are shown regarding this example. <

The latter example shows that it is possible to shape Wiener systems, such that the mapping
from w to z is approximately a unitary mapping.

4.6 2-Block problems

This thesis is on control of nonlinear systems, however, until now, this chapter only discusses
systems which are either already controlled or just an arbitrary dynamic nonlinear system

12Using the MATLAB-command: makeweight (db2mag(40) , [2%pi,1],db2mag(-3))
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with a specific structure. This section discusses 2-block control problems for Hammerstein
and Wiener structured nonlinear systems.

Suppose the goal is to control a nonlinear plant (an arbitrary dynamical system), such that the
closed-loop system achieves good reference tracking performance and disturbance rejection.
Furthermore, the frequency content of input of the plant must be band-limited. One would
arrive quickly with the block scheme in Figure for this control problem. Where the signal

> 90 alt), =) W, 2(t),

r(t
ﬂ) 200, *)? » Controller >  Plant >

Figure 4.22: Block diagram for the 2-block problem.

r(t) is the reference signal, y(t) the measurement signal coming from the plant and z; and zy
are the performance measure signals. This control problem is often referred to as the 2-block
problem, as the desired performance is specified using two weighting filters, Qg and W, i.e.
the sensitivity and the complementary sensitivity, respectively.

4.6.1 2-Block problem with a Hammerstein structured nonlinear system

Suppose the plant in Figure has a Hammerstein structure. Then the block diagram in
Figure is obtained. Here K is the controller, ¢ is a static nonlinear function and X
represents the LTI part of the Hammerstein structure.

z1 (t) Zg(t)

Y
N
=
=
\

r(t) + K T 5 SO

Figure 4.23: Block diagram for the 2-block problem with a Hammerstein structured nonlinear
system.

The structure requires one input weighting filter, 20,, which encodes the expected frequency
content of r(¢), and two output weighting filters; 205 and 207, corresponding to a sensitivity
and complementary sensitivity shape, respectively. For the shaping problem, the following is
assumed:

A10 The controller admits a Wiener structure, with LTI part K and static nonlinearity ®.
A11 The nonlinearity ® is the inverse function of .

Incorporating the weighting filters and into the block diagram, results in Figure
The block diagram in Figure can be simplified using The nonlinearity of the
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Figure 4.24: Shaping the 2-block control problem, with a Hammerstein structured plant.

plant is canceled with the nonlinearity of the controller, and the resulting block diagram is
analogous to the block diagram for Wiener shaping problems (see Figure . Hence, using
these assumptions on the controller, a 2-block control problem with a Hammerstein structured
plant results in a Wiener shaping problem. The following example solves the 2-block control
problem using the approximate shaping technique.

Example 8. The Hammerstein structured nonlinear system that is considered in this example
is defined with nonlinearity,

o(u) = e 001 (0.399u — 0.14e7 + 4.9 tanh(u) — 0.021u® + 0.14) . (4.53)

The LTI part of the nonlinear system is defined with the following transfer function,

0.119(s — 7.16) (s + 3.21) (s + 1.14) (s + 1.13s + 45.4)

by 4.54
() s2(s + 5.85)(s + 0.37)(s2 + 2.68s + 49.1) (4:54)
For this system, the weighting filters 2, 2t and Ws are defined as such
1 100s + 3149 0.7079s + 4.438
r = — 0, = — = 4
Wels) = g W)= s W) = TG oass (4.55)

Similar to Example [7} the inverse of (4.53]) is approximated using series reversion up to the
7% order, which yields

D(p) =0.19p —9.4-10 *p? +2.2-10%p® — (37p" — 450" + 1.3p° — 1.1p") - 107%, (4.56)

where g is the output of K. The nonlinearity v and its approximated inverse ®, together with
the linear part of ¢ (i.e. aju(t)) are plotted in Figure Using the inverse function, the
weighting filter Wy is designed as described in step 5 of Section[4.5.3] The resulting weighting
filter is described with the transfer function

5+ 95703

Wy (s) = .
v(5) = 7185 1 2.38. 107

(4.57)

The shaped LTI system is depicted in Figure Note that the shaping filter Qy is inversely
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Figure 4.25: Nonlinearity of the Hammerstein Figure 4.26: Hammerstein 2-block problem
system, the approximated inverse and the lin- with the nonlinearities canceled or approxim-
ear component of ¢. ated, which results in an LTI system.

interconnected, as output shaping filters always implement the inverse of the characteristics of
the performance channel. For the LTI system in Figure the controller K is synthesized,
which is optimal in terms of the H,,-norm. Bode magnitude plots of ¥ and K are provided
in Appendix [Bl The resulting controller yields an Hy,-norm for the closed-loop LTT system
of 1.0082. The resulting controller for the original nonlinear system is defined as the linear
controller K followed by the polynomial ®(p). First, the weighted closed-loop system is simu-
lated with a unitary noise realization of 7(¢). Based on the simulation data, the singular value
plot of the closed-loop nonlinear dynamical system is determined, and shown together with
the singular value plot of the LTI closed-loop system in Figure It must be highlighted
that for this simulation u € [—0.947,0.930], hence the nonlinearity of the Hammerstein system
is sufficiently excited, as the linear part is only a good approximation for |u| < 0.5, as can be
observed in Figure [£.25] Secondly, the unweighted closed-loop system, as depicted in Figure
is simulated for a block reference signal, which admits the spectral properties defined by
2,. The spectra of r(t), z1(t) and 22(t), together with the respective magnitude response of
the weighting filters are shown in Figure [£.27D] [£.27d and [£.27d] respectively. The singular
value plots in Figure show that the singular values of the closed-loop linear system (in
Figure are approxzimately upper bounding the singular values of the closed-loop non-
linear system. Hence, it can be concluded that the nonlinear system approximately admits
the predefined performance specifications, encoded in the weighting filters. This conclusion
can be substantiated by the plots in Figures[£.27bH4.27d] as the spectral content of the signals
are in this experiment upper bounded in terms of magnitude by the LTI weighting filters.
Therefore, it can be concluded that the nonlinear system can be approximately shaped using
LTI weighting filters, and thus the LTI intuition regarding performance shaping is preserved
with these methods. <

4.6.2 2-Block problem with a Wiener structured nonlinear system

Similar to the previous section, suppose now that the plant in Figure has a Wiener
structure, which yields the block diagram of Figure with ¢ and ¥ interchanged. Again,
the controller is split up into an LTI part and a nonlinear part, hence assume the following:
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Figure 4.27: Simulation results for the 2-block problem for Hammerstein structured systems.

A12 The (nonlinear) controller K admits a Hammerstein structure, with LTI part K and
static nonlinearity ®.

The 2-block problem for a Wiener structured nonlinear system, where Assumption holds,
is shown in Figure[£.28] The idea is again to reformulate this system such that the closed-loop

<

Y

Zl(t) Zl(t) Zg(t)
WOR; P o K o oy PR EUEN

Figure 4.28: Block diagram for the 2-block problem with a Wiener structured nonlinear
system, and a Hammerstein structured controller, as in

system only contains input and/or output nonlinearities. Therefore, the virtual performance
channel Z; is added to the block diagram in Figure [£.28] to follow the previous methodology.
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In order to cancel the nonlinearity ¢, the following must hold when writing out Z;:

=0 —p(3) = Cur) — 22(p(y)) = C1(r) — 7, (4.58)

i.e. stated otherwise, one must find functions f, g, h, such that f(x +y) = g(x) + h(y) and
y = h(¢(y)). However, apart from some constant, g and h are necessarily equivalent to f.
This can be easily shown by substituting « = 0 or y = 0.

Hence, f(y)+ f(z) = g(0) + h(y) + g(z) + h(0) = f(x+y)+ f(0), and as this is the additivity
property when the constant f(0) is neglectedﬂ f must necessarily a linear map. Therefore,
@ is required to be a linear map, which contradicts the problem. Hence, the conclusion is
that the 2-block problem with Wiener structured nonlinear systems cannot be solved based
on the previously discussed methodology. How the shaping techniques derived so far can be
used to solve the 2-block problem in this case is an open question, which might be solved by
an alternative formulation of K or a transformation of the closed loop interconnection.

4.7 Discussion

In this chapter, the first steps are made towards a shaping framework for nonlinear systems.
By first defining nonlinear system behavior in the frequency domain, the LTI intuition behind
defining performance in linear weighting filters could be used to shape the desired behavior.
Simplification of the nonlinear models led to shaping methodologies that can be used in the
control of nonlinear systems. The results from this chapter give insight in what the difficulties
and limitations are when the LTI shaping insight is used for nonlinear systems.

In this chapter we have analyzed the shaping problem for Hammerstein and Wiener structured
nonlinear systems. The GFRF of these systems, which are based on the Volterra series
expansion approach the nonlinear behavior characterization via the convolution theorem. The
N-dimensional convolution, together with the power series expansion of the nonlinearity give
insight how the linear and nonlinear parts of the system relate. However, as the power series of
the nonlinearity always have a radius of convergence, the accuracy of the shaping framework
is also limited in terms of convergence, i.e. the concepts hold only under magnitude bounds
on the involved signals. Think for example of the convergence of the convolution integral
or the series reversion technique. Therefore, for a true generic nonlinear shaping framework,
other frequency domain methods must be researched as well. The aforementioned Wereley
FRF (see e.g. [72,/101]) might be a good candidate for analyzing global nonlinear behavior in
the frequency domain. The approach in [102] gives promising results for discrete-time LPV
systems, as this work obtains a clear separation between the role of the scheduling variable
spectrum and the system dynamics using the so-called Wereley matrix. A continuous-time
equivalent might be of interest for a nonlinear shaping framework.

131t is easy to show that f(0) = 0, when assumption A@] holds true.
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It must be noted that there is quite some literature available on the GFRF and frequency
domain properties of discrete-time nonlinear systems by Lang, Zhu and Billings, see e.g.
[103H107]. These works, together with the discrete-time results on the Wereley FRF might
be a good starting point for a shaping framework for discrete-time nonlinear systems.

While this chapter briefly discusses control problems, there are yet two open problems re-
garding the shaping framework that require further research. The first problem is that the
solutions to the control problems impose a certain structure on the controller (e.g. Wiener of
Hammerstein structures), while this might result in loss of closed-loop performance. Hence,
when considering for example the LPV control framework, one would like to find an LPV
controller such that the system yields a certain closed-loop performance, without imposing a
Wiener or Hammerstein structure on the controller. The fundamental idea is that the LPV
synthesis algorithms make sure the effect of the nonlinearity is taken care of by the LPV con-
troller. Therefore, the next step would be to define the shaping framework, using the insights
from this thesis, such that from the LTI intuition, nonlinear shaping filters are computed@,
which in turn could be used in LPV controller synthesis. Connecting the latter to the 2-block
problem, discussed in Section[4.6] gives that the ‘true’ output shaping filter for LPV controller
design might be of a combination of ¢, ® and 2y. However, the definition of this filter is
an objective of future work. The second problem is how the shaping framework can be used
in an incremental or differential setting. One may note that, while this thesis is on using
the incremental and differential framework to control nonlinear systems, this chapter did not
discuss shaping with these frameworks. This is because how shaping and the incremental
and differential framework are connected remains an open question. It might be that with
the solution of first problem, extensions towards the incremental and differential framework
are trivial, but is also possible that there are additional steps required to shape a nonlinear
system in e.g. the differential framework. In [67], the frequency behavior of convergent sys-
tems [34] is analyzed. Under certain assumptions, convergence implies incremental stability
and vice versa [108], hence the results in [67] could also be of potential use for the develop-
ment of an incremental shaping framework for nonlinear systems. Hence, there are yet a lot
of open questions, but also a lot of possibilities to set the next steps towards a generic shaping
framework for nonlinear systems.

MThink of defining the output filter in a form as is depicted in Figure m
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Chapter 5

Conclusions and Recommendations

In this thesis, the three key ingredients for a systematic controller design framework for
nonlinear systems have been investigated. The obtained results in this thesis contribute to
the development of a generic and systematic control design framework for nonlinear systems.
This chapter summarizes the conclusions and examines to which extend the research questions
posed in Chapter [1| have been addressed. Moreover, recommendations are given to continue
the research in this subject in the future.

5.1 Conclusions

The main research objective adopted in this thesis was to define a systematic and compu-
tationally attractive controller design framework for nonlinear systems with global stability
and performance guarantees. A framework as such would make the control of complex non-
linear systems much more manageable, compared to the currently existing methodologies.
Furthermore, the framework would allow for the shaping of the closed-loop performance of
the nonlinear system, preferably with LTI intuition. In order to achieve the main research ob-
jective, the required components of such a framework are studied individually as the three key
ingredients; Dissipativity analysis, synthesis tools and a shaping framework. In the following,
the conclusions on the individual key ingredients are presented.

Key ingredient 1 — Dissipativity analysis

The research questions on this key ingredient that have been posed in Section are: (1) Is
there a global and computationally attractive dissipativity concept for nonlinear systems?
(2) How does a parameter-dependent storage function fit in the developed incremental dissip-
ativity theory in |10]? (3) What is the link between the differential form of a storage function
and the original form (primal form) of the storage function? The results of Chapter [2/answers
the first two questions in detail, by first analyzing the different notions of dissipativity for
parameter-dependent storage functions (which reduce conservatism in the analysis), followed
by proving the implying relationship of the notions. This relationship implies that via the
dissipativity analysis of the differential nonlinear system, the dissipativity properties of the
original nonlinear system are ensured. Moreover, it is proven that the analysis conditions
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can be convexified using a PV inclusion of the differential nonlinear system. This results in a
global and computationally attractive (signal-based) performance evaluation of nonlinear sys-
tems via dissipativity theory and a solid basis for developing incremental synthesis algorithms.
The results in Section prove that for autonomous nonlinear systems the differential stor-
age function in the primal form is equivalent if the differential state is substituted with the
state derivative. This allows to construct a (parameter independent) storage function for the
primal system from the differential storage function, and vice versa. These results give clear
insight in how the differential and primal frameworks are connected for autonomous nonlinear
systems and allow to establish the cornerstones of a efficient controller synthesis framework
for nonlinear systems.

Key ingredient 2 — Synthesis tools

The research questions on this key ingredient that have been posed in Section are: (1) How
to synthesize a controller for a nonlinear system that yields the closed-loop system increment-
ally dissipative? (2) How to realize and implement a differential controller on a nonlinear
system? The work in Chapter [3| gives answer to the first question by working out one meth-
odology for the synthesis of a controller which yields the closed-loop system incrementally
dissipative, and thus can give global stability and performance guarantees. This shows that
the established theory of the first key ingredient provides synthesis of incremental controllers
via a computationally efficient approach. Based on the exemplified extension of one existing
LPV controller synthesis method, it is shown that all the existing and extensive results on the
synthesis of LPV controllers are all potential incremental controller synthesis methodologies.
Furthermore, the proposed realization of the incremental controller show that it is possible
to realize a differential controller in the primal form, which makes the practical application
of the overall controller synthesis method possible. Moreover, the synthesis and realization
algorithms are implemented in MATLAB in the form of the LPVCORE toolbox, which provides
an easy-to-use method for the design of a controller for a nonlinear system, which yields the
closed-loop nonlinear system global incrementally stable and performing.

Key ingredient 3 — Shaping framework

The research questions on this key ingredient that have been posed in Section are: (1) Is
it possible to have a shaping framework for nonlinear systems, while the intuition of the
LTI frequency domain interpretation is retained? (2) How to characterize the behavior of a
nonlinear system in the frequency domain? (3) How to encode performance specifications of
a nonlinear system using LTI weighting filters? (4) Do the intuitive LTI shaping methods
on mixed-sensitivity and signal-based shaping using LTI weighting filters hold for nonlinear
systems? The results from Chapter [4] are focused on setting the first steps towards a generic
shaping framework for nonlinear systems. The aim for such a framework is to retain the
intuition of the LTI shaping framework, which will imply that the widely used LTI shaping
techniques can directly be adapted for nonlinear systems (which contributes to the adoption
of the framework in the industry). The two main challenges of a shaping framework for non-
linear systems are (1) frequency domain characterization of nonlinear systems and (2) shaping
filter definitions for nonlinear generalized plant setups. The Generalized Frequency Response
(GFRF) has shown to be an insightful frequency domain representation method for nonlinear
systems, when the structure of the nonlinear system is simplified to a Wiener or Hammer-
stein structure. Based on these structures, approximate shaping methods are proposed that
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preserve the LTI intuition of shaping. These method allow to shape the performance of the
system such that the resulting system approximately admits the performance specifications.
The developed concepts in Chapter [4] are not generic and are likely not the solution for the
third key ingredient or the first (sub)research question. However, the obtained insights, such
as

e Simplifying the problem by using Wiener or Hammerstein structured systems gives
promising results,

e Low-order approximations (N < 10) of either the convolved shaping filter or the inverse
nonlinearity can be used for the approximate shaping methods,

and the encountered challenges, such as

e Upper bounding the behavior of the nonlinear system in the convolution integral by
using a unitary signal is not possible in general,

e 2-Block control problems with Wiener structured plants cannot be simplified using the
developed shaping concepts,

will serve as a starting point for future research on the development of a generic shaping
framework for general nonlinear systems.

To conclude, the results in this thesis give the fundamental tools in terms of incremental
analysis and synthesis tools for a systematic and computationally attractive control design
framework for nonlinear systems. Furthermore, the results on shaping are the first steps
towards a generic framework and will hopefully be a breeding ground for further research, to
globally shape and tune the performance of nonlinear systems in an easy-to-use and intuitive
manner.

5.2 Recommendations

For all the three key ingredients, there remain open questions and possible extensions. This
is due to either simplifications or the broad scope of the subject. The following list gives some
possible extensions and overviews the remaining open questions that can be investigated in
future works.

e As already mentioned in [24], in [29] the Gateaux derivative of the I/O-map of the
system is used to determine the incremental properties of the system, where there exists
an if-and-only-if relationship between incremental and normal L9-gain of a system. The
results in Chapter and [10,24] state that there should only be an implying relationship.
Hence, the question raises: Is it possible to quantify the conservatism in the analysis in
Chapter [2|or are there exceptions in the analysis which yield if-and-only-if relationships?

e Extend the differential and incremental dissipativity results for discrete-time and time-
varying nonlinear systems.

e Regarding the interpretation of the different notions of the storage function, it remains
an open question how the incremental parameter-dependent storage function relates
back to the primal form, and how the storage functions relate for driven systems. Fur-
thermore, one may ask, is it possible to construct a primal storage function, using a
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differential storage function? And what will be the role of this function in terms of
stability?

Besides the fact that it is interesting to research which synthesis methods from the LPV
framework can be adapted into the incremental framework, it would be of great interest
to compare the different realization methods for incremental controllers.

The shaping concepts developed in this thesis do not allow for general 2-block control
problems, as there is structure imposed on the controller, or the method is not applic-
able (for Wiener structured systems). Therefore, it would be of interest to develop a
novel control design methodology for the 2-block problems, which is applicable for both
Hammerstein and Wiener structure nonlinear systems and does not impose structure on
the controller. Moreover, further research is recommended on the ‘true’ definition of the
weighting filter, i.e. what the actual shape of the weighting filter is when the original
shaping setup is reconsidered. Is it for example possible to extract a general weighting
filter from the developed concepts (think of combining the inverse nonlinearity and 2y
in the approximate shaping method)? Lastly, it is of interest to investigate how the
incremental framework fits in the developed concepts.

For the general shaping framework for nonlinear systems there remain a few funda-
mental open questions and alternative approaches to investigate. The ‘ultimate goal’
would be to have a methodology that takes as input the nonlinear system and the
performance specifications (such as bandwidth, rise time, overshoot, etc.), and outputs
(nonlinear) weighting filters that can be used in the differential framework to capture
the overall performance specifications of the primal system. To reach this goal, shaping
methods for general nonlinear systems must be investigated. Furthermore, it would be
of interest to see if it is possible to construct nonlinear or parameter-dependent shaping
ﬁltersﬂ Moreover, it would be of interest to investigate alternative frequency domain
characterization methods for nonlinear systems, such as the Wereley FRF (as discussed

in Section .

'E.g. position dependent performance criteria or performance specifications based on a nonlinear manifold.
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Appendix A

Some Mathematical Results

A.1 Additional incremental dissipativity results

This section gives the additional results on incremental dissipativity, derived in [24]. The
following gives incremental results on the generalized incremental Hs-norm, incremental Lo-
gain, incremental £..-gain and incremental passivity. First, the definitions are given, followed
by the results. First consider the following behavior sets,

By :={(z,u,y) €B |uec L™} (A.1)
Boo :={(z,u,y) €B |uec L2} (A.2)

Moreover, let €5 be the convex hull of the value set of B9 and let €., be the convex hull of
the value set of B,

A.1.1 Definitions

The following definitions are all adapted from [24] and references therein.

Definition 5 (H{-norm [24]). Consider the system ¥ of the form (2-1)), where 92 (x(t), u(t)) =
0 for all (z(t),u(t)) € (X x U). Moreover, let (x,u,y),(Z,a,y) € Ba be two arbitrary
trajectories of the system 3 with x(tg) — Z(t9) = 0. The generalized incremental Ho-norm is
defined by:
1= sup Wl (A.3)
i2

0<|u—ily<oollw — Glly

Definition 6 (Li2-gain [24]). Consider two arbitrary trajectories (z,u,y) € Bo and (Z, 4, §) €
By of the system ¥ of the form (2.1)), with x(tp) — Z(to) = 0. The incremental Lo-gain of X
is defined as

ly —ll,
12l p= sup = (A.4)
£ 0 Ju—ifly<collu — @ll

Definition 7 (Liwo-gain [24]). Consider a system X of the form (2.1)) and let z(to) —Z(t9) = 0.
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The incremental Lo-gain is defined as:

ly — 7l
I3[l = sup T— (A.5)
Ciee ™ o uitf . <ooll — illo”

where (z,u,y) € B and (7,4, ) € B are trajectories of the system ([2.1)).

Definition 8 (Incremental passivity [35]). A system of the form ({2.1)) is incrementally passive
w.r.t. the supply function

S(u, @y, 5) = (u— )" (y — ) + (y = 9)' (u— @), (A-6)
if there exist a storage function V : X x X — R such that

V(2 (1), #(t1)) = V(2(to), #(t0)) < 2/ (u(t) — () () — F)dt, (A7)

to

where the pairs (x,u,y) € B and (Z,u,y) € B are trajectories of the system ([2.1)).

A.1.2 Results

The following results are obtained from [24]. The proofs are omitted, but can be found in [24].

Corollary 1 (H$-norm [24]). Suppose ¥ is a system of the form (2.1]), where %(m(t), u(t)) =

1

0 for all (z(t),u(t)) € (X xU). Then ||ZHH_g2 < 7, if there ezists a solution M' = M > 0 to
the matriz inequalities

A(z,u)' M+ MA(z,u) MB(z,u) 0 M C(z,a) 0
B(z,u)' M I Co\C(za) Al ’
for all (z(t),u(t)) € mp4C2 and with v > 0.

Lemma 2 (Lis-gain [24]). Consider the system (2.1)), and let (z,u,y), (Z,0,7) € Ba, with
x(to)—Z(to) = 0. Furthermore, let~y be a finite positive number. Then the following statements
are equivalent:

1. If for all the considered trajectories, the system (2.1) is incrementally dissipative with
respect to the supply functz’orﬂ

S(u,,y,9) =" llu —all* = lly = §I*
with a positive definite storage function (2.11)), then ||X]|z,< 7.
2. If there exists an M = M = 0 such that for all (Z(t),u(t)) € mpu€2 ,

A©)TM + MAE) MB(E) €@
BE™ =T DET| <0,
C(@) DE  ~I

where & = col(Z,u), then ||S],< 7.

!Omitting time dependence for brevity.
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Corollary 2 (Lico-gain [24]). Suppose X is a system of the form (2.1) with x(tg) — Z(to) = 0.
Then |||\ z,.. < 7, if there exists a solution MT = M = 0, A\ > 0 and p > 0 such that

- - o M 0 C(z,u)
<A(m,u)TM—|—M¢(x,u)+/\M MB(x,u)) <0 0 (v — i) DE:E ﬂ;—r <0
Bl o Cww D@w Al

for all (Z,u) € 7y €0 and v > 0.

Corollary 3 (Incremental passivity [24]). Suppose ¥ is a system of the form (2.1)), with
ny = ny. % is incrementally passive with respect to the storage function V(z(t),Z(t)) =
(x —2)TM(x — %) and supply function (A.6) if and only if there ewists an M = 0 such that

()" (z\04 ]\04) (A(:é,a) B(%a)) +(*>T(-01 -01> (C(g,a) D(é,a)) <0 (A8)

holds for all (z(t),u(t)) € mypu€.

A.2 The linearization lemma

The linearization lemma from [38] is as follows,

Lemma 3 (Linearization lemma [38]). Suppose that A and S are constant matrices, such
that B(v), Q(v) = Q(v)T depend affinely on a parameter v, and that R(v) can be decomposed
as TU(v) YTT with U(v) being affine. Then the nonlinear matriz inequalities

ve) -0, <Bf1v>>T (%7 n) () =0 (49)

are equivalent to the linear matriz inequality

<ATQ(1})A +ATSB(v) + B(v)TSTA B(v)TT> <0 (A.10)

TTB(v) —U(v)
Proof. Writing out the second inequality in (A.9) with R(v) = TU(v) 'T" yields

(B?w)T <QS($) TU<f>—1T> (B?w) B

= ATQ()A+ ATSB() + B)'STA-B) T (~U@) ™) TTBv) <0, (A.11)
—— ~——

- g e

and allows to rewrite (A.9)) as

A<0, a—BTATIg=<0. (A.12)
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Applying the Schur complement on (A.12)) yields,

A<0, a—B"ATIB<0 <ﬁofr §><0

a B\ _ [(ATQw)A+ ATSB(v)+ B(v)"STA B(v)'T
where <5T A) = < T7 B(v) —Uv) ) !

which concludes the proof. |

A.3 Convolution of a proper and stable LTI filter

Consider a complex function f: R — C, which is defined as

f(jz) =

i1l
<@
=

(A.13)

with deg{q(jz)} — deg{p(jz)} > 1 and g(jx) having no zeros on R. Convolving this function
with itself over the real axis yields the integral

/_ RGO Ui — ©)de. (A.14)

Furthermore, denote the function in the integral as f,(j€) := f(j€)f(j(z — £)). It is trivial
to see that this function is a rational function as well, as in (A.13)), i.e.

_ RE)
(5
Moreover, it is also trivial to deduce that deg{q,(j¢)} — deg{p.(j§)} > 2.

f2(5€)

(A.15)

Suppose f is the Fourier transform of a signal ¢(¢), and the signal is fed to the block diagram
depicted in Figure Then the Fourier transform of the output y(¢) can be described by

s(t) gn y(t)

Figure A.1: Block diagram for a signal to the power n.

the multidimensional convolution integral

Y (ju) = (273 / : / :ﬂja)---f‘(jgn_nf(j(w—sl—---—gn_mda...dgn_l. (A.16)
n—1

However, it is also possible to see Figure as a recursive composition of multiplications, as
depicted in Figure Note that the [ | symbol indicates multiplication. With this structure,
a desired property for the output spectrum is derived. The recursive composition in Figure
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" |_) oL |_>
0| I 1T -
(1) Sy mm o

S"H(t) S"(t)

Y

Y

Figure A.2: Recursive interpretation of the block diagram in Figure for a signal risen to
the power n.

allows to write (A.16) in a recursive fashion as well, i.e.

(A.17)

Q
3
—
<
€
N—
1
‘ —
|\
3
&hl
—
()
i
S~—
QI
<
L
—
<.
—~
€
|
s
S—
N—
ol
{\f‘r

This recursive notation yields the following result,

Lemma 4. If the Fourier transform f(jw) of a signal <(t) has the following properties:

1. f is a rational function of the form f(jw) = p(jw)/q(jw),
2. p and q have a finite degree and deg{q(jw)} — deg{p(jw)} > 1,

3. p and q are coprime, and the ordeﬁ of the zeros is at most 1,

then the Fourier transform of the signal (¢(t))™, n € N, is a rational function.

Proof. Since the Fourier transform f of the signal ¢(t) exists, ¢(¢) is absolutely integrable.
From the latter and property [1} it is trivial to deduce that the zeros of ¢(jw), denoted as
jw = R, have Re{kr} < 0. Rewriting f such that w appears explicitly (hence without
multiplication by j), the zeros are rotated 7/2 radians, hence Jm{x;} > 0, with kj the zeros
of g(w). Reconsidering f,(j&), it was already established that f, is a rational function and
that the relative degree is larger or equal to 2. Furthermore, by writing f, such that £ appears
explicitly, it is possible to rewrite f,(§) as a complex function of the complex variable z, by
substituting z for the real variable &, yielding f,(z). As ¢ has a finite degree (e.g. m) f.(2)

2The order of a zero of a polynomial means here the multiplicity of the zero. Hence, for p(z) = (z —a)%(z —
B)® with a # B, the order of # = « is a and the order of 2 = f is b.
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has a finite number of poles z;, i.e.

B pz(2) _ pz(2)
fo(2) = @(2) (z—k) - (z—km)z+r—2) (24 Km—2) (A.18)
_ Pa(2) , (A.19)

(z—=21) (2 = 2m)(2 = Zmp1) -~ (2 = 22m)

As x € R, Jm{z;} # 0 as long as Jm{k} > 0. Therefore, when kj is of the form ay £ jby,
the poles of f, have the following form,

b + jag (A.20a)
) e )
! T + by — jag (A.2OC)
xr — bk - jak . (A20d)

As discussed in Example (4] the integral for g; can be calculated by solving the integral of
fz(2) over the contour, which is a semicircle in the upper half complex plane. Let the poles
zi, k =1,2,...,1 be the poles enclosed by the contour, which are guaranteed to be of the form
(A.20a) or (A.20b)). Then calculating g; yields by Lemma 3.3.2, Theorem 3.3.1 and Lemma
2.5.1 in [92],

I N oD N g frk(2)
n(jr) = o /_oofx(Jé) = %;szi fo(2) = j ;Zfiezsk Pl ;fx,k(zk)y (A.21)

with fy r(2) defined as (2 —zy) fz(2). Substituting 2, in f; x(2) yields poles or constants of the
form zp — z;. A constant occurs when z; has the form (A.20a]) or (A.20b)). A new pole occurs
when z; has the form (A.20c)) or (A.20d). As the imaginary part of and are
negative, z; — z; will be of the form a +  + j3, with § > 0. Hence, f; 1(2x) will only have
poles in terms of x in the open upper half complex plane. Furthermore, writing as a
minimal single fraction as a function of jz, will yield a rational function with poles in the
open left-half complex plane, and a relative degree of at least 1, as there are only poles and
zeros added to the function in pairs.

Next, it is shown that these properties will also hold for two general rational functions for
which the properties 1-3 hold and whose poles are all in the open left-half complex plane, or
in terms of w, in the open upper half plane. Let F(jw) be defined as,

(Jw—ag) - (Jw — aum)
(Jw —a1) - (jw — an)

F(jw) = , m < n and Re{a;} <0, (A.22)

with numerator and denominator coprime, and let G(jw) be defined as,
(Jw = P1) - (Jw — Bg)
(Jw —=b1) - (jw—b)’

with numerator and denominator coprime. Furthermore, consider the convolution of F' and
G over w, denoted by H (jw), i.e.

G(jw) =

k <l and Re{b;} <0, (A.23)

1) = 5= [ FGOGHw - €)ae. (A21)
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The function in the integral can be rewritten as

(=)™ (€ + jar) - (€ + jaum)
(E+jar) - (£ + jan)
FURE = (w+B1)) - (€= (w+Bk))
(€= (w+gb1)) (= (wHgb))

such that Theorem 3.3.1 in [92] can be applied. Note that if { = z € C, the poles z; of Q,(2)
are described by either zy = —jay, with ¥ = 1,...,n and Jm{zy} > 0, or 2z, = w + jb,, with
v=1,...,l and Jm{z,} < 0. Moreover, it must be highlighted that the relative degree of Q,,
is at least 2. Therefore, it is possible to apply Theorem 3.3.1 from [92], i.e.

Qu(§) = F(j§G((w —¢)) =

X (A.25)

W) = — ] j(w — = J2m ” es z
H(jw) = F(j)G((w = €)dg = ;zRZ” Qu(2)

with Qu9(2) = (2 — 29)Qu (). Similar to the calculation of g, substitution of zg in Qu(2)
only yields constants or poles of the form zy — z,. Hence, the denominator of Q,, 4(zy) will
be of the form (when it is assumed without loss of generality ¥ = n)

(zo +jar) - (29 + jan—1)(z9 —w — jb1) -+ (29 — w — jby)

~~

independent of w, i.e. constant
= C(—jayg —w — jb1) -+ (—jag —w — jbi)
= (=))'C(jw — ag = b1) -+ (jw — ay — by)
= (-))'Cjw — ay1) - (jw — o), (A.26)

with Re{ay,} < 0. Hence, H(jw) is described by a sum of rational functions, which have
the same properties as F'(jw) and G(jw). Therefore, H(jw) will have the same properties as
F(jw) and G(jw).

As g1(jw) and f(jw) have the same properties as F'(jw) and G(jw), it can be concluded by
induction that the Fourier transform of a signal to the power n is a rational complex function
if the Fourier transform of the original signal is a rational complex function, which concludes
the proof. |

As a result of Lemma [ the n-dimensional convolution of a proper and stable LTI filter is a
proper and stable LTI filter.

Remark 6. Note that Lemma [| assumes the order of the poles of f(jw) is 1. However,
it is trivial to extend this results for functions with higher (but finite) order poles using
e.g. |92, Section 3.1].
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Appendix B

Additional Figures

This appendix shows some additional figures from the examples given in this thesis, which
are not shown in the main text.

Example

Figure show the bode magnitude plot of the mass-spring-damper system and the freely
chosen system .

. MSD]| 1
10 E E ?

Magnitude (abs) [-]

104 ‘ ‘
1074 1072 10° 102

Frequency [Hz]

Figure B.1: Bode magnitude plot of the MSD system and T

Example

The Figures show the input and output weighting filters, the set of LTI systems and
the nonlinearity with its approximated inverse.

Incremental Dissipativity based Control of Nonlinear Systems 89



APPENDIX B. ADDITIONAL FIGURES

o 0 > | >
& 10 — 3 2 'L ,
= =
[} (]
< < S —
= = D el
=] =]
20 20
s S 1072 _/ 1
10721
1072 107! 10° 10! 102 1072 107! 10° 10! 102
Frequency [Hz| Frequency [Hz|

Figure B.2: Set of random LTT systems. Figure B.3: Set of input weighting filters 207,
designed for the set of random LTI systems.

<

Figure B.4: Nonlinearity ¢ and its approximated inverse ®.

Example

The Figures and show the bode magnitude plots of the LTI part ¥ of the Hammer-
stein system, in the 2-block problem example, and the synthesized LTI controller K for the
Hammerstein 2-block problem.

‘—E(s)i ‘ —‘I?(s)

10t f
10°

3,

Magnitude (abs) |
Magnitude (abs) |

= 102f

. . . | . . . . . . . . . .
1073 1072 107! 10° 10! 10% 10% 107° 1074 1073 1072 107! 10° 10! 10? 10* 10* 10°
Frequency [Hz| Frequency [Hz|

Figure B.5: Bode magnitude plot of X. Figure B.6: Bode magnitude plot of K.
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