Gaussian Process Repetitive Control for Suppressing Spatial Disturbances

Citation for published version (APA):
Gaussian Process Repetitive Control for Suppressing Spatial Disturbances: With Application to a Substrate Carrier System

Noud Mooren 1,* , Gert Witvoet 1,2 , Tom Oomen 1

1 Eindhoven University of Technology, Dept. of Mechanical Engineering, Control Systems Technology, The Netherlands
2 TNO Technical Sciences, Optomechatronics Departments, Delft, The Netherlands. *Email: n.f.m.mooren@tue.nl

1 Background

Motion systems are often subject to disturbances such as, cogging, commutation errors, gearings and imbalances, which are position-dependent disturbances, i.e., induced by an underlying cause in the spatial domain, see [1]. In the case that a rotary system operates with a constant operating velocity, or a linear system performs a repetitive motion task, these disturbances appear periodic in the time domain. However, if the operating conditions deviate, the disturbances appears a-periodic in the time domain while being periodic in the spatial domain [2].

2 Problem formulation

Classical repetitive control (RC) is not effective for disturbances that appear with varying period or a-periodic in the time domain [3]. This implies that classical RC with a memory loop in the time domain is not applicable to the aforementioned motion systems. The aim of this paper is to develop an RC approach for position-dependent disturbances.

3 Spatial Repetitive Control

The key idea is to construct a memory loop in the spatial domain. This is done by means of a Gaussian Process (GP) [4]. The time-domain signals are transformed to the spatial domain and stored in the GP, see Fig. 1. Furthermore, a suitable periodic kernel is developed to include periodicity and enforce smoothness in the GP. In addition, RC is developed using the traditional design philosophy [3].

4 Simulation case study

A simulation study is performed to show that classical RC fails if the disturbance period varies, whereas, the spatial

Figure 1: Spatial RC framework, with learning filter L.

5 Conclusions & Ongoing research

A new spatial RC approach is presented for rejection of disturbances that are periodic in a spatial domain and may appear a-periodic in the time domain. Furthermore, it deals efficiently with the non-equidistant observations through a GP-based memory loop. The potential of this methods is shown and ongoing work aims at the implementation on a substrate carrier system.

6 Acknowledgments

The research leading to these results has received funding from the European Union H2020 program under grant agreement n. 637095 (Four-By-Three) and ECSEL-2016-1 under grant n. 737453 (I-MECH).

References