A method for objective performance benchmarking of teams with process mining and DEA

Citation for published version (APA):

Document status and date:
Published: 14/06/2021

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 29. May. 2022
A METHOD FOR OBJECTIVE PERFORMANCE BENCHMARKING OF TEAMS WITH PROCESS MINING AND DEA

Complete Research

Aysolmaz, Banu, Eindhoven University of Technology, Netherlands,
b.e.aysolmaz@tue.nl
Nemeth, Marcel, Maastricht University, Netherlands,
m.nemeth@alumni.maastrichtuniversity.nl
Iren, Deniz, Center for Actionable Research, Open Universiteit, Heerlen, Netherlands,
deniz.iren@ou.nl

Abstract

Process performance is influenced by the teams involved in those processes. However, objectively evaluating team performance is challenging. Process mining literature has mostly focused on the characteristics of social networks rather than their performance. Following design science research principles, we designed a method for objectively benchmarking team performance using process mining, data envelopment analysis, and social network analysis. Our stepwise method provides guidelines on choosing appropriate data, extracting teams, identifying and calculating relevant metrics, benchmarking team performance, and determining improvement areas by considering the process context. We demonstrate the application on a real-life loan management process. We conducted interviews with business professionals to validate the usefulness and applicability. The results show that the method can provide an objective and transparent mechanism for comparing the performance of teams. The method can be used by organizations to form efficient teams and facilitate an increase in productivity.

Keywords: team performance, performance benchmarking, process mining, data envelopment analysis, organizational social networks.
1 Introduction

Business processes, ranging from manufacturing to supply-chain management and marketing, constitute the heart of business operations (Provost and Fawcett, 2013). Processes, people, and technologies are building blocks of an organization (Dumas et al., 2018). Among these, the human is seen as the most crucial element for successful operation of a business (Thevendran and Mawdesley, 2004). However, it is not only the knowledge and skills of individual employees that affect organizational performance, but also multiple employees working together for a collective purpose (Newell, Tansley, and J. Huang, 2004). Employees working on a certain business process together establish a social network (Song and Aalst, 2008). Social networks, or teams, play a crucial role in the way organizations are run and problems are solved (Yang and Tang, 2004). Organizational performance is closely related to how teams are composed (Sparrowe et al., 2001). More specifically, process performance is found to be significantly influenced by teams and their performances (Furht, 2010; Kratzer, Leenders, and Van Engelen, 2010). Since processes are usually performed collaboratively, process performance may change based on the team structure formed to execute those processes (Kumar, Dijkman, and Song, 2013b). For example, in one process instance, employee A may hand over a document to B, who hands it over to D. In a different case, the team composition for performing the process instance may be as [A-D-E]. The team [A-B-D] might perform better than the team [A-D-E], although both teams execute the same activities and share two identical members. The variation in performance of an individual may be caused by their affiliation with one team rather than another (Manski, 2000). Thus, observing and evaluating individuals in an isolated manner might not suffice to evaluate and improve process performance. Focusing on the performance based on the composition of teams may present an opportunity to improve process performance. However, it is a challenge to objectively compare how different teams perform so that they can be set up effectively (Levy and Williams, 2004). Previous studies have mostly used perceptual or indirect measurement methods to evaluate and compare team performance (Franco-Santos, Lucianetti, and Bourne, 2012).

Process mining is a data science technique that can provide an objective and accurate view of business processes based on increasingly-available event logs from process-aware information systems (Aalst, 2016). Process mining has been used to provide various insights on organizational aspects of processes (W. Zhao and X. Zhao, 2014) such as revealing the organizational structure (Aalst and Song, 2004; Song and Aalst, 2008), collaborations (Schonig et al., 2018) and behavioral patterns (Delcoucq et al., 2020). Team dimension has been considered for work assignment and providing descriptive information (Schonig et al., 2018). In summary, current process mining studies on organizational aspects of processes have mostly focused on the characteristics of the social networks and studied basic process performance measures as descriptive, although it is suggested that team analysis on processes should be extended with performance data (Song and Aalst, 2008). Resource performance from event logs has been studied in an individual level by Pika et al. (2017), who benchmarked the performance of human resources by the tasks they performed. Their research set an example for benchmarking resource performance as a way of process performance management. Thus, there seems to be a potential to use event logs and process mining to objectively assess performances of teams working on processes and improve process performance.

In this paper, we propose a method to objectively benchmark the performance of teams that execute processes, identify improvement areas, and analyze team compositions to deduce insights on performance. The method implements process mining to automatically extract teams and calculate related metrics, and Data Envelopment Analysis (DEA), a method for benchmarking the efficiency of units based on a non-parametric function, to compare team performances using a set of metrics calculated through event logs. Even when objective data such as event logs are used, it is still challenging to choose appropriate data and identify proper analysis techniques for sound and reliable performance evaluation (Behn, 2003). These decisions would have a high impact on the measured performance. Our method includes tasks and guidelines so that an organization can consider different aspects of their business context and business process to select relevant data from the event log, metrics, and performance analysis techniques. We have followed a design science research methodology (Gregor and Hevner, 2013) to guide our research process
to develop the method. We used CRISP-DM, a widely-accepted data mining process methodology, to
structure the steps of the method (Wirth and Hipp, 2000). We demonstrate the application of the method
on a real-life event log available as a research data set and evaluate it via interviews with professionals to
validate the usefulness and applicability. Our study extends research on process mining in combination
with performance measurement and Social Network Analysis (SNA). In this way, the method may provide
a more accurate and objective performance comparison of team of employees working together to execute
processes and help to identify improvement areas. It may open up new opportunities for managers to
identify teams and assign individuals for process execution.

The remainder of this paper is structured as follows. Section 2 presents a brief overview of the state of
the art on process mining related to organizational aspects, performance management, and performance
benchmarking techniques. Section 3 explains our design science research methodology. Section 4 describes
the proposed method in a stepwise manner. In Section 5, we present the demonstration and evaluation
of our method and results. In Section 6, we highlight the implications, conclude the study, and provide
directions for future work.

2 Background

In this section, we first discuss the related work on the uses of process mining on the organizational aspects
of processes (Section 2.1) and relevant studies on team performance management (Section 2.2). We then
introduce the background on the use of benchmarking for team performance and DEA as a performance
benchmarking method (Section 2.3).

2.1 Process mining for organizational aspects

Social networks are critical for the success of an organization, since they identify how individuals work
together to unite different levels of experience and skills for a common goal (Lin, 2001; Molm, 1994). Process
mining can be used to extract information related to the organizational structure and social
networks, in other words teams, related to processes based on objective evidence found in event logs
(Aalst, 2016; W. Zhao and X. Zhao, 2014). A social network consists of individuals and relations among
them, which is typically visualized as a graph with nodes being the individuals and connections between
the nodes representing the relation between the individuals. Social networks related to processes have
been identified based on various relations such as joint process cases, joint activities, and handover of
works (Aalst, Reijers, and Song, 2005; Aalst and Song, 2004). The structure of social networks has been
analyzed to understand the characteristics of social networks, such as the density of the network and
betweenness, closeness, and power of individuals in the network (Aalst, Reijers, and Song, 2005) and
discover organizational models (Hanachi, Gaaloul, and Mondi, 2012; Song and Aalst, 2008). Resource-
related information in the event logs has further been used to discover resource behaviors such as
competence and constraints on how to assign resources to activities (Z. Huang, Lu, and Duan, 2012;
Schönig et al., 2015), mine how multiple resources collaborate on activities (Kumar, Dijkman, and Song,
2013b; Schönig et al., 2018), and find out individuals with similar behavioral patterns (Delcoucq et al.,
2020). Overall, process mining literature establishes event logs as a relevant and objective source to reveal
teams that execute processes and provide necessary tools to analyze the team compositions.

2.2 Team performance management

Performance management enables organizations to identify malfunctioning points and improvement
opportunities in processes (Behn, 2003). The studies in the literature has mostly offered performance
measurement approaches that rely on managers’ personal observations and subjective judgments on
employees and processes (Franco-Santos, Lucianetti, and Bourne, 2012). They look at the behavior from
outside and do not grasp all relevant aspects of performance (Neely, Gregory, and Platts, 2005). Process
mining techniques, on the contrary, view processes from an internal perspective and provide objective
evidence (Z. Huang, Lu, and Duan, 2012). Moreover, relevant data can be gathered easily through event
logs generated automatically by information systems (Z. Huang, Lu, and Duan, 2012), unlike subjective
approaches that involve manual data collection (Carrington, Scott, and Wasserman, 2005). Process mining has been used to evaluate performance of individuals in organizations. Pika et al. (2017) suggested an approach to measure the productivity of individuals and compare it with others. Swennen et al. (2015) suggested a number of process metrics such as resource productivity.

Managing team performance has been found as important as individual performance (Sparrowe et al., 2001). Studies have investigated if certain characteristics of social networks can be associated with performance. For example, the degree of connectedness, i.e., the number of ties among employees, was found to be indirectly related to their satisfaction and performance (Brass, 1981). Among the studies on using process mining to extract organizational models and social networks, team performance is tackled only through the identification of bottlenecks between handovers (Kumar, Dijkman, and Song, 2013b; Song and Aalst, 2008), analysis of workload differences for individuals in a team (Z. Huang, Lu, and Duan, 2012; Nakatumba and Aalst, 2010), and reporting of average process durations for teams (Schonig et al., 2018). Therefore, although performance is seen as an important aspect of teams in a process context (Song and Aalst, 2008), it appears that the performance of individuals that work together as a team to execute processes has not been closely examined.

2.3 Performance benchmarking and DEA

Benchmarking is defined as the systematic comparison of the performance of different Decision Making Units (DMU), such as firms, departments, teams, or individuals (Bogetoft and Otto, 2011). Frontier analysis is a preferred benchmarking approach, which identifies the highest-performing (i.e., frontier) DMU that produces the maximum output from a given input (Bogetoft and Otto, 2011). Among other frontier analysis methods, DEA has been found to be flexible regarding the underlying data and assumptions (Cooper, Seiford, and Zhu, 2011). DEA does not require information about how the production process operates to transform inputs to outputs. The inputs and outputs are usually work, money, raw materials, or production units, but can also be human resources and productivity (Bogetoft and Otto, 2011). Linear programming is used to estimate the optimal combination of weighted inputs and outputs a DMU can produce (Cooper, Seiford, and Zhu, 2011). The DMU, or a set of DMUs, that fulfill this assumption is called the best practice or efficient frontier. All remaining DMUs are considered suboptimal and compared to the frontier by calculating a relative efficiency score, which is between 0 and 1 (Pika et al., 2017).

DEA has previously been used in business process performance evaluation research. Burger and Moormann (2008) demonstrated the application of DEA on a process level. Koch-Rogge et al. (2014) and Dugelova and Strenitzerova (2015) showed that DEA could be used to evaluate resource behavior in general. Pika et al. (2017) combined both approaches to evaluate the performance of individuals based on event log data from a process. Building on these studies, we use DEA for the performance evaluation of teams in organizations formed by executed business processes.

3 Research design

To develop the proposed method, we followed the design science research paradigm (Gregor and Hevner, 2013) and implemented the four research steps proposed by Peffers et al. (2007). We performed our research in four steps; problem identification and motivation, definition of the objective of the solution, design and development, and demonstration and evaluation.

In the first step, we identified the problem as the objective evaluation of the performance of the teams that work on certain processes together in organizations. Although performance management of teams has been shown important to reveal potential improvements and impact overall organizational performance, in the current literature, objective performance comparison of process-related teams through process mining has not been particularly studied. Process mining literature, on the other hand, has established the importance of analysing process-related teams and conducted research on objective performance evaluation, albeit on individual level. Our motivation is to fill this gap by developing a method to objectively benchmark teams for their performances using event logs. Next, to be able to use process mining and other relevant
data analysis methods on event logs (such as DEA), we defined the **objective of our method** as to specify the tasks, inputs, and outputs and provide guidelines on how the tasks can be executed as a data mining process. To achieve this objective, we have designed the method as a data mining process, following the common steps of suggested data mining process methodologies (Plotnikova, Dumas, and Milani, 2020; Saltz et al., 2018). We have **designed the method** in a stepwise manner and **developed software codes** to implement relevant parts, as we introduce in the next section. As the last step, we **demonstrated** the application of the method on an example real-life loan management process. We **evaluated** the usefulness and limitations of the method through interviews.

4 Method for team performance benchmarking

In this section, we describe the steps of our method to benchmark the performance of teams executing business processes, using event logs. We use CRISP-DM (Wirth and Hipp, 2000) as the guiding framework to design our method, a widely accepted methodology as a standard process model for data mining (Aysolmaz, Dau, and Iren, 2020; Plotnikova, Dumas, and Milani, 2020), since our suggested solution involves process mining and other data analysis methods. Our method is composed of five steps and takes as input the event log file and knowledge of the investigated process, as depicted in Figure 1. The first step is (1) **Data selection** to choose event logs of relevant cases and get a list of teams. This corresponds to data understanding and data preparation phases of CRISP-DM. Next steps are (2) **Identification of metrics** that are relevant to the business process context and calculation of metric values for teams and (3) **DEA model implementation** to obtain efficiency scores of teams and identify improvement areas for sub-optimal teams. These align with the phases of modeling and evaluation of alternative solutions of CRISP-DM, since these steps require the selection and evaluation of metrics and DEA settings. Next, two steps are performed in conformance with the deployment phase of CRISP-DM: (4) **Evaluation of individual effect on team performance** to reveal how individuals may affect team performance, and (5) **Evaluation of the effect of team compositions on team performances** by investigating the similarity among teams and analyzing the structure of social networks. Each step is explained in the sections below. We do not provide formal definitions of the concepts in this study, such as the derivation of case-based teams from an event log, some of which can be found in other studies (Song and Aalst, 2008). We rather focus on providing explanations and guidance to consider the business context. We developed Python and R scripts to execute the method from step 1 (partially) to step 5¹.

![Figure 1: Overview of the method](https://doi.org/10.5281/zenodo.4673072)

4.1 Step 1- Data selection

The first step includes activities to identify data quality issues, clean data, and select data relevant for team performance evaluation, which are typical activities in data and process mining tasks (Aalst, 2016; Wirth and Hipp, 2000). The goal is to create event logs for relevant cases and automatically extract the list of

¹ The codes together with their example application for each step as described in Section 5 can be found at: https://doi.org/10.5281/zenodo.4673072
teams. The requirement for this step is making the decisions regarding incomplete and irrelevant cases based on process knowledge. Irrelevant cases in the data would lead to erroneous identification of teams and calculation of metrics. The following list of guidelines should be considered to select relevant cases.
- Remove cases that have not been properly completed (Aalst, 2016).
- Remove invalid cases with missing data (Wirth and Hipp, 2000), such as cases including activities without any human resource (henceforth referred to as resource) assigned and with zero processing time.
- Consider removing process variants that may not be comparable in performance (Aysolmaz et al., 2019), such as different cars in the same production process.
- Consider removing cases that complete in unusual ways (Aalst, 2016) due to external factors (e.g., customer not paying for an accepted product), since they may prevent a fair team comparison.
- Consider dropping cases that include infrequent activities and individuals. Such cases may show rare diversions from the process flow handled by specialized resources (Rodrigues et al., 2017). Thus, they may not provide a good basis for performance comparison.
- Consider dropping outlier cases in terms of duration (too fast or too slow) or number of activities, which can interfere with evaluation.
- Remove cases that have only one resource, since those cases do not contain any team.

After cleaning and filtering of the event log based on the decisions, this step includes automated extraction of team list from the event logs of relevant cases. For each case, the set of resources that work together on that case is extracted. In this way, the list of teams for all cases in the log are built. It can be considered to remove the cases related to the teams that performed too few cases together (Schonig et al., 2018), to establish reliable data for team performance.

4.2 Step 2- Identification of metrics

The goal of this step is the selection of the metrics relevant for performance evaluation and automated calculation of the metric values for teams. The requirement for this step is making the decisions on the relevant metrics based on process knowledge. If metrics are not chosen appropriately, the calculated metric values and team performances would not align with the business value created in the process. The following guidelines should be considered to make the decisions and execute this step.
- Choose relevant metrics based on the process knowledge (Neely, Gregory, and Platts, 2005). Through the use of DEA, our method allows the flexibility to incorporate any metric set that is relevant to the context. Although it is advised not to define too many metrics to avoid unnecessary complexity (Franceschini, Galetto, and Maisano, 2007), there is also no limitation on the number of metrics for the method. The example metrics and considerations below can be used as a guideline for this decision. In Table 1, we present several performance-related metrics from literature. These metrics are adapted to a case level to provide a benchmark for the teams performing cases to produce a specific output together. The suggested metrics measure the performance in different dimensions, namely, productivity, skills, and utilization, to allow for general inferences about process performance (Franceschini, Galetto, and Maisano, 2007). To calculate the chosen metrics, it may be necessary to make assumptions based on the available data and process knowledge. For example, if processing time is chosen, the event log should include start and end times for activities. If there are activities that require input from an external party, it may be considered to remove the duration of those activities from the time metrics so that it does not obscure the performance of the teams. Business value can vary widely and a higher monetary amount can indicate higher value in one process, e.g., orders, and vice versa in another, e.g., purchases. Activity completion can be seen as an indication of high performance, since more activities are executed in the case as needed. Conversely, a lower number of activities can be seen as an indication of higher efficiency and better performance indicating that the team can achieve results with less activity. Such contextual information would identify the setting of input and output metrics of DEA, as described in the next section. If activities require different levels of effort, a weight can be assigned to activities, which can then be used in metric calculations (Pika et al., 2017).
Table 1: Performance metrics from literature for team performance measurement

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Metric</th>
<th>Description</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td>Processing time</td>
<td>Total execution time of all activities a case, excluding idle time</td>
<td>Hours</td>
<td>(Nakatumba and Aalst, 2010)</td>
</tr>
<tr>
<td></td>
<td>Throughput time</td>
<td>Execution time of a case including idle times between activities</td>
<td>Hours</td>
<td>(Pika et al., 2017)</td>
</tr>
<tr>
<td></td>
<td>Business value</td>
<td>Value of the output created in the case, e.g., purchase amount</td>
<td>Euros</td>
<td>(Swennen et al., 2015)</td>
</tr>
<tr>
<td></td>
<td>Activity duration</td>
<td>Average duration of all activities completed per resource in the case</td>
<td>Hours</td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td>Availability</td>
<td>Total availability time of all resources during the execution of the case</td>
<td>Hours</td>
<td>(Pika et al., 2017)</td>
</tr>
<tr>
<td></td>
<td>Activity completion</td>
<td>Total number of activities completed by all resources in the case</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>Skill</td>
<td>Distinct activities</td>
<td>Number of distinct activities performed by a single resource per case</td>
<td>Number</td>
<td></td>
</tr>
</tbody>
</table>

- **Calculate metric values for teams** automatically for the teams in the team list. When a team performs more than one process case together, the calculated metrics are normalized to team level by taking an average of the values over cases.

4.3 Step 3- DEA model implementation

The goal of this step is the implementation of DEA to calculate team efficiency scores and improvement areas for the sub-optimal teams. The requirement is the decisions for the DEA model configuration. If the model is not configured properly, the team efficiency scores would not be adjusted based on the business context and priorities. The following guidelines should be considered to implement the DEA model.

- Specify the previously chosen metrics as **inputs or outputs for the DEA model**. The metrics that are aimed to be low in the process are set as input parameters, such as processing and throughput time. Output metrics should be chosen as those that need to be maximized for higher performance.
- Determine the objective function of DEA, i.e., **minimize inputs** (input-oriented) or **maximize outputs** (output-oriented), based on the priorities of the organization (Islam and Manzoni, 2009).
- Identify the **return-to-scale (RTS) parameter**, i.e., the setting of how inputs or outputs behave when one or the other is changed. Constant RTS (CRTS) is used when, for example, doubling the input results double the output, while increasing RTS (IRTS) is for cases that the output increases in greater proportion than the input. Decreasing RTS (DRTS) is used when the output increases less than the increase in input. RTS should be set carefully to make sure that it reflects the behavior of the input and output variables in the business context (Pika et al., 2017).
- *Run the DEA algorithm* to automatically calculate the team efficiency scores and improvement areas.

The outcome of DEA is a benchmark table where each row shows an individual team, or DMU in DEA terminology, and a team **efficiency score**, where the most efficient teams are assigned a score of 100%. The remaining teams are assigned lower efficiency scores with respect to the most efficient ones. These indicate unexploited improvement areas. Such DMUs have one or more benchmark DMUs that can be used to identify improvement areas. Generally, a benchmark DMU achieves a higher efficiency with the same optimal weights as the DMU that is being examined. For such DMUs, the model gives a weight score, \(\lambda \). By multiplying lambda scores with the metrics, the improvement areas that can be achieved by a sub-optimal team are identified. The application of these calculations are exemplified in the evaluation (specifically Section 5.1.3). The organization can decide which of the improvement areas they can implement based on their business goals and constraints.

Upon revealing the differences in team performances, the organization can perform further analysis to understand what causes the teams to deviate in performance (Furht, 2010). One possible cause can be the effect of individuals and another can be the composition of teams. Our method provides guidance on further analyses about these causes in the following steps.

4.4 Step 4- Evaluation of individual effect on team performances

The goal of this step is to investigate if there are individuals that affect team performances in all teams or a group of teams with a certain performance profile (e.g., top-performing or low-performing teams based...
on team efficiency scores). The requirement for this step is that resources should be working in multiple teams. The step can be executed automatically.

- **Investigate the number of teams that the resources worked in:** This gives an indication of if individuals engage in work with different teams or participate in cases mostly with similar teams.

- **Analyze per resource the mean efficiency of teams the resource worked in:** This analysis may give a picture of resources that work more in high (or low) performing teams. We name this as *mean team performance of resources*. This is an indication of not individual capabilities but the performance of teams that the individual takes part in.

- **Investigate the teams of resources with different team performance profiles:** High-ranked individuals are examined for team performance and checked if they take part mostly in top-performing teams. This may give an indication if certain individuals mostly cause higher team performance or if this is not a related factor. The analysis is also performed to investigate the resources engaged in low-performing teams.

4.5 Step 5 - Evaluation of team composition effect on team performances

The goal of this step is to investigate the differences in team compositions and reveal possible reasons behind it. There is no requirement for this step, it can be executed automatically. The outputs are used to perform the analysis as guided in the following steps.

- **Examine the similarity of teams with a certain performance profile:** The similarity of team compositions are calculated for every pair of teams that fit a certain performance profile, e.g., frontier teams. A higher similarity among the teams in a performance profile group may indicate a stronger effect of team composition on team performance. We use cosine similarity, a similarity metric widely-used in various domains (Bayardo, Ma, and Srikant, 2007) to calculate similarity of team compositions. To calculate the cosine similarity, each team is represented as an n-dimensional vector, where n is the number of all individual resources that takes part in one or more teams. The values in team vectors are binary; 1 indicates that the resource is in the team, and 0 means it is not.

- **Investigate ties among resources in teams with a certain performance profile:** Social network graphs are developed and social network metrics are calculated automatically for this analysis. A node in the graph represents a resource and a connection among the two resources is established by “participating in the same team”. Density metric is used to compare the structure of a social network, which measures the number of social ties in the network per all possible ties (Furht, 2010). Comparing the structure of the social networks of group of teams may give hints about the underlying reasons of their performance difference (Furht, 2010). For example, if top-performing teams are found to have similar team compositions, it can be considered that the resources of those teams work together more often, thus, develop an affinity towards each other that positively affects team performance.

- **Compare the density of different groups of teams:** Differences in the social network characteristics of group of teams may point out to differences in the structure of the social networks, which helps to reveal the underlying reasons in team performance differences.

5 Evaluation and results

In this section, in conformance with the last step of the design science research (Peffers et al., 2007), we first demonstrate the application of our method on a real-life loan management process available as a research data set, then, we present the results of the interviews to evaluate the usefulness and limitations of the method in organizational settings.

5.1 Application on Real-Life Process Data

We applied our method to measure the performance of teams that perform a business process in an organization following the steps described in Section 4. We used an anonymized real-life event log

2 The execution of the method on the event log and relevant output files can be found in the code package.
obtained from 4TU.Centre of Research Data (Van Dongen, B.F., 2017). This log represents a loan management process from a Dutch financial institution containing events from 1 January 2016 until 1 February 2017. We chose this event log for a number of reasons. First, it represents a real-life process, which is valuable to show the applicability, benefits, and limitations of the method. Second, our evaluation is reproducible since the data is publicly available. Third, the log contains rich information important for evaluating the performance, which may not always exist in all event logs, such as start and end timestamps, resources, and value of loan offers. Table 2 shows an excerpt from the log file for an exemplary simplified process case. Case ID is the unique identifier assigned to each process case, i.e., a loan application. Activities that start with A and O indicate the status changes of a loan application and offer respectively, thus, they are instant. Resource indicates the user that performed the activity. Loan goal indicates the type of the loan such as car, mortgage, or home renovation. Offr Amnt is the value of the loan offer.

5.1.1 Step 1- Data selection
The event log contained 31,509 cases in total. We filtered the data to select relevant cases from the event log based on an understanding of the process knowledge in previous studies (Rodrigues et al., 2017). We first removed cases that are unfinished (cases that did not reach a final decision activity) and invalid (cases having zero processing time in total). This resulted in the removal of 6688 cases from the log. Then, we found cases with infrequent activities (<1% frequency) and with roles attending few cases (<1% cases). We assumed that process variants for different loan goals (i.e., loan for home or car) are comparable to each other for performance. Next, we kept cases that are only finalized with a successful loan and removed the rest. We removed outlier cases that have exceptionally few or many number of activities (5%). Our event log for relevant cases eventually contained 7238 cases and 93 unique resources. By running the script, we automatically extracted the team list. We removed the resource User_1 from the teams, since it is assumed to be an automation system rather than a human resource. We confirmed that we have multiple process cases per team. This resulted in 237 teams and 81 resources having performed more than one case.

5.1.2 Step 2- Identification of metrics
Based on our knowledge of the loan management process, we chose four metrics among the ones in Table 1 to evaluate the performance of the teams working in the process: throughput time and processing time, and loan amount (business value) as productivity metrics and activity completion as a utilization metric. The selection of metrics was done based on the authors’ own judgment of the process. Both the set and number of metrics could be different, which may change the results but not the application of the method. We ran our script to automatically get metric values for the teams in the team list. All metrics were normalized over the cases that the team worked on. We assumed that all activities require equal effort, so we did not assign any weight to them. This decision affects the metric values and eventually the comparison of the team performances.

5.1.3 Step 3- DEA model implementation
We configured our DEA model in conformance with our metric choices. Processing and throughput times are assigned as input parameters, as they would be preferred to be low. Activity completion and loan

Table 2: An excerpt from the event log used in the application of the method

<table>
<thead>
<tr>
<th>Case ID</th>
<th>Activity</th>
<th>Resource</th>
<th>Start Time</th>
<th>Complete Time</th>
<th>Loan Goal</th>
<th>Offr Amnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1226577675</td>
<td>A_Create Application</td>
<td>User_1</td>
<td>1/5/16 8:27:37PM</td>
<td>1/5/16 8:27:37PM</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>1226577675</td>
<td>W_Complete application</td>
<td>User_108</td>
<td>1/6/16 7:32:30PM</td>
<td>1/6/16 7:43:15PM</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>1226577675</td>
<td>O_Sent (mail&online)</td>
<td>User_108</td>
<td>1/6/16 7:43:15PM</td>
<td>1/6/16 7:43:15PM</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>1226577675</td>
<td>W_Call after offers</td>
<td>User_108</td>
<td>1/6/16 7:43:15PM</td>
<td>1/6/16 7:43:15PM</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>1226577675</td>
<td>W.Validate application</td>
<td>User_30</td>
<td>1/13/16 3:19:13PM</td>
<td>1/13/16 11:18:09AM</td>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>1226577675</td>
<td>O_Accepted</td>
<td>User_30</td>
<td>1/13/16 11:18:09AM</td>
<td>1/13/16 11:18:09AM</td>
<td>Car</td>
<td></td>
</tr>
</tbody>
</table>

3 We used Disco tool by Fluxicon to filter and export the data to csv format up to this step.
Amount are set as output parameters, since we assume that the higher values for them indicate higher performance. We set our model as input-oriented, indicating that we want to minimize the inputs, together with the RTS parameter set as decreasing. The resulting DEA benchmark table calculated automatically contains the efficiency scores of 237 teams. 10 teams at the top of the list received a 100% efficiency score, meaning that they performed the highest and equally well among all teams (which does not necessarily indicate equal values of metrics). Table 3 shows an excerpt from the benchmark table generated by the DEA model. The first team, 5941, achieved an efficiency score of 100%, i.e., they used their inputs in the most efficient way to produce the respective outputs, together with 10 other teams. The rest of the teams have lower efficiency scores down to 22% in the dataset. For example, team 4985 has an efficiency of 94%, which can be benchmarked with top-performing teams of 5941 and 6386 with lambda values of 0.71 and 0.29 respectively as provided by DEA. Lambda values are weight scores identified for each sub-optimal team with respect to one or more reference frontier team. They are used to calculate how the performance of the sub-optimal team can be improved with respect to the reference frontier teams. An example calculation is depicted for team 4985 in Table 4. Team 4985 has 471 hours of more throughput time and 0.6 minutes of more processing time. This results in 7900€ of less value achieved with the same activity completions. These gaps would have to be closed to improve the efficiency of team 4985 to 100%.

Table 3: DEA benchmarking results for four teams and their weights

<table>
<thead>
<tr>
<th>Team ID</th>
<th>Resources</th>
<th>Efficiency score</th>
<th>Weights (lambda) for benchmark team</th>
</tr>
</thead>
<tbody>
<tr>
<td>5941</td>
<td>17, 75, 119, 125, 133</td>
<td>100.0%</td>
<td>0</td>
</tr>
<tr>
<td>4985</td>
<td>27, 61, 90, 121</td>
<td>94%</td>
<td>0</td>
</tr>
<tr>
<td>3536</td>
<td>5, 109, 121</td>
<td>71%</td>
<td>0.26</td>
</tr>
<tr>
<td>784</td>
<td>25, 115, 117</td>
<td>48%</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 4: Example improvement area calculation for Team 4985

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Value x Lambda</th>
<th>Value</th>
<th>Value x Lambda</th>
<th>Totals</th>
<th>Value</th>
<th>Excess Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing time (mins)</td>
<td>9.7</td>
<td>6.89</td>
<td>3.5</td>
<td>1.02</td>
<td>7.91</td>
<td>8.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Throughput time (hrs)</td>
<td>213</td>
<td>151</td>
<td>194</td>
<td>56</td>
<td>207</td>
<td>678</td>
<td>471</td>
</tr>
<tr>
<td>Output metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loan amount</td>
<td>27500</td>
<td>19525</td>
<td>12500</td>
<td>3625</td>
<td>23150</td>
<td>15250</td>
<td>-7900</td>
</tr>
<tr>
<td>Activity completion</td>
<td>22</td>
<td>15.6</td>
<td>15</td>
<td>4.4</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

5.1.4 Step 4- Evaluation of individual effect on team performance

We first investigate the number of teams the resources worked in, which changes from 1 to 41 with a mean of 9.2 and standard deviation of 9.6. This shows a lot of diversity in how resources participate in team formation. Next, mean team performance of resources is calculated by averaging, for each resource, the efficiency scores of the teams that the resource worked in. This value deviates from 0.40 to 1.0 with a mean of 0.6 and standard deviation of 0.12. High-ranked individuals are identified as the top 10% of all resources, which amounts to 8 resources, based on the ranking for the mean team performance of resources. We examined how many of these 8 resources work in the 10 top-performing teams. Surprisingly, only 3 individuals out of 8 actually worked in these teams. This point may indicate for this process that the team performance is more dependent on the synergy of the team than the performance of its members.

5.1.5 Step 5- Evaluation of team composition effect on team performance

To compare the similarity of teams with a certain performance profile, we calculated the cosine similarity within five different groups of teams: top-10 (100% efficiency), bottom-10, top-20 (>90% efficiency), and bottom-20 teams in performance, and all 237 teams, as shown in Table 5. The top-10 teams have a lower similarity score (0.067) than bottom-10 teams (0.112) and all teams (0.077). Thus, bottom-10 teams are more similar to each other than top-10 teams in terms of their team composition. The analysis of social

\footnote{A dot plot of individuals working in teams can be found in the code package.}
networks, which are formed based on the resources working in the same team, provides more information on the structure of these groups. Table 5 reports the density of different groups and Figure 2 shows social network graphs of top and bottom-10 teams. Top and bottom-10 teams are denser than top and bottom-20, indicating that these teams have stronger social ties within. The investigation of the graphs reveals that both groups have a distinct set of members that do not take place in other teams. These results need to be investigated in the business context to be able to make decisions about future team compositions.

<table>
<thead>
<tr>
<th>#Pairwise comparisons</th>
<th>Cosine similarity</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-10</td>
<td>45</td>
<td>0.067</td>
</tr>
<tr>
<td>Top-20</td>
<td>190</td>
<td>0.068</td>
</tr>
<tr>
<td>Bottom-10</td>
<td>45</td>
<td>0.112</td>
</tr>
<tr>
<td>Bottom-20</td>
<td>190</td>
<td>0.086</td>
</tr>
<tr>
<td>All 237</td>
<td>28880</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Table 5: Cosine similarity and density values among five groups of teams

Figure 2: Social network graphs for top-10 (left) and bottom-10 (right) performing teams

5.2 Interview study

We performed semi-structured interviews with professionals from industry to evaluate the usefulness of the method in business settings. The interviewees were approached through email or LinkedIn. We sought for at least medium level knowledge of one of the related fields, process mining (PMin), performance measurement (PFM), and SNA. The information about the interviewees is summarized in Table 6. All interviewees were from EU countries. The interviews took on average 50 minutes. Before the interviews, we sent the description of the method and its example application on the loan management process. During the interviews, we first provided a brief explanation of the method and asked questions on the experience and background of the interviewees. We then proceeded with questions on the usefulness, benefits, opportunities, limitations, and risks. To make sure the interviewees are clear about the goal and application of the method, based on their experiences, we asked them to reflect on the possible applications of the method in their organizations and explained the method further if needed based on their responses. We coded all interview transcripts and performed a thematic analysis to identify common topics and discover unexpected themes (Braun and Clarke, 2006). We summarize the interview results in five topics below based on the identified themes.

Benefits: The interviewees saw potential benefits such as the value of transparent data to make balanced resource allocations among tasks (P1 and P2) and uncovering reasons of performance deviations in different cases (P3 and P4). Increased productivity for the organization by discovering improvement opportunities in team compositions was another expected benefit (P2, P4, and P5).
<table>
<thead>
<tr>
<th>No</th>
<th>Experience</th>
<th>Current Position</th>
<th>Domain</th>
<th>PMin</th>
<th>PFM</th>
<th>SNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>>20 years</td>
<td>Director</td>
<td>Business process management</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P2</td>
<td>>20 years</td>
<td>C-founder</td>
<td>Digitalization, 3D print</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>P3</td>
<td>>15 years</td>
<td>Head of data science</td>
<td>Anonymous</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P4</td>
<td>>10 years</td>
<td>Freelance consultant</td>
<td>Business process management</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P5</td>
<td>>20 years</td>
<td>Accountant</td>
<td>Banking</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P6</td>
<td>>10 years</td>
<td>Managing director</td>
<td>Process mining, data science</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Table 6: Information on interviewees and their level of knowledge on related fields

Limitations: All interviewees expressed concerns about legal and privacy issues. They argued on possible constraints of using individual data based on the laws in European Union. Anonymization was suggested not to make personal inferences from the outcomes (P1, P2, and P4). P1 and P4 saw risks in the possible misuse of outcomes to dismiss or assign employees to low-profile tasks. P2 and P3 highlighted the importance of data quality to eliminate wrong or biased outcomes.

Use of the method: The expected uses were understanding deviations among teams and improving poor-performing teams (P1, P4, and P5), improvement of overall team efficiency, focusing on specific metrics to reveal different dimensions of performance (P3), and using results as input for a digital twin of the teams and departments.

Metrics: The use of different types of metrics was considered essential in the method by all interviewees. The inclusion of soft metrics such as employee satisfaction (P2 and P3), contextual metrics such as complexity (P5 and P6), and communication-related metrics (P6) were further suggested.

General Opinion: All interviewees found helpful that the method provides a transparent mechanism to evaluate team performances and help to develop actions. They found the method valuable also because they see a growing demand for process mining. Two interviewees emphasized that it must be used as a supportive tool for decision-making. P1 further expressed the need for explicit recommendations and actions to resolve identified issues. All interviewees indicated concerns about privacy issues, expressing the need to clarify to the employees that the method provides insights at a team level with the purpose of adjusting team compositions rather than personal assessment.

6 Conclusion and discussion

Measuring performance in an objective and accurate way is essential to establish equality among individuals and teams in organizations, improve job satisfaction, and achieve a better working environment. In this study, we aim at contributing to this by developing a performance benchmarking method for teams in organizations based on objective process data. We demonstrated the application of our five-step method and the insights that can be derived on a real-life event log of a loan management process. The usefulness and limitations of the method are further evaluated through interviews. As suggested by the results, our method may enable organizations to benchmark the performances of teams executing business processes and identify improvement areas for the teams. Moreover, the method helps to understand the reasons behind performance differences and take actions to form teams that can perform better in future business process executions. To guide the organizations in objective and accurate team performance evaluation, the method lays down the decisions to be made for data selection and analysis based on the process context.

Implications for research: This study aims to answer the call in previous research on how to design performance measures to encourage cooperation among teams and prevent conflicts between different measures (Crawford and Cox, 1990; Neely, Gregory, and Platts, 2005). By measuring the performance of teams, cooperation moves into the foreground, since the method does not incentivize individuals standing out or outperforming the others. Various dimensions of performance can be taken into consideration through the use of multiple metrics. In this way, this study extends the literature on performance measurement, process mining, and social network analysis (e.g., (Aalst and Song, 2004; Z. Huang, Lu, and Duan, 2012; Pika et al., 2017)). It shows how these research areas can be combined to measure and evaluate the performance of team of employees engaged in the same process.
Implications for practice: The insights obtained through the application of the method can be used to form efficient teams, reward high-performing teams, encourage and guide low-performing teams, and provide objective insights to resolve team-related performance issues. Shapiro (1977) argued that one reason for conflicts among departments is the use of inadequate and contractionary evaluation criteria. Our method can overcome such conflicts by using a range of metrics. The method can be used to improve existing methods on work assignment to resources in process-aware information systems by considering the most efficient team compositions (Eck et al., 2017).

Organizations are increasingly worried about and paying attention to the privacy perceptions of their employees, as confirmed by our interview findings. To overcome the privacy concern, it is important that organizations are transparent to their employees about which data is used and for what purposes (European Group on Ethics in Science and New Technologies, 2018). Our method provides insights on team performance and does not include personal assessment, while increasing transparency and objectivity of performance evaluation. Thus, organizations can overcome the privacy concerns of their employees about the method if they communicate the method well and put in place a governance system to manage these concerns (Reinkemeyer, 2020).

Limitations: Our first limitation is that the method was applied on one dataset. It constitutes an example of how the method can be applied and results can be interpreted. However, since we did not work with the organization providing this dataset and we performed on our assumptions rather than actual process knowledge. If the method was applied by the process experts in the organization, decisions such as metric choices and DEA configuration could be made differently, which would result in different outcomes. Future work should include further evaluation of the method in an organization for validity and utility, in conformance with the design science research methodology (Gregor and Hevner, 2013). Second, in our application, there was low number of cases that could be used after data selection. This is due to the existence of many different resources and composition of them into a high number of teams. There can be much fewer number of resources, and accordingly teams, in some business processes (e.g., Schonig et al. (2018)). In that situation, a high number of cases can be retained in the event log to apply the method, which would improve the reliability. Existence of a high number of resources in a process may also point to issues about team formation. Third, the method considers only activities that are performed on information systems and recorded in event logs. If individuals also perform manual activities while performing processes, relying on this method would not be sufficient for accurate performance evaluation.

Future work: In our method, teams are identified as individuals working on one case together and extracted automatically from the event log. There is a potential to complement the method with other approaches to identify the teams and improve team compositions from different perspectives. In some process contexts, employees working on a process might not be connected with each other as a team and might be only loosely related, for example, if separate organizational units are performing parts of the process. If so, an organization can consider to split a process and the event log accordingly to apply the method on the individuals that are working in one part of the process. Sub-processes defined in the process models or parts of the process that are handled consecutively by the same unit can be used to automatically extract such teams. Another approach is to consider characteristics of individuals to identify teams, such as roles or specific personal capabilities, as in Schonig et al. (2018). Handovers between two activities in a process are points of intense collaboration, and it is important to perform them efficiently for overall process performance (Leyer, Iren, and Aysolmaz, 2020). Another complementary approach can be the identification of teams based on handovers (using the methods in Kumar, Dijkman, and Song (2013a) and Leyer, Iren, and Aysolmaz (2020)) and suggesting improved team compositions considering handover characteristics of teams.

Another future research direction is on conducting wider analysis to unveil the reasons of differing team performance. One potential reason that deserves investigation is the synergy effect, which suggests the performance of a team is more than the estimated total performance of its individual members. Based on the identified reasons, predictive suggestions can be automatically produced for establishing the most effective teams at the start of a process and implemented in process-aware information systems.
References

