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Abstract. We study several service providers that keep spare parts in stock to protect for
downtime of their high-tech machines and that face different downtime costs per stockout.
Service providers can cooperate by forming a joint spare parts pool, and we study the
allocation of the joint costs to the individual service providers by studying an associated
cooperative game. In extant literature, the joint spare parts pool is typically controlled by a
suboptimal full-pooling policy. A full-pooling policy may lead to an empty core of the
associated cooperative game, and we show this result in our setting as well. We then focus
on situations where service providers apply an optimal policy: a stratification that de-
termines, depending on the real-time on-hand inventory, which service providersmay take
parts from the pool. We formulate the associated stratified pooling game by defining each
coalitional value in terms of the minimal long-run average costs of a Markov decision
process. We present a proof demonstrating that stratified pooling games always have a
nonempty core. This five-step proof is of interest in itself, because it may be more generally
applicable for other cooperative games where coalitional values can be defined in terms of
Markov decision processes.

Funding: This work is supported jointly by NWO and ProRail [Grant 438-12-305].

Keywords: optimal spare parts pooling • cooperative game • non-empty core • Markov decision processes

1. Introduction
In the last decades, spare parts pooling has shown its potential in several industries, including the airline
industry (Kilpi and Vepsäläinen [9]) and the electricity market (Kukreja et al. [12]). In these industries, one
typically applies a full-pooling policy, which means that a joint spare parts pool is formed (which may, for
example, consist of the original stock points of the participating players or one (new) joint stock point) from
which every participating player can demand as long as the joint spare parts pool is nonempty. Despite the fact
that this form of pooling may reduce long-run average costs significantly, it is not per se optimal. For instance,
when the criticality of a specific spare part may differ per party, full pooling may be far from optimal (Koçağa
and Şen [10], Kranenburg and Van Houtum [11], Wieczorek et al. [24]). As an example, one can think of two
service providers that each keep the same spare parts in stock for the same type of machines but face different
downtime costs for their machines (for example, when the service providers have different contractual
agreements with their customers). When the service providers then decide to pool their spare parts, it may be
better to reserve some of the spare parts for the service provider with the higher downtime costs. In this work,
we will also consider such an environment, in which service providers can pool their spare parts, face different
downtime costs, and apply a pooling policy that is better than full pooling. More specifically, we let the service
providers apply an optimal pooling policy, which is, in general, not full pooling. Then, we address the main
question of this work: how should we allocate the joint total costs of the optimal pooled system among the
involved parties? So far, such cost allocation problems have received attention in literature for situations in
which spare parts are pooled according to a possibly suboptimal pooling policy (Karsten et al. [7], Schlicher
et al. [19]). However, it is unexposed in settings in which spare parts are pooled according to an optimal
pooling policy. To the best of our knowledge, we are the first to deal with this issue explicitly.

In this paper, we will address this cost allocation problem as follows. First, we describe the underlying spare
parts situation, which consists of several service providers that are located geographically close together.
These service providers stock the same repairable spare parts to protect for downtime of their high-tech
machines and send a failed part of a high-tech machine to their own repair shop, which repairs such parts one
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by one. The frequency by which the high-tech machines fail may vary per service provider. If no spare part is
available on demand, a downtime cost is incurred, and after an instantaneous repair, the failed component is
restored into the system as new.

Second, as a next step, we formulate an associated cooperative game. For this game, we assume that players
(that is, the service providers) cooperate by forming a joint spare parts pool in which all failed parts of all high-
tech machines are sent to the same repair shop, which repairs these parts one by one. Operating the joint pool
involves, for each spare parts demand, the decision problem of satisfying or rejecting demand. Whenever a
demand is rejected (and therefore, the spare part is not satisfied from the joint spare parts pool), a downtime
cost is incurred, and after an instantaneous repair, the failed component is restored into the system as new. We
show that, under a full-pooling policy that satisfies all demand while spare parts are available, the core of the
associated game can be empty. We then focus on situations in which an optimal pooling policy is applied (that
is, a pooling policy that minimizes the joint long-run average downtime costs per time unit). It turns out,
based on a classical result of Ha [6], that such an optimal pooling policy has the form of a critical-level policy.
Such critical-level policies are characterized as follows. According to the different downtime costs, demand for
a spare part of a player is accepted if and only if the total inventory level of the joint spare parts pool is above a
certain critical level. In this way, some spare parts are reserved for the players with relatively high downtime
costs. Therefore, there is some kind of stratification that determines when players are allowed to make use of
the joint spare parts pool. For that reason, we refer to this form of pooling as stratified pooling and to the
associated cooperative game as a stratified pooling game. Although stratified pooling games originate from
spare parts situations, they are not limited to this specific type of situations only. For instance, in line with Ha
[6], the service providers could represent single-server produce-to-stock production facilities that each face
different penalty costs for their lost sales. Then, these production facilities can collaborate by pooling their
inventories, customer streams, and production rates into a joint system where new products are produced by a
single server. The main focus of this paper is to investigate stratified pooling games on core nonemptiness
(that is, to investigate whether there always exists an allocation of the joint costs such that no group of players
has a reason to break up from the collaboration).

There exist several techniques in literature to show core nonemptiness of a game. Among them is the
identification of a core allocation in terms of the primal characteristics of our underlying spare parts situation.
It is unlikely that this technique applies to our game, because there is no closed form or implicit form available
that describes our coalitional values. An alternative is to show concavity of our game, because this property is
a sufficient condition for core nonemptiness. Stratified pooling games are not concave in general (see Remark 2),
and therefore, this technique cannot be applied here as well. Another possible technique is the reformulation
of our game to another game with a nonempty core. For instance, Anily and Haviv [3] use this technique: they
show that their game can be transformed to a so-called market game (Osborne and Rubinstein [16]). In a
market game, each player is associated with a set of resources and a continuous, convex utility function,
identifying the amount of profit realized for the given set of resources. Players can cooperate by reallocating
resources to maximize the sum of the utility functions. Our game has some characteristics similar to market
games as well: we also reallocate some resources, namely spare parts, and strive for an optimization (in here,
minimizing long-run average costs). However, in comparison with market games, in our game, players
repeatedly reallocate resources with underlying decisions that rely on future (decisions). This extra dimension
of reallocation over time makes the transformation of our game to a classical market game far from obvious.
This is in line with Anily and Haviv [3], who argue that the transformation technique has its limits, except
for games that are either originally stated as market games or are easily transformed to market games. In
particular, they claim that reformulating a game as a market game may be as intricate as proving core
nonemptiness directly. For our game, it is likely that this last statement applies.

We, therefore, apply another technique: we show that our game is balanced, which is a necessary and
sufficient condition for core nonemptiness (Bondareva [4], Shapley [22]). The proof is obtained by merging
optimal pooling strategies (of a balanced collection) of coalitions to a feasible optimal pooling strategy of the
grand coalition in such a way that we can show the balancedness conditions of Bondareva [4] and Shapley
[22]. In doing so, we use that our underlying spare parts situation can be described by a Markov decision
process (MDP) and that the optimal pooling policy can be described as a stationary policy in this MDP. Our
structured proof consists of five steps, which are, in consecutive order, copy, combination, relaxation,
anonymization, and uncopy. We want to emphasize that this structured five-step proof may be more generally
applicable for games where the underlying situation can be described by an MDP and the related optimal
strategy can be described as a stationary policy in this MDP. We will elaborate on this in the conclusions.
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In the literature, stratified pooling games fit within the class of operations research games (Borm et al. [5])
and in more detail, within the class of cooperative resource pooling games. These games have in common that
resources (for example, spare parts, hospital beds, repair men, or machines) are pooled among the players. In
the last couple of years, several of these games have been investigated, and we will shortly discuss them
below. Here, we restrict ourselves to resource pooling games in which queueing models are incorporated. We
categorize these resource pooling games into two categories, namely games in which solely queueing systems
are pooled and games in which, in addition to pooling of queueing systems, spare parts are pooled as well.

In the first category, in which solely queueing systems are pooled, we find the works of Anily and Haviv [1, 3],
Karsten et al. [8], and Timmer and Scheinhardt [23]. Anily and Haviv [1] study a single-server queueing game,
in which each player has his or her own server with a fixed service rate. The players can pool these service
rates, and their individual exogenous driven customer streams into a single M/M/1 queueing system, whose
service rate is the sum of the service rates of the players that collaborate. In doing so, the players can reduce
waiting time of customers. Anily and Haviv [1] show that the core of this game is always nonempty and give
an explicit expression for all nonnegative core allocations of this game. Karsten et al. [8] study a variant of this
game by assuming that the collaboration is modeled as an M/M/s queueing system instead of an M/M/1
queueing system. For this specific game, in which players face a fixed cost rate per server and homogeneous
costs for waiting customers, Karsten et al. [8] provide a sufficient condition for core nonemptiness, because the
core can be empty in general. Timmer and Scheinhardt [23] study cooperative games associated with general
Jackson networks. Each player owns a single-server station, which is modeled as an M/M/1 queue. The
players can cooperate by redistributing their combined service capacities among the stations to reduce total
waiting time. They show that the core is nonempty in general. Anily and Haviv [3] study parallel M/M/1
queues. They consider both waiting and no waiting in the queue. In doing so, they consider cooperation via
capacity sharing as in Timmer and Scheinhardt [23] as well as cooperation under unobservable routing. The
latter form of cooperation boils down to an optimal division of arrival rates over the stations. In all cases, core
nonemptiness is proven.

In the second category, in which, in addition to pooling of queueing systems, spare parts are pooled as well,
we find the works of Karsten et al. [7] and Schlicher et al. [19]. Karsten et al. [7] study a setting with several
players who stock expensive, low-demand, repairable spare parts for their high-tech machines. These players
can collaborate by full pooling of their spare parts via free transshipments. The authors model this pooled
spare parts situation as an M/M/s/s queueing system (better known as an Erlang loss system), in which (in
terms of standard queueing terminology) a customer can be seen as a demand for a spare part and a server can
be seen as a spare part in repair. In contrast to the queueing systems of Anily and Haviv [1] and Karsten et al.
[8], in the M/M/s/s queueing system, customers are not allowed to wait. Karsten et al. [7] show that the core of
the associated game can be empty and subsequently provide a sufficient condition for core nonemptiness.
Schlicher et al. [19] study a variant of the model of Karsten et al. [7] for a restricted domain: they assume that
each player keeps exactly one spare part in stock and assume that each player has the same demand rate. For
this setting, Schlicher et al. [19] let the players pool their spare parts via a fixed suboptimal critical-level policy
instead of a full-pooling policy. This pooled spare parts situation is also modeled as a queueing system, in
which the demand rate of the customers is state dependent. Schlicher et al. [19] show that, for the restricted
domain, the core is always nonempty.

Our paper can be categorized in the second category as well: we allow the players to pool their repairable spare
parts and model the pooled repair process as anM/M/1 queueing system. With respect to the type of spare parts
pooling, we deviate from Karsten et al. [7] and Schlicher et al. [19] by applying an optimal spare parts pooling
form. With respect to the form of queuing system under pooling, we follow Anily and Haviv [1], and therefore, it is
possible that a failed part has to wait before repair can actually start. Our main result is that, under these modeling
assumptions, the core is always nonempty. This result is of particular interest, because the forms of pooling that
have been investigated in the literature (for example, full pooling) cannot in general guarantee a nonempty core.

In Table 1, an overview of the most relevant resource pooling games is represented according to the various
modeling assumptions and whether the core (of the related resource pooling game) is nonempty in general or not.

Now, we summarize the main contributions of this paper.
1. We are the first to analyze a resource pooling game in which spare parts are pooled in an optimal way

(instead of in a possibly suboptimal way like, for example, full pooling).
2. We prove that the core of stratified pooling games is always nonempty. This result is of particular interest,

because for several other spare parts pooling games (in which a suboptimal pooling form is assumed), the core
may be empty. In particular, if players would naively apply a full-pooling policy in our stratified pooling
game, core nonemptiness is also not guaranteed.
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3. We present a five-step proof for core nonemptiness of stratified pooling games, which is of interest in itself.
To the best of our knowledge, we are the first to relate a cooperative game to an MDP and therefore, succeed to
prove that the core is always nonempty. These modeling and proof techniques may be more generally applicable
for operations research games where coalitional values correspond to the minimal long-run average costs of
MDPs as well.

The remainder of this paper is organized as follows. We start in Section 2 with preliminaries on cooperative
game theory as well as on MDPs. Subsequently, we introduce spare parts situations and the associated
stratified pooling games in Section 3. In Section 4, we will show our main result that stratified pooling games
have a nonempty core. In Section 5, conclusions are drawn. Proofs of lemmas are relegated to the appendix.

2. Preliminaries
In this section, we provide some basic elements of cooperative game theory as well as of (discrete time)
Markov decision processes.

2.1. Cooperative Game Theory
Consider a finite set of players N � {1, 2, . . . ,n} and a function c : 2N → R called a characteristic function, with
c(Ø) � 0. The pair (N, c) is called a cooperative cost game with transferable utility, shortly called game. A subset
S ⊆ N is a coalition, and c(S) represents the costs incurred by the players in S. The costs can be transferred
freely among the players. The set N is called the grand coalition. A cost vector for a game (N, c) is a vector x ∈ RN

describing how to allocate the costs, where player i ∈ N is allocated xi. A cost vector x ∈ RN is called efficient if∑
i∈N xi � c(N). This implies that all costs are distributed among the players of the grand coalition N. A cost

vector x ∈ RN is called stable if no group of players has an incentive to leave the grand coalition N (that is,∑
i∈S xi ≤ c(S) for all S ⊆ N). The set of efficient and stable cost vectors of (N, c), called the core of (N, c), is

denoted by C (N, c).

2.2. Discrete Time Markov Decision Processes
In this section, we present some basic concepts of discrete time MDPs. An MDP is a mathematical frame-
work for modeling sequential decision problems under uncertainty. Consider a set T � N ∪ {0} of time
epochs, a countable set Y of states, a finite set A (y) of actions for each y ∈ Y , nonnegative costs C(y, a) for
each y ∈ Y and all a ∈ A (y), and transition probabilities p(y′|y, a) for all y′ ∈ Y , all y ∈ Y , and all a ∈
A (y) with

∑
y′∈Y p(y′|y, a) � 1 for all y ∈ Y and all a ∈ A (y). Tuple (T,Y ,A ,C, p) with A � (A (y))y∈Y , C �

(C(y, a))y∈Y ,a∈A (y), and p � (p(y′|y, a))y′,y∈Y ,a∈A (y) is called a discrete time Markov decision process.
Let t ∈ T be a time epoch. A decision rule ωt � (ωt(y))y∈Y indicates, for all states y ∈ Y , which action to choose

at time epoch t. In addition, a policy ω � (ωt)t∈T is a sequence of decision rules for all time epochs. Let Xt with
t ∈ N ∪ {0} be a random variable that indicates the state at time t. Note that Xt depends on ω and X0. If initially,
X0 � y ∈ Y , the long-run average costs per time epoch under policy ω are

Jω(y) � lim sup
n→∞

1
n
Eω

∑n−1
t�0

C Xt, ωt Xt( )( )|X0 � y

[ ]
.

Table 1. Classification of the most relevant cooperative resource pooling games according to various modeling assumptions
as well as the result on core nonemptiness.

Spare parts pooling policy

Queuing system form under pooling

Single Multiple

Full pooling This paper (waiting in queue, core can be empty) Karsten et al. [7] (no waiting in queue, core can
be empty)

Critical-level pooling — Schlicher et al. [19] (no waiting in queue, core
is nonemptya)

Optimal pooling This paper (waiting in queue, core is nonempty) —
Karsten et al. [8] (waiting in queue, core can be empty)Not applicable

(no spare parts)
Anily and Haviv [1] (waiting in queue, core is

nonempty) Timmer and Scheinhardt [23] (waiting in queue, core
is nonempty)

Anily and Haviv [3] (waiting and no waiting in queue,
core is nonempty)

aThis result holds for a restricted domain only.
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Let Ω be the set of all policies and J∗(y) � infω∈Ω Jω(y) for all y ∈ Y . There exists a class of MDPs for which there
exists a constant J∗ such that J∗ � J∗(y) for all y ∈ Y . In that case, J∗ is defined as the minimal long-run average
costs per time epoch, and policy ω ∈ Ω is optimal if Jω(y) � J∗ for all y ∈ Y . A policy is stationary if there exists an f
such that ωt � f for all t ∈ T. We denote such (stationary) policy by f � ( f (y))y∈Y .

For an MDP, the value function Vt(y) for all y ∈ Y and all t ∈ T is defined by

Vt+1(y) � min
a∈A (y)

C(y, a) + ∑
y′∈Y

p y′|y, a( ) · Vt y′( ){ }
, (1)

with V0(y) � 0 for all y ∈ Y .
We next present a result, which states that, under a specific condition, the minimal long-run average costs

per time epoch exist, are attained under a stationary policy, and moreover, coincide with the limit of the value
function divided by the number of time epochs when time goes to infinity. In the condition, one refers to
irreducible Markov chains. A Markov chain on Y , which is induced under a given policy, is said to be ir-
reducible if, for all states y ∈ Y , it holds that y can be reached from each state y′ ∈ Y . The result, which is an
application of the result of Sennott [21, proposition 4.3] to the class of finite-state spaces, is presented below.

Theorem1. Let (T,Y ,A ,C, p) be anMDPwith finite-state space. If there exists a stationary policy f inducing an irreducible
Markov chain on Y and satisfying Jf (y) < ∞ for all y ∈ Y , then

J∗ � lim
t→∞

Vt(y)
t

for all y ∈ Y , (2)

and moreover, there exists an optimal stationary policy.

See the appendix for the proof.

3. Model Description
In this section, we introduce spare parts situations and define the associated games, called stratified pooling
games. In addition, we discuss that the underlying spare parts situation can be described by a Markov decision
process and the optimal pooling policy can be described as a stationary policy in this Markov decision process.

3.1. Spare Parts Situations
We consider an environment with a finite set N ⊆ N of service providers that are located geographically close
together, and each keeps spare parts in stock to prevent costly downtime of their high-tech machines. We limit
ourselves to one critical component (that is, one stock-keeping unit), which is subject to failures. For each
service provider i ∈ N, it holds that a failure of a high-tech machine immediately leads to a demand for a spare
part. This occurs according to a Poisson process with rate λi ∈ R+. We assume that each service provider i ∈ N
starts with Ii ∈ N ∪ {0} spare part(s) in stock initially. If a spare part is on hand when demand occurs, this
demand is always satisfied, and the failed part is sent to the repair shop of service provider i, which repairs
such parts one by one (like in Anily and Haviv [1]). Repair times of these parts are assumed to be independent
and identically distributed according to an exponential distribution with mean μ−1

i ∈ R+. If no spare part is
available when demand occurs, service provider i incurs a downtime cost di ∈ R+, and after an instantaneous
repair, the failed component is restored into the system as new.1 Finally, each service provider i ∈ N is in-
terested in its long-run average costs per time unit. To analyze this setting, we define a spare parts situation
as a tuple (N, I, d, λ, μ) with N, I � (Ii)i∈N , d � (di)i∈N , λ � (λi)i∈N , and μ � (μi)i∈N as defined above. In short, we
use θ to refer to a spare parts situation and Θ for the set of spare parts situations.

3.2. Stratified Pooling Games
Consider spare parts situation θ � (N, I, d, λ, μ) and coalition S ⊆ N with S �� Ø. The players in coalition S can
collaborate by pooling their inventories, demand streams, and repair rates (of which the last two are in line
with Anily and Haviv [1]) into a joint system with initial inventory level IS � ∑i∈S Ii, (heterogeneous) demand
rate λS � ∑i∈S λi, and a single repair shop, in which components are repaired one by one with a repair rate
μS � ∑i∈S μi. In this joint system, each failed component is sent to the repair shop immediately. Moreover, for
each incoming demand, the players face an accept or reject decision problem, which determines whether
demand is satisfied from the joint spare parts pool or not. Whenever a demand is rejected (and therefore, the
spare part is not satisfied from the joint spare parts pool), a player-specific downtime cost is incurred, and
after an instantaneous repair, the failed component is restored into the system as new. We assume that the
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policy of accepting or rejecting demand is such that the long-run average (downtime) costs per time unit are
minimized. It follows, based on a classical result of Ha [6], that this policy can be described in terms of a
critical-level policy.2 A critical-level policy is characterized as follows. According to the different downtime
costs, demand of a certain player is accepted if and only if the (total) inventory level (of the joint spare parts pool) is
above a certain critical level only. In this way, some spare parts are reserved for the more critical players: for example,
for players with relatively high downtime costs. So, in fact, there is some kind of stratification that determines when
players are allowed to make use of the joint spare parts pool. For that reason, we refer to this optimal form of pooling
by stratified pooling. We denote the minimal long-run average (downtime) costs per time unit for coalition S ⊆ N
by cθ(S) and set cθ(Ø) � 0. The associated game (N, cθ) will be called a stratified pooling game.

Example 1. Let θ ∈ Θ be a spare parts situation with N � {1, 2, 3}, I � (1, 1, 1), d � (3, 2, 1), λ � (1, 1, 1), and
μ � (12 , 12 , 12). For the grand coalition, the optimal critical-level policy is of the form where player 1 can satisfy
demand as long as the inventory level is at least 1, player 2 can satisfy demand as long as the inventory level is at
least 2, and player 3 can satisfy demand as long as the inventory level is at least 3. According to this optimal policy,
one can construct a corresponding Markov chain (see Figure 1).

Based on this Markov chain, it is easy to determine the steady-state probabilities of state 0 (1667), state 1 (2467),
state 2 (1867), and state 3 ( 967). According to these steady-state probabilities, one can determine the minimal long-
run average costs per time unit as follows:

cθ(N) � 16
67

· λ1 · d1 + λ2 · d2 + λ3 · d3( ) + 24
67

· λ2 · d2 + λ3 · d3( ) + 18
67

· λ3 · d3( ) � 2
52
67

.

Similarly, one can determine the costs of the other coalitions (see Table 2 for these values). Note that x �
(1 52

67 , 1, 0) ∈ C (N, cθ) (that is, the core of game (N, cθ) is nonempty).

Remark 1. Recall that our aim is to show core nonemptiness for stratified pooling games. This result is no longer
guaranteed whenever coalitions would (naively) apply a (nonoptimal) full-pooling policy. For instance, consider
θ ∈ Θ with N � {1, 2}, I � (1, 1), d � (1, 4), λ � (5, 1), and μ � (1, 1). Under full pooling, we would have cθ({1}) +
cθ({2}) � 4 1

6 + 2 < 6 3
13 � cθ({1, 2}) (that is, the core is empty). However, if an optimal policy is applied, which

dictates that player 1 can satisfy demand if the inventory level is exactly 2 and player 2 can satisfy demand as long
as the inventory level is at least 1, we have cθ({1, 2}) � 5 2

11, and therefore, the core is nonempty again.

Remark 2. Stratified pooling games are not concave in general: that is, there exists a player for which his marginal
(cost) contribution to a coalition is less than his marginal (cost) contribution to a larger coalition. For instance, let
θ ∈ Θ be a spare parts situation with N � {1, 2, 3}, I � (1, 0, 0), d � (1, 0, 0), λ � (1, 0, 0), and μ � (0, 1, 1). Then, for
player 2, we have cθ({1, 2}) − cθ({1}) � 1

2 − 1 � − 1
2 < − 1

6 � 1
3 − 1

2 � cθ({1, 2, 3}) − cθ({1, 3}).
3.3. MDP Formulation
In line with Ha [6], the (accept or reject demand) decision problem per coalition can be considered as a
(discrete time) MDP as well. This is allowed, because the decision problem per coalition can be recognized as a
semi-Markov decision process, which can be converted to an equivalent MDP by applying uniformization
(Lippman [13]). For that, we add fictitious transitions of a state to itself to ensure that the total rate out of a
state is equal for all states, the so-called uniformization rate. Then, we consider the embedded discrete time
MDP by looking at the system only at transition instants, which occur according to a Poisson process, with as
rate the uniformization rate. This modeling technique turns out to be very useful. Let θ ∈ Θ and S ⊆ N with
S �� Ø. In what follows, we present this corresponding MDP.

3.3.1. State and Action Spaces. We define the state space to be Y S � {0, 1, . . . , IS}, with y ∈ Y S representing the
number of spare parts in stock of coalition S and the action space to be A S(y) � {A S

i (y)}i∈S with A S
i (y) � {0, 1}

for all i ∈ S and all y > 0 and A S
i (y) � {0} otherwise. In state y ∈ Y S, action 1 corresponds with the acceptance

of a demand at a player, whereas action 0 corresponds with the rejection of such a demand.

Figure 1. Underlying Markov chain for grand coalition.
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3.3.2. Costs and Transition Probabilities. Let γ � ∑i∈N[λi + μi]. We will use γ as the uniformization rate, which
is independent of S. In addition, let λ∗

i � λi/γ and μ∗
i � μi/γ for all i ∈ N. Now, CS(y, a) denotes the expected

costs collected over a single (uniformized) time epoch given that the system begins the period in state y ∈ Y S

and action a � (ai)i∈S ∈ A S(y) is taken. For our situation, we have

CS(y, a) �∑
i∈S

λ∗
i · 1 − ai( ) · di for all y ∈ Y S and all a ∈ A S(y).

In addition, let pS(y′|y, a) denote the one-stage transition probability from state y ∈ Y S to y′ ∈ Y S under action
a � (ai)i∈S ∈ A S(y). We have

pS y′|y, a( ) �

∑
i∈S

λ∗
i · ai if y′ � y − 1, y > 0∑

i∈S
μ∗
i if y′ � y + 1, y < IS

1 −∑
i∈S

λ∗
i · ai + μ∗

i

[ ]
if y′ � y < IS

1 −∑
i∈S

λ∗
i · ai
[ ]

if y′ � y � IS

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
for all y ∈ Y S and all a ∈ A S(y).

3.3.3. Value Function and Equivalence. Now, we present the value function in a form suitable for this article.
Recall that the proofs of the lemmas are relegated to the appendix.

Lemma 1. Let θ ∈ Θ and S ⊆ N. Then, for all y ∈ Y S and all t ∈ N ∪ {0}, it holds that

VS
t+1(y) �

∑
i∈S

λ∗
i min
q∈{0,min{y,1}}

VS
t (y − q) + (1 − q)di{ } + μ∗

iV
S
t min y + 1, IS

{ }( )[ ]
+ 1 −∑

i∈S
λ∗
i + μ∗

i

[ ]( )
· VS

t (y)

with VS
0 (y) � 0 for all y ∈ Y S.

Note that the result of Lemma 1 follows by some rewriting of the value function (as represented in (1)), and
using that decision, a ∈ A S(y) can be decomposed into decisions per player. The formulation of the value
function in Lemma 1 can be interpreted in the following way. With probability λ∗

i , there is a demand arrival,
and except for the state with no spare parts in stock, there is a possibility to (i) accept demand (q � 1) or (ii)
reject demand (q � 0) and incur related costs di. Based on the first decision (q � 1), there will be a transition to
the state with one spare part less in stock, and based on the second decision (q � 0), there will be a transition
back to the same state. With probability μ∗

i , there is, except for the state with no outstanding repair orders, a
repair completion, which leads to a transition to the state with one spare part more in stock. With probability
1 −∑i∈S(λ∗

i + μ∗
i )(≥ 0), there is a dummy transition back to the same state, ensuring that the probabilities sum to 1.

Example 2. Consider the situation of Example 1. Observe that γ � 4 1
2, λ

∗
i � 2

9 for all i ∈ N and μ∗
i � 1

9 for all i ∈ N.
For instance, for coalition M � {1, 2} with I{1,2} � 2, the value function for all t ∈ N ∪ {0} is given by

V{1,2}
t+1 (0) �∑2

i�1

2
9

V{1,2}
t (0) + di

( )
+ 1
9
V{1,2}

t (1)
( )

+ 1
3
V{1,2}

t (0)

V{1,2}
t+1 (1) �∑2

i�1

2
9
min
q∈{0,1}

V{1,2}
t (1 − q) + (1 − q)di

{ }
+ 1
9
V{1,2}

t (2)
( )

+ 1
3
V{1,2}

t (1)

V{1,2}
t+1 (2) �∑2

i�1

2
9
min
q∈{0,1}

V{1,2}
t (2 − q) + (1 − q)di

{ }
+ 1
9
V{1,2}

t (2)
( )

+ 1
3
V{1,2}

t (2).

Table 2. Corresponding costs per coalition.

M Ø {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cθ(M) 0 2 1 1

3
2
3 2 4

5
2 1 3

5 2 52
67
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Note that, for zero spare parts in stock, it is not possible to accept demand and for two spare parts in stock, a
possible replenishment has no effect on the inventory level.

Finally, we define gS as the minimal long-run average costs per time epoch of the MDP. Now, we show that
there is a direct relation between gS and the original minimal long-run average costs per time unit of coalition S.

Lemma 2. Let θ ∈ Θ and S ⊆ N with S �� Ø. Then,

cθ(S) � γ · gS � γ · lim
t→∞

VS
t (y)
t

for all y ∈ Y S.

Example 3. Consider the situation of Example 2. For coalition M � {1, 2}, it holds that limt→∞ V{1,2}
t (0)/t � 28

45. This
value can be interpreted as the minimal long-run average costs per time epoch of the corresponding MDP.
Multiplying this value with the uniformization rate γ(� 4 1

2) yields 126
45 (� 2 4

5 � cθ({1, 2})), which can be recognized as
the minimal long-run average costs per time unit of coalition M.

4. Core Nonemptiness of Stratified Pooling Games
In the remainder of this article, we focus on core nonemptiness for stratified pooling games. In the literature,
there exists a well-known sufficient and necessary condition for core nonemptiness from Bondareva [4] and
Shapley [22]. They formulate this (sufficient and necessary) condition in terms of balanced maps. In order to
describe this condition, we need to introduce some definitions. Let N ⊆ N be a finite player set. We call a map
κ : 2N\{Ø} → [0, 1] a balanced map for N if∑

S∈2N : i∈S
κS � 1 for all i ∈ N.

A collection B ⊆ 2N\{Ø} is called balanced if there exists a balanced map κ for which κS > 0 for all S ∈ B and
κS � 0 otherwise. Moreover, a collection B ⊆ 2N\{Ø} is called minimal balanced if there exists no proper
subcollection of B that is balanced as well. An advantage of minimal balanced collections is that, for every
minimal balanced collection B ⊆ 2N\{Ø}, there exists exactly one associated balanced map κ (Peleg and
Sudhölter [17]). For this balanced map, it holds that κS ∈ Q for all S ∈ B (Norde and Reijnierse [15]). A game
(N, c) is called balanced if, for every minimal balanced collection B ⊆ 2N\{Ø} with associated balanced map κ,
it holds that ∑

S∈B
κS · c(S) ≥ c(N).

Now, we are able to present a sufficient and necessary condition for core nonemptiness from Bondareva [4]
and Shapley [22].

Theorem 2. A game (N, c) is balanced if and only if C (N, c) �� Ø.

Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. We define α ∈ N as the smallest integer for which
κS · α ∈ N for all S ∈ B and use bS � κS · α for all S ∈ B as a shorthand notation. Note that, for these new
definitions, we suppress the dependency on B of α, bS, and κS. Therefore, in order to show balancedness for
our stratified pooling game (N, cθ), it suffices to check if, for each B ⊆ 2N\{Ø}, it holds that∑

S∈B
bS · cθ(S) ≥ α · cθ(N). (3)

Remark 3. For each player i ∈ N, it holds that
∑

S∈B:i∈S bS � α for all i ∈ N. This relationship will be used frequently
throughout this work.

In the remainder of this section, we prove balancedness for our game by showing that (3) holds for each
minimal balanced collection. This proof consists of several steps, and to facilitate understanding of the steps,
we first informally summarize them.

0. Definition of an MDP for each coalition S such that cθ(S) � γ · limt→∞ VS
t (y)/t, where VS is the value

function corresponding to the MDP (see Section 3.3).
1. Copy of each coalition S to obtain labeled coalitions (S, k) for k ∈ {1, . . . , bS} and associated value function

VS,k. Express the left-hand size of (3) in terms of VS,k.
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2. Combination of the value functions VS,k for all labeled coalitions (S, k) into a single value function VB .
The combination of this new value function is semi-Cartesian: each individual value function VS,k is retained in
VB along with all of its dynamics, whereas the transitions (due to demand arrivals or repair completions) are
coupled across the individual value functions.

3. Relaxation of the possible transition actions in VB to obtain V̂B. This latter value function corresponds to
a situation where demand of a labeled coalition can be satisfied using inventory of any labeled coalition and
where a repair completion of a labeled coalition can be used to increase the inventory of any labeled coalition.

4. Anonymization of the state space belonging to V̂B to obtain an MDP that only keeps track of the total
inventory of all labeled coalitions together, with associated value function Vα. In this MDP, demands arrive in
batches of size α, and each repair completion simultaneously returns (at most) α parts to inventory.

5. Uncopy of value function Vα into α times the value function VN , which is the value function of the grand
coalition.

We next discuss steps 1–5 in detail and present a conclusion, which proves (3).

4.1. Copy
For each minimal balanced collection B ⊆ 2N\{Ø}, we introduce another set L that contains for each S ∈ B
exactly bS-labeled copies of coalition S.

Definition 1. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, we define

L �
{
(S, k) | S ∈ B, k ∈ 1, 2, . . . , bS{ }

}
.

Example 4. Let θ ∈ Θwith |N| � 4 andB � {{1}, {2, 3}, {2, 4}, {3, 4}} be a minimal balanced collection with unique
weights κ{1} � 1, κ{2,3} � κ{2,4} � κ{3,4} � 1

2. Hence, α � 2, and therefore, L � {({1}, 1), ({1}, 2), ({2, 3}, 1), ({2, 4}, 1),
({3, 4}, 1)}.

The labeled copies will be called labeled coalitions. For each labeled coalition (S, k) ∈ L , we denote the value
function by VS,k and the initial inventory level by IS,k. In addition, we rewrite the labeled coalitional values
(corresponding to a minimal balanced collection) as stated in Lemma 2 (that is, as limits of value functions).

Lemma 3. For every θ ∈ Θ, it holds for any minimal balanced collection B ⊆ 2N\{Ø} that

∑
S∈B

bS · cθ(S) � γ · lim
t→∞

1
t
·∑
S∈B

∑bS
k�1

VS,k
t IS,k
( )

.

4.2. Combination
We show that, for any minimal balanced collection B ⊆ 2N\{Ø}, we can construct a combined value function (of
some unspecified MDP) with a state space that keeps track of the inventory level of every labeled coalition
(S, k) ∈ L , with an action space that consists of all possible actions per labeled coalition (S, k) ∈ L given its
inventory level, and for which the related costs coincide with

∑
S∈B
∑bS

k�1 V
S,k
t (IS,k) for all t ∈ N ∪ {0}. In order to do

so, we first introduce a new state space.

Definition 2. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, we define

Y B � rz( )z∈L
⃒⃒
rz ∈ 0, 1, . . . , Iz{ } ∀z(� (S, k)) ∈ L

{ }
.

Second, we will introduce a new action space.

Definition 3. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all r ∈ Y B and all i ∈ N, we
define

AB
i,−(r) � lz( )z∈L

lz ∈ 0,min 1, rz{ }{ } ∀z(� (S, k)) ∈ L : i ∈ S

lz � 0 ∀z(� (S, k)) ∈ L : i /∈ S

⃒⃒⃒⃒{ }
AB

i,+(r) � lz( )z∈L
lz � min 1, Iz − rz{ } ∀z(� (S, k)) ∈ L : i ∈ S

lz � 0 ∀z(� (S, k)) ∈ L : i /∈ S

⃒⃒⃒⃒{ }
.

Subsequently, we introduce the new value function. We use that || · ||1 is the L1 norm.
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Definition 4. Let θ ∈ Θ andB ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all r ∈ Y B and all t ∈ N ∪ {0},
we define the value function as

VB
t+1(r) �

∑
i∈N

λ∗
i min
l∈AB

i,−(r)

{
α − ||l||1( )di + VB

t (r − l)
}
+ μ∗

i min
l∈AB

i,+(r)

{
VB

t (r + l)
}[ ]

with VB
0 (r) � 0 for all r ∈ Y B.

The new value function VB can be interpreted in the following way. With probability λ∗
i there is a demand

for all labeled coalitions (S, k) ∈ L for which i ∈ S. Because in total, there are α labeled coalitions (S, k) ∈ L for
which i ∈ S (see Remark 3), there is thus a total demand of α. Therefore, each arrival (of demand) comes in
(batch) size α. Each labeled coalition (S, k) has, except for the case with rS,k � 0, the possibility to accept the
single demand (lS,k � 1) and always the possibility to reject the single demand (lS,k � 0). For all (other) labeled
coalitions (S, k) ∈ L for which i �∈ S, it holds that there is no demand arrival, and therefore, lS,k � 0. Based on
these decisions, total costs equal (α − ||l||1)di, and one transits to r − l. With probability μ∗

i , there is a repair
completion for each labeled coalition (S, k) ∈ L for which i ∈ S. For each labeled coalition (S, k) ∈ L with i ∈ S
and rS,k < IS,k, one accepts the spare part (lz � 1). However, for each labeled coalition (S, k) ∈ L with i ∈ S and
rS,k � IS,k, the spare part is rejected (lS,k � 0) as inventory level IS,k has been reached.3 For all (other) labeled
coalitions (S, k) ∈ L for which i �∈ S, it holds that there is no repair completion, and therefore, lS,k � 0. Based on
the decisions made, one transits to state r + l.

Example 5. Consider the situation of Example 3 and B � {{1, 2}, {1, 3}, {2, 3}}. Observe that B is a minimal
balanced collection with κ({1, 2}) � κ({1, 3}) � κ({2, 3}) � 1

2. Therefore, α � 2 and L � {({1, 2}, 1), ({1, 3}, 1),
({2, 3}, 1)}. Then, we have a state space

Y B � {0, 1, 2}L .

Moreover, for r � (r({1,2},1), r({1,3},1), r({2,3},1)) � (1, 2, 0) ∈ Y B, we have an action space

AB
1,−((1, 2, 0)) � {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}.

Note that the elements in this action space represent the possible actions that can be taken by all possible
labeled coalitions ({1, 2}, 1), ({1, 3}, 1), and ({2, 3}, 1) whenever there is a demand for labeled coalition ({1, 2}, 1)
and ({1, 3}, 1). Because both labeled coalitions have at least one spare part in stock, they can both accept this
demand, one of them can accept, or both can reject. Similarly, for state space (0, 1, 1) ∈ Y B, we have

AB
1,− 0, 1, 1( )( ) � 0, 0, 0( ), 0, 1, 0( ){ }.

The action space illustrates that the spare part of labeled coalition ({2, 3}, 1) cannot be used by the labeled
coalitions ({1, 2}, 1) and ({1, 3}, 1).

Now, we are able to show for all time moments the equivalence between the costs of the new value function
and

∑
S∈B
∑bS

k�1 V
S,k
t (IS,k).

Lemma 4. Let θ ∈ Θ andB ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all r ∈ Y B and all t ∈ N+ ∪ {0}, it holds
that

∑
S∈B

∑bS
k�1

VS,k
t rS,k
( ) � VB

t (r).

4.3. Relaxation
Note that the action space of VB is restricted. For instance, on a demand arrival of player i ∈ S, it is not possible
to accept a single demand for labeled coalition (S, k) ∈ L for which i ∈ S and rS,k � 0, whereas other labeled
coalitions (S, k) ∈ L for which i �∈ S may still be able to accept them. A similar reasoning holds for repair
completion. It is not possible to accept a spare part for any labeled coalition (S, k) ∈ L with i ∈ S for which
rS,k � IS,k, whereas other not fully replenished labeled coalitions may be able to accept. We introduce a value
function that incorporates these extended possibilities. Therefore, we introduce a value function (related to
some unspecified MDP) that coincides with the value function of Definition 4, except for a relaxed action space.
In order to do so, we first need to introduce this relaxed action space.
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Definition 5. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all r ∈ Y B and all i ∈ N, we
define

Â B
i,−(r) � lz( )z∈L lz ∈ N ∪ {0} ∀z ∈ L ,

∑
z∈L

lz ≤ α, r − l ∈ Y B

⃒⃒⃒⃒
⃒

{ }

Â B
i,+(r) � lz( )z∈L lz ∈ N ∪ {0} ∀z ∈ L ,

∑
z∈L

lz ≤ α, r + l ∈ Y B

⃒⃒⃒⃒
⃒

{ }
.

The following result is a direct consequence of relaxing the action space. The proof is straightforward and for
this reason, omitted (rather than relegated to the appendix).

Lemma 5. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all r ∈ Y B and all i ∈ N, it holds that
AB

i,−(r) ⊆ Â B
i,−(r) and AB

i,+(r) ⊆ Â B
i,+(r).

Example 6. Consider the situation and minimal balanced collection of Example 5. Then,

Â B
1,−((1, 2, 0)) � 0, 0, 0( ), 1, 0, 0( ), 0, 1, 0( ), 1, 1, 0( ), 0, 2, 0( ){ }.

Note that, in comparison with action space AB
1,−((1, 2, 0)), we now have one additional action, namely (0, 2, 0),

which represents that demand for labeled coalitions ({1, 2}, 1) and ({1, 3}, 1) is taken from the stock of labeled
coalition ({1, 3}, 1) only. Similarly, we have

Â B
1,−((0, 1, 1)) � (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1){ }.

Note that, in comparison with action space AB
1,−((0, 1, 1)), we now have two additional actions.

Now, we present the value function with this relaxed action space.

Definition 6. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. For all r ∈ Y B and all t ∈ N ∪ {0}, we
define

V̂B
t+1(r) �

∑
i∈N

λ∗
i min
l∈Â B

1,−(r)
α − ||l||1( )di + V̂B

t (r − l)
{ }

+ μ∗
i min
l∈Â B

i,+(r)
V̂B

t (r + l)
{ }[ ]

with V̂B
0 (r) � 0 for all r ∈ Y B.

Incorporating a relaxed action space in the new value function leads to related costs that are smaller than or
equal to the original costs of the value function. The proof is straightforward (by induction on t) and therefore,
omitted (rather than relegated to the appendix).

Lemma 6. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. For all r ∈ Y B and all t ∈ N ∪ {0}, it holds that
VB

t (r) ≥ V̂B
t (r).

4.4. Anonymization
Note that the costs of V̂B

t are the same for all states r, r′ ∈ Y B for which ||r||1 � ||r′||1. As a consequence, the
decisions made in these states exhibit a similar equivalence. This implies that, for every minimal balanced
collection, one can construct another value function with equal costs, in which the state space depends on the
total inventory of all labeled coalitions together only and the action space depends on the total number of
accepted (or rejected) demands for spare parts on demand arrival or repair completion only. Now, we in-
troduce this value function (which is related to some unspecified MDP for which the belongings and decisions
of the labeled coalitions are anonymized) and show cost equivalence with the one of Definition 6.

Definition 7. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. Then, for all j ∈ {0, 1, . . . , α · IN} and all
t ∈ N ∪ {0}, we define

Vα
t+1( j) �

∑
i∈N

λ∗
i min
q∈{0,..,min{α,j}}

(α − q)di + Vα
t ( j − q){ } + μ∗

i min
q∈{0,..,min{α,α·IN−j}}

Vα
t ( j + q)

[ ]
with Vα

0 ( j) � 0 for all j ∈ {0, 1, . . . , α · IN}.
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Lemma 7. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. For all r ∈ Y B, it holds that

V̂B
t (r) � Vα

t ||r||1( ) for all t ∈ N ∪ {0}.
4.5. Uncopy
Now, we identify some properties of Vα.

Lemma 8. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. For all t ∈ N ∪ {0}, it holds that
i. Vα

t (j) ≥ Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1},

ii. Vα
t (j) + Vα

t (j + 2) ≥ 2 · Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 2}, and

iii. Vα
t (k + j) + Vα

t (k + j + 2) � 2 · Vα
t (k + j + 1) for all j ∈ {0, 1, . . . , α − 2}

and all k ∈ {0, α, 2α, . . . , (IN − 1)α}.
The first property states that the costs decrease in the total number of spare parts in stock. As a direct

consequence, it is optimal for the repair completion part of the value function to choose an action that in-
creases the state most. The second property states that the marginal change in costs is increasing in the total
number of spare parts in stock (that is, Vα is convex). By exploiting the first two properties, one can show that
the third property holds true. The third property implies that it is optimal for all states that are multiples of α
to choose the action that accepts all demand (that is, α spare parts) or nothing on demand arrival. From this,
we can conclude that the states of Vα that are multiples of α depend on the states of Vα that are multiples of α
only. This allows us to uncopy value function Vα into α − times value function VN .

Lemma 9. Let θ ∈ Θ andB ⊆ 2N\{Ø} be a minimal balanced collection. For all j ∈ {0, α, . . . , IN · α} and all t ∈ N ∪ {0}, it
holds that

Vα
t (j) � α · VN

t
j
α

( )
.

4.6. Conclusion
Now, we integrate the previous steps to demonstrate validity of (3).

Theorem 3. Stratified pooling games are balanced.

Proof. Let θ ∈ Θ and (N, cθ) be the associated stratified pooling game and B ⊆ 2N\{Ø} be a minimal balanced
collection. In addition, let r̂ � (IS,k)(S,k)∈L . Then, observe that

∑
S∈B

bS · cθ(S) � γ · lim
t→∞

1
t

∑
S∈B

∑bS
k�1

VS,k
t IS,k
( ) ≥ γ · lim

t→∞
V̂B

t r̂( )
t

� γ · lim
t→∞

Vα
t α · IN( )

t
� γ · lim

t→∞α · V
N
t IN( )
t

� α · cθ(N).

The first equality holds by Lemma 3. The inequality holds by Lemmas 4 and 6. The second equality holds by
Lemma 7 and the fact that

∑
(S,k)∈L IS,k � α · IN . The third equality holds by Lemma 9. The last equality holds

by taking α ∈ N+ outside the limit (which is allowed, because it is a constant) and subsequently applying
Lemma 2. Finally, inequality (3) is satisfied, and therefore, stratified pooling games are balanced. □

Based on Theorem 2, which states that a game has a nonempty core if and only if it is balanced, the next
result follows immediately.

Corollary 1. Stratified pooling games have a nonempty core.

Moreover, because every subgame of a stratified pooling game can be formulated as a (another) stratified
pooling game, all those games are balanced by Theorem 2, which constitutes so-called totally balancedness of
stratified pooling games.

Corollary 2. Stratified pooling games are totally balanced.

Finally, by Peleg and Sudhölter [17]), every totally balanced game is also subadditive: the costs of the union
of any two disjoint coalitions are smaller than or equal to the sum of the costs of these disjoint coalitions. This
leads to our final result.

Corollary 3. Stratified pooling games are subadditive.
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5. Conclusions
We studied an environment with several service providers that are located geographically close together.
These service providers keep spare parts in stock to protect for downtime of their high-tech machines and face
different downtime costs per stockout. Service providers can cooperate by forming a joint spare parts pool,
and we investigated the allocation of the joint costs to the individual service providers by studying an
associated cooperative game. In extant literature, the joint spare parts inventory is typically controlled by a
suboptimal full-pooling policy. This may lead to an empty core of the associated cooperative game. We
showed possible emptiness of the core under a full-pooling policy in our setting as well. The focus of the paper
was then on situations in which we allow service providers to apply an optimal policy. We formulated the
associated game, which we call a stratified pooling game, by defining each coalitional value in terms of the
minimal long-run average costs of an MDP. We showed that the core of stratified pooling games is always
nonempty by showing that our game is balanced. The proof is obtained by merging optimal pooling strategies
(of a balanced collection) of coalitions to a feasible optimal pooling strategy of the grand coalition in such a
way that the balancedness conditions of Bondareva [4] and Shapley [22] are satisfied. For that, we used that
our underlying spare parts situation can be described by an MDP and the optimal pooling policy can be
described as a stationary policy in this MDP. Our structured proof consists of five steps, which are, in
consecutive order, copy, combination, relaxation, anonymization, and uncopy. This five-step proof may be
more generally applicable for games where the underlying situation can be described by an MDP and the
related optimal strategy can be described as a policy in this MDP. All steps strongly depend on one another,
but we see the transition from step 3 to step 4 as a hinge. Steps 1–3 construct: copies of MDPs are defined,
combined, and relaxed. This construction may seem straightforward but will generally not be unambiguous,
especially regarding the impact of an event in different (combined) copies and the identification of actions in
the relaxation. Steps 4 and 5 analyze: the relaxed MDP is anonymized and uncopied. The construction
resulting from the first three steps needs to allow for this but actually doing so may still require significant
effort and creativity. We leave it to the reader to judge the relative importance of the steps and hence, allow
the reader to differently appreciate the construction that allows for the analysis on one hand and the executed
analysis of the construction on the other hand. We ourselves see the largest value in its combination.

Potential candidates for our five-step approach could be the aforementioned production facility pooling
situation (see Section 1), with the possibility of optimizing on inventory as well, or a pooled (finite-horizon)
inventory control system of various collaborating retailers with a single aligned reorder point and quantity.
Such a finite-horizon model would be analyzed via finite-horizon MDPs, which are in contrast with the
analysis in this paper. However, we do believe that many other elements of our analysis would continue to be
valid for such a finite-horizon model.

For further research, we believe that the following extensions are of interest. First, one can identify and
study (other) desirable properties of stratified pooling games: for example, like Anily and Haviv [2] study
homogeneity of degree p. Second, as another research direction, one can extend our model, in line with
Karsten et al. [7] and Schlicher et al. [19], by assuming that the joint supplier has multiple parallel servers
(instead of one single server in which production rates are combined). Third, another possible extension is the
one in which coalitions optimize the number of spare parts to stock rather than assuming that the inventory
per coalition is given. Under this extension, players face a tradeoff between holding costs and downtime costs
under an optimal pooling strategy (see Schlicher et al. [20]). Fourth, one can extend the model by assuming
that players are not located geographically close together but still want to collaborate (for example, via lateral
transshipments of spare parts), which comes at a cost.

Appendix.

Proof of Theorem 1. We show that the conditions of Sennott [21, proposition 4.3] reduce to the one as stated in Theorem 1.
Sennott [21, proposition 4.3] is stated as follows.

Let (T,Y ,A ,C, p) be an MDP. If (i) there exists a stationary policy f inducing an irreducible and positive recurrent
Markov chain on Y and satisfying Jf (y) < ∞ for all y ∈ Y and (ii) there exists an ε > 0 such that {y ∈ Y |∃a ∈ A (y) : C(y, a) <
Jf + ε} is finite, then

J∗ � lim
t→∞

Vt(y)
t

for all y ∈ Y ,

and moreover, there exists an optimal stationary policy.
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For an MDP with a finite-state space, it holds that every irreducible Markov chain is positive recurrent (Modica and
Poggiolini [14, theorem 5.71(ii)]). Moreover, it also follows that set {y ∈ Y |∃a ∈ A (y) : C(y, a) < Jf + ε} is finite, because Y is
finite. This implies that condition (i) reduces to the one in Theorem 1 (that is, without the positive recurrent Markov chain
requirement) and that condition (ii) becomes superfluous. □

Proof of Lemma 1. We distinguish between the case IS � 0 and IS > 0. In this proof, we use notation 0S, representing a 0 vector
(that is, a vector consisting of zeros only) in dimension S.

Case A.1. IS � 0.
Let y � 0 ∈ Y S and t ∈ N ∪ {0}. Then,

VS
t+1(y) � min

a∈A S(y)
CS(y, a) + ∑

y′∈Y S

p y′|y, a( ) · VS
t y′
( )⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

� CS y, 0S
( ) + ∑

y′∈Y S

p y′|y, 0S( ) · VS
t y′
( )

�∑
i∈S

λ∗
i · di + 1 · VS

t (y)

�∑
i∈S

λ∗
i · di +

∑
i∈S

λ∗
i + μ∗

i

[ ] + 1 −∑
i∈S

λ∗
i + μ∗

i

[ ]( )
· VS

t (y)

�∑
i∈S

λ∗
i · di + VS

t (y)
( ) + μ∗

iV
S
t (y)

[ ] + 1 −∑
i∈S

λ∗
i + μ∗

i

[ ]( )
· VS

t (y)

�∑
i∈S

λ∗
i min
q∈{0,min{y,1}}

VS
t (y − q) + (1 − q)di{ } + μ∗

iV
S
t min y + 1, IS

{ }( )[ ]
+ 1 −∑

i∈S
λ∗
i + μ∗

i

[ ]( )
· VS

t (y).

The first equality holds by definition. The second equality holds, because action a � 0S is the only allowed action. The
third equality holds by the definition of CS(y, a) and the fact that one can transit to the current state (y � 0) only. In the
fourth equality, we add zero. The fifth equality holds by some rewriting. The last equality holds as min{y, 1} � y � 0 and
min{y + 1, IS} � IS � y � 0 as well.

Case A.2. IS > 0.
We distinguish between the subcases y � 0, 0 < y < IS, and y � IS.

a. y � 0.
Let t ∈ N ∪ {0}. Then,

VS
t+1(y) � min

a∈A S(y)
CS(y, a) + ∑

y′∈Y S

p y′|y, a( ) · VS
t y′
( )⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

� CS y, 0S
( ) + ∑

y′∈Y S

p y′|y, 0S( ) · VS
t y′
( )

�∑
i∈S

λ∗
i · di + 1 −∑

i∈S
μ∗
i

( )
· VS

t (y) +
∑
i∈S

μ∗
i · VS

t (y + 1)

�∑
i∈S

λ∗
i · di +

∑
i∈S

λ∗
i +
∑
i∈N\S

λ∗
i +
∑
i∈N\S

μ∗
i

( )
· VS

t (y) +
∑
i∈S

μ∗
i · VS

t (y + 1)

�∑
i∈S

λ∗
i · di + VS

t (y)
( ) +∑

i∈S
μ∗
i · VS

t (y + 1) + ∑
i∈N\S

λ∗
i + μ∗

i

[ ] · VS
t (y)

�∑
i∈S

λ∗
i min
q∈{0,min{y,1}}

VS
t (y − q) + (1 − q)di{ } + μ∗

iV
S
t min y + 1, IS

{ }( )[ ]
+ 1 −∑

i∈S
λ∗
i + μ∗

i

[ ]( )
· VS

t (y).

The first equality holds by definition. The second equality holds, because action a � 0S is the only allowed action. In
the third equality, we use the definition of CS(y, a) and the fact that, with probability 1 −∑i∈S μ∗

i , we remain in
the same state and with probability

∑
i∈S μ∗

i , we transit to state y + 1. In the fourth equality, we use that 1 � ∑i∈N
[λ∗

i + μ∗
i ] � ∑i∈S λ∗

i +∑i∈N\S λ∗
i +∑i∈N μ∗

i . The fifth equality holds by some rewriting. The last equality holds as min{y, 1} �
y � 0 and min{y + 1, IS} � y + 1 � 1.

b. 0 < y < IS.
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Let y ∈ Y S\{0, IS} and t ∈ N ∪ {0}. Then,

VS
t+1(y) � min

a∈A S(y)
CS(y, a) + ∑

y′∈Y S

p y′|y, a( ) · VS
t y′
( )⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

� min
a∈A S(y)

∑
i∈S

λ∗
i 1 − ai( )di +

∑
i∈M

λ∗
i aiV

S
t (y − 1) + 1 −∑

i∈S
λ∗
i ai + μ∗

i

[ ]( )
VS

t (y)
{

+∑
i∈M

μ∗
i V

S
t (y + 1)

}

� min
a∈A S(y)

∑
i∈S

λ∗
i 1 − ai( ) di + VS

t (y)
( ) + aiVS

t (y − 1)( ) + μ∗
iV

S
t (y + 1)[ ]{

+ 1 −∑
i∈S

λ∗
i + μ∗

i

[ ]( )
VS

t (y)
}

�∑
i∈S

λ∗
i min
q∈{0,min{y,1}}

VS
t (y − q) + (1 − q)di{ } + μ∗

iV
S
t min y + 1, IS

{ }( )[ ]
+ 1 −∑

i∈S
λ∗
i + μ∗

i

[ ]( )
· VS

t (y).

The first equality holds by definition. In the second equality, we use the definition of CS(y, a), the fact that, with probability∑
i∈S λ∗

i ai, we transit to state y − 1; with probability 1 −∑i∈S[λ∗
i ai + μ∗

i ], we remain in the same state; and with probability∑
i∈S μ∗

i , we transit to state y + 1. In the third equality, we did some rewriting and used ai � ai − 1 + 1. The last equality
holds, because min{y, 1} � 1, min{y + 1, IS} � y + 1, and a minimum of a sum of independent terms equals the sum of all of
these individual terms evaluated at their minimum.

c. y � IS.
Let y � IS ∈ Y S and t ∈ N ∪ {0}. Then,

VS
t+1(y) � min

a∈A S(y)
CS(y, a) + ∑

y′∈Y S

p y′|y, a( ) · VS
t y′
( )⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

� min
a∈A S(y)

∑
i∈S

λ∗
i 1 − ai( )di +

∑
i∈S

λ∗
i aiV

S
t (y − 1) + 1 −∑

i∈S
λ∗
i ai

( )
VS

t (y)
{ }

� min
a∈A S(y)

∑
i∈S

λ∗
i 1 − ai( )di +

∑
i∈S

λ∗
i aiV

S
t (y − 1) + ∑

i∈S
λ∗
i 1 − ai( ) + μ∗

i

[ ]({
+∑

i∈N\S
λ∗
i + μ∗

i

[ ])
VS

t (y)
}

� min
a∈A S(y)

∑
i∈S

λ∗
i 1 − ai( ) di + VS

t (y)
( ) + aiVS

t (y − 1) + μ∗
iV

S
t (y)

[ ]{
+ ∑

i∈N\S
λ∗
i + μ∗

i

[ ]
VS

t (y)
}

�∑
i∈S

λ∗
i min
q∈{0,min{y,1}}

VS
t (y − q) + (1 − q)di{ } + μ∗

iV
S
t min y + 1, IS

{ }( )[ ]
+ 1 −∑

i∈S
λ∗
i + μ∗

i

[ ]( )
· VS

t (y).

The first equality holds by definition. In the second equality, we use the definition of CS(y, a), the fact that, with probability∑
i∈S λ∗

i ai, we transit to state y − 1 and with probability 1 −∑i∈S λ∗
i ai, we remain in the same state. In the third equality, we

use that 1 � ∑i∈N[λ∗
i + μ∗

i ]. The fourth equality holds by some rewriting. The last equality holds, because min{y, 1} � 1,
min{y + 1, IS} � IS, and a minimum of a sum of independent terms equals the sum of all these individual terms evaluated at
their minimum. This concludes the proof. □

Proof of Lemma 2. The first equality holds by uniformization, which is allowed if transition rates are bounded and the MDP is
unichain (see Puterman [18, p. 568]). Notice that interarrival times of demands as well as repair times are exponentially
distributed with rates that are bounded from above. In addition, for every stationary policy, the state where the inventory level
equals the base stock level is accessible from every state, and therefore, the transition probability matrix consists of a single
recurrent class. Hence, the MDP is unichain. With respect to the second equality, observe that state space Y S and action space
A S of the MDP are finite. In addition, under stationary policy f � ( fi(y))y∈Y S ,i∈S with fi(y) � 1 for all i ∈ S and all y > 0 and
fi(0) � 0 for all i ∈ S, every state y ∈ Y S is accessible from any state y′ ∈ Y S after (possibly) some arrivals and some (one-by-one)
repair completions. Hence, the related Markov chain is irreducible. An irreducible Markov chain with finite-state space is
positive recurrent (Modica and Poggiolini [14]). Finally, observe that the long-run average costs per time epoch under policy f
are bounded (naturally) by

∑
i∈S λ∗

i · di, and as a result of Theorem 1, the second equality follows. This concludes the proof. □

Proof of Lemma 3. Let θ ∈ Θ and B ⊆ 2N\{Ø} be a minimal balanced collection. It holds that

∑
S∈B

bS · cθ(S) � γ ·∑
S∈B

∑bS
k�1

lim
t→∞

VS,k
t IS,k
( )
t

� γ · lim
t→∞

1
t
·∑
S∈B

∑bS
k�1

VS,k
t IS,k
( )

.

The first equality holds by exploiting all labeled coalitions, Lemma 2, and the fact that IS,k ∈ Y S,k for all (S, k) ∈ L . The last
equality holds, because all limits are well defined and all sums are finite. This concludes the proof. □
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Proof of Lemma 4. This proof is by induction. We use notation Y S,k(� {0, 1, . . . , IS,k}) to denote the state space of any labeled
coalition (S, k) ∈ L .

By definition of the value functions, VS,k
0 (y) � 0 for all y ∈ Y S,k, all S ∈ B, and all k ∈ {1, 2, . . . , bS}. Similarly, VB

0 (r) � 0 for all
r ∈ Y B as well. Hence,

∑
S∈B
∑bS

k�1 V
S,k
0 (rS,k) � VB

0 (r) for all r ∈ Y B . Let t ∈ N ∪ {0}, and assume that
∑

S∈B
∑bS

k�1 V
S,k
t (rS,k) � VB

t (r)
for all r ∈ Y B . Let r ∈ Y B. Now, observe that

∑
S∈B

∑bS
k�1

VS,k
t+1 rS,k
( )

�∑
S∈B

∑bS
k�1

∑
i∈S

λ∗
i min
q∈ 0,min 1,rS,k{ }{ } VS,k

t rS,k − q
( ) + (1 − q)di

{ }[(
+ μ∗

i V
S,k
t min rS,k + 1, IS,k

{ }( )] + 1 −∑
i∈S

λ∗
i + μ∗

i

[ ]( )
VS,k

t rS,k
( ))

�∑
S∈B

∑bS
k�1

∑
i∈S

λ∗
i min
q∈ 0,min 1,rS,k{ }{ } VS,k

t rS,k − q
( ) + (1 − q)di

{ }[(
+ μ∗

i V
S,k
t min rS,k + 1, IS,k

{ }( )] + ∑
i∈N\S

λ∗
iV

S,k
t rS,k
( ) + μ∗

i V
S,k
t rS,k
( )[ ])

�∑
i∈N

λ∗
i

∑
S∈B:i∈S

∑bS
k�1

min
q∈ 0,min rS,k ,1{ }{ } VS,k

t rS,k − q
( ) + (1 − q)di

{ }
+ ∑

S∈B:i/∈S

∑bS
k�1

VS,k
t rS,k
( )( )[

+ μ∗
i

∑
S∈B:i∈S

∑bS
k�1

VS,k
t min rS,k + 1, IS,k

{ }( ) + ∑
S∈B:i/∈S

∑bS
k�1

VS,k
t rS,k
( ))( ]

�∑
i∈N

λ∗
i · min

l∈AB
i,−(r)

∑
S∈B:i∈S

∑bS
k�1

VS,k
t rS,k − lS,k
( ) + ∑

S∈B:i/∈S

∑bS
k�1

VS,k
t rS,k
( ){([

+ α − ||l||1( )di
})

+ μ∗
i · min

l∈AB
i,+(r)

VB
t (r + l){ }( )]

�∑
i∈N

λ∗
i · min

l∈AB
i,−(r)

VB
t (r − l) + α − ||l||1( )di{ }( )

+ μ∗
i · min

l∈AB
i,+(r)

{
VB

t (r + l)
}( )[ ]

� VB
t+1(r).

The first equality holds by Lemma 1. The second equality holds, because 1 −∑i∈S[λ∗
i + μ∗

i ] � ∑i∈N[λ∗
i + μ∗

i ] −∑i∈S[λ∗
i + μ∗

i ] �∑
i∈N\S[λ∗

i + μ∗
i ]. The third equality holds by conditioning on λ∗

i and μ∗
i for all i ∈ N. The fourth equality holds, because the sum

of minima can be rewritten as one minimum, becauseAB
i,+ andAB

i,− are defined such that the decisions made for all minima fit,
and by the induction hypothesis. Please note that lS,k � 0 if i �∈ S. The fifth equality holds by the induction hypothesis. The
last equality holds by Definition 4. □

Proof of Lemma 7. This proof is by induction. By definition of the value functions, V̂B
0 (r) � 0 for all r ∈ R, and Vα

0 (||r||1) � 0
for all r ∈ R. Hence, V̂B

0 (r) � Vα
0 (||r||1) for all r ∈ R. Let t ∈ N ∪ {0}, and assume that V̂B

t (r) � Vα
t (||r||1) for all r ∈ R. Let r ∈ R.

Now, observe that

V̂B
t+1(r) �

∑
i∈N

λ∗
i min
l∈Â B

i,−(r)
α − ||l||1( )di + V̂B

t (r − l)
{ }

+∑
i∈N

μ∗
i min
l∈Â B

i,+(r)
V̂B

t (r + l)

�∑
i∈N

λ∗
i min
q∈ 0,1,...,min α,||r||1{ }{ }

min
l∈Â B

i,−(r):||l||1�q
(α − q)di + V̂B

t (r − l)
{ }{ }

+∑
i∈N

μ∗
i min
q∈ 0,1,...,min α,α·IN−||r||1{ }{ }

min
l∈Â B

i,+(r):||l||1�q
V̂B

t (r + l)
{ }

�∑
i∈N

λ∗
i min
q∈ 0,1,...,min α,||r||1{ }{ }

(α − q)di + Vα
t ||r||1 − q
( ){ } +∑

i∈N
μ∗
i min
q∈ 0,1,...,min α,α·IN−||r||1{ }{ }

Vα
t ||r||1 + q
( ){ }

� Vα
t+1 ||r||1( ).

The first equality holds by Definition 6. The second equality holds by rewriting the minimum as a two-step minimization. The
third equality holds by the induction hypothesis. The last equality holds by Definition 7. This concludes the proof. □

Proof of Lemma 8. This proof is by induction.
i. By definition of the value functions,Vα

0 (j) � 0 for all j ∈ {0, 1, . . . , α · IN}. Hence, Vα
0 (j) ≥ Vα

0 (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}.
Let t ∈ N ∪ {0}, and assume that Vα

t (j) ≥ Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}. Let j ∈ {0, 1, . . . , α · IN − 1}. Now, observe that

Vα
t+1(j) �

∑
i∈N

λ∗
i min
q∈{0,1,...,min{α,j}}

(α − q)di + Vα
t (j − q){ } +∑

i∈N
μ∗
i min
q∈ 0,1,...,min α,α·IN−j{ }{ } Vα

t (j + q){ }
≥∑

i∈N
λ∗
i min
q∈{0,1,...,min{α,j+1}}

(α − q)di + Vα
t (j + 1 − q){ } +∑

i∈N
μ∗
i min
q∈ 0,1,...,min α,α·IN−j{ }{ } Vα

t (j + q){ }
≥∑

i∈N
λ∗
i min
q∈{0,1,...,min{α,j+1}}

(α − q)di + Vα
t (j + 1 − q){ } +∑

i∈N
μ∗
iV

α
t min j + α + 1, α · IN{ }( )

≥∑
i∈N

λ∗
i min
q∈{0,1,...,min{α,j+1}}

(α − q)di + Vα
t (j + 1 − q){ } +∑

i∈N
μ∗
i min
q∈ 0,1,...,min α,α·IN−(j+1){ }{ } Vα

t (j + 1 + q){ }
.

� Vα
t+1(j + 1).
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The first inequality holds, because Vα
t (j − q) ≥ Vα

t (j + 1 − q) for all q ∈ {0, 1, . . . ,min{α, j}} (by the induction hypothesis) and
because adding a (possible) term to a set from which its minimum is selected will not increase the minimum. The second
inequality holds as minq∈{0,1,...,min{α,α·IN−j}}{Vα

t (j+ q)} �Vα
t (min{j+α,α · IN}) ≥Vα

t (min{j+ 1+α,α · IN}). Note that the inequal-
ities are a direct consequence of the induction hypothesis, namely Vα

t (j) ≥ Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 1}. The third

inequality holds, because adding (possible) terms to a set from which its minimum is selected will not increase the minimum.
ii. First, the value function will be rewritten. From Lemma 8(i), it follows for all j ∈ {0, 1, . . . , α · IN} and all t ∈ N ∪ {0} that

Vα
t+1(j) �

∑
i∈N

λ∗
i min
q∈{0,1,...,min{α,j}}

(α − q)di + Vα
t (j − q){ } +∑

i∈N
μ∗
i V

α
t min j + α, α · IN{ }( )

�∑
i∈N

λ∗
i min

q∈{0,1,...,min{α,j}}
(j − q)di + Vα

t (j − q){ } + (α − j)di
[ ]

+∑
i∈N

μ∗
i V

α
t min j + α, α · IN{ }( )

�∑
i∈N

λ∗
i min

q∈{max{0,j−α},...,j}
qdi + Vα

t (q)
{ } + (α − j)di

[ ]
+∑

i∈N
μ∗
i V

α
t min j + α, α · IN{ }( )

,

where the second equality holds as (a − q)di � (α − j)di + (j − q)di. The third equality holds by substituting j − q into a single
variable.

In addition, we define, for all j ∈ {0, 1, . . . , α · IN} and all t ∈ N ∪ {0},

Vα1
t ( j) �∑

i∈N
λ∗
i min

q∈{max{0,j−α},...,j}
qdi + Vα

t (q)
{ }[ ]

Vα2
t ( j) �∑

i∈N
μ∗
iV

α
t min j + α, α · IN{ }( )

Vα3
t ( j) �∑

i∈N
(α − j)di.

Note that Vα
t (j) � Vα1

t (j) + Vα2
t (j) + Vα3

t (j) for all j ∈ {0, 1, . . . , α · IN} and all t ∈ N ∪ {0}.
Now, we will prove by induction that Vα

t (j) + Vα
t (j + 2) ≥ 2 · Vα

t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 2} and all t ∈ N ∪ {0}.
By definition of the value functions,Vα

0 (j) � 0 for all j ∈ {0, 1, . . . , α · IN}. Hence, Vα
0 (j) + Vα

0 (j + 2) ≥ 2 · Vα
0 (j + 1) for all j ∈ {0, 1,

. . . , α · IN − 2}. Let t ∈ N ∪ {0}, and assume that Vα
t (j) + Vα

t (j + 2) ≥ 2 · Vα
t (j + 1) for all j ∈ {0, 1, . . . , α · IN − 2}.

We first focus on Vα3
t (j), then focus on Vα2

t (j), and finally, focus on Vα1
t (j).

Because Vα3
t (j) is linear in j, for all j ∈ {0, 1, . . . , α · IN − 2}, we have

Vα3
t (j) + Vα3

t (j + 2) � 2 · Vα3
t (j + 1).

Now, we focus on Vα2
t (j). Let j ∈ {0, 1, . . . , α · (IN − 1) − 2}. Observe that

Vα2
t+1(j) + Vα2

t+1(j + 2) �∑
i∈N

μ∗
iV

α
t min j + α, α · IN{ }( ) +∑

i∈N
μ∗
i V

α
t min j + 2 + α, α · IN{ }( )

�∑
i∈N

μ∗
iV

α
t (j + α) +∑

i∈N
μ∗
i V

α
t (j + 2 + α)

�∑
i∈N

μ∗
i V

α
t (j + α) + Vα

t (j + 2 + α)( )
≥ 2
∑
i∈N

μ∗
i V

α
t (j + 1 + α)

� 2
∑
i∈N

μ∗
i V

α
t min j + 1 + α, α · IN{ }( )

� 2Vα2
t+1(j + 1),

where the inequality holds by the induction hypothesis.
Let j ∈ {α · (IN − 1) − 1, α · (IN − 1), . . . , α · IN − 2}. Now, observe that

Vα2
t+1(j) + Vα2

t+1(j + 2) �∑
i∈N

μ∗
i V

α
t min j + α, α · IN{ }( ) +∑

i∈N
μ∗
i V

α
t min j + 2 + α, α · IN{ }( )

≥∑
i∈N

μ∗
i V

α
t α · IN( ) +∑

i∈N
μ∗
i V

α
t α · IN( )

� 2
∑
i∈N

μ∗
i V

α
t α · IN( )

� 2
∑
i∈N

μ∗
i V

α
t min j + 1 + α, α · IN{ }( )

� 2Vα2
t+1(j + 1),

where the inequality holds by (i). Hence, for all j ∈ {0, 1, . . . , α · IN − 2}, it holds that Vα2
t+1(j) + Vα2

t+1(j + 2) ≥ 2Vα2
t+1(j + 1).
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Let j ∈ {α, α + 1, . . . , α · IN − 2}. Now, observe that

Vα1
t+1(j) + Vα1

t+1(j + 2)
�∑

i∈N
λ∗
i min
q∈{max{0,j−α},...,j}

qdi + Vα
t (q)

{ } +∑
i∈N

λ∗
i min
q∈{max{0,j+2−α},...,j+2}

qdi + Vα
t (q)

{ }
�∑

i∈N
λ∗
i min

q1∈{j−α,...,j}
q2∈{j+2−α,...,j+2}

q1 + q2
( )

di + Vα
t q1
( ) + Vα

t q2
( ){ }

≥∑
i∈N

λ∗
i min 2q3 + 1

( )
di + Vα

t q3
( ) + Vα

t q3 + 1
( )|q3 � j + 1 − α, . . . , j

{[ } ∪ 2 Vα
t q3
( ) + q3di

( ) | q3 � j + 1 − α, . . . , j + 1
}{ ]

� 2
∑
i∈N

λ∗
i min
q3∈{j+1−α,j+2−α,...,j+1}

Vα
t q3
( ) + q3di

}{ }
� 2
∑
i∈N

λ∗
i min
q3∈{max{0,j+1−α},...,j+1}

Vα
t q3
( ) + q3di

}{ }
.

� 2Vα1
t+1(j + 1).

The inequality holds, because for any q1,q2 ∈ {0,1, . . . ,α · IN −2} with q1 ≤ q2, it holds that V
α
t (q1)+Vα

t (q2) ≥Vα
t (�(q1+q2)/2�)+

Vα
t (�(q1+q2)/2�) based on the induction hypothesis. This implies that, for any q1, q2 ∈ {0, 1, . . . , α · IN − 2} with q1 + q2

odd, it follows that (q1 + q2)di + Vα
t (q1) + Vα

t (q2) ≥ (2q3 + 1)di + Vα
t (q3) + Vα

t (q3 + 1), where q3 � �(q1 + q2)/2�. For any q1, q2 ∈
{0, 1, . . . , α · IN − 2} with q1 + q2 even, it follows that (q1 + q2)di + Vα

t (q1) + Vα
t (q2) ≥ 2q3di + 2Vα

t (q3) with q3 � (q1 + q2)/2.
The third equality holds, because min{2a, a + b, 2b} � min{2a, 2b} for any a, b ∈ R. The last but one equality holds as j ≥ α.
Let j ∈ {0, 1, . . . , α − 1}. Now, observe that

Vα1
t+1( j) + Vα1

t+1( j + 2)
�∑

i∈N
λ∗
i min
q∈{max{0,j−α},...,j}

qdi + Vα
t (q)

{ } +∑
i∈N

λ∗
i min
q∈{max{0,j+2−α},...,j+2}

qdi + Vα
t (q)

{ }
≥∑

i∈N
λ∗
i min

q1∈{0,...,j}
q2∈{0,...,j+2}

q1 + q2
( )

di + Vα
t q1
( ) + Vα

t q2
( ){ }

≥∑
i∈N

λ∗
i min 2q3 + 1

( )
di + Vα

t q3
( ) + Vα

t q3 + 1
( )⃒⃒

q3 � 0, . . . , j
{[ } ∪ 2 Vα

t q3
( ) + q3di

( )⃒⃒
q3 � 0, . . . , j + 1

{ }]
� 2
∑
i∈N

λ∗
i min
q3∈{0,1,...,j+1}

Vα
t q3
( ) + q3di

{ }
� 2
∑
i∈N

λ∗
i min
q3∈{max{0,j+1−α},...,j+1}

Vα
t q3
( ) + q3di

{ }
� 2Vα1

t+1( j + 1).
The first inequality holds, because adding a (possible) term to a set from which its minimum is selected will not increase
the minimum. The arguments of the other (in-)equalities are similar to the ones of case j ∈ {α, α + 1, . . . , α · IN − 2}.
Therefore, for all j ∈ {0, 1, . . . , α · IN − 2}, it holds that Vα1

t+1(j) + Vα1
t+1(j + 2) ≥ 2Vα1

t+1(j + 1).
We conclude that, for all j ∈ {0, 1, . . . , α · IN − 2}, it holds that

Vα
t+1(j) + Vα

t+1(j + 2) � Vα1
t+1(j) + Vα2

t+1(j) + Vα3
t+1(j) + Vα1

t+1(j + 2) + Vα2
t+1(j + 2) + Vα3

t+1(j + 2)
≥ 2Vα1

t+1(j + 1) + 2Vα2
t+1(j + 1) + 2Vα3

t+1(j + 1) � 2Vα
t+1(j + 1).

iii. By definition of the value functions, Vα
0 (j) � 0 for all j ∈ {0, 1, . . . , α · IN}. Hence, Vα

0 (k + j) + Vα
0 (k + j + 2) � 2 · Vα

0 (k + j + 1)
for all j∈ {0,1, . . . ,α−2} and all k ∈ {0,α,2α, . . . , (IN −1)α}. Let t ∈ N ∪ {0}, and assume thatVα

t (k + j) + Vα
t (k + j + 2) � 2·Vα

t (k + j + 1)
for all j ∈ {0, 1, . . . , α − 2} and all k ∈ {0, α, 2α, . . . , (IN − 1)α}.

First, observe that function Vα
t (j) + j · di is convex in j for all i ∈ N, because Vα

t (·) is convex by (ii) and j · di is linear. By
our induction hypothesis, it holds that Vα

t (k + j) + Vα
t (k + j + 2) � 2 · Vα

t (k + j + 1) for all j ∈ {0, 1, . . . , α − 2} and all k ∈
{0,α,2α . . . ,(IN −1)α}. As a consequence, it holds as well that Vα

t (k+ j)+ (k+ j)di+Vα
t (k+ j+2)+ (k+ j+2)di � 2 ·Vα

t (k+ j+1)+
2 · (k+ j+1)di for all j ∈ {0, 1, . . . , α − 2}, all k ∈ {0, α, 2α . . . , α(IN − 1)}, and all i ∈ N. Therefore, there exists an h ∈
{0, α, 2α, . . . , . . . , INα} for which it holds that Vα

t (h) + h · di ≤ Vα
t (j) + j · di for all j ∈ {0, 1, . . . , α · IN} and all i ∈ N. Let h ∈

{0, α, . . . , IN · α}. Then, for all k ∈ {0, α, . . . , h − α} and all j ∈ {0, 1, . . . , α}, it holds that∑
i∈N

λ∗
i min

q∈{min{0,k+j−α},...,k+j}
qdi + Vα

t (q)
{ } + (α − (k + j))di

[ ]
�∑

i∈N
λ∗
i (k + j)di + Vα

t (k + j) + (α − (k + j))di[ ]
�∑

i∈N
λ∗
i V

α
t (k + j) + α · di[ ]

.

(A.1)
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For k � h and all j ∈ {0, 1, . . . , α}, it holds that

∑
i∈N

λ∗
i min

q∈{min{0,k+j−α},...,k+j}
qdi + Vα

t (q)
{ } + (α − (k + j))di

[ ]
�∑

i∈N
λ∗
i k · di + Vα

t (k) + (α − (k + j))di[ ]
�∑

i∈N
λ∗
i V

α
t (k) + (α − j) · di[ ]

.

(A.2)

For all k ∈ {h + α, h + 2 · α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α}, it holds that

∑
i∈N

λ∗
i min

q∈{min{0,k+j−α},...,k+j}
qdi + Vα

t (q)
{ } + (α − (k + j))di

[ ]
�∑

i∈N
λ∗
i (k + j − α)di + Vα

t (k + j − α) + (α − (k + j))di[ ]
�∑

i∈N
λ∗
i V

α
t (k + j − α)[ ]

.

(A.3)

In addition, for all k ∈ {0, α, . . . (IN − 2) · α} and all j ∈ {0, 1, . . . , α − 2}, it holds that

∑
i∈N

μ∗
iV

α
t min k + j + α, α · IN{ }( ) +∑

i∈N
μ∗
i V

α
t min k + j + 2 + α, α · IN{ }( )

�∑
i∈N

μ∗
i V

α
t (k + j + α) +∑

i∈N
μ∗
iV

α
t (k + j + 2 + α)

� 2
∑
i∈N

μ∗
iV

α
t (k + j + 1 + α)

� 2
∑
i∈N

μ∗
iV

α
t min k + j + 1 + α, α · IN{ }( )

.

Moreover, for k � (IN − 1) · α and all j ∈ {0, 1, . . . , α − 2}, it holds that

∑
i∈N

μ∗
iV

α
t min k + j + α, α · IN{ }( ) +∑

i∈N
μ∗
i V

α
t min k + j + 2 + α, α · IN{ }( )

�∑
i∈N

μ∗
i V

α
t α · IN( ) +∑

i∈N
μ∗
i V

α
t α · IN( )

� 2
∑
i∈N

μ∗
iV

α
t α · IN( )

� 2
∑
i∈N

μ∗
iV

α
t min k + j + 1, α · IN{ }( )

.

Hence, for all k ∈ {0, α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α − 2}, it holds that

∑
i∈N

μ∗
iV

α
t min k + j + α, α · IN{ }( ) +∑

i∈N
μ∗
i V

α
t min k + j + 2 + α, α · IN{ }( )

� 2
∑
i∈N

μ∗
iV

α
t min k + j + 1, α · IN{ }( )

.
(A.4)

For all k ∈ {0, 1, . . . , h − α} and all j ∈ {0, 1, . . . , α − 2}, it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)
�∑

i∈N
λ∗
i V

α
t (k + j) + α · di[ ] +∑

i∈N
μ∗
iV

α
t min k + j + α, α · IN{ }( )

+∑
i∈N

λ∗
i V

α
t (k + j + 2) + α · di[ ] +∑

i∈N
μ∗
i V

α
t min k + j + 2 + α, α · IN{ }( )

� 2
∑
i∈N

λ∗
i V

α
t (k + j + 1) + α · di[ ] +∑

i∈N
2μ∗

i V
α
t min k + j + 1 + α, α · IN{ }( )

� 2Vα
t+1(k + j + 1).
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The first equality holds by (A.1). The second equality holds by the induction hypothesis and (A.4).For k � h and all
j ∈ {0, 1, . . . , α − 2}, it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)
�∑

i∈N
λ∗
i V

α
t (k) + (α − j) · di[ ] +∑

i∈N
μ∗
i V

α
t min k + j + α, α · IN{ }( )

+∑
i∈N

λ∗
i V

α
t (k) + (α − ( j + 2)) · di[ ] +∑

i∈N
μ∗
iV

α
t min k + j + 2 + α, α · IN{ }( )

� 2
∑
i∈N

λ∗
i V

α
t (k) + (α − ( j + 1)) · di[ ] +∑

i∈N
2μ∗

iV
α
t min k + j + 1 + α, α · IN{ }( )

� 2Vα
t+1(k + j + 1).

The first equality holds by (A.2). The second equality holds by the induction hypothesis and (A.4).
For all k ∈ {h + α, h + 2 · α, . . . , (IN − 1) · α} and all j ∈ {0, 1, . . . , α − 2}, it holds that

Vα
t+1(k + j) + Vα

t+1(k + j + 2)
�∑

i∈N
λ∗
i V

α
t (k + j − α)[ ] +∑

i∈N
μ∗
i V

α
t min k + j + α, α · IN{ }( ) +∑

i∈N
λ∗
i V

α
t (k + j + 2 − α)[ ] +∑

i∈N
μ∗
i V

α
t min k + j + 2 + α, α · IN{ }( )

� 2
∑
i∈N

λ∗
i V

α
t (k + j + 1 − α)[ ] +∑

i∈N
2μ∗

i V
α
t min k + j + 1 + α, α · IN{ }( )

� 2Vα
t+1(k + j + 1).

The first equality holds by (A.3). The second equality holds by the induction hypothesis and (A.4). This concludes the
proof. □

Proof of Lemma 9. Based on Lemma 8, (i) and (iii), it follows directly that, for all j ∈ {0, α, . . . , α · IN} and all t ∈ N ∪ {0}, it holds
that

Vα
t+1(j) �

∑
i∈N

λ∗
i min
q∈{0,min{j,α}}

Vα
t (j − q) + (α − q)di{ }[ ]

+∑
i∈N

μ∗
i V

α
t min j + α, α · IN{ }( )

.

By definition of the value functions, Vα
0 (j) � 0 for all j ∈ {0, α, . . . , IN · α}, and VN

0 (j) � 0 for all j ∈ {0, 1, . . . , IN}. Hence, Vα
0 (j) �

α · VN
0 ( jα) for all j ∈ {0, α, . . . , IN · α}. Let t ∈ N ∪ {0}, and assume that Vα

t (j) � α · VN
t ( jα) for all j ∈ {0, α, . . . , IN · α}.

Let j ∈ {0, α, . . . , IN · α}. Then, observe that

Vα
t+1(j)�

∑
i∈N

λ∗
i min
q∈{0,min{j,α}}

Vα
t (j − q) + (α − q)di{ }[ ]

+∑
i∈N

μ∗
i V

α
t min j + α, α · IN{ }( )

�∑
i∈N

λ∗
i min
q∈{0,min{j,α}}

α · VN
t

j − q
α

( )
+ (α − q)di

{ }[ ]
. + ∑

i∈N
μ∗
i V

α
t min j + α, α · IN{ }( )

�∑
i∈N

λ∗
i min
z∈ 0,min j

α,1{ }{ }
α · VN

t
j
α
− z

( )
+ α · (1 − z)di

{ }[ ]
. + ∑

i∈N
μ∗
iV

α
t min j + α, α · IN{ }( )

�∑
i∈N

λ∗
i min
z∈{0,min{ jα,1}}

α · VN
t

j
α
− z

( )
+ α · (1 − z)di

{ }[ ]
. +∑

i∈N
α · μ∗

iV
N
t min

j
α
+ 1, IN

{ }( )

� α · ∑
i∈N

λ∗
i min
z∈{0,min{ jα,1}}

VN
t

j
α
− z

( )
+ (1 − z)di

{ }[ ](
+∑

i∈N
μ∗
iV

N
t min

j
α
+ 1, IN

{ }( )
� α · VN

t+1
j
α

( )
.

The first equality holds by definition. The second equality holds by the induction hypothesis. The third equality holds by
introducing a new variable z � q/α. The fourth equality holds by the induction hypothesis (again). The fifth equality holds,
because α can be taken outside the summations. The last equality holds by Lemma 1. □

Endnotes
1Note that the downtime of a high-tech machine is assumed to be zero in our model. This is an approximation of reality, which is quite common
in literature (Karsten et al. [7], Kranenburg and Van Houtum [11], Schlicher et al. [19]).
2 See Ha [6, theorem 1] with h(x) � 0 for x ≤ IS and h(x) � ∞ otherwise.
3A possible interpretation could be to see this repair completion in fact as a possible repair completion, where it is a repair completion if rS,k< IS,k
and not if rS,k � IS,k .
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