Sequential Multiperiod Repetitive Control Design with Application to Industrial Wide-Format Printing

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1109/TMECH.2020.2967305

Document status and date:
Published: 01/04/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Sequential Multiperiod Repetitive Control Design With Application to Industrial Wide-Format Printing

Lennart Blanken, Patrick Bevers, Sjirk Koekebakker, and Tom Oomen

Abstract—Repetitive control (RC) enables high control performance for systems subject to periodic disturbances. Many disturbances in mechatronic applications involve the sum of multiple periodic signals, which is not necessarily periodic over a small time interval. The contribution of this article is a design procedure for multiple repetitive controllers, each addressing a single periodic component that achieves high performance with fast convergence in the presence of multiple periodic disturbances. The developed approach involves sequential design of the controllers, and systematically addresses modeling errors and coupling between controllers. An experimental case study on an industrial roll-to-roll printer confirms the benefits of the proposed approach, including superior performance compared to preexisting RC designs.

Index Terms—Mechatronics, motion control, repetitive control.

I. INTRODUCTION

ANY disturbances in mechatronic applications involve the sum of multiple periodic signals. Their summation is not necessarily periodic, e.g., consider a signal with a rational period and one with an irrational period, or may be periodic with the least common multiple of all periods, which can be very large. Relevant examples include industrial roll-to-roll printing systems, which is the case study in the present article. The positioning of paper under the printheads is subject to multiple periodic disturbances induced by various rotating components and gear ratios in the paper transport path. Indeed, mechanical gears are often designed with coprime teeth numbers to ensure uniform wear, leading to very high common period lengths.

Manuscript received June 17, 2019; revised November 18, 2019; accepted January 14, 2020. Date of publication January 17, 2020; date of current version April 15, 2020. This work was supported in part by Océ Technologies and in part by the Netherlands Organisation for Scientific Research (NWO) through the Research Programme VIDI under Project 15698. Recommended by Technical Editor Q. Zou. (Corresponding author: Lennart Blanken.)

L. Blanken, P. Bevers, and T. Oomen are with the Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands (e-mail: L.G.Blanken@tue.nl; P.Bevers@gmail.com; T.A.E.Oomen@tue.nl).

S. Koekebakker is with the Océ Technologies B.V., 5914 Venlo, The Netherlands (e-mail: Sjirk.Koekebakker@oce.com).

Color versions of one or more of the figures in this article are available online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMECH.2020.2967305

Repetitive control (RC) can significantly improve the control performance of systems that are subject to dominantly periodic disturbances, see, e.g., [1], [2]. RC enables perfect asymptotic rejection of periodic signals through the internal model principle [3]. However, a disadvantage of RC is the increased sensitivity to nonperiodic disturbances [4]–[6] due to Bode’s sensitivity integral [7], which directly deteriorates control performance. This adverse effect can be reduced through high-order RC, see, e.g., [8]–[10], yet the achievable performance is fundamentally limited for the considered class of multiperiodic disturbances, i.e., possibly nonperiodic summations of periodic signals.

RC for multiperiodic disturbances can be directly achieved by including multiple internal models, see, e.g., [11]–[13], for developments in this direction. By joint implementation of multiple repetitive controllers, each with the task to reject a single periodic component, perfect rejection of multiperiodic disturbances is potentially enabled. Most design approaches consider parallel configuration of multiple repetitive controllers, see, e.g., [11], [14]–[16]. This potentially enables perfect asymptotic performance, yet often leads to slow convergence due to interaction between controllers. In [12] and [17], multiple repetitive controllers are connected in a cascaded manner to improve convergence behavior. Despite the fact that promising results are reported, these approaches involve independent designs of each controller, and address interaction as uncertainty, i.e., through robustness. This leads to unnecessarily conservative designs, which can lead to severe performance limitations.

Although multiperiodic disturbances occur in many systems, at present, a systematic RC approach that is robust and achieves fast convergence is not yet available. The aim of the present article is to address the interaction between multiple repetitive controllers in a systematic and nonconservative manner; hence, enabling fast convergence.

The contributions of this article are twofold.

C1) A multiperiod RC approach for fast convergence is developed, based on sequential designs.

C2) The potential of the developed design technique for rejection of multiperiodic disturbances is validated on an industrial roll-to-roll printer in reproducible experiments.

The sequential approach leads to a systematic design that explicitly accounts for interaction from previously designed controllers. The design can be performed using traditional
techniques, including loop shaping in the frequency domain. The approach relates to sequential design of multivariable RC in [18, Sec. 5], yet is tailored toward achieving fast convergence in the presence of interacting internal models, which is not covered in [18]. The experimental results confirm that the developed approach enables fast rejection of multiperiodic disturbances, and outperforms preexisting approaches.

The rest of this article is organized as follows. In Section II, the design problem is formulated, and illustrated by a case study of a roll-to-roll printer. In Section III, the considered multiperiod repetitive controller structure is introduced. The sequential design framework is developed in Section IV, constituting contribution C1. The experimental validation on the considered case study is presented in Section V, forming contribution C2. Finally, Section VI concludes this article.

Notation: All systems are discrete time, single-input–single-output, and linear time invariant. The results can be directly generalized to multi-input–multioutput systems. The set of real-rational functions bounded on the unit circle and analytic for $|z| > 1$ is denoted \mathcal{RH}_∞. The imaginary unit is denoted ι, i.e., $\iota^2 = -1$. The least common multiple of two integers a, b is denoted lcm(a, b). The complex indeterminate z is often omitted when it is clear from the context.

II. PROBLEM FORMULATION

In this section, the control problem is formulated. In Section II-A, the considered case study is introduced. The RC setup is presented in Section II-B, and the RC problem is defined in Section II-C.

A. Case Study: Positioning Errors in a Roll-to-Roll Printer

Fig. 1 depicts the considered Océ Colorado 1640 printer, which can print on roll-based media, including paper and vinyl, up to 1.6 m wide. The printing operation is illustrated in Fig. 2. The printheads, which contain many closely spaced nozzles that jet ink onto the medium, are located in the carriage. The carriage performs lateral passes over the stationary medium. After printing, the ink is cured by UV light. In between passes, the paper is transported in the y-direction using the medium positioning roll. This paper transport induces MPEs, resulting in misalignment of consecutively printed passes. The aim is to measure the MPEs using a scanner mounted on the carriage, and compensate them by controlling the gantry position in the y-direction during printing using multiperiod RC.

The alignment of print-passes is deteriorated by medium positioning errors (MPEs), which are induced during stepwise medium transportation. These MPEs originate from multiple rotating components in the system, e.g., due to eccentricities in rolls that transport the paper. A measured MPE is depicted in Fig. 3. Its power spectrum reveals multiple periodic contributions, relating to several rotating components. For example, the dominant contribution of period 31.4 print-passes corresponds to one rotation of the medium positioning roll.
For high-quality printing, the compensation of the multiperiodic MPEs is required. This is enabled by a scanner in the carriage, see Fig. 2. The MPE measurements result from an image processing algorithm that analyzes each scan after a posteriori. The main idea is to use the MPE measurements as a reference for the gantry beam, and actively control the gantry beam in the y-direction during lateral passes of the carriage. In this article, an RC framework is developed to achieve the required printing accuracy.

B. Repetitive Control Setup

Consider the control scheme in Fig. 4, consisting of plant $G(z)$, stabilizing feedback controller $C(z)$, and repetitive controller $R(z)$ to be designed, connected in a cascaded configuration. Furthermore, $r(k)$ is the reference, i.e., the medium position that is to be tracked by gantry position $y(k)$, and $G(z)$ is the gantry dynamics. Note that $r(k)$ represents a fictitious reference; indeed, the MPE $e(k)$ is directly measured and fed into $R(z)$. The signal d denotes disturbances.

The control objective is to reject exogenous disturbance

$$r(k) = \sum_{i=1}^{n} r_i(k)$$

where $r_i(k + N_i) = r_i(k)$ and $N_i \in \mathbb{N}$ are the periods. That is, minimize the tracking error $e = r - y$, given by

$$e = r - Sd - Tu = r - Sd - TRe$$

$$(1 + TR)^{-1} (r - Sd) = S_R(e - Sd)$$

with sensitivity function $S = (1 + GC)^{-1} \in \mathcal{RH}_\infty$, complementary sensitivity function $T = (1 + GC)^{-1}GC \in \mathcal{RH}_\infty$, and modifying sensitivity function $S_R = (1 + TR)^{-1}$.

Based on the internal model principle [3], RC enables asymptotic rejection of periodic disturbances by including a memory loop in the feedback loop, i.e., $u = y$, if it exists. This can lead to slow convergence, especially if the least common multiple is unacceptably large, e.g., consider Fig. 3(b).

Remark 1: The employed cascaded controller configuration (see Fig. 4) with input to C given by $u - y = Re - y$, is in contrast with plug-in RC implementations that are commonly used, see, e.g., [1], [2]. In plug-in RC implementations, the RC output $u = Re$ is added to the tracking error e, i.e., the input to C is given by $e + u = e + Re$. The cascaded structure is preferred here in view of the considered case study—the reference r, which represents the medium position that is to be tracked, becomes available after a large time delay due to the required image processing. Hence, it cannot be fed into C in real time, as in conventional plug-in RC structures. In the cascaded configuration, the image processing delay can be incorporated into the delay of repetitive controller R. The design problem of R is equivalent; in both cases, the problem is the design of $S_R = (1 + TR)^{-1}$, see, e.g., [2, Sec. 3]. This implies that all results developed in this article are directly applicable to plug-in RC configurations.

C. Problem Formulation

The problem addressed in this article is the design of a repetitive controller R with respect to the following requirements.

R1) High asymptotic performance in the presence of multiperiodic disturbances, i.e., small error (3) after convergence.

R2) Robust and fast convergence of error (3) in the presence of modeling errors and interaction between controllers.

As is argued in Section I, preexisting approaches fail to satisfy both requirements, due to seemingly required robustness to modeling errors and interaction between controllers.

In this article, a sequentially designed approach is developed for multiple repetitive controllers that meet R1 and R2. The interaction between controllers and modeling errors are addressed in a nonconservative manner through sequential design and the use of inexpensive and accurate frequency response function (FRF) measurements [19].

In the next section, the multiperiod RC structure is introduced. In Section IV, the sequential design technique is developed. The experimental validation is presented in Section V.

III. MULTIPERIOD REPETITIVE CONTROL STRUCTURE

In this section, the multiperiod RC structure is introduced. Multiple repetitive controllers are implemented in a cascaded structure, see also [12], [17], which potentially improves convergence speed of the closed-loop system (R2) compared to parallel interconnections, see, e.g., [11], [15]. This is demonstrated in examples, including slow convergence of parallel implementations. The considered cascaded structure facilitates nonconservative sequential design (R1) in Section IV, i.e., contribution C1.

The multiperiod repetitive controller R, see Fig. 5(a), is parametrized as

$$R = \sum_{i=1}^{n} R_i \prod_{j=1}^{i-1} (1 + \hat{T} R_j)$$

with \hat{T} a parametric model of T. Each single-period repetitive controller R_i in Fig. 5(b) is given by

$$R_i = \alpha_i L_i z^{-N_i} Q_i(1 - z^{-N_i} Q_i)^{-1}$$

with learning gains $\alpha_i \in \mathbb{R}$, and filters $L_i(z), Q_i(z)$ such that $z^{-N_i} L_i(z) Q_i(z) \in \mathcal{RH}_\infty$. That is, L_i and Q_i can have finite preview, i.e., be noncausal, provided that R_i is causal, by embedding the finite preview in the delay z^{-N_i}.

Remark 2: The repetitive controller (4) directly allows to include multiple memory loops with equal delay lengths N_i.

Fig. 4. Control configuration with repetitive controller R.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on June 08, 2021 at 06:46:42 UTC from IEEE Xplore. Restrictions apply.
which can be used to increase the robustness to disturbance period variations and nonperiodic disturbances, as in [4], [9], and [10].

The main idea is that each R_i eliminates a part of the error. By filtering through model \hat{T}, the predicted residual error is obtained. This is subsequently processed by R_{i+1}. This is illustrated by two examples.

Example 1: Let $n = 2$, and assume $\hat{T} = T$, i.e., perfect model knowledge. Considering Fig. 5(a) and (2), the error signal entering R_2 is given by

$$ e_2 = e_1 + \hat{T}u_1 = e + Tu_1 $$

$$ = r - Sd - T(u_1 + u_2) + Tu_1 $$

$$ = r - Sd - Tu_2. $$

Hence, the control action u_1 is hidden from R_2. The input to R_1 is the original error, i.e., $e_1 = e$.

Next, the benefits of the cascaded structure on convergence behavior are demonstrated.

Example 2: Consider a static system $T \in \mathbb{R}$, $T \neq 0$, subject to disturbance $r(k) = \sum_{i=1}^{2} r_i(k)$, with $r_1(k+2) = r_1(k)$ and $r_2(k+3) = r_2(k)$, i.e., $N_1 = 2$, $N_2 = 3$, and $d = 0$. A two-period repetitive controller (4) is implemented with $N_1 = 2$, $N_2 = 3$, static L_i, $Q_i \in \mathbb{R}$, and $\alpha_i = 1$, see Fig. 5. Using state-space representations, R_1 and R_2 are given by

$$ R_1 = \begin{bmatrix} 0 & Q_1 & 1 \\ 1 & 0 & 0 \\ 0 & L_1Q_1 & 0 \end{bmatrix}, \quad R_2 = \begin{bmatrix} 0 & 0 & Q_2 \\ 0 & 1 & 0 \\ 0 & 0 & L_2Q_2 \end{bmatrix}. $$

Using (4), the resulting closed-loop system (3) is given by

$$ e(k) = \begin{bmatrix} 0 & (1 - TL_1)Q_1 & 0 & 0 & -TL_2Q_2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & (\hat{T} - T)L_1Q_1 & 0 & 0 & (1 - TL_2)Q_2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & TL_1Q_1 & 0 & 0 & TL_2Q_2 \end{bmatrix} e(k). $$

Let $L_i = 1/T_i$, i.e., perfect model knowledge, and $Q_i \neq 0$ such that S_R is stable. Comparing a cascaded structure with $\hat{T} = T$ to a parallel structure, i.e., $\hat{T} = 0$ in Fig. 5, the following observations are made.

1) In a cascaded structure, the five poles of the resulting system S_R are all located in the origin, irrespective of Q_i. Indeed in (6), $(\hat{T} - T) = 0$ and $(1 - TL_2) = 0$. Hence, convergence of $e(k)$ is achieved after $k = 5$ samples for arbitrary disturbance $r(k)$ with period lcm (N_1, N_2), i.e., $e(k + \text{lcm}(2, 3)) = e(k)$ for $k \geq 5$. If $Q_i = 1$, then zero error is obtained, i.e., $e(k)$ is 0 for $k \geq 5$.

2) In a parallel structure, i.e., $\hat{T} = 0$ in (6), the poles of S_R are evenly spaced on the circle with radius $\sqrt{|Q_1Q_2|}$, centered at the origin. Hence, slow convergence may be obtained, irrespective of the perfect model knowledge, i.e., $L_i = 1/T_i \forall i$. Also, $Q_i = 1$ results in an unstable system S_R with all poles on the unit circle.

The example illustrates that parallel RC structures can lead to slow convergence, whereas fast convergence can be achieved through a cascaded structure. In the next section, a systematic design approach is developed for cascaded multiperiod RC that explicitly accounts for modeling errors $\hat{T} \neq T$ and the resulting remaining interaction between controllers.

IV. SEQUENTIAL DESIGN APPROACH FOR MULTIPERIOD REPETITIVE CONTROL

In this section, a sequential design procedure is developed for cascaded multiperiod RC, constituting contribution C1 of this article. Nonconservative stability conditions are developed in Section IV-A, which form the basis for the developed design procedure in Section IV-B. Stability is guaranteed in the presence of modeling errors $\hat{T} \neq T$, and can be verified on a frequency-frequency basis, e.g., by use of FRF measurements, see, e.g., [19]. Consequently, this enables performance improvements compared to [12] and [17]. The developed results are related to sequential design techniques for multivariable control, see, e.g., [20], [21] for feedback control and [18] for applications to RC, yet have different implications for controller design. Specifically, multiperiodic and high-order internal models need to be accounted for in every sequential design step, which is enabled through the use of FRF measurements.

A. Stability Analysis

In this subsection, nonconservative stability conditions are developed for the closed-loop system (3) with multiperiod RC in (4). The following result is fundamental to all derivations.

Lemma 1: Consider closed-loop (3) with R as in (4). Then

$$ S_R = (1 + T_R)^{-1} = \prod_{i=1}^{n} (1 + T_{i}^{eq}R_i)^{-1} $$

where T_i^{eq} denotes the equivalent plant in loop i, given by

$$ T_i^{eq} = \begin{cases} T & \text{if } i = 1 \\ (1 + T_{i-1}^{eq}R_{i-1})^{-1}T_{i-1}^{eq}(1 + T_{i-1})^{-1} & \text{if } i > 1 \end{cases}. $$

Proof of Lemma 1: Equation (7) is proven by induction. For \(n = 1 \), it directly follows that \(T_i^{eq} = T \). For \(n > 1 \), the modifying sensitivity is rewritten by substitution of (4) as

\[
S_R = (1 + TR)^{-1} = \left(1 + \frac{T_1^{eq} \sum_{i=2}^{n} \left(R_i^{i-1}(1 + TR_j)\right)}{T_1^{eq}}\right)^{-1}
\]

\[
= (1 + T_1^{eq} R_1 + T_1^{eq} \sum_{i=2}^{n} \left(R_i^{i-1}(1 + TR_j)\right))^{-1}
\]

\[
= (1 + T_1^{eq} R_1)^{-1}
\]

\[
\cdot \left(1 + (1 + T_1^{eq} R_1)^{-1} T_1^{eq}(1 + TR_1)\right)^{-1}
\]

\[
= (1 + T_1^{eq} R_1)^{-1}
\]

\[
\cdot \left(1 + T_2^{eq} R_2 + T_2^{eq}(1 + TR_2)\right)^{-1}
\]

\[
= \prod_{i=1}^{2} (1 + T_i^{eq} R_i)^{-1}
\]

\[
= \prod_{i=1}^{n} (1 + T_i^{eq} R_{i-1})^{-1}
\]

Therefore, by inductive hypothesis, \(S_R \) is stable. In Lemma 1, \(S_R \) is reformulated as a product of recursively independent factors, through equivalent plant \(T_i^{eq} \) in (8). Indeed, \(T_i^{eq} \) is the transfer function that maps \(\sum_{i=1}^{n} (1 + TR_j) \), and the design of \(R_i \) based on \(T \). In this case, standard single-period RC design techniques can be used, see, e.g., [22, ch. 3].

Remark 3: If \(\tilde{T} = T \), i.e., perfect model knowledge, then \(T_i^{eq} = T \) \(\forall i \). As a result, (7) reduces to \(S_R = \prod_{i=1}^{n} (1 + TR_i) \), and the design of \(R \) in (4) simplifies to independent designs of each \(R_i \) based on \(T \). In this case, standard single-period RC design techniques can be used, see, e.g., [1, 2].

Next, the factorization in Lemma 1 is exploited for stability analysis. The key point is that \(S_R \) is stable if each factor \(1 + T_i^{eq} R_{i-1} \) in (7) is stable. Substitution of \(R_i \) in (5) and rewriting yields

\[
(1 + T_i^{eq} R_{i-1})^{-1}
\]

\[
= (1 + \alpha_i T_i^{eq} L_i z^{-N_i} Q_i (1 - z^{-N_i} Q_i)^{-1})^{-1}
\]

\[
= (1 - z^{-N_i} Q_i) \cdot (1 - (1 - \alpha_i T_i^{eq} L_i z^{-N_i} Q_i)^{-1})^{-1}
\]

Theorem 1 (Nyquist stability theorem for multiperiod RC based on sequential conditions): Consider closed-loop system (3) with \(R \) as in (4). Suppose all poles of \(S, T, \tilde{T}, L_i, \) and \(Q_i \) are in the open unit disk, and there are no unstable pole-zero cancellations between \(S \) and the factors in (9), \(\forall i \). Then, closed-loop system (3) is stable if and only if, for all \(i = 1, \ldots, n \), the image of \((1 - \alpha_i T_i^{eq} L_i z^{-N_i} Q_i) \):

1) does not encircle the point 1;

2) and does not pass through the point 1;

as \(z \) traverses the Nyquist contour \(\Gamma \) depicted in Fig. 6, see, e.g., [22, ch. 3].

Proof of Theorem 1: Since \(S \) and \((1 - z^{-N_i} Q_i) \) are stable by design, and no unstable pole-zero cancellations are present, the closed-loop \(S_R \) is stable if and only if each \((1 - H_i)^{-1} \) is stable, \(i \in \{1, \ldots, n\} \), with \(H_i = (1 - \alpha_i T_i^{eq} L_i) z^{-N_i} Q_i \), see (7) and (9). Essentially, each \((1 - H_i)^{-1} \) constitutes a positive feedback loop with loop gain \(H_i \). The Nyquist theorem, see, e.g., [23, Th. 4.9], states that \((1 - H_i)^{-1} \) is stable if and only if the image of \(H_i(z) \) encircles the point 1 + 0i in a counterclockwise direction \(P \) times as \(z \) traverses \(\Gamma \), and does not pass through 1 + 0i. Here, \(P \) is the number of poles of \(1 - H_i(z) \) inside \(\Gamma \), i.e., unstable poles of \(H_i(z) \).

It remains to determine \(P \), i.e., the number of unstable poles of \(H_i = (1 - \alpha_i T_i^{eq} L_i) z^{-N_i} Q_i \). Since all poles of \(L_i \) and \(Q_i \) are on the open unit disk, this reduces to the number of unstable poles of \(T_i^{eq} \). Next, it is shown that \(T_i^{eq} \) is guaranteed to be stable, i.e., \(P = 0 \). From (8)

\[
T_i^{eq} = T_i^{-1} \cdot \frac{1 - (1 - \alpha_i \tilde{T} L_i z^{-N_i} Q_i)}{1 - (1 - \alpha_i T_i^{eq} L_i) z^{-N_i} Q_i}
\]

and \(T_i^{eq} = T \). Observe that \(T_i^{eq} \) is stable if \(T_i^{-1} \) is stable, since the numerator of (10) is stable by the assumptions made in Theorem 1, and the roots of the denominator are inside the unit circle by design of preceding \(R_1, \ldots, R_{i-1} \) according to
Theorem 1. Hence, stability of $T^\text{eq}_i = T$ implies stability of $T^\text{eq}_i \forall i$. As a result, the closed loop is stable iff, $\forall i$, the image of H_i makes no encirclements of the point $1 + 0i$. ■

Theorem 2 (Small-gain stability for multiperiod RC based on sequential conditions): Let the assumptions of Theorem 1 hold, and assume $(1 - \alpha_i T^\text{eq}_i L_i) z^{-N_i} Q_i$ is strictly proper for all i. Then, the closed-loop system (3) with R as in (4) is stable if, for all $i = 1, \ldots, n$

$$
(|1 - \alpha_i T^\text{eq}_i(e^{i\omega}) L_i(e^{i\omega})| Q_i(e^{i\omega})) < 1 \quad \forall \omega \in [0, \pi].
$$

(11)

Proof of Theorem 2: Let $H_i = (1 - \alpha_i T^\text{eq}_i L_i) z^{-N_i} Q_i$, and consider Theorem 1 with Nyquist contour γ in Fig. 6. Given that H_i is strictly proper, which is the case for sufficiently large N_i, only the part of γ around the unit circle needs to be evaluated. This is proven next. First, note that $\lim_{|z| \to \infty} H_i(z) = 0$, i.e., the part of γ at infinity maps to 0. Second, by satisfaction of (11), it follows that $|H_i(-1)| = |H_i(e^{-\pi})| < 1$, and hence, the parallel branches along the real axis of γ do not influence the stability test, see, e.g., [22, p. 86]. Finally, since $|z^{-N_i}| = 1$ for z on the unit circle, (11) is obtained. ■

The key point is that the stability of $S_R = (1 + TR)^{-1}$ is reformulated in Theorems 1 and 2 as sets of sequential nonconservative conditions on R_i. The results are nonconservative in terms of modeling errors $\hat{T} \neq T$ and the interaction between loops; the conditions are based on equivalent plants T^eq_i, which directly include true system T and all interaction from preceding loops, see (8). That is, filters L_i, Q_i, and gains α_i can be explicitly designed for modeling errors $\hat{T} \neq T$. This is the topic of the next subsection.

Remark 4: In the single-period case, i.e., $n = 1$, Theorems 1 and 2 recover well-known conditions for stability of standard RC systems, see, e.g., [2, Ths. 1, 2].

Remark 5: A parallel RC structure is recovered as a special case by setting $\hat{T} = 0$ in (4), i.e., $R = \sum_{i=1}^n R_i$. Hence, Theorems 1 and 2 also provide stability conditions for parallel multiperiod RC with $T^\text{eq}_i = (1 + T^\text{eq}_i R_i L_i - 1) T^\text{eq}_i$. In this case, T^eq_i may significantly deviate from T, which may severely complicate the design of L_i and Q_i as is motivated next.

B. Design Approach

Theorems 1 and 2 provide sets of conditions for sequential design of filters L_i, Q_i of cascaded repetitive controllers R_i. Based on these conditions, well known synthesis algorithms from literature may be used to design filters L_i, Q_i, see, e.g., [2], which include approximate inversion techniques for L_i, (see, e.g., [24], [25] for overviews) and zero-phase filters for Q_i. In the present article, the following particular design choices are advocated in view of robustness to interaction between controllers R_i and modeling errors $\hat{T} \neq T$, i.e., requirements R1 and R2, which consequently lead to Procedure 1.

1) Robust stability in the presence of modeling errors $\hat{T} \neq T$ can be directly verified using FRF measurements, see, e.g., [19]. In particular, $T^\text{eq}_i(e^{i\omega})$ can be constructed based on FRF measurements of $T(e^{i\omega})$, enabling a direct evaluation of robust stability in Theorems 1 and 2. Interaction between controllers is directly taken into account by the sequential design, i.e., in $T^\text{eq}_i(e^{i\omega})$. Robust stability with respect to plant uncertainty can be directly evaluated by inclusion of confidence intervals of FRF measurements, which are typically readily available for FRF estimates that result from experimental data [19].

2) In view of the design of L_i, equivalent plants T^eq_i may closely approximate T, also if $\hat{T} \neq T$. That is, all L_i can be designed based on the inversion of T, rather than the inversion of T^eq_i. Indeed, the inversion of T^eq_i is undesired due to high-order terms z^{-N_i} from preceding loops. To see that $T^\text{eq}_i \approx T$, note from (9) that

$$
T^\text{eq}_{i+1} = (1 + T^\text{eq}_i R_i)^{-1} T^\text{eq}_i (1 + T R_i) = \frac{1 - z^{-N_i} Q_i}{1 - (1 - \alpha_i T^\text{eq}_i L_i) z^{-N_i} Q_i} T^\text{eq}_i \frac{1 - (1 - \alpha_i \hat{T} L_i) z^{-N_i} Q_i}{1 - (1 - \alpha_i T^\text{eq}_i L_i) z^{-N_i} Q_i}.
$$

Hence, at frequencies where $|(1 - \alpha_i T^\text{eq}_i L_i) z^{-N_i} Q_i| \ll 1$, see also (11), it holds that $T^\text{eq}_{i+1} \approx T^\text{eq}_i \approx T$. This is confirmed in Fig. 7.

3) The loop-closing order must be selected with care, since the resulting designs and closed-loop system may depend on the loop-closing order. Important considerations include (see also [20] and [21] for related results in sequential feedback design): 1) performance deterioration of previously designed loops due to successive designs and 2) influences of previously designed loops on subsequent designs. This implies that iterative redesign may be needed. Practical guidelines include: 1) to close loops in an increasing order of period lengths N_i for fast convergence and 2) to end with loops for which performance guarantees are desired. The loop-closing order can be altered as $\hat{T} = PT \hat{P}$, where P is a permutation matrix. These design choices lead to Procedure 1. In the next section, Procedure 1 is experimentally validated.

V. EXPERIMENTAL VALIDATION

In this section, the sequential design technique for multiperiod RC is validated on a roll-to-roll printer in reproducible experiments, constituting contribution C2 of the present article. It is demonstrated that multiperiod RC enables accurate compensation of MPEs with fast convergence. First, the experimental system is introduced. In Section V-B, the developed RC design technique is applied to the system. The results are presented in Section V-C.

A. Experimental Setup

The gantry beam of a roll-to-roll printer, see Fig. 2, is considered. The system is actuated by a voltage-driven motor, and the output position y [m] is measured using an optical encoder with resolution 0.25 μm. The system is operated in discrete time with
Procedure 1: Sequential Multiperiod RC Design.

Given FRF measurement of \(T(e^{j\omega}) \) and parametric model \(\hat{T} \), perform the following steps.

1) Design \(L \equiv L_i \) based on parametric model \(\hat{T} \), e.g., by inversion.
2) Choose the order in which the controllers are implemented.
3) Set the index \(i = 1 \), and perform the following steps.
 a) Construct \(T_i^{eq}(e^{j\omega}) \) in (8) based on the FRF of \(T(e^{j\omega}) \).
 b) Design filter \(Q_i(z) \) and gain \(\alpha_i \) according to Theorem 1 or Theorem 2, based on the equivalent plant \(T_i^{eq}(e^{j\omega}) \).
 c) Until \(i = n \), set \(i \rightarrow i + 1 \) and return to step 3a.
 d) If the resulting closed-loop system is unsatisfactory, reset \(i = 1 \), return to 3a, and redesign each \(R_i \).
4) If the resulting closed-loop system after iterations is unsatisfactory, return to step 2 and change the loop-closing order.

![Bode diagram of identified FRF of \(T \) (---), approximate parametric model \(\hat{T} \) (——) used for \(L \)-filter design, and FRF of equivalent plant \(T_i^{eq} \) (---) that is used to guarantee stability of sequential multiperiod RC design.](image)

Given FRF measurement of \(T(e^{j\omega}) \) and parametric model \(\hat{T} \), perform the following steps.

- Design \(L \equiv L_i \) based on parametric model \(\hat{T} \), e.g., by inversion.
- Choose the order in which the controllers are implemented.
- Set the index \(i = 1 \), and perform the following steps.
 - Construct \(T_i^{eq}(e^{j\omega}) \) in (8) based on the FRF of \(T(e^{j\omega}) \).
 - Design filter \(Q_i(z) \) and gain \(\alpha_i \) according to Theorem 1 or Theorem 2, based on the equivalent plant \(T_i^{eq}(e^{j\omega}) \).
 - Until \(i = n \), set \(i \rightarrow i + 1 \) and return to step 3a.
 - If the resulting closed-loop system is unsatisfactory, reset \(i = 1 \), return to 3a, and redesign each \(R_i \).
- If the resulting closed-loop system after iterations is unsatisfactory, return to step 2 and change the loop-closing order.

A stabilizing feedback controller is implemented, yielding a closed-loop bandwidth of 14 Hz. An FRF measurement of the resulting system \(T(z) \) is depicted in Fig. 7, together with the low-order parametric model \(\hat{T}(z) \) used for design, given by

\[
\hat{T}(z) = \frac{0.00357(z + 0.959)(z + 0.762)}{(z - 0.823)(z - 0.872)(z^2 - 1.97z + 0.968)}.
\]

The antiresonance/resonance pairs of \(T \) between 20 and 80 Hz are deliberately not modeled by \(\hat{T} \), to include the effect of significant modeling errors.

![Disturbance signal \(r = r_1 + r_2 \) (---), consisting of periodic signals \(r_1, r_2 \) (-----) respectively with periods \(N_1 = 4500 \) and \(N_2 = 12000 \).](image)

Reproducible experiments are performed to compare all the considered approaches. A two-periodic disturbance \(r = r_1 + r_2 \) is constructed, see Fig. 8, with period lengths spaced apart to demonstrate potential benefits of the proposed multiperiod RC design. Signals \(r_1 \) and \(r_2 \) represent a disturbance due to stepwise paper transportation, and an eccentricity of the medium positioning roll, see Fig. 2. Their periods are \(N_1 = 4500 \) and \(N_2 = 12000 \) samples, and \(\text{lcm}(N_1, N_2) = 8N_1 = 3N_2 \). This is in agreement with measured disturbance periods in wide-format roll-to-roll printers, see Fig. 3, for which typical print-pass periods are in the order of several seconds.

B. Repetitive Control Designs

Three repetitive controllers are designed. The multiperiod designs are implemented with memory lengths \(N_1 \) and \(N_2 \), i.e., \(n = 2 \). All filters \(L_i \) are constructed through inversion of model \(\hat{T} \), i.e., \(L_i(z) = 1/\hat{T}(z) \), and the robustness filters \(Q_i \) are designed as 50th order zero-phase low-pass FIR filters with cutoff frequencies 35 Hz.

1) A cascaded multiperiod RC (4) is designed according to Procedure 1 and Theorem 2, see Fig. 9. Due to the cascaded structure, the equivalent plant \(T_i^{eq} \) in loop 2 closely matches the true system \(T \), see Fig. 7. As a result, gains \(\alpha_i = 1 \) are permitted by Theorem 2.

2) A parallel multiperiod RC, i.e., without \(\hat{T} \) in Fig. 5, is designed according to \[16, \text{Th. 1}\] and \[11, \text{Th. 1}\]. Due to the absence of \(\hat{T} \) in Fig. 5, the learning gains have to be set to \(\alpha_i = 0.5 \) to guarantee stability.

3) A single-period RC is designed according to Theorem 2 with \(n = 1 \), i.e., \(|(1 - \alpha T(e^{j\omega})L(e^{j\omega}))Q(e^{j\omega})| < 1 \forall \omega \).

The memory length of the RC is \(N = \text{lcm}(N_1, N_2) \).

C. Experimental Results

The results are presented in Figs. 10 and 11. In Fig. 10, the norm \(\|e_p\|_2 = \sqrt{\sum_{k=1}^{N_1} |e_p(k)|^2} \) is depicted as a function of repetitions of \(r_1 \), where \(e_p(k) = e(k + pN_1) \). The following observations are made.
The cascaded multiperiod RC (○) achieves fast convergence. After \(N_1 \) samples, a large part of sinusoidal disturbance \(r_1 \) is compensated by \(R_1(z) \), see Fig. 11. Since the control action of \(R_1 \) is approximately hidden from \(R_2 \) in the cascaded structure, \(R_2 \) is able to reject disturbance \(r_2 \) within two periods \(N_2 \).

The parallel RC (×) leads to very slow convergence. This is due to the absence of \(T \) in Fig. 5, resulting in interaction between \(R_1 \) and \(R_2 \), see also Example 2.

Single-period RC (•) yields zero control action until \(\text{lcm}(N_1, N_2) = 8N_1 \) samples, i.e., the control action is updated every \(8N_1 \) samples. The least common multiple of general multiperiodic disturbances may be much higher, e.g., consider Fig. 3(b), which can lead to unacceptably long delays before learning.

For all RC designs, the remaining error after convergence has peak magnitude \(2 \mu m \), i.e., disturbance \(r \) in Fig. 8 is accurately compensated. Hence, it is expected that the control designs are suitable for the actual compensation of MPEs, such as depicted in Fig. 3.

VI. CONCLUSION

The results in this article allow systematic RC design with fast convergence and accurate tracking for a class of, possibly nonperiodic, signals that consist of a finite summation of periodic components. The developed approach involves sequential design of multiple repetitive controllers in a cascaded interconnection. The cascaded structure reduces interaction between repetitive controllers, and the sequential approach enables to address robustness to modeling errors in a nonconservative manner. Experiments on a wide-format roll-to-roll printer demonstrate accurate compensation of multiperiodic disturbances in medium transport, with superior convergence speed compared to preexisting approaches.

REFERENCES

Patrick Bevers received the M.Sc. degree (with great appreciation) in systems and control with specialization in control systems technology from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2018. He is currently a Technical Support Engineer with ASML, Veldhoven, The Netherlands. His research interests include system identification, repetitive control, and precision motion control, with applications to mechatronic systems.

Sjirk Koekebakker received the M.Sc. and Ph.D. degrees in mechanical engineering from the Delft University of Technology, Delft, The Netherlands, in 1993 and 2001, respectively. Since 1999, he has been a Mechatronic Designer with Océ Technologies B.V., Venlo, The Netherlands, which is a part of the Canon Group. As of 2009, he is also a part-time Senior Researcher with the Control Systems Technology Group, Mechanical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands. His main research interests include iterative learning and repetitive control, precision motion control, and printing systems.

Tom Oomen received the M.Sc. degree (cum laude) and Ph.D. degree in mechanical engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2005 and 2010, respectively. He held Visiting Positions with KTH, Stockholm, Sweden, and with The University of Newcastle, Callaghan, NSW, Australia. He is currently an Associate Professor with the Department of Mechanical Engineering, Eindhoven University of Technology. His research interests include the fields of system identification, robust control, and learning control, with applications in mechatronic systems. Dr. Oomen was the recipient of the Corus Young Talent Graduation Award, 2015 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY Outstanding Paper Award, and 2017 IFAC Mechatronics Best Paper Award. He is an Associate Editor for the IEEE CONTROL SYSTEMS LETTERS (L-CSS) and IFAC Mechatronics.

Lennart Blanken received the M.Sc. degree (cum laude) and Ph.D. degree in mechanical engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2015 and 2019, respectively. He is currently a System Designer Mechatronics with Sioux Mechatronics, Nuenen, The Netherlands. His research interests include advanced feedforward control, learning control, repetitive control, and their applications to mechatronic systems.

Lennart Blanken received the M.Sc. degree (cum laude) and Ph.D. degree in mechanical engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2015 and 2019, respectively. He is currently a System Designer Mechatronics with Sioux Mechatronics, Nuenen, The Netherlands. His research interests include advanced feedforward control, learning control, repetitive control, and their applications to mechatronic systems.

Tom Oomen received the M.Sc. degree (cum laude) and Ph.D. degree in mechanical engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2005 and 2010, respectively. He held Visiting Positions with KTH, Stockholm, Sweden, and with The University of Newcastle, Callaghan, NSW, Australia. He is currently an Associate Professor with the Department of Mechanical Engineering, Eindhoven University of Technology. His research interests include the fields of system identification, robust control, and learning control, with applications in mechatronic systems. Dr. Oomen was the recipient of the Corus Young Talent Graduation Award, 2015 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY Outstanding Paper Award, and 2017 IFAC Mechatronics Best Paper Award. He is an Associate Editor for the IEEE CONTROL SYSTEMS LETTERS (L-CSS) and IFAC Mechatronics.