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Chapter 1

Introduction

Over the past decade, the amount of products that contain software has increased exponentially. With this,
also the total costs of software errors have increased after a product release. In the United States, the annual
financial losses have grown from 40 billion dollars, or about 2% of the U.S. Gross National Product in 1983
[Boehm and Papaccio [1988]], to 1.7 trillion dollars, or about 9%, in 2017 [Tricentis [2017]].

One may ask themselves how to reduce these costs. It becomes exponentially more expensive to repair defects
when found in a later development stage [Boehm and Papaccio [1988]]. This suggests constructing a method
to discover these defects in the earliest stage of a new software product, which we might call the programming
stage.

TIOBE Software, a Dutch company, has developed such a method, called the TIOBE Quality Indicator
(TQI). The company tests over 1 billion lines of programming code daily with this method, measuring software
quality in the programming stage [Jansen [2019b]]. The result of these measurements is a TQI score between
0 and 100, where a higher value is claimed to indicate better quality software code. One part of this quality is
the amount of defects in the finalized product.

TIOBE wants to provide a proof for the claim that a higher TQI score results in a lower amount of software
defects. This report is the outcome of research that tries to construct a general method that can be used to
analyze whether statistical evidence is present to support the stated claim.

The report is constructed as follows. First a problem description will be given. Following, the given dataset
will be described and an appropriate selection will be made on which the analysis can be done. Thereafter,
a section will be stated consisting of theory which can be applied to analyze possible relationships between
variables. Subsequently, the theory will be applied on the given dataset, giving R code along the way to guide
the reader. Then, an interpretation of the results is given followed by a conclusion in which the statistical model
will be mentioned and the research questions will be answered. Finally, a set of assumptions will be discussed
and a recommendation to TIOBE on how to use this document will be given.
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Chapter 2

Problem Description

The problem that the research of this report is based on, is that of constructing a general method which can
be used to analyze the testing method of TIOBE. A relationship between the TQI score and the amount of
software defects in a finalized product containing software is claimed to exist by TIOBE. This claim can be
analyzed by comparing the variable TQI score, or other variables that the TQI score is constructed out of, with
the variable that describes the amount of software defects. Before that can be done, definitions are needed for
the TQI score and we will reason what variable can be used for the software defects.

2.1 Definition of the TQI Score

The International Organization for Standardization develops and publishes international standards. One is the
standard for software quality called ISO 25010 [ISO/IEC [2011]]. It defines 8 main quality factors. These include
the following three factors:

• Operability: The degree to which the product has attributes that enable it to be understood, learned,
used and attractive to the user, when used under specified conditions.

• Reliability: The degree to which a system or component performs specified functions under specified
conditions for a specified period of time.

• Performance efficiency: The performance relative to the amount of resources used under stated conditions.

The problem with the ISO 25010 standard is that it does not specify how to measure quality attributes. It can
be debated whether it is even possible to find a measurement for the factor Operability, while it would seem
to be easier to find one for the factor Reliability. Also the factors might have different meanings in different
contexts. Take for example Performance: for some software systems a response within 1 second is sufficient,
while others demand a response within 1 millisecond. This makes the factor Performance efficiency also difficult
to measure.

1Unit tests are small automated tests that check a particular part of a program such as a single function. The actual result of
these automated tests are compared to the expected results.[Jansen [2019a]]

Metric Weight Description
Code Coverage 20% Indicator of how many lines of code or executable

branches in the code have been touched by unit tests1

Abstract Interpretation 20% Runs deep flow analysis tools to find
errors that may result in crashes

Cyclomatic Complexity 15% Counts the number of independent
paths through a program

Compiler Warnings 15% Warnings that indicate possible flaws in the code
Coding Standards 10% A set of rules that engineers should follow to

standardize the practice of coding
Code Duplication 10% Amount of duplicated code
Fan Out 5% Indicator of how many different modules

are used by one certain module
Security 5% Indicator of the vulnerability of code

Table 2.1: Description of the eight metrics that TQI uses to test software quality
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The company TIOBE combines eight commonly used software code quality metrics in industry today, each
mapping to one or more of the quality factors in the ISO 25010 standard and thus systematically measuring
them. The weights and description of the metrics are defined in Table 2.1. These metrics are assigned a raw
value when running the test over a file with programming code. These raw values are then mapped to a number
in the interval [0, 100] by appropriate formula for each metric. We call this number the TQI metric score for
the corresponding metric.

Summing the product of these TQI metric scores and their corresponding weights gives us the TQI score for
one file with programming code.

Each day, TIOBE runs all of the above metric tests on more than a billion lines of code (LOC) of the software
systems of their customers. This means, that we have daily data for the TQI score and TQI metric scores.

2.2 Definition of the (Accumulative) Fix Rate

Having defined the TQI score, we would like a way to define how software defects can be stored and compared
to the TQI score. This is not an easy task. It might take months or even years for a software product to be
developed and for a customer to encounter an error. After having found the error and actually reporting it,
there is still a long path through all sorts of help desks to get this message back to the developers, who then
have to try and reproduce the defect, if they have not solved it already.

By this reasoning, we will consider the defects or bugs found in the testing phase of the development of a
new product. The feedback loop is shorter and because of that, we have a greater amount of data on both TQI
scores and defects. Referring to “software defects” in the future of this report will be those found in the testing
phase.

The dataset used for this project came from the internal TICS database of TIOBE, which contains the files
needed for the development and maintainability of their company and clients. The way that software defects
are stored, is in a metric called Fix Rate2. Whenever a file is touched while fixing a bug, the value of Fix Rate
goes up by one for that file for that day and will be zero when no defect had been removed that day.

By earlier research in this problem, it was suggested that it was no use to analyze differences in TQI scores
just before and just after a positive value for the Fix Rate had been documented. This was due to the problem
that the difference was too insignificant to draw a conclusion from.

We might ask ourselves what it means for a file to contain more or less Fix Rates in some amount of time.
When a higher frequency of Fix Rates has been spotted for a file, we expect to see more Fix Rates in the future
when compared to a file with a lower frequency of Fix Rates. This might be because the code has been written
in a buggy or unclear way. The metric that accumulates all the Fix Rates for one file is called the Accumulative
Fix Rate (AFR). As we are interested in the frequency of the Fix Rates, the AFR will be scaled by the amount
of time that has passed since a file has been created. We define this time as the Time In Existence (TIE).
It should be noted, that the value for AFR/TIE is heavily dependent when comparing different dates for a
single file. For example, when a file has had 10 Fix Rates in 10 weeks, then it has a value of 1 for the variable
AFR/week. The value for the following day will be heavily dependent on the value of the current day. When
a bug has been fixed and the file has been touched, the variable AFR/TIE will increase by a small amount. If
this was not the case, the variable AFR/TIE will decrease by a small amount. In either case, the value will still
be very close to 1.

Most statistical model assume that the observations going into the analysis are independent of each other.
By the arguments named in the previous paragraph, having a file which has data for different dates makes it
harder to meet this assumption. To resolve this dependency issue, we will only look at a snapshot in time.
Then, the time dependency of files will not be troublesome anymore.

Finally, let us argue that the frequency of the Fix Rates should also be scaled by the total amount of LOC
of the file. Namely, it is generally known in the programming world that a higher LOC count results in more
defect, as there are more possible lines that can contain a defect. [Ostrand et al. [2005]] confirms this. A model
using only 20% of the files with the highest LOC counts were selected, which contained roughly 73% of defects.
This model was repeated in multiple settings with similar results, whether the defects were identified after unit
tests or before. Because of this conclusion, in this report, the following assumption holds:

Assumption 1. The expected amount of software defects increases in a file, as the amount of Lines Of Code
increases.

Now, as a file with a greater amount of LOC is expected to have a higher value for AFR/TIE, it would be
preferred to also scale the AFR/TIE by LOC. Another reason to do this, is that the TQI score and TQI metric
scores are also scaled by the amount of LOC. Then, the variable AFR/(LOC*TIE) will be comparable to those
variables and we get the following assumption:

2Note that the way the metric Fix Rate is defined, it is not actually a rate. There is no limitation on the amount of bug fixes
that can be done in one file. The fact that the metric is per file, does not make it a rate.

3



Assumption 2. A higher value for AFR/(LOC*TIE) in a file or directory results in lower quality software
code, as more Fix Rates are expected to come in the future when compared to a file or directory with a lower
value for AFR/(LOC*TIE). The term ‘quality’ refers to the expected amount of defects in a certain time period
in this report.

In our research, the variable of interest used to simulate code quality, is the variable AFR/(LOC*TIE). It
must, however, be noted that not all TQI metrics are directly linked to software defects. Think for example
of the TQI metric Cyclomatic Complexity or Fan Out, which are both only mapped to the ISO 25010 quality
factor ‘Maintainability’. This might cause noise in the final TQI score, when compared to our chosen variable
of interest.

2.3 Research Questions

There are different kinds of models available to analyze a possible relationship between two or more variables.
As we are looking for models that are capable to perform the analysis correctly, we get the following research
questions:

“Which model(s) is/are suitable for proving or rejecting the hypothesis that quantitative evidence
exists for a positive relationship between the TQI score and quality of software code?”

“With what precision can code quality be predicted by the TQI score and the TQI metrics?”

“Are the weights of each TQI metric to the TQI score assigned appropriately?”

2.4 Summary

• TIOBE claims a relationship between the TQI score and the amount of software defects in the final
product.

• The variable Accumulative Fix Rate (AFR) per Lines of Code (LOC) per Time In Existence (TIE)
is used to model the frequency of software defects. A higher value for AFR/(LOC*TIE) indicates
lower quality software code.

• A statistical model is sought which predicts the variable AFR/(LOC*TIE) using the TQI score and
TQI metrics.

4



Chapter 3

Data Description

A statistical model which finds a relationship between the TQI score or TQI metric scores and the variable
AFR/(LOC*TIE) is desired. When searching for a model, one should first be familiar with the data they are
dealing with. In this section, a usable dataset will be described and different choices of which data to use will
be proposed. Also, a way to prevent double observations will be stated. Following, a type of analysis will be
given, which could lead to incorrect conclusions and should be avoided. Finally, pseudocode for an algorithm
will be given, which we believe can be used to make a selection of the data to apply a statistical model on.

3.1 Data Description

3.1.1 Type of Data

The observations which can be used for our analysis are gathered from a database provided by TIOBE. Each
observation, uniquely determined by its path name, is either a file or a directory containing either files, directories
or both. For each path name, Table 3.1 shows the most important variables for our research. The range of
possible values that each variable can take is given below each variable. In this table, the column including the

TQI score TQI metric scores AFR LOC TIE
Path name [0, 100] [0, 100] {0,1,2,. . . } {0,1,2,. . . } {0,1,2,. . . }

Table 3.1: Description of the type of data for each observation

TQI metric scores actually consists of eight columns, each with their own TQI metric score in the interval [0, 100],
i.e. Code Coverage, Abstract Interpretation, Cyclomatic Complexity,. . . etc. These metrics are described in
Table 2.1. Multiplying the TQI metric scores with their weights and summing them up gives us the TQI score,
which is again in the interval [0, 100]. The variables TIE, AFR and LOC all are counts, where TIE is measured
in seconds.

3.1.2 Data Structure

The files and directories in the database have a tree structure. It is necessary to know this when we wish to
make an algorithm that traverses down this tree. We define the path names to be the nodes of the tree, where
the highest node of the tree is known as the root, which has a depth of 0. Following a line to a file or directory
below a parent directory will increase the depth by a value of 1, while following a line upward to a parent
directory decreases the depth by 1. A connected subset of the nodes of the tree structure is shown in Figure 3.1.

In the database used for this research, the tree has 3041 nodes and reaches a depth of 13 from the root.
Some depths contain hundreds of files, while others only contain a few. All leaves of the tree are files and each
file daily receives values for its variables. These values are then aggregated from bottom to top, until the root
is reached and each node has been assigned a value.

3.2 Data Selection

3.2.1 Removing Erroneous Observations

The test method of TIOBE combines eight weighted TQI metric scores to one final TQI score. It may, however,
happen that an error occurs in the process of testing. In this way, one or more TQI metric scores might

5



. . .

DataAcquisition

TICS Build Integration

TICSBuild.pm TICSBuildAnt.pm . . .

TICS Client

. . .

. . .

Figure 3.1: Part of the tree structure from the TIOBE database

be unknown for the date when testing happened. According to the TQI definition the worst case scenario is
assumed and a value of zero is assigned to those unknown TQI metric scores.

As it is unknown whether these assigned zero values are correct, we will not use these erroneous data points
in our analysis. They will be removed. When no errors occurred in the process of testing and all metrics of a
file are assigned a value, the data is considered to be trustworthy in our context.

The directories in the tree structure are assigned values which are aggregated from all files present in that
directory. This means, that whenever a file is considered to be erroneous, all ancestor directories are also
considered to be erroneous and will also be removed. It should be noted here that each node is an observation.
When a directory is removed, the children are not removed, unless they are also considered to be erroneous.

The tree in Figure 3.2 provides a visualization of how the removing of erroneous observations takes place
in practice. Let the numbers in this tree represent the percentage of TQI metric scores that were assigned a
value without error for each node. The directories and files with a percentage of 100 will remain. When, after
removing erroneous nodes, we examine the remaining data points, it seems that each set of connected nodes
remains in a tree structure. Let us call them branches. In Figure 3.2, we are left with 5 branches, each boxed
inside a red rectangle. Note that the root of a branch can have a tree depth lower than 0.

Figure 3.2: Example of the removing of erroneous observations

As it was mentioned in Section 2.2, it is necessary to take a snapshot in time for our analysis. The files
and directories get assigned scores on a daily basis, which means that a choice has to be made on what date to
perform the analysis on. This date is chosen to be 25-02-2019, where still 1918 out of 3041 nodes are available
from the original tree. The choice of date was based on three reasons. Firstly, the date should not be too far
into the past, as updates of the definition of the TQI score on average get released every 4 months. Secondly,
a new bug tracker was introduced into the database of TIOBE, which reset the amount of AFR to 0 for all
observations on 26-02-2019. Thirdly, the selected date had the least amount of erroneous observations in the
period from 01-01-2019 to 25-02-2019.

6



3.2.2 The Need to Aggregate

We might wonder why it is necessary to keep all the directories as observations. Why is the analysis not done
on files only? We might even wonder whether directories with aggregated values can be compared to files. The
second topic will be discussed later. For the first topic, we must take a closer look at the assigned values for
the files, ignoring the directories as observations. Thus, only the leaves of the tree will be considered. After the
removal of erroneous observations, we are left with 1646 files.

The variable of interest in our research is AFR/(LOC*TIE). We are interested in the ability to predict this
variable given that we know the TQI score and the TQI metric scores. However, 906 out of 1646, or 55% of
the files have a value of 0 for AFR, so also a value of 0 for the variable of interest. This can be problematic in
certain settings.

Firstly, let us examine our ability to predict the response variable AFR/(LOC*TIE) with the TQI scores. As
such a large percentage of the response have a value of 0, we wish to see what range of TQI scores corresponds
to these responses. In Figure 3.3 on the next page, two boxplots are shown. The first boxplot shows the range
of TQI scores given that the amount of AFRs is 0. The second boxplot shows the range of TQI scores given
that the amount of AFRs is larger than 0. As both ranges of the TQI scores are almost identical, the accuracy
for our predictions will be very low when given a certain TQI score. The bottom image in Figure 3.3 shows us
a scatterplot of the TQI scores of the files against the AFR per thousand LOC (KLOC) per week. Let us be
given a TQI score between 80 and 100. Then our prediction is very unlikely to have a high accuracy. There is
a large probability that the value for the response variable is 0, but when it is not, the range of possible values
for the AFR/(KLOC*week) also varies a lot. This might be an indication that it is not possible to look at the
files only for the analysis.

Secondly, if a conclusion can not be drawn from the comparison of the TQI score with the variable of interest,
more information might be available when examining the separate metrics. Figure 3.4 on Page 9 and Figure 3.5
on Page 10 show us information on the relation of each metric and the variable of interest. For each metric,
the first boxplot shows us the range of TQI metric score when the amount of AFRs is 0, as this was the case
for 55% of the files. The second boxplot shows us the same for the case that the amount of AFRs is positive.
The third image shows us a scatterplot in which the TQI metric score is plotted against the variable of interest.
One thing we can notice is that for all metrics is that the range of the TQI metric scores when the amount of
AFRs is 0 is very large compared to the maximum possible range of [0, 100]. Besides, there is a great overlap
in range between the first and the second boxplot. This means that, given a TQI metric score, the accuracy
of our prediction on the amount of AFR/(KLOC*week) would be very low. Only the boxplots of the metrics
Code Coverage and Fan Out seem to differ in their median value. However, looking at the scatterplot tells us
that an accurate prediction is not possible due to the spread of values in the variable of interest for different
TQI metric scores. So, also when looking at separate metrics, doing the analysis only on the files does not seem
promising.

A different approach should be taken. To reduce the amount of zero’s in our variable of interest, an
aggregation of files could be an option. The profit here lies in the fact that a smaller percentage of values of
the variable of interest are equal. When more different values are taken in the variable AFR/(KLOC*week),
it is more noticeable whether a difference in value of the TQI score or TQI metric scores is connected to a
particular value for the variable of interest. However, when we aggregate files to directories, two questions may
arise. Does the directory with the aggregated values still represent all files in it? If it does, is this directory
still comparable to other directories and files? Before answering both questions, we might even wonder when it
is possible for two files to be compared, as each programmer can have their own way of writing code. For now,
these questions are postponed to Chapter 8 and the following two assumptions are employed:

Assumption 3. The values of the variables in Table 3.1 can be compared between different nodes. Thus, the
values of a file are comparable to those of other files and directories and the values of a directory are comparable
to those of other directories and files.

Assumption 4. A directory is a representation of all the files present in that directory.
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Figure 3.3: Top-left: Boxplot of TQI scores where the files have a value of 0 for AFR. Top-right: Boxplot of
TQI scores where the files have a positive value for AFR. Bottom: Scatterplot of the TQI score against the
variable AFR/(KLOC*week).
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Boxplot of AI scores
AFR equal to zero
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Boxplot of AI scores
AFR not equal to zero
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Boxplot of CyC scores
AFR equal to zero
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Figure 3.4: Examination of the metrics Code Coverage (CoC), Abstract Interpretation (AI), Cyclomatic Com-
plexity (CyC) and Compiler Warnings (CW). Left: Boxplot of TQI metric scores when the amount of AFRs
is 0. Middle: Boxplot of TQI metric scores when the amount of AFRs is positive. Right: Scatterplot of TQI
metric scores plotted against the variable of interest AFR/(KLOC*week).
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Figure 3.5: Examination of the metrics Coding Standards (CS), Code Duplication (CD), Fan Out (FO) and
Security (S). Left: Boxplot of TQI metric scores when the amount of AFRs is 0. Middle: Boxplot of TQI
metric scores when the amount of AFRs is positive. Right: Scatterplot of TQI metric scores plotted against
the variable of interest AFR/(KLOC*week).
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3.2.3 Avoiding Double Observations

Figure 3.6: Example of a cross-section through a branch
to avoid double observations

Last section has shown us that it is not possible to do
our analysis only using the data of the files. The files
need to be aggregated and thus the directories are in-
cluded as observations. Section 3.2.2 has shown us
that, after removing erroneous observations, we are
left with a collection of branches. Now, as we as-
sumed that a directory represents all files in it, we
simply cannot use all these observations. Otherwise,
a large amount of files will be counted multiple times,
which would give them more influence in the analysis
compared to files that are only included once.

To illustrate this, let us look at a subset of nodes
taken from a branch of the TIOBE dataset on 25-02-
2019, given in Figure 3.6 on the right. Let both the
observations .../java/icons and .../java/icons/

TiobeIcons.java be included in the analysis. Then
the only difference between those observations are the
path names. As no file has been added to the directory
icons, the values for its variables are equivalent to
those of the file TiobeIcons.java. Thus, a double
observation is present, which is undesirable. Similarly,
as we assumed that a directory represents all files in it, the directory analyzer represents all files in it. As the
parent directory intellij also contains these files, they can also be seen as partial double observations.

For many statistical models, it is assumed that the observations are independent of each other. When there
is an overlap in represented files in different observations, there is a dependency present. This is another reason
to make our selection is such a way that each file is only represented once by all observations.

One way to resolve the mentioned issues, is to take a cross-section through the branch and select the files
just above or below the cross-section, so that each file is only accounted for once. The cross-section is visualized
by the red line in Figure 3.6 and the two observations inside blue circles are the selected data points. When
this has been done for each branch, all the selected observations represent all the files or leaves in the original
tree after removal of erroneous data points.

3.2.4 Depth Analysis

Root

Dir

File

File

File

File

File

File

File

Dir

Dir

Dir Dir

Figure 3.7: Example tree to visualize the concept of
holding on to leaves

In the last section, we explained that it was neces-
sary to take cross-sections through the branches, such
that no files get represented multiple times. How-
ever, there are multiple ways to make these cross-
sections. To prevent other researchers from losing
precious time, we will discuss why predictions will not
be very accurate when we take the cross-sections at
different depths in the tree. There are three main
reasons why this is not an appropriate approach.

The first reason has to deal with the fact that we
might lose information. Practitioners of the Java lan-
guage tend to use more directories than, for example,
people who use the C# language. This leads to the
fact that Java files will be stored at lower depths in the
tree than C# files. In our dataset, the lowest depth
of a C# file is at a depth of 6, while the Java files
reach depths of at most 13. This means that, when
an analysis is done on depths lower than 6, an en-
tire programming language of data is not considered.
This should not be possible, as it is undesirable to
unnecessarily exclude available data.

To solve the first issue, leaves of trees are extended
down to lower depths. This means that, when an
analysis is done on any depth below a file or leaf, this data point is also added to the analysis, so no data gets
lost. We can visualize the concept by examining the tree in Figure 3.7. Let the root have a depth of 0. We wish
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to do an analysis on depth 3. Then the files on the both depth 1 and depth 2 have to be taken into account, so
that no data gets thrown away. This is visualized by the dotted arrows pointing downward. Instead of having
only the two directories as observations on depth 3, the three files from depths 1 and 2 are also included in the
analysis.

When the leaves are taken down and no data gets lost, we can examine which depth would seem to be most
appropriate for the analysis. Depths 1 and 2 only contain respectively 2 and 5 observations. As there are very
few data points in these depths, we will not be confident enough in saying that our predictions are appropriate
for a generalization to other observations. Therefore, these depth will not be considered appropriate for the
analysis. For depths 3 up to and including 13, a zero value for the variable of interest is most common. It would
be in our interest to find the depth with the least percentage of zero’s for the variable AFR/(KLOC*week).
As explained before, we would like to see more different values for the variable of interest. This is, because
otherwise a larger amount of the values of the other variables, e.g. TQI scores or TQI metric scores, will be
mapped onto this more frequent value, which would make it harder to see trends and make predictions. Now,
the depth with the least percentage of zero’s for the variable of interest is depth 6. Approximately 20.5%, or
30 out of the 146 observations, attain this zero value. The first image of Figure 3.8 shows us the distribution of
the variable AFR/(KLOC*week). This looks quite promising as many different values of the variable of interest
are attained.

Histogram of variable AFR/(KLOC*week)

AFR per KLOC per week
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Boxplot of the amount of LOC of depth 6 observations

Figure 3.8: Statistics of observations on depth 6 of the tree. Top: Histogram of the variable of interest. Bottom:
Boxplot of the amount of LOC of the observations on depth 6.

However, before examining any possible relationships between variables, let us recall the structure of the
tree and the observations in it. Due to the nature of different languages, files written in C# are found on depth
6 and above, while files written in Java are found up to and including depth 13. If we choose to do our analysis
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on depth 6, then no directories are present containing C# files, only the files themselves, which means that the
amount of LOC for each of these observations is rather low. On the other side, almost all observations containing
Java files are directories in which at least 3 up to at most 715 files are present. This is a huge difference and we
might ask ourselves if a directory containing 715 Java files is comparable to a single C# file. Taking a closer look
at the distribution of the amount of LOC, we turn to the bottom image of Figure 3.8. Adding the information
that over 75% of observations on depth 6 have less than 200 LOC, the differences in data points become even
more obvious. For now, the observations are not similar enough to be seen as comparable to each other. Also
for other depths, either the observations are not comparable or the amount of zero’s in the variable of interest
is too high.

Hence, a different strategy should be thought of. Due to the tree containing our observations being so
unbalanced, the depth analysis is not appropriate. A strategy that finds sets of observations for which each
set has approximately a similar amount of LOC when compared to other sets might have more potential. This
strategy will be applied in the next section, called ‘Cluster analysis’.

3.2.5 Cluster Analysis

As was seen in the previous chapter, there is a large imbalance in the amount of LOC of the observations when
examining different depths of the tree. The strategy which will be applied, is that of clustering observations so
that each clustering has a more comparable amount of LOC. When this is the case, each cluster can be seen as a
data point. As it is not possible to randomly add files or directories together, this has to be done in a structured
way. First we set a value for a threshold of LOC in a cluster. We call this threshold the LOCCOUNT. Then,
we will traverse each branch by a Depth-First Search (DFS). Now there are a four possibilities that we might
run into:

• A directory has a higher amount of LOC than the LOCCOUNT. Then either:

– The directory only contains directories. Then, the DFS continues down on of the directories.

– The directory only contains files. Then, the files are combined into a cluster, which is similar to
adding the directory as a cluster, as it represents those files, and the DFS continues.

– The directory contains both files and directories. Then, the files are combined into a cluster and the
DFS continues down one of the directories.

• A directory has a lower LOC than the LOCCOUNT. Then, we add this directory as a cluster and the
DFS continues.

Let us note that, when a directory has been added as a cluster, none of its children will be visited anymore to
avoid double observations.

After running a DFS on a branch, applying the stated conditions, we are left with the sought for clusters.
Pseudocode for the DFS on a single branch is stated below, followed by an explanation.

1: function ClusteringAlgo(Clusters,NodesToV isit)
2: if NodesToV isit is empty then
3: Tree has been traversed
4: else
5: for Each node v in NodesToV isit do
6: Remove v from NodesToV isit
7: if v is a leaf then
8: if a Cluster with siblings of v exists then
9: Add v to that cluster

10: else
11: Add v as a new cluster to Clusters
12: end if
13: else
14: if the LOC of v is greater than LOCCOUNT then
15: Prepend children of v to NodesToV isit
16: ClusteringAlgo(Clusters,NodesToV isit)
17: else
18: Add v as a new cluster to Clusters
19: end if
20: end if
21: end for
22: end if
23: return Clusters
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24: end function

Before we run our algorithm, we must have a way to store our clusters. This might, for example, be done in
a list of lists or a key-value dictionary where the key denotes the cluster number and the values the files. The
parameter NodesToV isit can be a list, as we store the nodes which we still need to visit in here. The parameter
LOCCOUNT should be initialized beforehand. For the nodes the amount of LOC for each observation is
needed. Finally, information on whether the node is a directory or a leaf is necessary.

We initialize the parameter Clusters to be empty. The parameter NodesToV isit will only contain the root
of the branch as an element. The algorithm starts by looking whether there are still nodes to visit. If this is
not the case, the branch has been traversed and we return the clusters. If this is the case, we go in a for-loop to
visit all these nodes. When the node is a leaf, we must check whether already a cluster exists in Clusters which
has other leaves with the same parent. Then, we will add this node to that cluster. If this is not the case, a new
cluster will be added to Clusters with the current leaf as an element. When the node is not a leaf, it must be a
directory. If the LOC of the directory is greater than LOCCOUNT , we will continue going down the branch.
If the LOC is less or equal to LOCCOUNT , then we add a new cluster to Clusters with this directory as an
element. Thus, this algorithms gives us the clusters we are looking for.

Now, only one issue is left before we have the data in the correct form for the analysis. A large amount of
clusters only contain a small number of files. Most of these files have less than 100 LOC, which makes them
less comparable to larger clusters. To get a nicely distributed amount of LOC, the smallest clusters in terms of
LOC get removed until around 90% of the data is left.

Finally, after using a LOCCOUNT of 25000 and removing the smallest clusters in terms of the amount of
LOC, we are left with 41 observations of which only 8 have a zero value for the variable AFR. The first boxplot
in Figure 3.9 on Page 15 shows us that the amount of LOC of the observations is not that different anymore as
it was in the observations we saw in the depth analysis. The smallest observation has a size of 1256 LOC and
contains 20 files. The largest observation has a size of 20050 LOC and contains 53 files. This makes us believe
that it is more sensible to see these clusters as comparable to each other. Also, as can be seen in the second
boxplot in Figure 3.9, the distribution of the response attains a wide range of values. To get a better view of
this, the histogram below the boxplot shows the distribution of the variable AFR/(KLOC*week). As enough
different values are assigned and the clusters are comparable, we believe that any relationship should be visible,
when one is present. Thus, the clusters will be used as observations in our statistical model.

3.3 Summary

• The data used for this research has been gathered from a TIOBE database and it has the form of a
tree structure.

• After removing erroneous observations, a set of branches, or connected nodes, is left, of which each
has a tree structure.

• Aggregation of files is necessary, as the percentage of zero values for the variable of interest is too
high when examining the files only.

• Doing an analysis on observations on different depths in the tree brings along the issue that these
observations become incomparable to each other due to differences in sizes.

• Clustering files by the amount of LOC seems to be an appropriate approach to achieve observations
which can be seen as comparable in our context.
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Figure 3.9: Statistics of observations obtained by the ClusteringAlgo algorithm when LOCCOUNT has a value
of 25000. Top: Boxplot of the amount of LOC. Middle: Boxplot of the variable of interest. Bottom: Histogram
of the variable of interest.
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Chapter 4

Methodology

In the previous chapter, an algorithm is shown that makes a selection of our data in a way that the resulting
observations are believed to be appropriate to run an analysis on. However, before this can be done, let us
investigate different possible statistical methods for examining whether evidence exists for a relationship between
variables.

This section is structured as followed. Firstly, the Pearson product-moment correlation coefficient will be
defined. This coefficient expresses the strength of a linear relationship between two continuous variables. It can
also be used with care when one variable is discrete, but care should be taken as assumptions are violated.

Secondly, theory on linear regression models will be given. These type of models are not only appropriate
for settings in which we have two variable, but can also be used when we wish to analyze the relationship of
multiple variables on a single one. As the assumptions of this model are quite restrictive, the structure of a more
general type of model will be given, called the generalized linear model. Theory on two possible applications of
these models shall be stated, given our variable of interest AFR/(KLOC*week).

Thirdly, multiple ways to check whether the applied generalized linear model is appropriate to represent the
data will be given. Also, theory on outlier detection and influential observations is given.

Fourthly, additional information can be gathered on the TQI metric scores by using a method called the
principal component analysis. Using this method will give us an indication whether different TQI metrics
are actually measuring different things, based on the given data. Also, we might be able to examine which
observations seem to have more similar values and examine the underlying reason for this.

Finally, a method will be given to analyze whether the weights assigned to each TQI metric is appropriate.
This can be done by calculating the relative importance of each TQI metric on the variable of interest.

4.1 Pearson’s Product-Moment Correlation Coefficient

Figure 4.1: Different
Pearson correla-
tion coefficients
(http://www.
sthda.com/english/

wiki/correlation-

test-between-two-

variables-in-r)

The theory for the Pearson coefficient is taken out of Sheskin [2006].
The Pearson correlation coefficient, denoted as r, is a real value in the interval [-1,1].

The further the value deviates from zero, the stronger the linear correlation between
two variables. This can be either a positive correlation for a positive real value or a
negative correlation for a negative real value. In Figure 4.1, two sample sets are shown
with respectively a strong positive correlation and no correlation at all. There are five
assumptions made when computing the value of r:

1. The sample of n observations for which the value r is computed is randomly
selected from the population it represents.

2. The level of measurement upon which each of the variables is based is interval or
ratio data.

3. The two variables have a bivariate normal distribution1. This assumption is
necessary for when we need to calculate confidence intervals.

4. Homoscedasticity is assumed, which exists when the relationship between the
two variables is of equal strength across the whole range of both variables. This
assumption is violated when the predictions for the response variable have a
different accuracy for different values of the independent variable.

1When X and Y are independent normal random variables, aX + bY has a bivariate normal
distribution. The distribution has the shape of a 3D bell curve.
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5. Finally, observations are assumed to be independent of each other.

Calculating the coefficient when one or more of these assumptions are violated is still
possible, but care should be taken when interpreting the computed value.

In our research, the response variable consists of scaled count data, i.e. the non-
negative integers, also called counts, are the amount of AFR, which are scaled by both
the amount of LOC and the TIE. It is highly unlikely that these scaled counts are
normally distributed, which violates the third assumption. When only comparing the
response to a single other variable, we might want to calculate a correlation coefficient
to see how strong the linear association is between the variables, but care should be
taken when interpreting the result. Nonetheless, when the range of the dependent
variable is relatively high and enough different values are observed, we can still use the
coefficient and get reasonable results.

Let x1, x2, . . . , xn be the independent variable observations and y1, y2, . . . , yn be dependent variable obser-
vations of which we wish to analyze the linear relationship. Then r is defined as follows:

Definition 1 (Pearson’s product-moment correlation coefficient).

r =
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(4.1)

Confidence intervals for the Pearson’s correlation coefficient r taken from Bonett and Wright [2000] for respec-
tively the lower- and upper limits are given as
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(4.3)

where n denotes the sample size and 1− α the confidence level.
When we wish to calculate the regression line of y on x, it can be done as follows:

ŷ = ax+ b (4.4)

where

a =

P
xy − nx̄ȳP
x2 − n(x̄)2

= r

 pP
y2 − n(ȳ)2pP
x2 − n(x̄)2

!
(4.5)

and
b = ȳ − ax̄ (4.6)

This regression line can be used to give predicted values ŷ for the response variable y, given certain values for
the predictor variable x.

As a bivariate normal distribution is assumed, the correlation coefficient expresses the strength of a linear
relationship. Whenever a curvilinear relationship is present, the correlation coefficient will give an underestimate
of the actual relationship. This means that the absolute value for r will be lower than when a linear relationship
was present. Because of this, it is always wise to construct a scatter plot of both variables and check visually
which type of relationship might be present.

One other important aspect to remember is the popular phrase ”Correlation does not imply causation“.
Even if the strength of our correlation coefficient is very close to 1 or -1, it must be remembered that this
does not mean that different values in the predictor variable are the cause for different values in the response
variable. A third underlying variable might be present which causes the changes in both the predictor and
response variable.

Other correlation coefficient for bivariate analysis can be found in the earlier mentioned literature of Sheskin
[2006].

4.2 Regression Analysis

Finding a strong linear relationship between two variables can be a positive result. However, we can find
ourselves in the setting of having multiple independent variables of which it is possible that they influence a
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single dependent variable. This might for example be when we try to predict the value for AFR/(KLOC*week)
with the TQI metric scores. Then, a bivariate analysis does not include all the necessary elements and we have
to turn to a more extended type of model. Also, in the case of a nonlinear relationship, models that describe
the data more accurately than a linear regression line can be found. The family of models that take in multiple
predictor variables, a single response variable and are capable of dealing with nonlinear relationships are called
regression models.

Figure 4.2: Example of an exponential re-
gression model, predicting the response vari-
able Field defects with the predictor variable
Months after a new release. [Li et al. [2005]]

Regression analysis can be used for finding a formula. When-
ever we wish to have a general formula for a relationship between
the predictor variables and the response variable, regression mod-
els are key to finding this formula. A simple example for this can
be seen in Figure 4.2, where regression is used with the purpose
of predicting the dependent variable on the y-axis with the inde-
pendent variable on the x-axis. The formula describing the line
can be used to make a prediction for the amount of field defects
given a certain months after a new release.

Finally, similar as in the case of a correlation coefficient, it
is possible to calculate confidence intervals. This is useful as it
gives us a way to examine the accuracy of the predictions of the
model.

4.3 Types of Regression Models

There are various models for different types of response vari-
ables. When the response is continuous, we might turn to linear-
or nonlinear regression. Other more advanced options like ridge
or lasso regression are also available. If we are dealing with count
data, however, the options become more limited. As the response
variable in our research consists of scaled count data, we might
assume that a model for count data responses is appropriate.
The reason why issues arise when applying a linear or nonlin-
ear regression model can be explained as follows. Firstly, let us
examine the formula which is used in a linear regression model with p independent variables x1, . . . , xp, one
dependent variable y and n observations with 1 ≤ i ≤ n:

yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi where εi ∼ N(0, σ2) (4.7)

where σ2 is a constant variance variable for all error terms εi, the independent variables are x1i, . . . , xpi and
β0, . . . , βp are the parameters to be estimated. The problem we can run into with the regression models for
a discrete response is that the right-hand side of (4.7) can become negative for certain combinations of the
estimated parameters βji, the variables xji and the error term εi. This is an issue, as the left-hand side cannot
become negative when we are dealing with scaled count data as the response.

Secondly, the error terms in linear or nonlinear regression models are assumed to be normally distributed.
However, when the response variable is of the type counts, this seems to be a poor choice [Dunn and Smyth,
2018, p. 166]. We will assume that modelling the randomness in a model with the normal distribution is also a
poor choice when the counts are scaled.

Thirdly, the assumptions of linearity and constant variance are unlikely to hold. Linearity says that right-
hand side of (4.7) captures the true relationship between the predictor variables and the mean of the response
variable, and all important predictors are included [Dunn and Smyth, 2018, p. 147]. The assumption constant
variance suggests that over all observed values of the response variable, the amount of deviation from the model
is constant.

The type of model that takes these problems into account is called the generalized linear model, or in short,
glm. A glm allows for the error term in the response variable to have a different distribution than the normal
distribution. The glm works in a different way than linear regression models. A link function is used to connect
the mean of the assumed distribution to a so-called linear predictor. The following section gives more details in
how this type of model is structured and provides the theory for two different types of glms when the response
variable has the type of scaled counts.

4.4 Generalized Linear Model

In this section, the basic theory of a generalized linear model, or glm, will be discussed. For the most part, this
theory is based on Chapters 5, 7, 8 and 10 from the book of Dunn and Smyth [2018].
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4.4.1 Linear Predictor

One part of the structure of a glm is known as the linear predictor. This part includes all the independent
variables and is defined as follows:

η = β0 + β1x1 + β2x2 + · · ·+ βpxp = β0 +

pX
j=1

βjxj (4.8)

where the xj are the independent variables and the βj are the parameters which need to be estimated.

4.4.2 Link Function

In glms, it is assumed that the mean µ of the assumed probability distribution f(y; θ, ϕ) for the response is
linked to the linear predictor η through a function g. This link function is a monotonic and differentiable
function. The property of monotonicity is required such that any value of η is mapped to only one possible
value of µ. The property of differentiability is necessary for estimation. One way to find an appropriate link
function is to write f in its exponential form as in (4.10). Then the canonical link function uses the canonical
parameter θ, such that

η = θ = g(µ). (4.9)

Before using this canonical link function, it must first be checked whether issues can arise. Namely, in (4.9), it
is not preferred for either η or g(µ) to take values which the other cannot take. For example, η taking values in
R, while g(µ) takes values in [0,∞). If this is the case, however, a different link function could be taken.

4.4.3 Exponential Family Probability Distribution

Generally, it is very hard to check what the distribution of the response variable y is when dealing with count
data. This might happen due to the fact that a lot of predictor variables x1, ..., xp are present, each with
their own distribution. This means that we have no other option than to assume a certain distribution for the
response and, afterwards, check how well the model fits the data.

This assumed probability distribution should belong to the exponential family, the last assumption named
in Section 4.4.4. That means that the probability function can be written in the following form:

f(y; θ, ϕ) = a(y, ϕ) exp

�
yθ − κ(θ)

ϕ

�
(4.10)

where θ is called the canonical parameter and ϕ > 0 is known as the dispersion parameter. The function a(y, ϕ)
is a normalizing function and κ(θ) is called the cumulant function, but both will not be of much interest in this
report.

Let us define the variance function V (µ) as follows

Definition 2 (variance function).

V (µ) =
d2κ(θ)

dθ2
=
dµ

dθ
(4.11)

Then, the variance of the response y can be written as

V ar(y) = ϕV (µ) (4.12)

This formula will be useful for finding out certain properties of probability distributions. For both the Poisson
and negative binomial distribution, these properties will tell us a lot on how the model will behave. Both
distribution will be discussed in Sections 4.5 and 4.6.

4.4.4 Assumptions

There are seven assumptions made when fitting a glm:

1. Lack of outliers, so that the model is appropriate for all observations.

2. The correct link function g is used.

3. All important predictor variables are included in the linear predictor η on the correct scale, which is known
as Linearity.

4. The correct variance function V (µ) is used, which is defined in Section 4.4.3.
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5. The dispersion parameter ϕ is constant.

6. The responses yi are independent of each other.

7. The responses yi come from an assumed probability distribution within the exponential family.

These assumptions are never exactly true, but evaluating each one after the model has been fitted can be used
to improve the model.

4.5 Poisson Regression

Earlier, it was already mentioned that only a subset of all available models are applicable to settings where
the response is in the form of counts. One of the most basic distributions used to model counts is the Poisson
distribution. The function that describes the Poisson is given by

Definition 3 (Poisson distribution).

P(Y = y) = e��
λy

y!
for y = 0, 1, 2, . . . (4.13)

where λ > 0 is the only parameter.
It is possible to use this distribution in a glm, as it belongs to the exponential family. We can see this when

rewriting the right-hand side of (4.13):

e��
λy

y!
=

1

y!
exp(y log(λ)− λ) =

1

y!
exp(yθ − exp(θ)) = a(y, θ) exp

�
yθ − κ(θ)

ϕ

�
where θ = log(λ) (4.14)

As the Poisson distribution can be written in the exponential form, it belongs to the exponential family and
can be used to model the mean of the response variable.

The canonical link function in this case can be expressed as g = θ = log(λ). Our model then becomes

η = g(µ) = log(µ) ⇐⇒ µ = e� = e�0+�1x1+�2x2+���+�pxp (4.15)

as µ = λ for the Poisson distribution. Since only real and positive values can be attained on both the left- and
right-hand side of (4.15), it is possible to try whether this link function works for the model.

The link function, similar to the distribution, is assumed and can only be evaluated when the model has been
fitted. Two other link functions which are sometimes used for Poisson regression are the identity (g(µ) = µ) or
the square root link function (g(µ) =

√
µ) [Dunn and Smyth, 2018, p. 372].

After fitting the model, it should be checked whether the model can be improved by certain diagnostics.
These can be found in Section 4.7.

The Poisson distribution can be an acceptable first try for modelling counts, but might come up short. The
following property shows one common reason why issues may arise when we try to model y with the Poisson
distribution.

Deriving the variance function V , we get:

V (µ) =
dµ

dθ
=
dλ

dθ
=
de�

dθ
= e� = λ = E(y) (4.16)

Using (4.12) and the fact that ϕ = 1:

V ar(y) = ϕV (µ) = V (µ) = E(y) (4.17)

Because of the above derivation, it is not possible for the variance in the data to be different from the mean of
the data. However, in practice, often the variance in the data exceeds the mean µ, or in this case λ, which is
called overdispersion [Dunn and Smyth, 2018, p. 320]. When overdispersion is present, we may have to switch
to a different model. One example of a model type that is able to deal with overdispersion is mentioned in
Section 4.6. A different model is called the quasi-poisson model, which allows the dispersion parameter ϕ to
be estimated instead of taking the value 1. Then V ar(y) = ϕV (µ) = ϕE(y) and the variance is not restricted
to the mean anymore. Additional information on quasi-models is given in Chapter 8.10 of Dunn and Smyth
[2018].
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4.6 Negative Binomial Regression

As mentioned in the previous chapter, overdisperion often is present when dealing with count data. One type
of model, which is able to deal with this issue, is the negative binomial regression model. In this model, it is
assumed that the response comes from the negative binomial distribution, which is defined as follows:

Definition 4 (Negative binomial distribution).

P(Y = y) =
Γ(y + k)

Γ(y + 1)Γ(k)

�
µ

µ+ k

�y �
1− µ

µ+ k

�k
for µ, k > 0 (4.18)

where

Γ(z) =

Z 1
0

xz�1e�xdx, for Re(z) > 0 (4.19)

is known as the gamma function.
The parameter k is rarely known and has to be estimated first [Dunn and Smyth, 2018, p. 400]. When the

parameter k is estimated, it can be treated as a constant and the negative binomial distribution can be written
in the exponential family form as follows:

Γ(y + k)

Γ(y + 1)Γ(k)

�
µ

µ+ k

�y �
1− µ

µ+ k

�k
= a(y) exp

�
y log(

µ

µ+ k
) + k log(1− µ

µ+ k
)

�
= a(y, θ) exp

�
yθ + k log(1− e�)

	
= a(y, θ) exp

�
yθ − κ(θ)

ϕ

�
where θ = log

�
µ

µ+ k

�
.

As we are able to write the negative binomial distribution in the exponential form, it is part of the exponential
family. This means that y can be assumed have a negative binomial distribution.

Negative binomial regression is used among others for data with overdispersion. The reason why it is used
for this can be seen when we look at the variability in the data of the response V ar(y):

θ = log

�
µ

µ+ k

�
⇐⇒ (µ+ k)e� = µ ⇐⇒ µ =

−ke�

e� − 1
⇐⇒ µ =

k

e�� − 1
(4.20)

then, using that ϕ = 1, we get for V ar(y):

V ar(y) = ϕV (µ) =
dµ

dθ
=

d

dθ

k

e�� − 1
=

e��k

(e�� − 1)2
=

e�k

(1− e�)2
=

�k
�+k

(1− �
�+k )2

=
µ k
�+k

( k
�+k )2

= µ+
µ2

k
(4.21)

which is always bigger than µ, as k > 0. Thus an estimate for k tells us about the size of the overdispersion
in the response data and the model is able to handle this overdispersion. Whenever it is hypothesized that
overdispersion is present in the data, this can be confirmed or denied by applying negative binomial regression
and estimating k.

The most commonly used link function g for negative binomial regression is the logarithm link function
[Dunn and Smyth, 2018, p. 401]. Note that this is not the canonical link function θ. Besides the logarithm, also
the square root and the identity link functions are allowed.

4.7 Checking the Model Assumptions

The information in this section has mostly been taken from Chapter 8.7 of Dunn and Smyth [2018].
When a model has been fitted to a dataset with n observations, p dependent variables and one response

variable, the estimated parameters are denoted as bβ0, bβ1, . . . , bβp. We get the fitted values bµi by inserting the
observed values for the dependent variables and the estimated parameters into the glm structure as follows

bµi = g�1(bβ0 + bβ1x1i + bβ2x2i + · · ·+ bβpxpi) (4.22)

for all 1 ≤ i ≤ n.
In this section, three different methods will be discussed to check for correctness of the model assumptions.

To start, an explanation of residuals will be given and the preferred residuals to use in the methods will be stated.
Following, when possible, a way to inspect the independence of the response will be proposed. Afterwards, plots
of the residuals against the fitted values bµi and a Q-Q plot of the residuals will be suggested for examination of
structural problems in the model. Finally, different methods and statistics for detecting outliers and influential
observations are mentioned.
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4.7.1 Residuals

A residual is known as a difference between the fitted mean bµi and the actual observation yi of the response
variable. It is, thus, preferred to have these residuals as small as possible, without having an overly complex
model. Then, the chosen model most closely represents the data, while still being accurate.

There are three types of mentioned residuals in the book of Dunn, namely the Pearson, Deviance and
quantile residuals. For a discrete response as counts, the preferred type to analyze are the quantile residuals.
This is due to the fact that the Deviance and Pearson residuals may contain incorrect and distracting patterns,
leading to incorrect conclusions and adaptations of the model.

4.7.2 Independence of the Response

Independence is considered to be the most important assumption. Independence usually is a result of how
the data is collected, which means it is rarely possible to detect using residuals. Only in one specific case
it is possible to use residuals to check the independence assumption. If the data is collected over time, then
independence can be checked by plotting residuals against previous residuals in time. When no pattern shows,
the assumption is valid.

4.7.3 Checking for Structural Problems

There are two ways to check if structural problems can be found in our model. Structural problems can be seen
as having an inappropriate choice of distribution, link function or predictor variables. The way to investigate
whether such problems are present in our data can be done by finding patterns or trends in plots.

For the choice of distribution, a normal Q-Q plot should be made of the quantile residuals. These residuals
have an exact standard normal distribution, apart from estimation errors in the mean and variance of the chosen
distribution function [Dunn and Smyth [1996]]. Drawing a straight line through this plot helps us to see if some
patterns exist which deviate from the line. If there is such a pattern present, it is possible that the distribution
is not appropriate for the data.

When investigating other structural problems, such that of having to add more predictor variables, changing
the link function, or transforming some predictor variables, plots of the quantile residuals against µ̂ and the
current predictors xj are suggested. When a pattern or trend is visible in the plot against µ̂, the cause may be
an incorrect link function or a single or multiple incorrect or missing independent variables. The link function
can be further examined by plotting the working responses

zi = ei + η̂i (4.23)

against the fitted linear predictor η̂i, where ei are the working residuals. This plot should be approximately
linear when the link function is appropriate.

To check whether the independent variable xj is on the proper scale, the partial residuals

uj = ei + β̂jxj (4.24)

should be plotted against xj . Again, when this plot is linear, the variable xj has been added on the appropriate
scale.

In Sections 5.2.3, 5.2.4 and 5.3 it is shown how to construct plots to investigate structural problems.

4.7.4 Detecting Outliers and Influential Observations

The theory for detecting outliers and influential observations comes from Chapters 3.6.3 and 8.8 of Dunn and
Smyth [2018].

When in the process of fitting a glm to data and inspecting the residuals, we might come across an unusually
large (positive or negative) residual. These residuals are called outliers. For discrete data, the quantile residuals
are preferred, which have an exact standard normal distribution apart from sampling variability in estimating
µ and φ. It is also possible to inspect the values of the quantile residuals. Assuming that the quantile residuals
have a standard normal distribution, they have the following probability density function:

f(x;µ, σ2) = f(x; 0, 1) =
1√
2π
e�

x2

2 (4.25)

Then, the fraction of observations expected to be inside the intervals [-2.5, 2.5] and [-3, 3] are given respectively
in (4.26) and (4.27). Let X be a random variable with a standard normal distribution, then:

P(−2.5 ≤ X ≤ 2.5) =

Z 2:5

�2:5
f(x; 0, 1)dx =

Z 2:5

�2:5

1√
2π
e�

x2

2 dx ≈ 0.988 (4.26)
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and similarly

P(−3 ≤ X ≤ 3) =

Z 3

�3

1√
2π
e�

x2

2 dx ≈ 0.997 (4.27)

For smaller data sets, we could use the first interval to detect outliers, while the second interval would be more
appropriate for larger data sets. This is because larger residuals are expected to appear by chance more often
for a higher amount of observations, when the distribution is standard normal.

Before looking at influential observations, we must first talk about leverages. A small leverage value hi for
Observation i indicates that many observations are contributing to the estimation of the fitted value µ̂i. A
leverage that is three times the mean value of all leverages is declared to be large [Dunn and Smyth, 2018,
p. 99]. One way that influential observations are detected is by Observation i both having a high leverage and
being an outlier. This means that those observations have a higher influence on the value of the estimated
parameters, compared to the non-influential observation.

Other statistics used to identify influential observations are the DFBETAS, DFFITS, the covariance ratio
CR and the Cook’s distance D, which will all be explained below.

The statistics DFFITS measures the relative difference between the fitted values µ̂i and the fitted value µ̂i(i),
where Observations i is omitted from the regression. It is defined as follows:

DFFITSi =
µ̂i − µ̂i(i)
s(i)

(4.28)

The value s(i) is the standard error of the fitted values, given that Observation i is omitted. Observation i

is seen as influential when |DFFITSi| > 3√
p0=(n�p0)

, where p0 is the sum of all leverage values hi and n is the

amount of observations.
The statistic DFBETAS measures the relative difference between the coefficients when Observations i is

omitted, compared to the regular fitted model. The statistic for the coefficient j is

DFBETASi =
β̂j − β̂j(i)
se(β̂j(i))

(4.29)

where se(β̂j(i)) is the standard error of β̂j when Observation i is omitted. The observation is influential when
|DFBETAS|i > 1.

A different measure of influence is called the covariance ratio CR, which measures the increase in uncertainty
about the regression coefficients when Observation i is omitted. A conventional way to compute the CR is

CRi =
1

1− hi

�
n− p

n− p0 + (r00i )2

�p
(4.30)

where r00 is the Studentized residual. Observation i is influential when CRi >
3p0

n�p0 .
Finally, another measure of influence is Cook’s distance D, which identifies whether an observation has both

a high leverage and is an outlier. The distance is defined as

Di =
(r0i)

2

p0

�
hi

1− hi

�
(4.31)

where r0i is the Standardized residual. The measure D has an approximate F-distribution with (p0, n − p0)
degrees of freedom. When the value of D has passed the 50th percentile point of the F-distibution, Observation
i is declared to be influential.

Both outliers and influential observations are interesting data points for a second examination. It is possible
that something went wrong with the processing or recording of the data, such that these points came into
existence. It might also simply be a coincidence and the values are appropriate. Either way, care should be
taken when such data points are found.

4.8 Confidence Intervals for Independent Variables and the Mean

The information in this section is taken from Sections 7.2.2, 7.2.3, 7.6.2 and 7.6.3 of Dunn and Smyth [2018].
Confidence intervals for estimated parameters might be computed using the Wald, score or likelihood-ratio

test statistic. In practice, the Wald statistic is most commonly used as no new computations are necessary.
This is due to the fact that the Wald standard error is computed in the final iteration of the fitting algorithms
for a glm.

Two cases should be distinguished when computing confidence intervals for the estimated parameters β̂j or
for the fitted mean µ̂. Namely, the dispersion parameter ϕ can either be known or unknown.
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4.8.1 Confidence Intervals When Dispersion Known

When ϕ is known, the 100(1− α)% confidence interval for the estimate of βj is

β̂j ± z�2 se(β̂j) (4.32)

where z�
2

is the value such that a fraction �
2 is in each tail of the normal distribution. The value se(β̂j) is the

Wald standard error of the estimated parameter. For the fitted mean, the 100(1− α)% confidence interval is

η̂ ± z�
2

se(η̂) (4.33)

where η̂ is the fitted value for the linear predictor.

4.8.2 Confidence Intervals When Dispersion Unknown

When the dispersion parameter ϕ is unknown, the 100(1− α)% confidence interval for the estimate of βj is

β̂j ± t�2 ;n�p0se(β̂j) (4.34)

where t�
2 ;n�p0 is the value such that a fraction �

2 is in each tail of the t-distribution with n − p0 degrees of
freedom. For the fitted mean, the 100(1− α)% confidence interval is

η̂ ± t�
2 ;n�p0se(η̂) (4.35)

4.9 Relative Importance

Besides finding a model to predict the quality of software code, it is also interesting to examine which of the
TQI metrics contribute a larger amount to this quality. It was assumed that this quality can be simulated
using the variable AFR per LOC per TIE. For now, let us define the amount of contribution as the relative
importance of an independent variable in a regression model.

For linear regression models, different ways to calculate the relative importance for independent variables are
given in Groemping [2007]. However, all of these methods use the R-squared statistic or some Sum of Squares.
These statistics are useful when the variance is constant for all observations. However, when, for example, the
response data is of the type counts or proportions, then the variance is not constant [Dunn and Smyth, 2018,
p. 165-166]. Therefore, a different approach should be taken. In Silber et al. [1995], a method is proposed to
compare the contributions of two groups of predictors in a logistic regression model. It is mentioned that this
method can be used for other regression models that involve linear combination of fixed predictors, including
the generalized linear model [Silber et al., 1995, p. 10]. In the current section, the proposed method will be
explained.

Let xji be the observed data of the deterministic independent variables for parameters 1 ≤ j ≤ p and
observations 1 ≤ i ≤ n. Let the observations of the dependent random variable yi come from an exponential
family probability distribution (Section 4.4.3) with a finite mean and variance. Let g be the monotonic and
differentiable link function, such that our model looks as follows

g(E(yi)) = β0 + β1x1i + β2x2i + · · ·+ βpxpi (4.36)

where the βi are the parameters of the model.
Now, let the independent variables xji be shifted such that their sample means x̄j are equal to zero over

the n observations for each j, to simplify later calculations. This can be done by subtracting x̄j from each
observation xji for each j. After this operation, each parameter estimate in (4.36) remains the same, except for
the intercept term β0, which captures any constant changes in the independent variables (see Appendix A.1).

Next, let us divide the terms βjxji in two groups for j = 1, 2, . . . , p. It is free to choose which terms go in
the first group and which terms go in the second group, as long as eventually all independent variables are in
either group and neither group is empty. Let us rename the terms in both groups, such that those in the first
group are defined as γj x̌ji and those in the second group are defined as δjexji. Then, the two groups πi and φi
are defined as:

πi :=

kX
j=1

γj x̌ji and φi :=

p�kX
j=1

δjexji (4.37)

for 1 ≤ k < p, such that
g(E(yi)) = α+ πi + φi (4.38)

where α is the intercept. Without loss of generality, let us redefine our model in (4.36), such that for all
Observations j, we have that βixij = γix̌ij for 1 ≤ i ≤ k and βk+ix(k+i)j = δiexij for 1 ≤ i ≤ p− k.
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Following, let us examine the sample means of π and φ. These are necessary in later calculations. Let us
recall that the sample mean of each xj is shifted to be zero. Then for π̄ we have

π̄ =
1

n

nX
i=1

πi =
1

n

nX
i=1

kX
j=1

γj x̌ji =

kX
j=1

 
γj(

1

n

nX
i=1

x̌ji)

!
=

kX
j=1

(γj ∗ 0) = 0 (4.39)

The calculation for φ̄ is similar.
To compare the relative importance of both groups, the contribution of groups πi and φi to the total sample

variance of the left-hand side of (4.38) will be compared for all observations. In the current method, the ratio
of the sample variance of π to the sample variance of φ is examined. This ratio is denoted by ω and is defined
as

ω :=
1
n

Pn
i=1(πi − π̄)2

1
n

Pn
i=1(φi − φ̄)2

=

Pn
i=1 π

2
iPn

i=1 φ
2
i

(4.40)

To simplify later calculations, the ratio ω will be expressed as

ω =

Pn
i=1 π

2
iPn

i=1 φ
2
i

=
T x̌T x̌

�T exT ex� (4.41)

where  and � are respectively the k- and (p−k)-dimensional column vectors containing the parameters γj and
δk. Respectively, x̌ and ex are the n× k- and n× (p− k) dimensional matrices containing the observations x̌ji
and exji. For details, see Appendix A.2.

The quantity ω is the ratio of the sample variances of the contributions of the independent variables γj
and variables δj to the link function g with the mean of the response as argument. When ω = 1, the relative
contribution of both groups of variables is equal for the given data set and the assumed model. However, when
either ω = 0.2 or ω = 4, the relative contribution to the sample variance of g(E(yi)) of the variables present in
πi is respectively five times lower or four times higher than that of the variables present in φi.

Besides the calculation of ω, it would we interesting to know how confident we are in our result and calculate

a 95% confidence interval. Let �̂ =

�
̂

�̂

�
be the maximum likelihood estimate (MLE) of � =

�

�

�
with

estimated variance covariance matrix Σ̂. Due to the invariance property, the MLE of ω = g(�) is given by

ω̂ = g(�̂) =
̂T x̌T x̌̂

�̂T exT ex�̂ (4.42)

as ω is a function of the parameter vectors  and � [Moser, 1996, p. 108].

4.9.1 Asymptotic Normality of the MLE in a Glm

For the properties of asymptotic existence and asymptotic normality of the MLE in a glm, two conditions are
necessary given the current setting [Fahrmeir and Kaufmann, 1985, p. 361, Theorem 4]. Let x be the (p+1)×n−
matrix containing the TQI metric data of the observations where the entry (k + 1, j) is the observed value xkj
for 1 < k < p and 1 < j < n and the entry (1, j) = 1 for all j. Let xi denote the ith column vector of x. Let
� = (β0, β1, . . . , βp)

T be the (p+1)− dimensional column vector containing the parameters. The first condition
states the following:

(i) the sequence (xi)
n
i=1 lies in a compact set ξ with u(zT�) ∈ Int(Θ) ⊂ R for all z ∈ ξ,� ∈ B

where Int(Θ) denotes the interior of the natural parameter space of the assumed probability distribution for
the response of the glm. The set B ⊂ Rp+1 is the admissible set in which the parameters � take their value.
The function u relates the canonical parameter θ in (4.10) to the linear predictor η, such that θ = u(zT�).

For all applied models in this research, the sequence (xi)
n
i=1 does lie in the compact set ξ = [0, 100] ×

[0, 100]× · · · × [0, 100] ⊂ Rp+1 for all n.
Next, let � ∈ Rp+1 and z ∈ ξ. Then, we have that zT� ∈ R. For the Poisson and quasi-Poisson models, the

canonical link function is the logarithm and this link function is used in our research, thus the function u is the
identity. Therefore, u(zT�) ∈ R. For the negative binomial model, the canonical link function is θ = log( �

�+k ).

Again, the logarithmic link function was chosen, so that µ = exp(zT�). Thus θ = log
�

exp(zT�)
exp(zT�)+k

�
and

u(x) = log
�

exp(x)
exp(x)+k

�
, k > 0, which takes values in the real numbers, as exp(x)

exp(x)+k > 1 for all x ∈ R and k > 0.

The seconds condition states that:

(ii) The smallest eigenvalue of
Pn
i=1 xix

T
i should diverge when n→∞
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In theory, the lowest score for the TQI metric code coverage is 32.5 and for all other TQI metrics it is 0. When
this is achieved for all i, the smallest eigenvalue of the mentioned sum in (ii) will remain to be 0. Thus, the
seconds condition cannot be verified given the structure of our current problem. We might, however, argue that
in practice the TQI metrics scores are less likely to achieve such low values, as in the current dataset only the
TQI metric Fan Out has achieved the score of 0 in 8 out of the 41 observations. All other TQI metric scores did
not get a value of 0 assigned. This does not give us a statement about the divergence of the smallest eigenvalue
of the given sum yet, so it is hard to tell whether the condition is satisfied in practice. However, as we would
like to form confidence intervals for the relative importance, for now, it will be assumed that the condition is
satisfied.

4.9.2 Approximate Confidence Intervals for the Relative Importance

Now that the conditions for the asymptotic normality of the MLE are assumed to be satisfied, the parameter

vector �̂ has an approximate normal distribution. As ω, ω̂ ≥ 0, the transformation τ = log(ω) is necessary.

Then, the Delta theorem can be applied to τ̂ = log(ω̂), the MLE of τ due to the invariance property. For the

details, see Appendix A.3. The results tell us, firstly, that neither  or � must be equal to the zero vector.

Secondly, an additional assumption has to be made, but we will not go into the details here. Let us assume that

neither  or � is equal to the zero vector and that the assumption holds. Then, the asymptotic distribution of

τ̂ is normal and has expected value τ = ln(ω) and variance ν̂ = !T Σ̂! where

! = 2

"
�xT �x̂
̂T exT ex̂
− �xT �x�̂

�̂T exT ex�̂
#

(4.43)

Now, as the asymptotic distribution of τ̂ is normal, �̂��p
�̂

has an approximate standard normal distribution.

Thus, the 95% confidence interval for ω is determined as follows:

0.95 = P
�
−1.96 ≤ τ̂ − τ√

ν̂
≤ 1.96

�
= P(τ̂ − 1.96

√
ν̂ ≤ ln(ω) ≤ τ̂ + 1.96

√
ν̂) =

P
�

exp(τ̂ − 1.96
√
ν̂) ≤ ω ≤ exp(τ̂ + 1.96

√
ν̂)
� (4.44)

So, the 95% confidence interval for ω is exp(τ̂ ± 1.96
√
ν̂).

In the given data set, eight metrics are present representing the predictor variables. It is in the interest of
TIOBE to evaluate the relative importance of each metric separately. This can be done by repeatedly calculating
ω when one single TQI metric is in πi and all other TQI metrics are in φi. In Section 5.4, these calculations
and its results will be shown.

4.10 Principal Component Analysis

Figure 4.3: Example of a PCA on measurement
data gathered by cameras. The principal compo-
nent pointing towards the signal explains the most
variance in the data and can be seen as most im-
portant. [Shlens [2014]]

In our data set, there are eight different TQI metrics, which
are combined in a single value for the TQI score. We might
wonder which of these metrics can be seen as more impor-
tant over the others. The term “important” can have dif-
ferent meanings in different settings. In this case, variables
are considered to be of higher importance when explaining
a larger part of the variance in the data, compared to one
another.

One way to find variables of higher importance is to use
Principal component analysis (PCA) [Manly, 2004, p. 75-
79].

Let X1, X2, . . . , Xp be real random variables with finite
means and variances. Let X1, X2, . . . , Xp have a joint prob-
ability distribution function. The objective of this analysis
is to produce principal components Z1, Z2, . . . , Zp, which
are uncorrelated and in order of importance. The fact that
the components are uncorrelated tells us that different ‘di-
mensions’ of the data are measured.

Each Zi should be a linear combination of the random
variables Xi, such that Zi is a random variable too. The
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principal component are chosen in such a way that they
have the following property:

Var(Z1) ≥ Var(Z2) ≥ · · · ≥ Var(Zp) (4.45)

While doing a PCA, often a preferred outcome is to find a large amount of principal components which have
such a low variance in the data as to be negligible. In that case, a small amount of components account for most
of the variance and the data set can adequately be described by these Zi. The described outcome, however, is
not always achieved. If the original variables Xi have little to no correlation with each other, then PCA will not
find any underlying dimensions which explain the way the data behaves. Thus, PCA works best if the original
data is highly correlated.

To be able to apply PCA, let us assume that each TQI metric has its own underlying probability distribution.
In that case, each TQI metric is a real random variable taking values in the interval [0,100]. Let aij be real
variables for 1 ≤ i, j ≤ p. Then, the principal components Zi are

Zi = ai1X1 + ai2X2 + · · ·+ aipXp (4.46)

where the Xi are the TQI metric scores. Simply increasing the value for any of the aij will increase Var(Zi).
As this is unwanted, the following condition is introduced for all 1 ≤ i ≤ p:

a2i1 + a2i2 + · · ·+ a2ip = 1 (4.47)

Given this constraint, a11, a12, . . . , a1p will be chosen such that Var(Z1) is maximized. Following, the variables
a21, a22, . . . , a2p in the second principal component Z2 will be chosen such that Var(Z2) is as large as possible
and Z1 and Z2 are uncorrelated for the data, given that condition (4.47) is satisfied. Similarly, the variables
a31, a32, . . . , a3p are chosen in a way that the third principal component Z3 has zero correlation with both Z1

and Z2, again satisfying constraint (4.47), while maximizing Var(Z3). This continues in the same way for the
other principal components, up until Zp.

To calculate the principal components Zi in practice, we will look at two possible approaches. Either the ran-
dom variables X1, X2, . . . , Xp can be used as a starting point or the shifted and scaled variables eX1, eX2, . . . , eXp

where eXi =
Xi − E(Xi)p

Var(Xi)
(4.48)

are taken as starting variables. Note that the eXi have a mean of zero and a variance of one (see Appendix A.4).
When the importance of the variables Xi is reflected in their variances, there is no need for a shift and a scaling.
However, in most cases, there is a need to take the eXi as starting variables. This can easily be argumented
by thinking about two TQI metric scores which respectively get assigned values that are spread between the
intervals [0,10] and [0,100]. The variance for the TQI metric scores spread between 0 and 100 is most likely
higher than that of the TQI metric scores spread between 0 and 10. However, this does not have to indicate
anything about their importance. Both metrics can respectively get assigned the values 10 and 100 one single
time and 0 for all other observations. In that case, the variance for the first metric is lower than the variance
for the second metric, but both can relatively be seen as equally important since all but one observations get
assigned a value of 0.

Thus, the shifted variables eX1, eX2, . . . , eXp are the starting points for the PCA. The next step is to calculate

the covariance matrix C. The covariance between variables eXi and eXj is defined as

cij = Cov( eXi, eXj) = E( eXi
eXj)− E( eXi)E( eXj) (4.49)

Then, the covariance matrix C is defined as

C =

0BBB@
c11 c12 . . . c1p
c21 c22 . . . c2p
...

...
. . .

...
cp1 cp2 . . . cpp

1CCCA (4.50)

which is a correlation matrix as the diagonal values are equal to 1, since cii = Cov( eXi, eXi) = Var( eXi) = 1. For
i 6= j, the matrix value cij is equal to the correlation between Xi and Xj (see Appendix A.4).

The next step is to calculate the eigenvalues λ1, λ2, . . . , λp and corresponding eigenvectors a1,a2, . . . ,ap of
the correlation matrix C. Assuming without loss of generality that the eigenvalues are ordered from large to
small, for principal component Zi, the variance is given by λi and the coefficients ai1, ai2, . . . , aip are given by
the elements of the eigenvector ai.

Finally, when all principal components Zi have values assigned for their coefficients, components that account
only for a small proportion of the variance in the data can be discarded. For example, when there are 10 variables
present in the data set and the first three principal components account for over 90 or 95 percent of the variance
in the data, the last seven principal components may reasonably be ignored.
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4.11 Summary

• The Pearson’s product-moment correlation coefficient r examines a possible relationship between
two continuous variables.

• For investigation a relationship between multiple independent variables on one dependent variable,
regression models are used. As the dependent variable is of the type scaled counts, we must turn
to generalized linear models, as the normality assumption of linear regression models is likely to be
violated.

• Poisson regression might be appropriate for our data. However, when overdispersion is present, it is
a better idea to turn to a quasi-poisson or negative binomial model.

• Quantile residuals are used to examine how well a models fits to the data. They can also be used to
detect outliers. Statistics such as DFBETAS, DFFITS, CR and D are used to identify observations
that have a relatively great influence on the model.

• For structural problems in the model, plots are used. The choice of distribution function is examined
by a normal Q-Q plot of the quantile residuals. The link function is examined by plotting the working
responses against the fitted linear predictor. For investigating whether each independent variable is
on the correct scale, its partial residual should be plotted against the variable.

• The given weights to TQI metrics are a calculated guess by TIOBE. A more quantified method is
that of computing the relative importance for each TQI metric. The relative importance of one
metric can be seen as the proportion of variance that it explains of the function g(µ). When a
significant difference between the given weight by TIOBE and the calculated relative importance is
present, there might need to be a change in the definition of the Tiobe Quality Indicator.

• Examining the importance of each TQI metric compared to one another is done by applying principal
components analysis. The results give us eight uncorrelated principal component, which are ordered
by the amount of variance in the data that is explained by them. Unimportant TQI metrics will only
be of greater presence in lower ordered component. When the explained variance is small enough,
these component might be reasonably ignored, and so might some TQI metrics.
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Chapter 5

Workflow

Now that the research questions, data and theory is in place, we would like to present a way to apply this
theory to the data in practice. In this section, a guideline will be given on how to perform a regression analysis
on the type of data as explained in Chapter 3. The free and open source statistical software R, which can be
downloaded on https://www.r-project.org, is suggested and used for this analysis.

This section is structured as follows. First a way to visualize the data will be given, which can lead to
insights about which independent variable(s) have a relationship with the dependent variable. Along with this,
the correlation coefficient given in Section 4.1 will be calculated to see whether a negative linear relationship is
present between the TQI score and the variable of interest. Following, it will be shown how to fit a generalized
linear model (glm) to the data and when we need to change models due to overdispersion, a concept explained
in the final paragraph of Section 4.5. Then, we will analyze the correctness of the fitted model(s) by examining
different types of plots as discussed in Section 4.7. Finally, two analyses on the importance of the TQI metric
scores will be given. Firstly, a method called relative importance, as explained in Section 4.9, compares the
importance of the TQI metrics to the response variable. Secondly, a method called the principal component
analysis (PCA), as explained in Section 4.10, will compare the importance of the TQI metrics relative to each
other. Along this whole section, R code will be given to guide the reader through the analysis.

5.1 Visual Analysis and Correlation Coefficient

Before we are going to explore different plots, a way to store the data in R is suggested. Reading the data from
a Comma Separated Values (CSV) file into a data frame goes as follows:

clusters_loccount_25000 <- read.csv(Clusters_loccount_25000.txt, sep = ,, header = TRUE)

More information on data frames in R can be found in the official documentation on https://www.rdocumentation.

org/packages/base/versions/3.6.0/topics/data.frame. An introduction to data frames can be found on
http://www.r-tutor.com/r-introduction/data-frame.

The columns of our data frame contain the response and predictor variable data and the rows contain the
data of the observations. The column names and values for one cluster can be examined by the following code:

clusters_loccount_25000[1,]

## TQI_Score CoC AI CyC CW CS CD FO S AFR LOC

## 1 80.59251 32.5 100 98.16226 77.38103 82.11017 100 91 100 8 1394

## TIE AFR_per_KLOC_per_week

## 1 105882080 0.03278057

One of the first things that should be done when analyzing a possible relationship between two or more variables
is to plot the data. For this, we use the plot() function in R. By plotting certain predictor variables against
the response, an intuitive hypothesis about a possible relationship can be formed. When a model has been
fitted, it can be checked whether the hypothesis is true or not and changes to the model might have to be made
accordingly.

par(mfrow = c(3,3)) # Setting to order images

par(las=1, pch=16) # Settings for better visualizations in the plots

visual_check <- function(independent_variable, x_label, main_title){
plot(clusters_loccount_25000[[independent_variable]],
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clusters_loccount_25000[[AFR_per_KLOC_per_week]],

main = main_title, xlab = x_label, ylab = AFR per KLOC per week)

}
visual_check(TQI_Score, TQI Score, TQI v.s. AFR/(KLOC*week))

visual_check(CoC, Code Coverage, CoC v.s. AFR/(KLOC*week))

visual_check(AI, Abstract Interpretation, AI v.s. AFR/(KLOC*week))

visual_check(CyC, Cyclomatic Complexity, CyC v.s. AFR/(KLOC*week))

visual_check(CW, Compiler Warnings, CW v.s. AFR/(KLOC*week))

visual_check(CS, Coding Standards, CS v.s. AFR/(KLOC*week))

visual_check(CD, Code Duplication, CD v.s. AFR/(KLOC*week))

visual_check(FO, Fan Out, FO v.s. AFR/(KLOC*week))

visual_check(S, Security, S v.s. AFR/(KLOC*week))
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When only two variables are present in a model, the predictor variable is continuous and the range for the
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count response data is relatively large, Pearson’s correlation coefficient r can be calculated using cor.test(), to
get the strength of the linear relationship between the variables. Formulas 4.2 and 4.3 can be used to calculate
a 100(1 − α)% confidence interval for the coefficient r. This, however can also be done in R. The following
example shows the strength of the Pearson’s correlation coefficient r with its 95% confidence interval between
the variables TQI Score and AFR per KLOC per week. The function with() is used to indicate in which data
set the variables are to be searched.

cor_test <- with(clusters_loccount_25000, cor.test(TQI_Score, AFR_per_KLOC_per_week,

alternative = greater))

cor_test

##

## Pearsons product-moment correlation

##

## data: TQI_Score and AFR_per_KLOC_per_week

## t = 4.6234, df = 39, p-value = 2.039e-05

## alternative hypothesis: true correlation is greater than 0

## 95 percent confidence interval:

## 0.3957259 1.0000000

## sample estimates:

## cor

## 0.5950197

In the above R code, the following hypothesis is tested:

H0 : r ≤ 0 against H1 : r > 0

When the value for the significance level α is set to 0.05, which is common practice, the null hypothesis H0 is
rejected. This is because the p-value 2.039e − 05 is lower than the significance level. Thus, it would appear
that a negative linear relationship is not present, when looking at the data. In Chapter 6, this result will be
discussed further.

When any nonlinear relationship might be present, Pearson’s correlation coefficient r does not capture this.
Also when more than two predictor variables are present, it is preferred to add both , as then all the data in
included in a single model. This means that we have to turn to the generalized linear model (glm). The next
section will explain how to fit such a model in R.

5.2 Fitting the Generalized Linear Model

Before we fit a glm to the data, an assumption for the distribution of the response has to be made, as mentioned
in Section 4.4.3. Only afterwards, it can be checked whether this assumption is correct. Furthermore, in
Sections 4.5 and 4.6, the theory for two types of models for scaled count data were discussed. In the following
two sections, it will be formulated how to apply this theory into practice.

5.2.1 Fitting a Glm in R

In R, the function glm() is used to estimate the parameters of the model. When Y is the response and
x1, x2, . . . , xp are the predictors, the model can be fitted and evaluated by the following two commands:

• GLM ← glm(Y ∼ x1 + x2 + · · ·+ xp, data = df, family = F (link = g))

• summary(GLM)

where df is the dataframe in which our data is stored, F is the assumed probability distribution and g is the
name of the chosen link function. Applying the function summary() to the stored glm object GLM gives us the
estimated parameters for the predictors x1, . . . , xp.

In the following sections, we would like to explore the relationship between the TQI metrics and the
AFR per KLOC per week and the ability of these metrics to predict the value of the dependent variable when
it is unknown to us.
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5.2.2 Statistical Model

The response that we wish to predict using a model is the value for the variable AFR/(KLOC*week), as it
was assumed that this quantity represents the quality of the programming code of a file. However, when we
scale this value by the amount of LOC and the TIE of a file, the response might not be non-negative integers
anymore. In both the Poisson and Negative Binomial distribution, the variable is a non-negative integer. We
can modify the model in such a way that this is not a problem anymore. Let us assume that the distribution
of the response Y is Poisson with the logarithmic link function g. As we wish to evaluate the scaled AFR as
response, the model that can be used to investigate the relationship between the amount of AFR and the TQI
score looks as follows:

log

�
AFR

LOC ∗ TIE

�
= β0 + β1 ∗ TQI Score (5.1)

Rewriting gives us:
log(AFR) = β0 + β1 ∗ TQI Score+ log(LOC) + log(TIE) (5.2)

which is in the appropriate form as the amount of AFRs are counts.
There are no parameters which need to be estimated for both the variables log(LOC) and log(TIE). These

terms are called offsets and are included in the glm by calling the function offset() on the independent variable.
As both LOC and TIE are known for any observation, the only variable that we are interested in predicting is
AFR.

In the same way, the formula for the model including the TQI metric scores is formulated as follows:

log(AFR) = γ0 + γ1 ∗ CoC + γ2 ∗AI + γ3 ∗ CyC + γ4 ∗ CW + γ5 ∗ CS
+γ6 ∗ CD + γ7 ∗ FO + γ8 ∗ S + log(LOC) + log(TIE)

(5.3)

Now that the models are in place, let us begin by assuming that the response has a Poisson probability
distribution and evaluate how well this model fits.

5.2.3 Poisson Regression

Estimating the coefficients βi, γi in (5.2) and (5.3) can be done in R by the following code:

glm_poisson_tqi <- glm(AFR ~ TQI_Score + offset(log(LOC)) + offset(log(TIE)),

data = clusters_loccount_25000, family = poisson(link = log))

glm_poisson_metric <- glm(AFR ~ CoC + AI + CyC + CW + CS + CD + FO + S + offset(log(LOC)) +

offset(log(TIE)), data = clusters_loccount_25000,

family = poisson(link=log))

Before examining the estimated coefficients, let us recall that, in practice, it is not uncommon for count data to
be overdispersed. This is also why we would first like to evaluate whether our model fits to the data correctly
by using the theory of Section 4.7.

To get the quantile residuals for our fitted model, the following R code is used1:

qres.nbinom <- function (glm.obj){
y <- glm.obj$y

if (is.null(glm.obj$theta)) {
size <- glm.obj$call$family[[2]]

}
else {

size <- glm.obj$theta

}
mu <- fitted(glm.obj)

p <- size/(mu + size)

a <- ifelse(y > 0, pbeta(p, size, pmax(y, 1)), 0)

b <- pbeta(p, size, y + 1)

u <- runif(n = length(y), min = a, max = b)

qnorm(u)

}

1The defined functions are also available in the package ’statmod’. This package was, at the time when this report was being
written, not available for use in the knitr package, which is used for combining R and LaTeX.
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qres.pois <- function(glm.obj){
y <- glm.obj$y

mu <- fitted(glm.obj)

a <- ppois(y - 1, mu)

b <- ppois(y, mu)

u <- runif(n = length(y), min = a, max = b)

qnorm(u)

}

qres.default <- function (glm.obj, dispersion = NULL){
r <- residuals(glm.obj, type = "deviance")

if (is.null(dispersion)) {
df.r <- glm.obj$df.residual

if (df.r > 0) {
if (any(glm.obj$weights == 0))

warning("observations with zero weight ",

"not used for calculating dispersion")

dispersion <- sum(glm.obj$weights * glm.obj$residuals^2)/df.r

}
else dispersion <- 1

}
r/sqrt(dispersion)

}

qresid <- function(glm.obj, dispersion = NULL){
glm.family <- glm.obj$family$family

if (substr(glm.family, 1, 17) == "Negative Binomial")

glm.family <- "nbinom"

switch(glm.family, poisson = qres.pois(glm.obj),

nbinom = qres.nbinom(glm.obj), qres.default(glm.obj, dispersion))

}

set.seed(1)

qr_poisson_tqi <- qresid(glm_poisson_tqi)

qr_poisson_metric <- qresid(glm_poisson_metric)

In the functions qres.pois and qres.nbinom, values are generated from a uniform distribution. However, when,
for example, 100 samples are generated twice, the sets can be different. This can be troublesome when writing
a report. Therefore, for reproducibility, the random seed in R is set before random samples are generated with
the function set.seed.

To check whether a structural problem exists, a normal Q-Q plot of the quantile residuals should be made.
As mentioned in Section 4.7.3, these plots can be used to verify whether the correct distribution has been
assumed. Drawing a linear line with slope 1 and passing the origin through the plot makes deviations more
visible. A kernel density plot for the shape of the distribution will be added. A standard normal distribution
will be drawn through this plot for comparison, as the quantile residuals are expected to have this distribution
when the model properly fits the data. Finally, a Shapiro-Wilk normality test will be used. This test assumes
normality and evidence is needed for the rejection of the assumption. When the p-value is lower than 0.05,
normality is rejected.

For the model including only the TQI score, we have the following statistics of the quantile residuals:

shapiro.test(qr_poisson_tqi)$p.value

## [1] 0.7939671

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_poisson_tqi)

qqline(qr_poisson_tqi)

plot_qr_against_normal <- function(quantile_residuals){
plot(density(quantile_residuals), main = Kernel density plot, ylim = c(0,0.60))
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std_normal <- rnorm(10000, mean = 0, sd = 1)

lines(density(std_normal), col = red, lty = 2)

legend(topleft, legend = c(quantile residuals, standard normal distribution),

col = c(black, red), lty = c(1,2))

}
plot_qr_against_normal(qr_poisson_tqi)
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The Q-Q plot on the left-hand side looks reasonable. It does not suggest a rejection of the assumed Poisson
distribution, as no patterns are present that deviate from the Q-Q line. The Shapiro-Wilk test does not reject
normality in this case, as the p-value is above the 0.05 benchmark. However, the kernel density plot is not even
close to a standard normal distribution. The quantile residuals achieve much greater values than is expected
for the standard normal distribution, which gives us quite some evidence that the assumed Poisson distribution
might be inaccurate.

For the model including all TQI metric scores, the quantile residual statistics are as follows:

shapiro.test(qr_poisson_metric)$p.value

## [1] 0.168073

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_poisson_metric)

qqline(qr_poisson_metric)

plot_qr_against_normal(qr_poisson_metric)
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In this case, many deviations in both ends of the Q-Q plot are visible. Also the kernel density plot does not
represent a standard normal distribution. The Shapiro-Wilk test does not reject the normality assumption.
However, the Q-Q and kernel density plots give us a large amount of evidence to believe that, again, the Poisson
distribution might not be the best model.

For both the TQI and the TQI metric model, the difference between the kernel density plot and the standard
normal distribution could be caused by overdispersion, as this was common in count response data. One way to
estimate the amount of overdispersion in the data, is to switch to a quasi-Poisson model. Let us look at (4.17).
In quasi-Poisson regression, the variance function V (µ) is the same as in regular Poisson regression, but the
overdispersion parameter ϕ is not equal to 1. The parameter ϕ now is a positive real number, to be estimated
by the model, so that the variance V ar(y) can be different from the mean E(y).

Fitting a quasi-Poisson model on the model including the TQI scores and evaluating the overdispersion
parameter can be done as follows:

glm_quasi_poisson_tqi <- glm(AFR ~ TQI_Score + offset(log(LOC)) + offset(log(TIE)),

data = clusters_loccount_25000,

family = quasipoisson(link=log))

summary(glm_quasi_poisson_tqi)$dispersion

## [1] 14.20082

As the dispersion parameter is estimated to be over 14, while it is set to be 1 in the previous model, it can
be seen that overdispersion is present in the data. This means that the variance in the data of the response
variable is over 14 times as large as the mean. The statistics of the quantile residuals for this model are:

set.seed(1)

qr_quasi_poisson_tqi <- qresid(glm_quasi_poisson_tqi)

shapiro.test(qr_quasi_poisson_tqi)$p.value

## [1] 0.7859486

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_quasi_poisson_tqi)

qqline(qr_quasi_poisson_tqi)

plot_qr_against_normal(qr_quasi_poisson_tqi)
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Both the Q-Q plot and the Shapiro-Wilk test seem to be quite similar to the quantile residuals of the regular
Poisson regression. However, the kernel density plot of the quantile residuals seems to have less deviations
from the standard normal distribution. The difference is small enough for us to believe that the quasi-Poisson
regression is appropriate in this case.

The quasi-Poisson model including the TQI metric scores can be fitted and evaluated as follows:

glm_quasi_poisson_metric <- glm(AFR ~ CoC + AI + CyC + CW + CS + CD + FO + S

+ offset(log(LOC)) + offset(log(TIE)),

data = clusters_loccount_25000,

family = quasipoisson(link=log))

summary(glm_quasi_poisson_metric)$dispersion

## [1] 14.46121

Again, the parameter estimating the overdispersion is over 14. This could be expected as the overdispersion is
present in the response variable AFR/(KLOC*week), not in the predictor variables.

The quantile residual statistics are as follows:

set.seed(1)

qr_quasi_poisson_metric <- qresid(glm_quasi_poisson_metric)

shapiro.test(qr_quasi_poisson_metric)$p.value

## [1] 0.1835522

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_quasi_poisson_metric)

qqline(qr_quasi_poisson_metric)

plot_qr_against_normal(qr_quasi_poisson_tqi)
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Some deviations are present in the ends of the Q-Q plot. Also, the kernel density plot has some similarities to a
standard normal distribution, but more mass seems present in the middle, while less is present in the right half
of the plot. The Shapiro-Wilk test does not reject the normality assumption. The deviations in the plots might
be caused by the fact that only 41 observations are present. Keeping that in mind, quasi-Poisson regression
seems like an appropriate approach in this situation.

Both the quasi-Poisson and negative binomial models have a parameter that estimates the overdispersion.
The difference between both models can be found in the relationship between the variance and the mean. In
the quasi-Poisson model, the variance is a linear function of the mean. In the negative binomial model, the
variance is a quadratic function of the mean. This means that it is possible that the negative binomial model
has a better fit. In the next section, we will check whether this the case.

5.2.4 Negative Binomial Regression

In this section, it is assumed that the mean of the response has a negative binomial distribution. The R package
called ’MASS’ needs to be imported for us to use the function that fits the negative binomial model to our
data2. The TQI model can be fitted and evaluated as follows:

library(MASS)

glm_negbin_tqi <- glm.nb(AFR ~ TQI_Score + offset(log(LOC)) + offset(log(TIE)),

data = clusters_loccount_25000)

set.seed(1)

qr_negbin_tqi <- qresid(glm_negbin_tqi)

shapiro.test(qr_negbin_tqi)$p.value

## [1] 0.02603975

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_negbin_tqi)

qqline(qr_negbin_tqi)

plot_qr_against_normal(qr_negbin_tqi)

2If the package has not been installed yet, this can be done by running ‘install.packages(‘MASS’)’ in the console
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In this case, there seems to be enough evidence to reject the normality assumption in the Shapiro-Wilk test,
as the p-value is below 0.05. In the Q-Q plot, there seems to be quite some deviation on the right end of
the straight line. The kernel density plot also seems shifted from the normal distribution. This might be an
indication that the negative binomial model is not appropriate for the current data.

The statistics for the TQI metric model are:

glm_negbin_metric <- glm.nb(AFR ~ CoC + AI + CyC + CW + CS + CD + FO + S + offset(log(LOC))

+ offset(log(TIE)), data = clusters_loccount_25000,

control = glm.control(maxit = 250))

set.seed(1)

qr_negbin_metric <- qresid(glm_negbin_metric)

shapiro.test(qr_negbin_metric)$p.value

## [1] 0.3396477

par(mfrow = c(1,2), las=1, pch=16, lwd=2)

qqnorm(qr_negbin_metric)

qqline(qr_negbin_metric)

plot_qr_against_normal(qr_negbin_metric)
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Note that in the first command, the argument control is set to glm.control(maxit=250). This has been done
because the algorithm which estimates the parameters did not converge. The amount of steps has been increased
from 25 to 250 to allow convergence to happen.

From the statistics of the quantile residuals, we can only see some small deviations in both ends of the
Q-Q plot and a slightly shift in mass of the kernel density compared to the standard normal distribution. The
Shapiro-Wilk test does not return a p-value less than 0.05, so normality is not rejected. For the TQI metric
model, both quasi-Poisson and negative binomial regression seem appropriate.

5.3 Fine Tuning the Model

5.3.1 Structural problems

For both the metric and the TQI model, the regular Poisson model was not appropriate, as overdispersion was
present in the response variable. For the TQI model, quasi-Poisson regression seemed most appropriate, as
normality was rejected in the Shapiro-Wilk test of the quantile residuals of the negative binomial model. We
would like to find ways to improve this model even further.

In the third and fourth paragraph of Section 4.7.3, different ways to check for other structural problems,
besides the assumed distribution, are mentioned. Firstly, it is suggested to plot the quantile residuals against
the fitted values µ̂. Secondly, the working responses z, mentioned in (4.23), should be plotted against the
fitted linear predictor η̂. Thirdly, the partial residuals uj , mentioned in (4.24), should be plotted against the
independent variable(s) xj .

par(mfrow = c(1,3), las=1, pch=16, lwd=2)

plot(qr_quasi_poisson_tqi ~ fitted(glm_quasi_poisson_tqi),

ylab = Quantile residuals, xlab = Fitted values,

main = Quantile residuals v.s. Fitted values)

abline(h=0, col = red)

z <- resid(glm_quasi_poisson_tqi, type = working) + glm_quasi_poisson_tqi$linear.predictors

plot(z ~ glm_quasi_poisson_tqi$linear.predictors, xlab = Linear predictor,

ylab = Working responses, main = Working responses v.s. Linear predictor)

abline(a=0, b=1, col = red)

plot(resid(glm_quasi_poisson_tqi, type = partial)[,TQI_Score] ~

clusters_loccount_25000$TQI_Score, xlab = TQI Score, ylab = Partial responses,

main = Partial responses v.s. TQI score)

abline(a= -334/15, b=4/15, col = red)
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Let us examine the three images above. For the second and third figures, the plot should be approximately
linear, which seems to be the case. For the second figure, this suggests that the link function is appropriate. For
the third figure, it suggests that the variable TQI Score has been added on the appropriate scale. For the first
image, there should be no pattern or trend visible. However, it seem to be the case that the quantile residuals
increase in absolute value whenever the fitted values increase. This might be due to missing independent
variables, incorrect independent variables or an incorrect link function. As we ruled out the last two options
by the other two images, the only reason for the observed pattern could be one or more missing independent
variables.

Let us do the same for the TQI metric models. To start, the model which came from the quasi-Poisson
regression is examined. Counting from left to right, from top to bottom, let us look at the second figure in the
images below. The used link function was the logarithm, and as the plot is approximately following a linear line,
this function seems to be appropriate for the model. After testing, the square root and identity link function
do not improve the linearity. In the first figure, there does not seem to be any pattern visible, which suggests
that the chosen predictor variables are correct and on the right scale. This can be verified when looking at the
last eight images. Almost all plots follow a linear pattern. Only the plots of the partial residuals against CS
and FO do not seem to approximately follow a linear pattern. However, changing the scale of the independent
variable to either logarithmic, square, exponential or quadratic does not seem to improve the linearity in the
plots. Thus, our model can not be improved any further.
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Following, the TQI metric model coming from the negative binomial regression is evaluated. Again, looking
at the images below, the first image does not show any pattern and the second image follows a linear pattern,
which both suggest an appropriate model. In the last eight figures, only those where the partial residuals are
plotted against AI and FO do not seem to approximately follow a linear pattern. Testing has shown that
changing either the link function or the scale of the independent variable does not seem to improve those plot.
Thus, our model can not be improved.
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5.3.2 Looking for Outliers and Influential Observations

Let us recall the theory from Section 4.7.4. As our sample size is relatively small, namely 41 observations, we
expect the values for the quantile residuals to be in the interval [-2.5, 2.5]. This choice is based on the fact that
98.8% of the residuals are expected to be in this interval, assuming that the quantile residuals have a standard
normal distribution, as shown in (4.26). Any observations with higher or lower quantile residual values are
outliers. For the three models, which we evaluated to be appropriate, the quantile residual values are shown
below:
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Negative binomial regression

In the left image, one outlier is seen. The observation Backend/TICSViewer/Deimos is an older directory, which
had not been touched since the bug tracker had been introduced. Thus, no Fix Rates could have been recorded.
This means that the value for AFR is zero. As it is also has both a high value for TIE and LOC compared to
the other observations, the reason for it being an outlier is explainable. There is no reason for us to remove this
observation.

Next, let us investigate whether the outlier is an influential observation and whether other influenctial
observations are present. This can be computed by the R function influence.measures(). The function will return
for each observation the statistics DFFITS, CR, Cook’s D and the DFBETAS for each estimated parameter.
All these statistics are explained in Section 4.7.4. Also the leverage values will be given. When an observation
has a large value for any of these statistics, it will be declared influential.

For the first model, the quasi-Poisson model including the TQI score, the values for each statistic will be
given for all data points. Whenever an observation is influential, it will be examined closer to see if something
odd happened during the collection of the data.

influence.measures(glm_quasi_poisson_tqi)

## Influence measures of

## glm(formula = AFR ~ TQI_Score + offset(log(LOC)) + offset(log(TIE)), family = quasipoisson(link = "log"), data = clusters_loccount_25000) :

##

## dfb.1_ dfb.TQI_ dffit cov.r cook.d hat inf

## 1 0.041475 -0.03981 0.05074 1.052 2.03e-03 0.01096

## 2 0.016373 -0.01471 0.03405 1.055 8.23e-04 0.00845

## 3 -0.001206 0.00301 0.03304 1.060 7.29e-04 0.01140

## 4 0.534923 -0.50799 0.71686 0.943 3.77e-01 0.10406 *

## 5 0.000774 -0.00144 -0.01219 1.066 8.37e-05 0.01215

## 6 0.031993 -0.03432 -0.05391 1.091 1.57e-03 0.03797

## 7 0.046280 -0.04435 0.05746 1.056 2.49e-03 0.01447

## 8 -0.006088 0.01341 0.13392 0.981 1.57e-02 0.01116

## 9 -0.046797 0.05125 0.09500 1.058 6.41e-03 0.02380

## 10 -0.017100 0.01835 0.02896 1.123 5.08e-04 0.06239

## 11 0.096597 -0.10156 -0.13423 1.048 6.97e-03 0.02782

## 12 -0.233299 0.24508 0.32170 1.078 7.47e-02 0.08073

## 13 0.003396 -0.00360 -0.00508 1.092 1.51e-05 0.03556

## 14 0.031436 -0.03331 -0.04716 1.081 1.18e-03 0.02918

## 15 0.550389 -0.57219 -0.68828 1.146 1.96e-01 0.17798 *

## 16 0.005677 -0.00343 0.04129 1.049 1.25e-03 0.00753
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## 17 0.033725 -0.02736 0.12021 1.047 1.04e-02 0.02404

## 18 0.033228 -0.02977 0.07056 1.037 3.94e-03 0.01001

## 19 0.100517 -0.08295 0.33358 1.073 7.50e-02 0.08056

## 20 -0.004256 0.00963 0.09833 1.107 6.12e-03 0.05630

## 21 0.266878 -0.28668 -0.45539 1.141 9.86e-02 0.13735

## 22 0.033985 -0.03115 0.06108 1.057 2.64e-03 0.01582

## 23 -0.084783 0.08333 -0.08817 1.065 2.28e-03 0.02573

## 24 0.004026 -0.01223 -0.15001 0.986 6.39e-03 0.01429

## 25 -1.170783 1.11316 -1.55294 0.703 5.34e-01 0.15924 *

## 26 -0.018344 0.01807 -0.01889 1.076 1.82e-04 0.02176

## 27 0.007181 -0.00701 0.00778 1.070 3.76e-05 0.01580

## 28 -0.005632 -0.00356 -0.16789 1.116 1.49e-02 0.07340

## 29 0.406763 -0.42893 -0.58172 1.023 1.26e-01 0.10742

## 30 -0.053550 0.05218 -0.05847 1.075 1.57e-03 0.02679

## 31 -0.065133 0.06026 -0.10890 1.016 3.42e-03 0.01253

## 32 -0.293434 0.28531 -0.32524 1.032 3.00e-02 0.06120

## 33 -0.154250 0.15112 -0.16310 1.062 7.73e-03 0.04054

## 34 -0.136016 0.13087 -0.16322 1.026 7.67e-03 0.02581

## 35 0.127102 -0.13762 -0.23316 1.032 2.17e-02 0.04220

## 36 -0.089873 0.08788 -0.09606 1.087 4.03e-03 0.04137

## 37 -0.702978 0.68918 -0.74052 1.086 1.51e-01 0.16093 *

## 38 -0.127963 0.12504 -0.13732 1.149 9.41e-03 0.09242

## 39 0.061484 -0.05773 0.09083 1.062 5.86e-03 0.02500

## 40 0.010674 0.01688 0.50303 0.880 1.88e-01 0.05120

## 41 -0.005961 0.00708 0.02142 1.077 2.83e-04 0.02269

Note that the column dfb.1 includes the DFBETAS values for the intercept β0 and the column hat includes
the leverage values. When a star (*) is present in the inf column, the observation similar to the row number is
declared to be influential.

For Observation 4, only the DFFITS statistic is significantly large. This is because the value for the
dependent variable AFR/(KLOC*week) is large compared to the other observations. A closer examination tells
us that the directory Backend/TICSTiobeWeb/TiobeCommon/src/com/tiobe/web has a core position, causing
it to have a large interdependency between files from other directories. This property has the effect that the
directory gets assigned a positive Fix Rate relatively often. As this is no strange behaviour, the observation
will remain in the analysis.

For Observation 15, or the directory BackEnd/TICSTiobeWeb/TiobeWebImplementation/src/com/tiobe/

web/axes, both the DFFITS statistic and the leverage value are significant. There seems to be nothing different
about this directory and it will be kept in the analysis.

For Observation 25, only the Cook’s D statistic is not significant. This observation corresponds to the
directory Backend/TICSViewer/Deimos, which was declared to be an outlier and details have been given.

Both the leverage value and the DFFITS statistic were significant for Observation 37, or directory TED/

TICSDashboard/TEDClient. The directory is similar to Backend/TICSViewer/Deimos, namely it has not been
actively developed in the past years. However, no reason arises to remove it from the analysis.

Now, for both models including all TQI metrics, only the new influential observations are examined and will
be discussed shortly. The amount of DFBETAS has been increased from two to nine, due to the increase in
estimated parameters.

For the quasi-Poisson TQI metric model, Observations 19, 20, 22 and 29 only have significant values for the
statistic CR. However, the covariance ratio has a tendency to declare more observations as influential as other
statistics [Dunn and Smyth, 2018, p. 112]. Observation 28 has a significant value for both CR and the leverage.
Now, as it is not an outlier, the significance of the leverage value will not be taken into account. Thus, as each
observation is significant for only one of the twelve statistics that we take into account, they are not influential
enough for us to take another look into them and are assumed to be regular observations.

Finally, for the negative binomial TQI metric model Observations 18, 27 and 35 are declared influential only
for the CR statistic. As no other statistic declared these observations to be significant, they will not be looked
into. No new observations were declared influential by any of the other statistics.

Thus, no measurement errors have been found and all data points can be kept in the analysis.
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5.4 Relative Importance

Besides finding and fitting models for predicting the quality of a file or directory, other statistics might be of
interest to us. One of these would be to examine how important the TQI metrics are relative to the response
variable AFR/(KLOC*week). This can be done by applying the method of relative importance, of which the
theory is described in Section 4.9.

The theory will be applied to three models, all including the eight TQI metrics as independent variables.
These are the Poisson, quasi-Poisson and negative binomial model, which have been fitted and examined in
Section 5.2. The calculations and results in R for the Poisson model will be shown, after which only the results
of the other two models will be shown, as calculations are similar. To begin, let us initialize variables to store
our results in and a list of TQI metric names, which will also be useful in later R code.

# Initialize lists to store results for each separate TQI metric

wHat <- rep(0,8)

ciLower <- rep(0,8)

ciUpper <- rep(0,8)

# Initialize name list

metrics <- c(CoC, AI, CyC, CW, CS, CD, FO, S)

Then, shift the metric values to have a mean of zero.

for (i in metrics){
clusters_loccount_25000[,i] <- clusters_loccount_25000[,i] -

mean(clusters_loccount_25000[,i])

}

To be safe, the glm has been refitted with the shifted data, which should only alter the intercept. Next, let us
store both the variance covariance matrix and the estimated parameters of our glm object for later use.

# Store parameters and variance-covariance matrix, both without intercept values

covMat <- vcov(glm_poisson_metric)[-1,-1]

parEstGlm <- glm_poisson_metric$coefficients[-1]

The following R code contains a single for-loop storing the quantity ω for each TQI metric together with the
lower- and upper confidence intervals. Note that some lists needed to be converted into matrices by using the
data.matrix function to be able to apply matrix multiplication in R.

for (i in 1:8){
# Store the column vectors gamma and delta containing the parameter estimates

gamma <- data.matrix(parEstGlm[i])

delta <- data.matrix(parEstGlm[-i])

# Store the metric data for each group separately

xCheck <- data.matrix(clusters_loccount_25000[,metrics[i]])

xTilde <- data.matrix(clusters_loccount_25000[,metrics[-i]])

# Calculate wHat for the ith metric

wHat[i] <- ((gamma %*% (t(xCheck) %*% xCheck %*% gamma)) /

(t(delta) %*% t(xTilde) %*% xTilde %*% delta))

# Get the estimated variance

tauHat <- log(wHat[i])

wBoldFirst <- (t(xCheck) %*% xCheck %*% gamma)/

(t(gamma) %*% t(xCheck) %*% xCheck %*% gamma)

wBoldSecond <- (-t(xTilde) %*% xTilde %*% delta) /

rep(( t(delta) %*% t(xTilde) %*% xTilde %*% delta ), 7)

wBold <- data.matrix(2*c(wBoldFirst, wBoldSecond))

# Reorder the variance-covariance matrix, first row and column

# should contain gamma, others delta

45



covMatOrd <- rbind(t(covMat[i,]),covMat[-i,])

covMatOrd <- cbind(data.matrix(covMatOrd[,i]),covMatOrd[,-i])

vHat <- t(wBold) %*% covMatOrd %*% wBold

# Store lower and upper confidence intervals

ciLower[i] <- exp(tauHat - 1.96*sqrt(vHat))

ciUpper[i] <- exp(tauHat + 1.96*sqrt(vHat))

}

For the quasi-Poisson- and negative binomial regression models, we wish to do the same calculations. However,
due to some technical details, the vcov() function in R does not give the most accurate answers for these models.
The statistical program SAS does give more accurate answers and these results will be used. SAS Code for the
calculation of the variance-covariance matrix for both models is given in Appendix B.1.

Finally, the results for all three models are shown in Table 5.1 and will be discussed in Chapter 6.

Poisson Quasi-Poisson Negative Binomial
RelImp CiLow CiUp RelImp CiLow CiUp RelImp CiLow CiUp

CoC 0.02059 0.00356 0.11917 0.02059 3.642e-05 11.645 0.11869 0.00869 1.6207
AI 0.00663 0.00044 0.10015 0.00663 2.143e-07 204.91 0.00081 1.324e-12 4.950e+05
CyC 0.37224 0.21105 0.65653 0.37224 0.05793 2.39187 0.25568 0.07527 0.86847
CW 0.33846 0.15523 0.73796 0.33846 0.01579 7.25473 0.03305 0.00109 0.99882
CS 0.0011 2.726e-07 4.43028 0.0011 2.135e-17 5.657e+10 0.03051 0.00035 2.67944
CD 0.04691 0.02787 0.07896 0.04691 0.00598 0.36776 0.12937 0.03353 0.49926
FO 0.12077 0.04715 0.30931 0.12077 0.00322 4.52462 0.1147 0.00576 2.28403
S 0.00123 1.93e-05 0.07795 0.00123 1.694e-10 8.882e+03 0.00434 2.910e-07 64.859

Table 5.1: The relative importance values, lower- and upper confidence intervals for the Poisson-, quasi-Poisson
and negative binomial regression models

5.5 Principal Component Analysis

Next to analyzing the singular relative contribution of each TQI metric to the variable of interest, it would
be of added value to examine the importance of each TQI metric compared to each other. In our research,
the method of principal component analysis (PCA) will be used to gain additional insight into the data of
the metrics. As explained in Section 4.10, PCA can used to remove dimensions which contain relatively little
information compared to the other dimensions. In this case, containing a greater amount of information is
defined as there being a higher variance in the data for that certain dimension.

The function used to apply PCA in R is princomp(). Setting cor = TRUE is used to scale the metric to have
zero mean and a variance of one. This is not necessary when the importance of variables is reflected in their
variances [Manly, 2004, p. 79]. In our case, it would not be wise to omit cor = TRUE, as the variances might
differ whether the TQI metric scores are spread out in the interval [0, 10] or in the interval [0, 100]. The metric
which is spread out in the interval [0, 100] would have a bigger influence on the way the principal components
are calculated. In our current analysis, we do not wish for this to happen and we set cor = TRUE.

names = c(CoC, AI, CyC, CW, CS, CD, FO, S)

pca_metrics <- princomp(clusters_loccount_25000[names], cor = TRUE)

summary(pca_metrics)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## Standard deviation 1.6224406 1.1773995 1.0323796 1.0034967 0.83612753

## Proportion of Variance 0.3290392 0.1732837 0.1332260 0.1258757 0.08738866

## Cumulative Proportion 0.3290392 0.5023229 0.6355488 0.7614245 0.84881320

## Comp.6 Comp.7 Comp.8

## Standard deviation 0.75372174 0.62713012 0.49810218

## Proportion of Variance 0.07101206 0.04916152 0.03101322

## Cumulative Proportion 0.91982525 0.96898678 1.00000000
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After storing the PCA on the data of the TQI metric scores in the variable pca metrics, the amount of vari-
ance that is explained by each principal component can be accessed by applying the summary() function on
pca metrics, as shown above. Looking at the Cumulative Proportion row, the first four principal components
already account for over 75% of the variance in the data. When the data would be uncorrelated, we would
expect each component to have a value of 0.125 in the row Proportion of Variance, as all the starting variables
for the PCA are shifted and scaled to have a variance of 1. As this is not the case, there must be correlation
present in the data. The variance of the first principal component is more than twice that of the uncorrelated
variables value and should be further inspected. This can be done by examining the directions of the principal
components. This direction can be expressed as an eight dimensional vector, as the principal components are
living in an eight dimensional space, where each dimension is a metric. The vector is (ai1, . . . , aij , . . . , ai8)T

where index i corresponds to principal component i and index j to metric j. The values for aij can be accessed
by applying the loadings() function to pca metrics.

print(unclass(loadings(pca_metrics)), digits = 3)

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

## CoC 0.292 0.6520 0.2744 -0.0563 -0.0263 0.0295 0.00377 -0.639900

## AI 0.351 -0.2947 -0.5682 -0.0354 0.3129 0.3195 -0.34769 -0.380798

## CyC 0.359 -0.2572 0.2631 0.2520 -0.7117 0.2619 -0.30995 0.032060

## CW 0.419 -0.1178 -0.0763 0.3576 0.0682 -0.8183 -0.04283 -0.033923

## CS 0.486 -0.2024 0.1301 0.0913 0.1699 0.2763 0.76633 0.073454

## CD 0.135 -0.3511 0.6585 -0.4073 0.4011 -0.0704 -0.30507 0.000461

## FO -0.428 -0.4917 0.0851 0.0543 -0.1860 -0.1346 0.27353 -0.661463

## S 0.224 -0.0446 -0.2627 -0.7918 -0.4073 -0.2437 0.16137 0.020302

The linear combination of the first principal component can be denoted as3:

z1 = 0.292 CoC + 0.351 AI + 0.359 CyC + 0.419 CW + 0.486 CS + 0.135 CD− 0.428 FO + 0.224 S (5.4)

The principal component z1 gives us insight in two details. The first is that, when the metric Fan Out (FO)
increases or decreases, all other metrics go in the other direction. This is, however, given that we are looking in
the direction of the eight dimensional vector z1. When two variables have the same sign, the connected metrics
both either increase or decrease when one of the metrics do. When two variables have a different sign, one of
the connected metrics decreases as the other increases and visa versa.

The second detail being that neither of the variables ai1, . . . , ai8 is ‘small’. The smallest absolute value for
a variable is the one connected to the metric Code Duplication (CD) with a value of 0.135. For now, there
is no literature found to test whether one of the metrics has a variable which has such a small absolute value
that it is negligible. As the value of 0.135 still seems acceptably large in our point of view, it will not be seen
as negligible. When a value lower than 0.01 is found, this is such a large difference between the other variable
values that it can be seen as negligible. This means that all metrics in the first principal component seem to
supply enough information to matter. This is a good sign for TIOBE, as there does not seem to be a metric
that tests something that is already being tested by another metric.

The second principal component has the linear combination

z2 = 0.652 CoC− 0.295 AI− 0.257 CyC− 0.118 CW− 0.202 CS− 0.351 CD− 0.492 FO− 0.045 S (5.5)

In the direction of z2, different behaviour can be seen as in the direction of z1. When the value for the metric
Code Complexity (CoC) either increases or decreases, the values for all other metrics respectively decreases or
increases.

The first two principal components z1 and z2 contain the most information for our analysis of the data set.
After some additional investigation, there was no explanation found on why these components are pointed in
their current directions.

The way the observations are positioned relative to the first two components can give us more information
about which files are more comparable to each other. When certain files are clustered together, the eight
dimensional data points are also more similar. The amount of similarity is different depending on the amount
of variance explained by the first two principal component. In this case, a little over 50% of the variance in
the data has been accounted for by the first two components, meaning that these is still quite some variance
left in the other principal component directions. So, files close together relative to the first two components are

3Note that z1 could be replaced by �z1, reversing the signs of its variables. The possible change in sign is dependent on the
way that the computations are done to get to the shown results, which could differ per device running the computations. This can
be controlled by adding fix sign = TRUE as an argument to the princomp() function, however the current version of R in overleaf
does not recognise the argument.
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slightly similar, but there is room for deviation as a large amount of variance has not been accounted for by z1
and z2.

The observations relative to z1 and z2 can be visualized by inserting the values of each metric and each
observation into (5.4) and (5.5) to receive their scores. Plotting these scores can be done as shown below.
All observations which have similar ancestor directories are given the same color, as we would like to examine
whether the scores are more similar.

par(las=1, lwd=2, pch = 16)

plot(pca_metrics$scores)

same_dir <- function(points_lst, color){
points(pca_metrics$scores[points_lst,1:2], col = color)

}
same_dir(c(5:22,40,41), red); same_dir(36:37, pink); same_dir(c(1:4, 39), purple)

same_dir(23:26, blue); same_dir(27:29, yellow); same_dir(30:34, green)

same_dir(37:38, brown)
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From all observations, those that are colored red could be considered to form a cluster. Also, the purple, brown
and green colored observations seem to be closer together to each other.

From this, the conclusion can be drawn that, when observations have similar ancestor directories, there is a
higher correlation between the TQI metric scores.
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5.6 Summary

• The Pearson’s product-moment correlation coefficient does not give us a significant negative linear
relationship between the TQI score and the variable of interest.

• Generalized linear models are applied on two types of model. The TQI model, which has the variable
of interest as its response and the TQI score as the single predictor and the TQI metric model, which
has a similar response, but has the eight TQI metric scores as predictors. For both models, Poisson,
quasi-Poisson and negative binomial regression are fitted. For the TQI model, only quasi-Poisson
regression seems to have an appropriate fit. For the TQI metric model, both the quasi-Poisson- and
negative binomial regression model have an acceptable fit. The link function for these three models
is the logarithm and the explanatory variables are all added on a linear scale. Some outliers have
been found, but after investigation, these do not seem to be measurement errors and can be kept in
the analysis.

• The results of the principal component analysis (PCA) tell us that the values for the TQI metrics
between two observations have a higher correlation when there exists an ancestor directory in which
these two observations are present.

• Finally, the relative contribution of each TQI metric to the variance of the logarithm of the response,
also called the relative importance, is calculated. With this, lower- and upper confidence intervals are
calculated and it is examined whether the actual given weights to the metrics are in the confidence
intervals. The TQI metric models with Poisson, quasi-Poisson and negative binomial regression are
used here. Only in the model which uses Poisson regression, four metrics have been found that are
not in the relative importance confidence interval.
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Chapter 6

Interpretation of Results

In this section, the results of Chapter 5 will be discussed. Firstly, the result of Pearson’s product moment
correlation coefficient given in Section 5.1 shall be discussed. Secondly, the generalized linear models which
have been fitted and evaluated in Sections 5.2.3 and 5.2.4 will be stated and formulas for predictive purposes
are given. Thirdly, the results of the principal component analysis in Section 5.5 will be mentioned shortly.
Fourth, the outcome of the relative importance analysis in Section 5.4 is stated.

For the Pearson’s product moment correlation coefficient, a linear relationship was sought between the TQI
score and the variable of interest AFR/(KLOC*week). A p-value lower than 0.05 was found and a significant
positive correlation is the outcome. This would indicate that a higher TQI score would results in a lower quality
for a given file or directory due to Assumption 2 in Section 2.2. This seems like a strange outcome, as this
would suggest that the claim of TIOBE is false, as TIOBE claimed that a higher TQI score would result in
a better quality of software code. A few things must be kept in mind when interpreting this result. First of
all, the correlation coefficient only seeks a linear relationship between both variables. Any possible present
nonlinear relationships are not indicated. Secondly, the normality assumption is violated, as the variable of
interest is non-negative and has the form of shifted counts. This might make the result less accurate. Thirdly,
there is a limited amount of data points present, only 41. For now, this seems enough, but a validation of
this result with more observations is necessary. Fourthly, there might be extra noise in the TQI score due to
TQI metrics not directly affecting the amount of software defects. Finally, a large amount of assumptions and
specific selections have been made before arriving to the current form of data. Each assumption simplifies the
analysis, but possibly reduces the correctness of the final result. Given all this, the result of the correlation
coefficient does not directly tell us that a positive correlation is present, but rather that more observations are
necessary and a second look should be taken on the way the structuring of the data has been done.

Trying to find nonlinear relationships and having the ability to add multiple independent variables in one
model, generalized linear models were used. Due to the response variable being non-negative shifted counts,
the three model choices were Poisson-, quasi-Poisson- or negative binomial regression. As overdispersion was
present in the response, the Poisson regression model did not seem to have a good fit. Furthermore, the two
types of models that have been fitted were either one where the TQI score is the explanatory variable or one
where the eight TQI metric scores were the explanatory variables. For the TQI score model with negative
binomial regression, Shapiro-Wilk normality test of the quantile residuals was rejected and this model was not
further examined, leaving us with three models.

The resulting model for the quasi-Poisson regression with TQI score as independent variable is

AFR

KLOC ∗ week
= exp(0.151 ∗ TQI Score− 36.556) (6.1)

where both parameters had a highly significant p-value. Only weak evidence was found that independent
variables might be missing, but other than that, the model fits quite nicely. This would suggest that, when a
file or directory has a higher TQI score, then the quality would be lower. However, as discussed in the second
paragraph of this section, this result might be due to a large amount of debatable reasons, such that we can
not assume the result to be an absolute truth.

For the TQI metric model with quasi-Poisson regression, the formula is as follows

AFR

KLOC ∗ week
= exp(0.006 ∗ CoC + 0.018 ∗AI + 0.043 ∗ CyC + 0.034 ∗ CW + 0.005 ∗ CS+

0.016 ∗ CD − 0.010 ∗ FO − 0.025 ∗ S − 31.866)
(6.2)

The model had a good fit and could not be improved by changing the log-link function, changing the scale
of the independent variables or adding new variables. However, some of these TQI metrics might not have a
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statistically significant addition to our model. Repeatedly removing a single independent variables with the
highest p-value until each has a p-value lower than 0.05 gives us the following reduced model

AFR

KLOC ∗ week
= exp(0.051 ∗ CyC − 0.014 ∗ FO − 27.784) (6.3)

Following the way of working in Section 5.3, the model could not be improved. The model suggests that a
higher score in the TQI metric Cyclomatic Complexity gives a lower software quality, while a higher score in
Fan Out would increase the software quality of a given file or directory.

Similarly, for the TQI metric model with negative binomial regression, the formula is

AFR

KLOC ∗ week
= exp(0.018 ∗ CoC + 0.008 ∗AI + 0.050 ∗ CyC + 0.017 ∗ CW + 0.029 ∗ CS+

0.032 ∗ CD − 0.012 ∗ FO + 0.059 ∗ S − 42.727)
(6.4)

Again, this model can not be improved any further. Repeatedly removing a single variable with the highest
p-value until only independent variables are left that change the model significantly when left out gives us the
following reduced model

AFR

KLOC ∗ week
= exp(0.053 ∗ CyC + 0.035 ∗ CD − 0.028 ∗ FO − 30.599) (6.5)

Again, following Section 5.3, this model could not be improved any further. Now, the formula for the reduced
model is different from (6.3), as it suggests that not only a higher score for the TQI metric Cyclomatic Com-
plexity, but also for Code Duplication reduces the software quality. Furthermore, the parameter for the TQI
metric Fan Out is doubled, suggesting a higher impact on the software quality.

Let us argue why the positive or negative signs of the independent variables of (6.3) and (6.5) occur. The
TQI metric Cyclomatic Complexity counts the amount of linearly independent paths through the source code
of a program. When this amount is low, the code is easier to read and more maintainable and the score for
Cyclomatic Complexity is high (e.g. adding an if-else statement will increase the amount of linearly independent
paths). However, when this amount is high, the readability and maintainability might decrease, but it is possible
that more software defects will be caught, even when the score for Cyclomatic Complexity is low, explaining the
sign. The TQI metric Code Duplication count the percentage of LOC that contains duplicate code. When this
percentage is high, the maintainability is low and so is the score for the TQI metric. Whenever a change must
be made in one piece of code, it most probably must also be done in the duplicated pieces of code. However,
for the amount of software defects, Code Duplication seems to be a good thing. One reason might be that only
pieces of code that are known to work well are duplicated. Finally, the TQI metric Fan Out counts the amount
of modules a file imports. In projects, an imported module usually is a piece of code written in a different
file in the same project. When a file has a large amount of imports, there is a high interdependency between
modules, making the code less modifiable and maintainable, resulting in a low score for Fan Out. Importing
more modules might also result in more defects, as one is using code which can be written by others. One might
also interpret the imported module differently as intended, causing a higher chance to introduce an error in the
code.

The results of the analysis of the relative importance of the TQI metrics is as follows. The relative importance
of three different TQI metric models have been calculated, those with Poisson-, quasi-Poisson- and negative
binomial regression. For the last two models, the 95% lower- and upper confidence intervals for each TQI metric
are respectively lower and higher than the given weights to those metrics by TIOBE. This would indicate the
calculated relative importance is not significantly different from the weights chosen by TIOBE. However, for the
Poisson regression model, there are some TQI metrics of which the given weight by TIOBE is not in the relative
importance confidence interval, giving a significant difference. But, as we can recall from Section 5.2.3, the
Poisson model had a bad fit to the data and thus the estimated parameters could not be used in the calculation
of the relative importance. Thus, no evidence has been found to change the given weights of TIOBE to the TQI
metrics.

Finally, the results of the PCA will be discussed. Firstly, there is some correlation present between the TQI
metrics. Now, when this correlation would be relatively large, two or more different TQI metrics could measure
the same, making it possible to ignore at least one TQI metric. However, the first principal components tell
us that each TQI metric measures enough to distinct itself from the others, giving the good news to TIOBE
that no TQI metric is excessive. Secondly, when examining the positions of the data points in the first two
principal components, one thing is noticeable. The directories or files which have at least one single ancestor
directory in common are given a similar color. Then, observations with equal colors seem to cluster together
more than differently colored observations. This would suggest that the TQI metric scores of similarly colored
observations have a higher correlation. For certain TQI metrics it can be argued why this phenomenon occurs.
For example, the score for Fan Out is lower when a high interdependency between files is present in a project.
The root directory for the project would then be the ancestor directory of all these files. The Fan Out score
would be closer together for the files in this project compared to files outside of this project.
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Chapter 7

Conclusion

In this section, the stated research questions in Section 2.3 will be answered.
The first research question is as follows:

“Which model(s) is/are suitable for proving or rejecting the hypothesis that quantitative evidence
exists for a positive relationship between the TQI score and quality of software code?”

To answer this question, let us examine the work done in Chapter 5. To start, a positive linear relationship
was sought between the TQI score and the quality of a software code by Pearson’s product moment correlation
coefficient. However, this was not found. Following, a nonlinear relationship was sought by using generalized
linear models. Quasi-Poisson regression which has the TQI score as the independent variable and the variable of
interest as dependent variable seemed suitable for proving or rejecting the hypothesis that quantitative evidence
exists for a positive relationship between these two variables. However, again, no quantitative evidence for the
positive relationship had been found. For now, the conclusion is that, given the current dataset and assumed
framework, the hypothesis of the existence of quantitative evidence for the claim of a positive relationship is
rejected. Note that this might be due to the construction of the TQI score. Noise can be caused by a number
of TQI metrics that do not directly affect the amount of software defects, as mentioned in the final paragraph
of Section 2.2.

Then, the second research question states:

“With what precision can code quality be predicted by the TQI score and the TQI metrics?”

In the current research, there has not yet been found an answer to this question. In Section 9, a recommen-
dation will be given on how one could answer this question.

Finally, for the last research question we ask ourselves:

“Are the weights of each TQI metric to the TQI score assigned appropriately?”

Let us look at the results of Section 5.4. In the two models that were deemed appropriate, neither found enough
statistical evidence to reject the assigned weights by TIOBE. Thus, they seem to be appropriate according to
the research this report is based on.
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Chapter 8

Discussion

In our research, a large amount of assumptions have been made to come to the current results. Some of these
will be discussed here. Furthermore, decisions which have been made will be questioned.

8.1 The Variable of Interest

Let us discuss details about the chosen variable of interest AFR per LOC per TIE. Namely, the part of the
assignment of the Fix Rates to files is worthy of having a second look at.

Each touched file gets assigned a Fix Rate value of 1 when a possible software defect is resolved. However,
a broad amount of scenarios are possible where numerous files are changed, while the actual defect originated
in only a single one of these files. Especially when there is a large interdependency present within a project,
we might come across this more often. In further research, one might question whether the assignment of these
Fix Rates is justified, or whether a scaling is needed, for example by the amount of LOC, or some adjustments
should be made.

A different implicit assumption has been made when scaling the variable AFR by the amount of LOC and
TIE of a file or directory. Namely, that there is a linear relationship between the amount of LOC and TIE
and the amount of AFRs. This, however, has not been examined yet. It might as well be possible for variable
AFR to have a quadratic relationship with the variable LOC, as files generally become less clear when their size
increases. Similarly, with an increase in the time existence of a file, the increase in the amount of AFRs might
become less, giving rise to a possible logarithmic or square root relationship.

When aggregating files, directories or files and directories, one single value for, for example, TQI represents
all the aggregated documents. For the amount of LOC, this can be easily done by adding all the LOC of each
document. For the variable AFR, aggregation is done as follows. When a file gets touched while solving a
potential software defect, an identification number is added along with a Fix Rate value of 1. Thus the amount
of AFRs are actually the amount of identification numbers. When aggregating, the set of identification numbers
must be unique, so the fix of a single potential software defect does not get counted twice. Now, aggregation
becomes a strange operation when done for the variable TIE. When two files in a single directory exist for 3
and 10 days respectively, what value for TIE should be assigned to their parent directory? In our research, the
choice has been made to assign each file a weight based on the amount of LOC. Let the two files have 10 and
100 LOC respectively, then the parent directory has a TIE of 3 ∗ (10/110) + 10 ∗ (100/110) = 9.36. This way of
aggregating is purely intuitive and a second examination needs to take place whether it is acceptable.

One final note on the variable TIE is that we have to be careful with its reliability. In our research, the
value for TIE was based on the time of creation of a file. However, when a restructuring in a project takes place
and files and directories are moved from one location to another, the TIE might not be trustworthy any more.
When the files are copied from the old to the new location, the time of creation is altered to the time when this
restructuring took place.

8.2 The Comparison of Files

In Section 3.2.2, the assumption was made that the values of the variables in Table 3.1 could be compared
between two files. However, we might wonder whether this is even possible.

To start, the programming language could be different between two files and similar values for a variable
might give rise to different probabilities for a software defect for each file. For example, there could be a
difference in the use in industry of languages Python and C, respectively, such that the metric Code Coverage
will on average have a higher score for one of the two languages.
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Besides the programming language, the way programmers write their code could be vastly different. One
programmer might think of a smart way to find a solution to a problem with a low Cyclomatic Complexity. A
second programmer could use a large amount of if-statements, giving a higher Cyclomatic Complexity, while
the functionality and expected amount of software defects of both codes is similar.

8.3 Independence of the Observations

One important assumption of glms is that of independent responses, as mentioned in Section 4.4.4. A result of
the PCA is that the TQI metric scores for files or directories with a similar ancestor directory are closer together
and thus not entirely independent of each other. In our research, files have been combined into clusters, where
each cluster is an observation. One way to make these clusters more independent of one another might be to try
to split all of the files which have a similar ancestor directory over all of the clusters. Then, it will not happen
for two or more clusters to only contain files from one single ancestor directory and have a higher correlation
between their TQI metric scores.
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Chapter 9

Recommendation

There are four main recommendations for the company TIOBE. The first would be to apply the proposed
statistical methods again using a dataset from a customer and comparing the results to the current ones. The
second recommendation would be to apply the methods on a dataset with a higher amount of observations.
When the results are approximately similar, this would likely decrease the range of the 95% confidence intervals
of each estimated parameter and therefore give us more precise results. The third recommendation concerns
the second research question: “With what precision can code quality be predicted by the TQI score and the
TQI metrics?”. I would recommend, first of all, to examine the definitions of accuracy, trueness and precision
according to the ISO 5725-1:1994 [ISO [1994]]. Then, the precision of, for example, a generalized linear model
can be evaluated by fitting the model on a subset of the data, commonly called the training set and comparing
this fitted model to the complement of the training set. However, here we are talking about the precision of a
model, not how close the model is to the observed values of the variable of interest. For this, one should look at
the definition of trueness. The final recommendation concerns the about results of the fitted glms. These results
can be of use for customers of TIOBE trying to improve the quality of their projects, where quality is defined
as the relative amount of software defects. As seen in the reduced models (6.3) and (6.5), one should not be too
concerned if the score for the TQI metric Cyclometic Complexity of a project is low, as both formulas predict
a higher project quality when this is the case. Furthermore, to increase the quality of a project, the score for
the TQI metric Fan Out should be improved where possible. Moreover, one should not be too concerned when
the score for the TQI metric Code Duplication is low, as seen in the model (6.5).
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Appendix A

A.1 Shifting the Predictors of a Generalized Linear Model to Have
a Sample Mean of Zero

Let xji be the observed data of the deterministic predictor variables for parameters 1 ≤ j ≤ p and observations
1 ≤ i ≤ n. Let the parameters of the glm be denoted by βj . Then the sample mean x̄j of xj is defined as:

Definition 5 (Sample Mean).

x̄j =
1

n

nX
i=1

xji (A.1)

Next, the sample mean x̄j is subtracted from each observation xji for all parameters j in the linear predictor.
As each mean is simply a constant, equal for all observations i, each term βj x̄j can be grouped together with
the intercept, as it captures all constant changes in the predictor variables. Thus, we get

β0 +

pX
j=1

βj(xji − x̄j) = (β0 −
pX
j=1

βj x̄j) +

pX
j=1

βjxji = β�0 +

pX
j=1

βjxji (A.2)

where β�0 is the new intercept term.

A.2 Detailed Calculation of the Relative Importance Ratio

Let ω be the ratio as in (4.40). The calculation will only be done for π, as it is similar for φ. Let x̌ be the n× k
matrix containing the n observations for each k independent variables. Let us denote x̌i as the ith row of x̌.
Let  denote the k-dimensional column vector containing the parameters γj . Now, let us rewrite π2

i as follows:

π2
i = (γ1x̌1i + γ2x̌2i + · · ·+ γkx̌ki)

2 = (γ1γ2 · · · γk)

0BBB@
x̌1i
x̌2i
...
x̌ki

1CCCA ∗ (x̌1ix̌2i · · · x̌ki)

0BBB@
γ1
γ2
...
γk

1CCCA = T x̌Ti x̌i (A.3)

Then for the numerator of the ratio ω, we get

nX
i=1

π2
i = T x̌T1 x̌1 + T x̌T2 x̌2 + · · ·+ T x̌Tn x̌n = T (x̌T1 x̌

T
2 · · · x̌Tn )

0BBB@
x̌1

x̌2

...
x̌n

1CCCA = T x̌T x̌ (A.4)

which is exactly the form of (4.41).

A.3 Satisfying the Conditions of The Delta Method

In this section, the framework and conditions for the delta method to hold are given [Bishop et al., 2007, p. 493].
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A.3.1 First condition

Let us assume that the random column vector �̂ ∈ Rp+1 has a joint continuous probability distribution. Let �̂n
be the maximum likelihood estimator of � given n observations. The first condition which needs to be satisfied
is stated as follows: √

n(�̂n − �)
d−→ Np+1(0,Σ(�)) (A.5)

where
D−→ denotes convergence in distribution, Np+1(0, I) denotes the standard multivariate normal distribution

in p+1 dimensions, where I denotes the identity matrix and Σ(�) is the asymptotic variance-covariance matrix
of �̂. This condition can be satisfied by building upon the results of Section 4.9.1. This section tells us that the
asymptotic distribution of �̂n is normal. In particular,

Fn(�)
1
2 (�̂n − �)

d−→ Np+1(0, I) (A.6)

where Fn(�) denotes the expected Fisher information matrix given n observations [Efron and Hinkley, 1978,

p. 458] and F
1=2
n (�) denotes the square root of Fn(�) such that F

1=2
n (�)F

1=2
n (�) = Fn(�). This square root is

unique as the expected Fisher information matrix is positive semidefinite [Koeber and Schäfer [2006]].
Let us show that (A.6) implies (A.5) under certain conditions. The left hand side of (A.6) can be rewritten

as

Fn(�)
1
2 (�̂n − �) =

√
n

 
Fn(�)

1
2

√
n

Σ
1
2

!
Σ�

1
2 (�̂n − �) =

√
n

 
Fn(�)

1
2

√
n

Σ
1
2 − I

!
Σ�

1
2 (�̂n − �) +

√
nΣ�

1
2 (�̂n − �)

d−→ Np+1(0, I)

(A.7)

where Σ ∈ R(p+1)�(p+1) is assumed to be a positive definite matrix. Then, Σ is invertible with positive definite
inverse matrix Σ�1. As both Σ,Σ�1 are positive definite, they have respective unique square roots Σ

1
2 ,Σ�

1
2 ,

such that I = Σ
1
2 Σ�

1
2 as used in (A.7). For simplicity, let us define the matrix Cn ∈ R(p+1)�(p+1) and vector

Dn ∈ Rp+1 as

Cn :=

 
Fn(�)

1
2

√
n

Σ
1
2 − I

!
and Dn :=

√
nΣ(�)

1
2 (�̂n − �) (A.8)

such that
CnDn +Dn

d−→ Np+1(0, I) (A.9)

Before we continue, the definition for the little-o notation for stochastic sequences is given [Bishop et al., 2007,
p. 475, Definitions 14.4-1 and 14.4-2]:

Definition 6 (Little-o notation for stochastic sequences). Let (Xi)
n
i=1, (bi)

n
i=1 be sequences of random vectors.

Then,

• Xn = op(1) if for every ε > 0 : limn!1 P{||Xn|| ≤ ε} = 1 and,

• Xn = op(bn) if for every ε > 0 : limn!1 P{ jjXnjj
jjbnjj ≤ ε} = 1

The first part of the definition is equivalent to saying that Xn
p−→ 0.

Continuing, the following property holds [van der Vaart, 2000, p. 10, Theorem 2.7(iv)]:

If CnDn +Dn
d−→ Np+1(0, I) and CnDn +Dn

p−→Dn, then Dn
d−→ Np+1(0, I) (A.10)

The probability convergence statement in (A.10) is equivalent to saying that, relative to Dn, the random vector

CnDn has probability zero in the limit. This is what we wish to show, as then Dn
d−→ Np+1(0, I). In other

words, by using Definition 6, we need to show that CnDn = op(Dn). Before this can be done, let us recall the
maximum principle theorem [Keener, 1988, p. 19, Theorem 1.6]:

Theorem 1 (Maximum Principle). Let A ∈ Rn�n be a real symmetric matrix, x ∈ Rn a column vector and let
Q(x) := xTAx, then the following statement holds:

• λmax = maxjjxjj=1Q(x) = Q(xmax) is the largest eigenvalue of the matrix A and xmax is the eigenvector
corresponding to eigenvalue λmax.
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In the current setting, we have that

||CnDn||
||Dn||

=
DT
nC

T
nCnDn

||Dn||

1
jjDnjj

1
jjDnjj

=
DT
n

||Dn||
CT
nCn

Dn

||Dn||
(A.11)

As we have that
������ DT

n

jjDn

������ =
������ DnjjDnjj

������ = jjDnjj
jjDnjj = 1, and CT

nCn is a real symmetric matrix, Theorem 1 can be

applied, which gives us that

max

�
DT
n

||Dn||
CT
nCn

Dn

||Dn||

�
= λmax;n =⇒ ∀Cn2R(p+1)�(p+1);Dn2Rp+1 :

DT
n

||Dn||
CT
nCn

Dn

||Dn||
≤ λmax;n (A.12)

Now, we also know that jjCnDnjjjjDnjj ≥ 0 for all Cn and Dn. Thus the upper and lower bound are given by

0 ≤ ||CnDn||
||Dn||

≤ λmax;n (A.13)

We are unable to prove that the largest eigenvalue λmax;n of CT
nCn converges to zero, so this is an assumption

that we have to make.

Assumption 5. Let λmax;n denote the largest eigenvalue of the matrix

CT
nCn =

 
Fn(�)

1
2

√
n

Σ
1
2 − I

!T  
Fn(�)

1
2

√
n

Σ
1
2 − I

!

Then it is assumed that
lim
n!1

λmax;n = 0 (A.14)

Then, by the squeeze theorem, we have that

lim
n!1

0 ≤ lim
n!1

||CnDn||
||Dn||

≤ lim
n!1

λmax;n =⇒ 0 ≤ lim
n!1

||CnDn||
||Dn||

≤ 0 =⇒ lim
n!1

||CnDn||
||Dn||

= 0 (A.15)

Using this result and Definition 6, we get:

∀">0 : lim
n!1

P{ ||CnDn||
||Dn||

≤ ε} = ∀">0 : P{0 ≤ ε} = 1 =⇒ CnDn = op(Dn) (A.16)

So, when the assumption hold, we have that CnDn has a probability limit with value zero relative to Dn, and
therefore by (A.10):

Dn
d−→ Np+1(0, I)⇐⇒

√
nΣ�

1
2 (�̂n − �)

d−→ Np+1(0, I)⇐⇒
√
n(�̂n − �)

d−→ Np+1(0,Σ) (A.17)

where Σ is the variance-covariance matrix of �̂. Thus, the first condition (A.5) of the Delta theorem is satisfied
when (5) holds.

A.3.2 Second condition

Let ’ : Rt → Rr be a function defined on an open subset. Let ’ have the following expansion as a → � for
a ∈ Rt:

ϕi(a) = ϕi(�) +

tX
i=1

(aj − βj)
∂ϕi
∂aj

�����
a=�

+ o(||a− �||) (A.18)

for 1 ≤ i ≤ r. Let the entries (i, j) of the matrix
�
@’
@�

�
∈ Rr�t consist of the partial derivatives of ϕi with

respect to the jth element of a evaluated at a = �, i.e.,�
∂’

∂�

�
ij

=
∂ϕi
∂aj

����
a=�

(A.19)

Then, the second assumed condition for the delta method states that (A.18) can be expressed neatly in matrix
notation as

’(a) = ’(�) + (a− �)

�
∂’

∂�

�T
+ o(||a− �||) (A.20)
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as a→ �.
In the current setting of our research, the function ’ : Rp+1 → R is defined as:

ϕ1(a) = ’(a) = ’(

�
a
�a

�
) = log(ω(

�
a
�a

�
)) = log

�
Ta x̌

T x̌a
�Ta exT ex�a

�
(A.21)

such that a = (γa1 , γa2 , . . . , γak , δa1 , δa2 , . . . , δap�k)T . We have that ϕi(a) = ’(a), as r = 1. As in our case

� ∈ R(p+1)�1, we will get
�
@’
@�

�
as �

∂’

∂�

�
= 2

"
�xT �x
T exT ex
− �xT �x�
�T exT ex�

#
(A.22)

as

∂’

∂a

����
a=

=
∂

∂a

h
log(Ta x̌

T x̌a)− log(�Ta exT ex�a)
i����
a=

= 2
x̌T x̌

T exT ex (A.23)

and

∂’

∂�a

����
�a=�

=
∂

∂�a

h
log(Ta x̌

T x̌a)− log(�Ta exT ex�a)
i����
�a=�

= −2
x̌T x̌�

�T exT ex� (A.24)

when neither or � is equal to the zero vector. Now, due to the dimensions of
�
@’
@�

�
, there is no need to

transpose the vector as in (A.20). Then, we can indeed express (A.18) in matrix notation, so that

log

�
Ta x̌

T x̌a
�Ta exT ex�a

�
= log

�
T x̌T x̌

�T exT ex�
�

+ (a− �)

�
∂’

∂�

�
+ o(||a− �||) (A.25)

as a→ �.

A.3.3 Delta Method

The Delta method is stated as follows:

Theorem 2 (Multivariate Delta Method). Let (A.5) and (A.20) hold. Then the asymptotic distribution of

’(�̂n) is given by

√
n(’(�̂n)−’(�))

D−→ Np+1(0,

�
∂’

∂�

�T
Σ(�)

�
∂’

∂�

�
) (A.26)

A.4 Properties of a Shifted and Scaled Random Variable

Let X1, X2, . . . , Xn be random variables with finite mean and variance. Let X̃i be defined by

X̃i =
Xi − E(Xi)p

Var(Xi)
(A.27)

The mean of X̃i is

E(X̃i) =
E(Xi)− E(Xi)p

Var(Xi)
= 0 (A.28)

and the variance is

Var(X̃i) = E(X̃2
i )−E(X̃i)

2 = E(X̃2
i ) = E

�
X2
i − 2XiE(Xi) + E(Xi)

2

Var(Xi)

�
=

E(X2
i )− E(Xi)

2

Var(Xi)
=

Var(Xi)

Var(Xi)
= 1

(A.29)

The covariance between X̃i and X̃j is equal to the correlation between Xi and Xj as shown below

Cov(X̃i, X̃j) = E(X̃iX̃j)− E(X̃i)E(X̃j) = E(X̃iX̃j) =

E

 
XiXj −XiE(Xj)−XjE(Xi) + E(Xi)E(Xj)p

Var(Xi)
p

Var(Xj)

!
=

E(XiXj)− E(Xi)E(Xj)p
Var(Xi)

p
Var(Xj)

=

Cov(Xi, Xj)p
Var(Xi)

p
Var(Xj)

= ρ
XiXj

(A.30)
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Appendix B

B.1 SAS code for the variance-covariance matrix of quasi-Poisson-
and negative binomial regression models

B1
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