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Abstract 

This study addressed the effectiveness of Augmented Reality (AR)  based training in the context of 

energy distribution net engineers. Relevance of the study lies in beneficial use of AR in fieldwork (and 

thus need for inclusion in training), a potential to improve training and cost effectiveness. We 

discussed (a lack of) social learning as a potential cause for disparity between results of previous 

studies in this realm and adapted AR training to accommodate for this. An AR based training that 

included aspects of learning through observation was compared to traditional instructor-based 

training. The comparison was made in an experimental setup with 35 participants in each condition, 

for a total of n = 70. Participants were recruited at Alliander, a Dutch energy distribution system 

operator, and at a combined location of Graafschap college and A&T techniek opleidingen, two 

Dutch secondary vocational education institutions. The AR technology used in this study was 

Microsoft’s HoloLens 2, the training was implemented in Microsoft Dynamics 365 guides. The main 

metrics of comparison were knowledge gain, self-efficacy, and task performance. Additionally, we 

measured a host of supporting scores and influences. Equality between the two conditions could not 

be rejected for the main metrics, save for partial support for a difference in task performance. For 

knowledge gain, we found partial support for an effect opposite to our expectations. The 

implications for our theory on observational learning in AR based training are discussed as well as 

possible explanations for hypotheses that were not confirmed. Research directions are given to 

assess the possible explanations for rejection of our hypotheses. Furthermore, recommendations are 

given to expand our findings into other fields and expand with more objective measures (e.g., head 

tracking for attention). Lastly, practical implications for the use of AR training are discussed in 

relation to the type of knowledge that needs to be transferred as well potential cost savings. 
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Introduction 

High quality industry and maintenance require highly skilled engineers (e.g., automobile industry; 

Werrlich, Lorber, Nguyen, Yanez & Notni, 2018). This results in time consuming training and the need 

for re-evaluating skills on regular intervals, both of which are expensive. The fourth industrial 

revolution (or Industry 4.0), although mainly focused on automation with smart technologies, also 

seeks to approach this issue of staff shortage with new technological advancements (Erboz, 2017). 

Longo, Nicoletti and padovano (2017) develop an Augmented Reality (AR) framework for the human 

operator in the context of smart industries. They discuss manufacturing benefits that include more 

efficient training, easy adaptation to new contexts as a result of standardization and real time 

updates on system status. These benefits can help optimal utilization of available engineers and 

training of new engineers. Furthermore, higher effectiveness can reduce costs. Cost can also be of 

major importance in non-destructive evaluation training (Nguyen, Kamma, Adari, Lesthaeghe, 

Boehnlein & Kramb, 2019) or aerospace maintenance (Gonzalez-Franco et al., 2017), where 

traditional training is very expensive. AR is a promising solution in areas where there is a shortage of 

high skill staff as a result of an increasing demand, but it can also increase cost effectiveness through 

standardization and a more effective workflow. 

 

Alliander, the largest Distribution System Operator (DSO) in the Netherlands, is actively recruiting 

new staff, but also looks to make optimal use of available expertise. To this end their research center 

is interested in assistive technologies that can aid or amplify skills of engineers both in training and in 

the field. In line with the promises of AR, this technology is considered for implementation. A 

previous internal report has deemed the technology (Microsoft HoloLens 2) mature enough, but 

further research is needed on its potential and usability. The current study aims to help Alliander in 

this regard in addition to expanding the scientific literature. 

 

The current study focuses on the application of AR in training for which three reasons exist. First off, 

successful applications of AR in field work highlight the potential use cases for AR. For optimal 

exploitation of the potential, users need to be trained in using the technology. Second off, and more 

important, AR has the potential to improve training (Martin-Gutierrez, Mora, Añorbe-Díaz & 

Gonzalez-Marrero, 2017). Lastly, AR can potentially be a cost saving measure when materials for 

actual training are expensive (Nguyen, Kamma, Adari, Lesthaeghe, Boehnlein & Kramb, 2019) or 

when instructors are sparse and expensive (as is the case at Alliander). Discrepancies with regards to 

its effectiveness in training highlight the need for further understanding of embedding AR in training. 

Some studies report positive effects (e.g., Singh, Mantri, Sharma, Dutta & Kaur, 2019), while others 

report no differences or worse performance (e.g., Werrlich, Lorber, Nguyen, Yanez & Notni, 2018). 

Studies that report equal or worse performance compared to instructor-based training and failed to 

account for a loss in social learning. Social learning theory posits that observation of others 

performing certain tasks is an important facilitator of human learning (Grusec, 1992). Accounting for 

this factor in AR-training is important as this type of training is often considered as a replacement for 

other methods of training that include training by a tutor (e.g., Werrlich et al., 2019). This can 

hamper the effectiveness of AR as the lost benefits of observational learning negate AR benefits such 

as motivation (Petrone, Hanna & Shankaranarayanan, 2021) and engagement (Herbert, Wigley, Ens 

& Billinghurst, 2020). These factors can only come to fruition if social learning is accounted for. 

Hence, it should be studied whether AR that specifically includes observational learning is more 

effective than traditional, instructor-based, training as previous AR training implementations have 

not been. Based on this notion we raised the following research question: 
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What is the effect of using AR training that includes observational learning, when compared to 

traditional training methods with observational learning? 

 

The following sections will discuss the current state of the literature, our sub questions and 

hypothesis, methodology employed and the results and discussion thereof. 

 

Augmented reality 

Hsieh and Lin (2011) define Augmented Reality (AR) as computer generated (synthetic) elements that 

blend into the real environment to strengthen our visual feelings. It is summarized as adding virtual 

objects to our real environment.  According to Pierdicca et al. (2020) it makes the boundaries 

between the real and the virtual world less clear. Contrary to Virtual Reality (VR), which entails a 

completely virtual environment in which computer-generated elements are rendered, it 

 

Figure 1 

Microsoft HoloLens 2 

 

 

superimposes synthetic elements over images of the real world. Three common forms of AR 

implementation are the use of ‘standard’ electronic devices (pc/tablet/phone), projection and head 

mounted displays (HMDs). When using standard electronic devices, a camera feed on the device is 

overlaid with the virtual elements, such that pointing the device to objects in the real world allows 

for ‘augmenting’ these objects. Using projection-based AR means that the virtual elements are 

projected onto real world objects using lights, this form can use overhead projectors but has also 

been implemented on head mounted systems. Lastly, HMDs are devices that are strapped to the 

head which overlay the visual objects on the real world. This can be done either through a video feed 

that is adapted or by using a see-through visor which projects the virtual elements in your field of 

view. In the current study and adaptation of the latter is used: Microsoft's HoloLens 2 (Microsoft 

Corporation, 2021; Figure 1). 
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Target users 

AR can benefit a multitude of users in different contexts, however when focused on training one 

needs to consider the transferability of findings to the target user group. While exceptions exist, 

Alliander’ s trainees generally start their training after secondary school. Having completed some 

form of pre-vocational secondary education (NL: VMBO), a next step is to specialize in a specific 

profession. In their case, this means an operational function at Alliander. In the Netherlands 

vocational secondary education and university of applied sciences (NL: HBO) are more practically 

orientated when compared to university. Slaats, Lodewijks & van de Sanden (1999) argue that 

because of this a different measure of learning styles is needed. They find that even within the realm 

of vocational secondary education, theoretical fields (i.e., commerce) have a higher prevalence of 

reproductive learning, while more practical fields (i.e., technical) have a more constructive learning 

style. Our target users fall into the latter category, hence their learning style contrasts learning styles 

of university and university of applied sciences students which are focused on theoretical 

understanding (Vermunt & Vermetten, 2004). 

AR in fieldwork 

As a result of safety regulations, the complexity of tasks and the novelty of the technology, AR 

applications in field research are limited. However, by taking real tasks from the field or by simulating 

them, several studies have been done on using AR in fieldwork. Wallmyr, Sitompul, Holstein and 

Lindell (2019) focused on the awareness of excavator operators. They compared three different 

forms of presenting navigational information and warnings in a simulated excavator task. The three 

forms were: a head-down display (non-AR) on the operator's armrest, a see-through head-up display 

in front of the simulated outside and a projection ‘display’ that integrated the warnings with the 

simulated environment. Using a within-person, quantitative approach, they found that workload was 

significantly lower in the projection display (ηp² = 0.21) and that the head-up display  also had a lower 

workload, although not significant (attributed to sample size). Furthermore, both these (head-up, ηp² 

= 0.33; projection ηp² = 0.48) displays were glanced at more frequently than the heads-down display 

highlighting the importance of presentation location for a higher chance of being noticed. Similarly 

presenting information in a Head Mounted Display (HMD) might raise awareness when compared to 

warnings on a meter. Pierdicca et al. (2020) also aim for improving safety, they developed a cloud 

based augmented reality program for an oil-extraction plant. They did not perform controlled user 

tests, but co-creative validation with plant staff indicated that guidance on the steps needed, real-

time alerts in users’ field of view and the possibility for remote assistance increased safety.  

 

The effectiveness of guidance on performance is dependent on the familiarity with the task 

(Hoffman, Büttner, Prilla & Wundram, 2020). Hoffman and colleagues did an experiment on car 

repairs where novice AR users were confronted with familiar and unfamiliar tasks. Participants 

performed both tasks but were randomly allocated to AR guidance or traditional guidance in 

between subject design. AR was effective in raising the quality of the work for the unfamiliar tasks 

(ηp² = 0.49). In familiar tasks this effect was not present, and the authors suggest that experience 

might play a role; participants did not adhere to the AR guide when they had a different preferred 

step order as a result of previous experience. There were no significant differences in assembly time 

between the two groups, regardless of familiarity. A study that did find a significant difference in 

completion time reported longer sessions in the AR condition (Pringle et al., 2018). Mechanical 

engineering students were randomly allocated to AR or tablet-based instructions in between subject 

design. The tablet-based instructions had lower completion times (ηp² =0.11), but task accuracy was 

better in the AR condition (ηp² = 0.17). They also found that not all steps within a task benefit equally 
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from the use of AR (ηp² = 0.57), rather performance differences between AR and traditional guides 

were the result of stark differences on select parts of the task. 

Pierdicca, Frontoni, Pollini, Trani & Verdina (2017) tested an HMD for AR in guided assembly and 

concluded that AR could replace physical or tablet-based manuals. Their performance measure was 

the execution time. However, they did not disclose participant count or an experimental design, 

assessment was more qualitative in nature. In their evaluations of their AR based system even lower 

skilled workers were able to complete such a task. An earlier case study with mobile phone-based AR 

indicates that combining such guides with remote (stored) access to steps taken allows for employing 

less skilled workers (Re & Bordegoni, 2014). This study was of exploratory nature with an evaluation 

of the process with one user. The authors propose workers perform tasks guided by an HMD AR 

solution that expands on their skills, while remote access allows for verifying the process by a smaller 

group of skilled workers. 

 

Implementation of AR devices in the workflow would require staff to be open to adopting it. In a 

study on military equipment maintenance participants indicated that for them to adapt AR there 

should be added value not only for the employer, but also for them as users (Henderson & Feiner, 

2011). This was found using a qualitative survey with open ended sections to comment on the 

technology used, which also indicated that the device used in this study obstructed too much of the 

field of view to the participants’ liking. Quantitative evaluation using a controlled, within-subject 

design indicated participants were quicker to navigate to a task area (ηp² = 0.71) and did so with less 

head movements, potentially bringing users a reduction of bodily strain (ηp² > 0.41). They did not find 

a difference in quality (error rate), while for completion time there was a main effect (ηp² = 0.24) that 

did not result in significant pairwise comparisons. 

 

Newer devices have reduced obstruction (e.g., HoloLens 2), but the field of view in which virtual 

elements can be projected is still limited. Additionally, the tinted visor of the HoloLens has been 

found to hinder working in dark environments (Vorraber, Gaser, Webb, Neubacher & Url, 2020). 

Vorraber and colleagues focused on the HoloLens for remote assistance. During semi-structured 

interviews their participants indicated that they felt safety was increased and risks were reduced the 

use of AR assistance when compared to audio-only assistance (phone). Analysis of video recordings 

of users interacting with the system showed faster (20%) completion time when compared to audio 

only guidance, but no further statistics are reported. This is in line with earlier work on paper guides 

versus AR guides (Url, Vorraber & Gaser, 2019), which suggests time effectiveness depends on what 

you compare it to.  Url and colleagues used semi-structured interviews guided by questionnaires and 

video analysis of users interacting with AR and paper-based guides. Combining both the works of 

Vorraber and Url indicates that issues exist regarding distraction, ergonomics, safety, and privacy. 

Whereas some of these issues are a result of the current state of the technology (e.g., dark visor or 

limited field of view), others can be dealt with through training (e.g., proper ergonomics or safe 

usage). Proper use of AR in field work therefore requires that engineers become accustomed to the 

technology, or a specific device, in their training. 

 

All in all, there are significant benefits to using AR in field work. It can stimulate awareness, reduce 

workload, increase task accuracy, and increase quality of delivered work. Additionally, with the 

option to remotely access an AR system and offer support lower skilled workers can be effective in 

high skill tasks. It should be considered that completion time results differ throughout studies, 

indicating that AR systems can in some cases result in longer completion times. Furthermore, the end 

users should see a clear benefit in using an AR system in order for them to consider active use. 



 

 
9 

 

 

Augmented reality in training 

To better harness benefits from AR in field work, it can become part of training. Inclusion of AR in 

training allows for accustoming with AR but can also further enhance the training. Martin-Gutierrez, 

Mora, Anorbe-Diaz and Gonzalez-Marrero (2017) assessed the trends of virtual technologies, one of 

which is AR, in education. Based on their analysis of the literature at that time they found four trends 

favoring the application of virtual technologies in education. First off, Virtual technologies allow for 

more interaction than conventional learning materials. Barriers like costs, complex assembly and 

high abstraction can be overcome through virtual visualization of systems and concepts allowing for 

interactions not or hardly possible in traditional teaching. Interaction is also fostered by being able to 

freely explore interactions as no (financial) risks are associated with it. Secondly, they fit a 

constructivist approach to learning. The theory of constructivist learning postulates that one learns 

through interaction and experiencing and integrating this with previous knowledge and experiences 

Elliott, Kratochwill, Littlefield Cook & Travers, 2000). Virtual technologies facilitate this in scenarios 

where previously this was not possible. Internal flow of heating and air conditioning systems (Zoghi, 

Buhtra & Paremeswaran, 2018), power flow of a car (Pires and Midthun, n.d.) or non-destructive 

evaluation training (Nguyen, Kamma, Adari, Lesthaeghe, Boehnlein & Kramb, 2019) are examples of 

this as previously this was impossible or too costly.  Third Martin-gutierrez and colleagues (2017) 

mention the increase in motivation and engagement for the learning experience. And lastly, they 

mention that virtual technologies are becoming more affordable and accessible. In technical fields 

the interaction argument is also valuable. 

 

Expensive equipment and need for non-destructive evaluation prevent trainees from freely exploring 

inner workings of equipment (Nguyen, Kamma, Adari, Lesthaeghe, Boehnlein & Kramb, 2019). To 

solve this Nguyen and colleagues compare three types of training: paper-based training (guide on 

paper), hands-on training (physically interacting with the system) and AR training (mixed reality in 

their definition) for non-destructive evaluation (NDE) trainees. The study used a within-subject 

design, with a random presentation order for the three training types. Their focus was on comparing 

the three methods with regards to the perceived ease of use, convenience, experience, and which 

method was preferred by participants (trainees, but trainers were also included). AR training scored 

higher for each, however not all differences were significant. AR training was considered easier to 

use and more convenient than the hands-on training (p < 0.001, means only displayed in graphic), 

but equality with regards to user experience and user preference could not be rejected between the 

two methods. In fact, when commenting on their answers some participants mentioned that the 

hands-on training was a better experience because of being able to touch the objects, by extension 

the preference was also not significantly different. 

 

Zoghi, Buhtra and Paremeswaran (2018) provided engineering students with an AR system to help 

their understanding of heating, ventilation, and air conditioning (HVAC) systems. Assessment was 

qualitative by means of a survey that included statements participants had to (dis)agree with and 

room to explain their answers. Like the aforementioned study by Nguyen and colleagues, Zoghi and 

colleagues get positive qualitative feedback on ease of use and the experience, they also highlight 

that students in their sample saw use in this type of training and were open to future use in 

education. A recent qualitative study (survey & interviews), also focused on studying HVAC, 

described how participants felt more motivated by the visualization possible with AR (Arntz, Eimler, 

Keßler, Nabokova & Schädler, 2020). This study developed a system suitable for the HoloLens, but 
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tested it using mobile (android/IOS) devices. Still, it highlights the potential for motivating students 

to understand the underlying system using AR. A study on guided assembly compared video 

instructions to HMD AR instructions and found indications that higher complexity tasks benefited 

more from AR, although they could not statistically validate this due to a lack of power and ceiling 

effect with regards to puzzle complexity. 98 participants were divided over four groups (2 levels of 

complexity, video, or AR instructions) in a between-participant design. The underlying mechanism 

they propose: Their participants reported higher motivation in the AR condition for complex tasks 

(Petrone, Hanna & Shankaranarayanan, 2021). 

 

Engagement (self-reported on Likert scale) with a task has been found to be higher when using an 

HMD AR system (η² = 0.42), when compared to hand-held AR (i.e., phone or tablet) (Herbert, Wigley, 

Ens & Billinghurst, 2020).  The authors also report that visually, participants seemed more engaged 

with the HMD AR system when compared to hand-held guides without AR, but there was no 

significant difference. Herbert and colleagues used a network switching task to determine this effect. 

They employed a controlled within-subject design with the three conditions in randomized order. In 

addition, they also found that there is a moderate negative correlation between the System Usability 

Scale (SUS) and cognitive load (NASA-TLX). However, they did not find significant differences 

between the three conditions for SUS, cognitive load, self-reported feeling of accomplishment and 

self-reported learning of new skills. 

 

One area where AR training has advanced significantly is welding. Papakostas, Troussas, Krouska and 

Sgouropoulou (2021) used an off-the-shelf AR welding simulator to test the acceptance of the 

technology among engineering students. More specifically they adapted the most recent version of 

the Technology Acceptance Model (Venkatesh & Bala, 2008) to include system quality (SQ) and 

perceived enjoyment (PE).  They analyze using structural equation modelling based on partial least 

squares resulting in path coefficients ranging from -1 to 1. In short, they find that behavioral 

intention (BI), the main predictor for actual use, is largely based in attitude towards the technology 

(AT, 0.796) and its perceived usefulness (PU, 0.207). AT, in turn, is largely the result of perceived ease 

of use (PEOU, 0.568) and SQ (0.233). PU is mostly the result of PEOU (0.492), but also builds on PE 

(0.274) and SQ (0.185). These findings highlight the importance of a quality implementation that is 

clearly useful to the user and that has usability that is intuitive or well-fit for understanding with 

training.  

 

Besides what makes users adapt to AR and how they are affected in terms of motivation, 

engagement et cetera it is also good to consider how this translates into performance. Different 

performance measures have been used in different fields resulting in mixed findings. Pires and 

Midthun (n.d.) had engineering students follow a class on the inner functions of a car using AR. More 

specifically, front wheel transmission assembly was taught using trainer led lectures with a HoloLens, 

individual review using a HoloLens and group reviews using a HoloLens. Nine participants 

participated of which 5 strongly agreed that the AR transmission visualization increased their 

knowledge and understanding of the content, while 3 were neutral and only 1 participant disagreed. 

Similarly, 8 strongly agreed that seeing the inner parts of the transmission helped them comprehend 

the system, while one participant was neutral. This was supported by the fact that the class 

instructor noted that the students grasped car transmission power flow faster: It usually takes three 

weeks, with the AR instruction reducing it to one week. The authors conclude that AR has both user 

acceptance and educational benefit. 
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Werrlich, Lorber, Nguyen, Yanez and Notni (2018) had participants (re)assemble several parts of a car 

engine after a training session. They employed a controlled, between-subject design. Participants 

were randomly allocated to be trained either using a traditional face-to-face training or using a 

HoloLens based AR training. They took a quantitative approach and found that completion time was 

longer in the AR condition(15m15s, with 9m40s for control), immediate recall of steps (pick up wrong 

parts: 10%; perform task in wrong order: 5%, rework: 60%) was better using the AR training, in depth 

knowledge (knowledge test) was equal between the groups (p > 0.05, no descriptive statistics) and 

that the quality of (re)assembly (correctly assembled parts) was better in the face-to-face condition 

(p < 0.05, no descriptive statistics). Completion time can be a result of unfamiliarity with the 

technology that disappears over time, as participants in the AR condition were also given more time 

to familiarize. The authors argue that the results are still promising as AR solutions will become 

better overtime, reducing flaws resulting from inexperienced use and incomplete training.  

Similarly, Gonzalez-Franco et al. (2017) evaluated training for manufacturing of an aircraft 

maintenance door. They compared face-to-face training with a mock-up to mixed training where 

trainees were instructed by a trainer sharing the same augmented space with a virtual model. Their 

setup was controlled and between-subject, with participants randomly allocated to one of the 

groups. No significant differences in post training knowledge retention (knowledge test) and 

knowledge interpretation (task execution on scale model) tests were found. Again, completion time 

is longer in the AR aided training (η² = 0.32), which is attributed to extra time taken for familiarizing 

with the system. The authors interpret the lack of significant differences on the knowledge tests as 

promising for future use of AR, as similar performance allows for choosing the cheaper (in this case 

AR) option. 

 

A different application has been studied for engineering student laboratory skills. Singh, Mantri, 

Sharma, Dutta & Kaur (2019) employed a desktop implementation of AR to help students build 

experience with laboratory equipment. They compared an AR hands-on condition to a control of 

traditional hands-on teaching. To do so they randomly assigned their participants to either the 

experimental or the control group, for a controlled, between-subject design. They found significant 

differences in laboratory skills (test with the lab equipment), with the AR condition scoring higher (η² 

= 0.32), as well as a significant decrease in cognitive load in the AR condition (η² =  0.08). The authors 

also remark that AR adds benefits of a virtual learning environment, without losing the practical 

(hands-on) exposure as would be the case in fully virtual environments. 

 

All in all, AR based training can result in increased motivation engagement, and is generally 

considered easy to use and well accepted. These beneficial factors do not always result in better 

outcomes. Looking at effectiveness there are mixed findings as some studies have found 

performance benefits, whereas others did not. AR is promising as a training method, but further 

understanding is needed to harness its potential. 

Current study 

AR has found its way into both field work and training within a multitude of industries. Several 

benefits of using AR in fieldwork were discussed (e.g., ease-of-use: Nguyen, Kamma, Adari, 

Lesthaeghe, Boehnlein & Kramb, 2020; motivation: Petrone, Hanna & Shankaranarayanan, 2021; 

engagement: Herbert, Wigley, Ens & Billinghurst, 2020). This highlights the importance of including 

AR technologies in training of new workers. Furthermore, application of AR in training has shown 

potential for improved engagement and motivation, and generally scored well on usability. In 

training there is also an additional factor of needing skilled instructors. These can be scarce or 
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expensive, further highlighting the relevance of developing effective AR training. However, given the 

mixed results with regards to actual performance increase, a further understanding of what AR based 

training is effective. Why do factors associated with higher performance like ease-of-use (Alanazi, 

Frey, Niileksela, Lee, Nong & Alharbi, 2020; Lam, Sadik & Elias, 2021), engagement (Christian, Garza & 

Slaughter, 2011), and motivation (Tršková, 2016) not lead to higher performance in all AR 

implementations. One factor that has received little attention in the domain of AR-guided training for 

engineers, mechanics and operators is observational learning. The notion of observational learning 

was first introduced in Bandura’s social cognitive theory (1986): You learn through observing 

someone else’s behaviour. Social learning theory tailors specifically to the context of learning and 

posits that one learns through observing someone else perform the correct action or behavior 

(Grusec, 1992). 

 

What is interesting is that this notion may explain, to some extent, the mixed findings with regards to 

AR training when compared to traditional training methods. Observational learning is an important 

part of training, meaning its omission in AR can hamper the effectiveness of AR training. More 

specifically, benefits of AR training (such as engagement and motivation) would be negated by not 

having the ability to learn through observation in such a training. If we look at the four studies 

discussed in the previous sections, this idea is further supported. Pires and Midthun (n.d.) had no 

statistical quantitative assessment, but the performance increase they mention was with AR training 

where an instructor was still present. Sing et al (2019) found a significant difference but compared to 

a traditional hands-on training where trainers were not actively involved either. As the traditional 

training method did not include trainers, it also did not include observing these trainers perform the 

correct operations. Observational learning was never part of the traditional training, hence switching 

to AR based training meant that this type of learning was not lost. In short, there was no loss of 

observational learning, meaning the effects of including AR in training were not hampered by this. 

Werrlich et al (2018) did not find significant improvement in in-depth knowledge and the quality of 

the delivered work, but the counteracting effect could have occurred here. They compared an AR 

training without an instructor to a traditional hands-on training with an instructor. The study by 

Gonzalez-Franco et al (2017) does not line up with our idea of a lack of observer learning (self-

efficacy) counteracting a positive effect of AR training. Their setup did include the physical presence 

and instructions of a trainer both in the traditional and in the AR-guided training. However, their 

implementation of AR meant that no physical interaction with the model was possible. Rather 

participants saw a virtual hand, directed by the trainer using a control stick, interact with a virtual 

model positioned in the real world. This might have polluted the effect as Nguyen et al (2019) 

indicated that being able to touch a model makes for a better learning experience. 

 

Given that work fields exist where observational learning is an important aspect of training, this 

aspect of learning cannot be overlooked when developing AR in those fields. Again, factors 

associated with higher performance like ease-of-use (Alanazi, Frey, Niileksela, Lee, Nong & Alharbi, 

2020; Lam, Sadik & Elias, 2021), engagement (Christian, Garza & Slaughter, 2011), and motivation 

(Tršková, 2016), were found to be higher in AR training (e.g., ease-of-use: Nguyen, Kamma, Adari, 

Lesthaeghe, Boehnlein & Kramb, 2020; motivation: Petrone, Hanna & Shankaranarayanan, 2021; 

engagement: Herbert, Wigley, Ens & Billinghurst, 2020). However, in situations where observational 

learning was lost with the implementation of AR, the effect of these factors was cancelled out 

(Werrlich et al, 2008; Gonzalez-Franco et al, 2017) or performance became worse (Werrlich et al, 

2008). Whether such beneficial factors come into effect in an AR based training that does account for 
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observational learning, needs further research. Based on these findings we raised our research 

question, which is reiterated below: 

 

What is the effect of using AR training that includes observational learning, when compared to 

traditional training methods with observational learning? 

 

To answer the research question, we developed several sub questions for effects of interest. As 

mentioned, findings with regards to performance have been mixed. Hence, our first and second sub 

questions regard performance. More specifically they assess the knowledge gain and task 

performance achieved through the different training types. Thus, our first sub questions are: 

 

(SQ1) What is the effect of AR-based training on knowledge gain? 

(SQ2) What is the effect of AR-based training on task performance? 

 

Where previous studies left out observational learning in their implementation of AR training 

(Werrlich et al, 2008; Gonzalez-Franco et al, 2017), we include video material in the AR training to 

allow for this phenomenon. Through doing so we expect them to be equal in this regard, allowing for 

other factors to have their effect. We mentioned that factors like ease-of-use, engagement, and 

motivation are higher in AR conditions. Again, these factors have been found to heighten 

performance (Alanazi, Frey, Niileksela, Lee, Nong & Alharbi, 2020; Lam, Sadik & Elias, 2021; Tršková, 

2016; Christian, Garza & Slaughter, 2011). The fact that both training types include observational 

learning will result in other factors dictating performance. As AR has the edge in motivation, 

engagement and ease of use for training, we hypothesize: 

 

(H1) knowledge gain is higher in AR-based training than in traditional training. 

(H2) Task performance is higher in AR-based training than in traditional training. 

 

Besides performance, another factor of specific interest in the context of observational learning, and 

understudied in the context of AR, is self-efficacy. It was originally defined as “people’s judgements of 

their capabilities to organize and execute courses of action required to attain designated types of 

performances” (Bandura, 1986, p95). In simpler terms, it regards one’s belief in their ability to 

perform a certain task. Bandura introduces the concept as part of his social cognitive theory, which 

pertains to the role of observational learning and social experiences in the development of 

personality. In a later work he (Bandura, 1977) also describes how self-efficacy is, among other 

factors, of importance for learning through observation; self-efficacy increases when, besides other 

influences, observing others perform a task (i.e., observational learning). Hence, our second sub 

question is: 

 

(SQ3) What is the effect of AR-based training on self-efficacy? 

 

Bandura (1977) described how observational learning heightens self-efficacy, as this is part of both 

our AR training and traditional training; this does not differentiate the two methods. Again, allowing 

for other factors to have their effect. However, Bandura also highlights the importance of mastery 

experiences for self-efficacy. Successfully performing a task heightens self-efficacy, while failing it can 

undermine it. Completion of a task shows someone they have what it takes. The self-directed 

learning that takes place in the AR training, means participants have to overcome issues based on 
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their own resources. Completing the task after having done so is a key aspect of mastering 

experiences, hence we hypothesize: 

 

(H3) Self-efficacy is higher in AR-based training than in traditional training. 

 

In addition to our main analysis, we further want to explore whether the hypothesized increase in 

knowledge gain is (partially) mediated by the hypothesized increase in self-efficacy. 

 

(SQ4) Is the relation between training type and knowledge gain mediated by self-efficacy? 

 

As discussed, we hypothesize both a direct effect of training type on knowledge gain and an effect of 

training type on self-efficacy. For mediation, the third path from self-efficacy to knowledge gain 

should also be reasonable to expect. Sawtelle, Brewe and Kramer (2012) found that physics students 

reporting higher self-efficacy had higher ability to reproduce their gained knowledge in a test. 

Similarly, it has been found that higher self-efficacy in computer-based learning led to better learning 

outcomes (Moos & Azevedo, 2009). Based on these indications we hypothesize that (Figure 2): 

 

(H4) The relation between training type and knowledge gain is (partially) mediated by self-efficacy. 

 

Similarly, we want to explore whether the hypothesized increase in knowledge gain is mediated by 

the hypothesized increase in self-efficacy? 

 

(SQ5) Is the relation between training type and task performance mediated by self-efficacy? 

 

We hypothesize both a direct effect of training type on task performance and an effect of training 

type on self-efficacy. For mediation, the third path from self-efficacy to task performance should also 

be reasonable to expect. Yeo and Neal (2006) found that self-efficacy has a positive impact on task 

performance when measured between people, as is the case in our study. Hence, we hypothesize 

(Figure 2): 

 

(H5) The relation between training type and task performance is (partially) mediated by self-efficacy. 

 

Figure 2  

Mediation of knowledge gain (left) and task performance (right  

  

 

In addition to answering our main research question, we also explore other relevant factors. A first 

factor of interest comes from Pringle et al. (2018), who discussed AR guidance in wind turbine yaw 

motor maintenance. They found that AR was helpful in some steps of the process but gave no added 
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benefits in others. We want to explore whether the effectiveness of AR training is dependent on 

which part of the training it is used for. Therefore, we raise the following exploratory question: 

 

(EQ1) What is the interaction effect, if existent at all, between task step and which type of training is 

employed on performance? 

 

Lastly, we conduct some additional qualitative analysis. Previous studies have found factors like ease-

of-use, motivation and usefulness of AR training positively affected or rated by its users. We expect 

to find similar results, but the qualitative assessment of these factors can aid interpretation of the 

quantitative results and help Alliander in its further adaptation of the technology. 
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Methods 

Design 

The current study employed a mixed between-within subject design. This approach was taken 

because we wanted to prevent learning effects between the teaching methods but wanted multiple 

measurements for each condition. The between-subject, independent variable was the teaching 

method a participant received. Two different strategies were employed: A traditional instruction by a 

trainer and an AR training which includes video instructions by a trainer. The within-subject, 

independent variable was the task step. Participants are trained for three steps important to 

operating a Magnefix (medium voltage switchgear, part of the energy distribution system; see the 

setting and stimulus section): Switching, grounding, and reactivating the system. These steps will be 

combined for the main effect of the teaching method but used individually for explorative analyses 

on step specific effects. The three dependent variables in our design are task performance, 

knowledge gain and self-efficacy with regards to the Magnefix. Knowledge gain was measured using 

a quiz developed in cooperation with trainers from Alliander’s training program. Participants were 

asked to walk through the task again after the training, during which a checklist was used to assess 

task performance.  Self-efficacy is assessed using an item battery, containing several statements that 

were rated on a 7-point Likert scale. Additionally, measurements of learning goals, observational 

learning, motivation, engagement, mastery experience and qualitative questions were also included. 

Power analysis 

Discussion of our study goals with the education institution resulted in a maximum feasible sample 

size of around 70 participants. We performed a sensitivity analysis based on this number with α = 

0.05 and 1 -β = 0.90. G*Power was used to do so with the option ‘As in SPSS’. The analysis was done 

for our main repeated measures analysis meaning we input two groups, with three measurements in 

G*Power.  

 

Our analysis indicated that we could detect effect sizes of f(U) = 0.40 and higher. 

This means we can detect large effect sizes, as 0.40 should be interpreted as ‘large’. Given the 

financial investments and time (for reworking the system) needed to integrate virtual technologies in 

Alliander’s training program this is sufficient. Smaller effects sizes would not justify these 

investments as alternative explorations for expanding the training program are ongoing. 

Furthermore, we think we can reasonably expect such an effect size. For comparison, we used the 

study by Singh et al (2019; see introduction). As well as two other studies (Hanafi, Zainuddin, 

Abdullah & Ibrahim, 2019; Mu, Hocking, Wang, Garvin, Eagleson & Peters, 2020) that compared AR 

learning to non-AR learning in different contexts. They find Cohen’s d = 1.34 (post-test performance 

for using laboratory equipment), 1.68 (understanding math) and 1.02 (average of 4 steps, expert 

assessment of novice needle injection) respectively. These studies were chosen because, like the 

study by Singh and colleagues, they compare  scenarios where no trainer was involved in the 

traditional method, hence capturing a pure effect of AR effectiveness. As their dependent variables 

are not the exact effect we are after we take a conservative approach. The lowest effect size d = 1.02 

is used with a 20 percent decrease for publication bias and a conservative value. This results in d = 

0.82 which corresponds to a large effect size, meaning we have a large enough sample. 
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Participants 

Participants were required to have no (or little) previous experience or training on how to operate 

the Magnefix. Additionally, all participants were required to be fluent in Dutch as training and 

surveys were all Dutch (in line with Alliander’s internal communications). As Alliander only has 

limited trainees that fit these conditions in their training program, we contacted Graafschap college 

and A&T techniek opleidingen located in Terborg, the Netherlands. To prevent bias, we divided 

Alliander’s participants and the external participants equally over both groups. To be of relevance in 

the context of Alliander this study uses participants at a similar educational level as Alliander 

trainees. Hence, the external program selected was at secondary vocational education level. 51 

(Traditional = 26, AR = 25) participants were recruited externally while 19 (Traditional = 9, AR = 10) 

participants were employed or in training at Alliander. Two participants were female, all other 

participants were male (Mage = 24.41, SDage = 11.02, Minage = 17, Maxage = 63). One participant did not 

fill out the post experimental survey and therefore cannot be included in analysis of variables 

measured in this survey. Similarly, time measurements were not taken for two participants and are 

not included in analysis of this variable. 

Setting and stimulus materials 

The experiment will be conducted at two locations. Participants from within Alliander were invited to 

Alliander’s training center in Duiven, the Netherlands. External participants were invited to partake in 

the experiment in Terborg, for which an experimental setup was created there.  

Figure 3 

The setup in Terborg  

  

Note. A small meeting room was outfitted to run the experiment in. The left panel shows the 
Magnefix. The right panel shows a wider view of the lab. 

Participants were trained on how to operate a Magnefix (Figure 3). A Magnefix is a medium voltage 

switch produced by Eaton (Eaton Industries, 2021a). Its name stems from the MAGNEtix FIXation of 

several power switching caps. In the current study specifically a Magnefix of the type MD was used. 

For specific information on technical details and application consult Eaton’s product page for the 

Magnefix (Eaton Industries, 2021b). Participants were given a scenario in which a specific part of the 

energy grid (cable section) needed maintenance. In order for this maintenance to be executed safely 

they were asked to switch the system, ground it, and re-enable it after the maintenance was done. 
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Switching meant removing a column of switch caps. The switch caps are the white, oval caps of which 

nine can be seen on the Magnefix in Figure 3. Figure 4 (left) shows the Magnefix with the caps removed 

in the HoloLens training. Besides the actual removal of these caps, this step included safety measures, 

proper stowaway of the caps and leaving the system in a safe state. Having switched off the cable 

section, they could then proceed to ground it. Grounding meant they had to validate that there was 

no voltage left, ground the system by connecting the cables to the frame of the Magnefix, and leaving 

the system in a safe state. Lastly re-enabling the system meant removing the ground, placing the switch 

caps back, tidying up and again leaving the system in a safe state. 

Figure 4 

Indication of holograms (left), video and text instructions (right) in the HoloLens 

  

The head mounted display used in the current study was Microsoft’s HoloLens 2 (Microsoft 

Corporation, 2021). It uses see-through holographic lenses which push 2K 3:2 light engines per eye. 

Rendering takes place based on eye and head tracking for which 2 infrared, and 4 visible light cameras 

are used respectively. It is powered by a Qualcomm Snapdragon 850, a custom Microsoft holographic 

processing unit, 4GB of LPDDR4x DRAM, has 64GB of storage and is Wi-fi 5 enabled. Total weight of 

the system is 566 grams. An indication of how holographic models, video and text are visualized in the 

HoloLens environment can be seen in Figure 4. 

 

The training program run on the HoloLens was based on a program developed for Alliander by three 

students of the HAN university of applied sciences. It features holographic, video-based, and text-

based instructions and was developed specifically for the Magnefix. Adaptations were made so as to 

include more information, add more holograms, animate holograms, correct mistakes in the video 

instructions and to stitch the elements relevant to our study together. Participants went through a 

step-by-step explanation of the task at hand. Each step featured (a combination of) the three 

instruction types, examples of which can be seen in Figure 4. No coding was needed as 3D-models 

were provided by Alliander, animated in Blender (Community, 2018) and consequently fit into the 

training using Microsoft Dynamics 365 guides (Microsoft, 2021a). 

Measurements 

The two dependent variables as well as demographic measurements were recorded during and after 

the experiment. For measuring knowledge gain, we used a quiz developed in cooperation with 

Alliander’ s trainers. The quiz consisted of a total of 12 multiple choice (MC) questions (details in 
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appendix), each of which had 4 options, one of which was correct. There were four, five and three 

questions for switching, grounding, and re-enabling, respectively. Scores will be expressed as a ratio 

from between (and including) 0 and 1. 

 

For task performance a checklist (See appendix A) was used. Each task step (switching, grounding, re-

enabling) was divided into a list of smaller steps. Each smaller step got a weighted score in line with its 

importance. Weights were decided on in co-operation with Alliander staff. The checklist form allowed 

for three assessments: ‘Completed’, ‘Not completed’ and ‘Completed in wrong order’. For these three 

assessments participants received the full weighted points, no points or half the weighted points, 

respectively. Because of the ratio transformation this results in a max score of one, for example 

switching score had 10 items (which, after weighting, accounted for 15 points) was divided by 15 to 

get the ratio score. For 44 out of 70 assessments a second assessor was present to prevent bias. The 

scores between the two assessors  correlated with r = 0.68 (p < 0.001). This score can be considered a 

substantial agreement (Landis & Koch, 1977), and as such the score of the assessor who was present 

for all sessions is used. 

 

Self-efficacy statements were constructed in line with the literature  (Bandura, 1997; Marakas et al., 

1988; Fountoukidou, Ham, Matzat & Midden, 2019). The items were slightly adjusted  to fit the current 

context. The self-efficacy scale consists of twelve statements starting with “I believe I have the 

ability...”, which is then followed by a specific step to be taken in the relevant context. This sentence 

was translated into Dutch (“Ik denk dat ik in staat ben...”). The statements were developed in 

cooperation with Alliander’s trainers and consisted of four items for each task step for a total of twelve 

items (See appendix B). The items were rated on a scale from 1 (strongly disagree) to 7 (strongly agree). 

Reliabilities as measured by Cronbach's alpha were 0.84, 0.85 and 0.88 for switching, ground and re-

enabling respectively, meaning they are all considered good in terms of reliability. All twelve items met 

the cutoff for loading on a certain factor as determined by Hair, Tatham, Anderson & Black (1998). To 

assure all three scores were measuring (the same) self-efficacy they were combined in one factor 

analysis. This showed that all twelve items mapped to one, reliable, factor as well (α = 0.94). This entails 

that the three separate scores can be considered repeated measures of self-efficacy. 

 

To assess whether both groups had the same mastery learning goals when the training started, they 

were first asked to fill out survey questions on their learning mastery goals. The items were taken from 

Elliot & Church (1997), adapted to the context, and translated into Dutch (appendix B). The items were 

rated on a scale from 1 (strongly disagree) to 7 (strongly agree). Six items were included and as 

expected showed only one underlying factor for which all items met the cutoff requirement. The 

combined score had a good reliability (α = 0.94). 

 

Similarly, we want to assess how the groups compare in terms of observational learning. Bullock (2014) 

proposes a method for assessing several components of observational learning: Attention, retention, 

production, and motivation. As we include performance measurements for knowledge gain and task 

performance, we are specifically interested in the attention. This assesses whether modelling by an 

instructor was equally attention grabbing in both methods, thus facilitating learning through 

observation. We adapted Bullock’s items to the current context and translated them into Dutch (see 

appendix A). Each statement is rated on a scale from 1 (strongly disagree) to 7 (strongly agree). In 

factor analysis, two factors were identified, but for the second factor none of the items met the cutoff 
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requirement. For the first factor all items met the requirement, save for one. As alpha levels were 

above 0.9 both with and without inclusion of this item, we opted for keeping the original scale 

complete. The combined score had good reliability (α = 0.91). 

 

In our theory for hypothesis 3 we introduce mastery experience as a factor underlying differences in 

self-efficacy. Therefore, as with observational learning, we will consider how each group scores on 

this metric. There are no existing scales relevant for the context, nor is there an easily adaptable 

scale. In line with other studies in different contexts (Usher & Pajares, 2009; Hoi, Zhou, Teo & Nie, 

2017) we developed five strong statements (table 1) regarding one's ability in the current field. An 

example would be “Ik heb de training heel goed doorlopen”, which loosely translates to “I did the 

training very well”.  Factor analysis showed that four out of five items mapped to one factor (table 1), 

with the fifth item being a second factor. The four items were combined into one factor for mastery 

experience with good reliability (α = 0.88). 

Table 1 

Factor loadings for mastery experience statements 

Statement Factor 1 Factor 2 

Ik pakte zelfs de complexe handelingen voor de magnefix eenvoudig op. 0.89 -0.08 

Ik kan de de handelingen voor de magnefix goed verrichten. 0.92 0.02 

Zelfs als ik mijn best doe, krijg ik de handelingen voor de magnefix niet 

goed onder de knie. 

-0.08 0.99 

Ik heb de training heel goed doorlopen. 0.89 0.00 

Er was niks aan te merken op mijn werk toen ik de handelingen zonder 

training uitvoerde. 

0.76 0.17 

 

Measurements for engagement (Konak, Clark & Nasereddin, 2014; Appendix B) and motivation 

(Guay, Vallerand & Blanchard, 2000; Appendix B) were both shownin one item battery as some items 

overlapped. They are translated and adapted to the context. Four items for motivation measured 

one factor and all met the cutoff value. Combining the scores resulted in an alpha level of 0.92. 

Similarly, three items for engagement measured one factor, met the cutoff value and the combined 

score was reliable (α = 0.88). 

 

User experience items were adapted from Zoghi, Buhtra & Paremeswaran (2018). They used only 

two items (see appendix B) relating to pleasantness and interestingness. These map on one factor, 

but sampling adequacy is debatable (Kaiser-Meyer-Olkin overall score of 0.5). This indicates that a 

factor analysis for these items is limited by high common variance between the items. This is also 

shown in the moderate reliability (α = 0.66) of the combined score. This marginal explanative value 

was considered in further analyses that included this score. 
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Lastly, the qualitative questions were included at the end of the post experimental survey. The 

questions regarded ease of use, usefulness, experience, motivation and intention of future use. 

These answers are used in interpretation of other results. 

Procedure 

Participants were welcomed at Alliander’s training center or in Terborg. Participants were asked to 

sign informed consent. Consecutively, as participants were not all Alliander trainees, they were shown 

a video on Alliander’s work to set the context. The video was included in a survey on demographics 

and learning goals. Participants were then trained in line with the condition they were assigned to. For 

the AR condition participants were given the HoloLens and directed to the tutorial on how to control 

the system. After having done the tutorial, they were allowed into the room with the Magnefix and 

did a walkthrough of the training themselves. The researcher was available for questions on the 

HoloLens but gave no answers in regard to the task at hand. Participants in the traditional training 

were instructed on the task at hand one on one (in compliance with COVID regulations) by an 

instructor. The experimenter was given instruction on how to perform this instruction. After having 

completed the training, all participants were asked to fill out a survey which contained the knowledge 

assessment, qualitative questions, and scales for self-efficacy, motivation, engagement, mastery 

experience and observational learning. On completion they were thanked for their participation and 

received debriefing and given the room for questions. 

Statistical analysis 

The data was analyzed using STATA 16. Differences between conditions were tested with α = 0.05 as 

the cut-off for significance.  

 

For hypothesis 1, a two-by-three between-group repeated measures ANOVA was conducted. The 

independent variables were the training type (traditional & AR) and three task steps. The dependent 

variable was knowledge gain. To answer hypothesis 1 regarding knowledge gain, the between group 

main effect of training type was assessed. 

 

For hypothesis 2, a two-by-three between-group repeated measures ANOVA was conducted. The 

independent variables were the training type (traditional & AR) and three task steps. The dependent 

variable was task performance. To answer hypothesis 2 regarding task performance, the between 

group main effect of training type was assessed.  

 

For hypothesis 3, a two-by-three between-group repeated measures ANOVA was conducted. The 

independent variables were the training type (traditional & AR) and three task steps. The dependent 

variable was self-efficacy. To answer hypothesis 3 regarding self-efficacy, the between group main 

effect of training type was assessed.  

 

For hypothesis 4 & 5 a mediation analysis is performed. The analysis was run with training type as the 

independent variable, self-efficacy as the proposed mediator and knowledge gain as the dependent 

variable.  

 

Explorative interaction analysis was performed on the ANOVA analysis conducted for hypothesis 1 & 

2. Rather than the main effect the interaction effect between training type and task step was 



 

 
22 

 

assessed for significance. Post-hoc pairwise comparisons were done for assessing which specific 

combinations effects took place. 

 

The qualitative data obtained through survey questions was used for an informed interpretation of 

the quantitative results. Highly emergent patterns will be discussed separately and compared to 

existing literature.   
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Results 

Previous experience 

Of the 70 participants that took part in the experiment, 61 had no previous experience with the 

Magnefix. Of the nine participants that did have experience with the Magnefix, two indicated they 

had never switched, grounded, or re-enabled the system. Of the other seven, two indicated they had 

done those tasks once before, three had done them two to five times, while two had done them 

more than five times. However, all of these participants had no recent experience. Rather they had 

done this as part of their training but had never practiced or used any of these experiences since 

then. This was also validated by the non-significance of including previous experiences as predictor in 

a regression model. Of the 35 participants that used the HoloLens 2, only three had previous 

experience with the device. Two had used it once, while one participant had used it more than five 

times. As a result, training time was generally longer in the AR condition as there was a learning 

curve for the use of the device. This was not measured, however, experimental sessions with the AR 

condition lasted approximately an hour while sessions with the instructor were often finished within 

50 minutes. 

Condition characteristics 

We studied two training conditions: Traditional training by an instructor and training using AR. In 

addition to the main metrics, several additional measurements were included. These measurements 

represent, or can aid in understanding, the underlying mechanisms of the results in our main 

analysis. For each variable, the mean difference between the groups is tested for significance with a 

two-tailed t-test. Visual representations of the differences as well as numerical mean values (Table 2) 

are included. 

Table 2 

Mean values and standard errors (SE’s) of condition characteristics 

 AR AR SE Instr. Instr. SE 

Learning goals 5.48 0.16 5.13 0.21 

Observational learning 6.03 0.10 6.06 0.10 

Mastery experience 5.10 0.17 4.73 0.20 

Motivation 6.29 0.11 5.89 0.15 

Engagement 6.35 0.10 5.99 0.14 

Experience 6.24 0.11 6.06 0.13 
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Figure 5 

Averages for learning mastery goal (left), observational learning (middle) and mastery experience 
(right). All presented with 95% confidence intervals 

   

Both groups filled out a survey on their mastery learning goals before their training started so as to 

rule out this factor as potential cause for intergroup differences. There was a slight difference 

between the instructor training (M = 5.13, SE = 0.21, n = 35) and the AR training (M = 5.48, SE = 0.16, 

n = 34), however this was not significant (t(67) = -1.17, p = 0.25). Figure 5 (left) visualizes the 

averages with confidence intervals. We interpret this result as insufficient evidence to reject equality 

between the groups and as such treat them as equal in this regard. It was also assessed whether the 

two groups learned (equally) through observation as this was an important part of our rationale. As 

expected, with a maximum of seven the two means scores being around six indicates that both 

groups did learn through observation. Figure 5 (middle) visualizes the averages with overlapping 

confidence intervals. These average scores did not significantly differ (t(67) = 0.24, p = 0.81) between 

instructor training (M = 6.06, SE = 0.10, n = 35) and the AR training (M = 6.02, SE = 0.10, n = 34) which 

was in line with our expectation as well. The theoretical basis for our hypotheses is (at least in part) 

valid and  we have a successful implementation of observational learning in AR.  Figure 5 (right) also 

shows the difference in mastery experience between the two conditions. The AR training (M = 5.10, 

SE = 0.17, n = 34) did not differ (t(67) = -1.39, p = 0.17) from the training by an instructor (M = 4.73, 

SE = 0.20, n = 35). This entails that the proposed mechanism for our third hypothesis regarding self-

efficacy does not hold up. We expected self-efficacy to be higher as a result of increased mastery 

experience in the AR condition and therefore hypothesized higher self-efficacy in this condition. 

However, we cannot reject equality between the two groups with regards to mastery experience. 
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Figure 6 

Averages for motivation (left), engagement (middle) and experience (right). All presented with 95% 
confidence intervals 

   

When it comes to motivation the AR condition (M = 6.31, SE = 0.11, n = 34) scored higher than the 

instructor (M = 5.95, SE = 0.15, n = 35) condition. This effect was medium sized and significant (t(67) 

= -2.00, p < 0.05, d = 0.53). A visualization of the difference can be seen in Figure 6 (left). This is in 

line with our expectations and (partly) validates the theoretical basis we have for our hypothesis. We 

expect that with similar observational learning, factors like motivation are the source for differences 

between AR training and instructor training. By extension we also assessed the difference in 

engagement. Figure 6 (middle) shows the effect for engagement (t(67) = -2.11, p < 0.05, d = 0.51 ). In 

the AR condition (M = 6.35, SE = 0.10, n = 34) participants rated engagement higher than those in the 

traditional training with an instructor (M = 5.99, SE = 0.14, n = 35). Lastly, Figure 6 (right) shows the 

difference in how positive of an experience the training was. The difference between the AR 

condition (M = 6.24, SE = 0.11, n = 34) and the instructor condition (M = 6.06, SE = 0.13, n = 35) is 

marginal, and not significant (t(67) = -0.99, p = 0.32). This contradicts our expectations. As with 

motivation and engagement we expected this to be higher in the AR condition, which in turn would 

be the basis for higher knowledge gain and task performance in this condition. The theoretical basis 

we have for our first two hypotheses therefore only partly holds, as there was no difference in 

experience. 

 

It should be noted that we do six separate tests with the same independent predictor variable. As we 

opted to run these analyses separately, instead of combining them in a multivariate analysis of 

variance, confidence levels should be adjusted. Adapting confidence intervals according to Dunn 

(1961) would result in one minus alpha divided by the number of null hypotheses. This value would 

be approximately 99.17 and would result in all six confidence intervals including zero, indicating 

insignificance for the differences in motivation and engagement as well. 



 

 
26 

 

Hypotheses testing 

Our main variables of interest are task performance, self-efficacy, and knowledge gain. The 

distribution of these variables over the different conditions can be seen in table 3. Additionally, it 

includes task duration, an additional measure taken during the experiment. For task performance we 

see that differences are generally very slight (within 0.01 on a scale from zero to one), for grounding 

there is a larger difference. Given that one is the maximum score we also see that switching and 

reenabling were performed outstanding with scores over 0.90 in both training types. This indicates 

these task steps were easy to perform after training. Knowledge gain scores also range from one to 

zero but are divided more equally over this range with the highest averages for switching slightly 

above 0.8. Given that all participants had no, or limited, prior knowledge about the magnefix the 

scores can be interpreted as total knowledge gained (e.g., a score of 0.70 means they knew 0.70 out 

of 1, or 70% more than before the training). The differences in scores indicate that it was harder to 

gain knowledge for grounding, compared to switching, and even harder for reenabling. Only for 

grounding does the training type seem to matter. Self-efficacy was very similar between the two 

conditions in all task steps. Given that statements regarding self-efficacy were rated on a scale from 

one to seven (with four being neutral), the scores ranging from approximately five to six indicate 

positive self-efficacy. The time it took participants to complete the task without guidance was very 

similar between training types, but it shows clearly that grounding needed more steps than the other 

task steps. These differences (or lack thereof) on these four variables are used in testing our 

hypotheses. 

Table 2 

Mean values and standard errors (SE’s) of main variables of interest 

 Task 
performance 

Task duration (in 
seconds) 

Self-efficacy Knowledge gain 

AR Instr. AR Instr. AR  Instr. AR Instr. 

Overall mean 0.87 0.83 351.47 323.61 5.85 5.73 0.63 0.70 

Overall SE 0.01 0.02 14.50 8.54 0.14 0.13 0.03 0.03 

Switching mean 0.90 0.91 94.40 82.08 5.57 5.45 0.84 0.82 

Switching SE 0.02 0.02 5.39 3.54 0.16 0.16 0.03 0.03 

Grounding mean 0.83 0.75 149.75 143.09 5.98 5.86 0.55 0.71 

Grounding SE 0.02 0.02 8.49 7.34 0.16 0.11 0.04 0.04 

Reenabling mean 0.93 0.93 107.31 98.45 6.01 5.89 0.48 0.52 

Reenabling SE 0.02 0.02 6.70 5.47 0.12 0.14 0.04 0.06 
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Figure 7 

Knowledge gain for the different task steps with 95% CI’s 

 

Figure 7 shows the knowledge gain scores. We wanted to know what the effect on knowledge gain 

was of an AR based training with observational learning, when compared to traditional instructor-

based learning. We hypothesized that knowledge gain would be higher in the AR condition. Contrary 

to expectations, the overall score is in slight favour of instructor-based training although this differs 

per task step. For switching the AR training has a slight edge, while for the other two training 

methods AR is worse. Scores differ per task step, with switching scoring above the overall mean, 

grounding scoring similarly, and reenabling scoring lower. Given the 95% confidence intervals around 

each mean value, it is unlikely we will find statistical differences. We also wanted to explore whether 

the effect differed per task step (i.e., in interaction between task step and training type). For 

grounding specifically, the mean values differ to a larger extent. This could be indicative of an 

interaction or step specific effect; hence it requires further evaluation. 

 

A two-way repeated measures ANOVA was applied to test for significance of discussed differences. It 

included knowledge gain as the dependent variable and training type and task step (repeated) as 

independent variables. Assumptions of normality of the residuals and sphericity were met. There was 

heterogeneity between variances. However, given that all groups had approximately the same 

sample size ANOVA is robust to this violation. There were two outliers, excluding them did not affect 

conclusions and significance in the model, hence they were kept in the data. In addition, we explored 

whether participants employed by Alliander scored differently, this was not the case; participants 

were treated as sampled from one group. 
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The overall model had significant predictive value (F(72, 134) = 2.32, R2
adj = 0.32, p < 0.001). Neither 

training type (F(1, 67) = 2.65, p = 0.11, ηp
2 = 0.04), nor its interactions (F(2, 134) = 2.44, p = 0.09, ηp

2 

= 0.04) with task steps were significant predictors of knowledge gain. Task step was significant as a 

predictor (F(2, 134) = 34.79, p < 0.001, ηp
2 = 0.34). As Figure 7 showed, knowledge gain was higher 

for switching when compared to grounding (SScontrast = -0.20, p < 0.001) and reenabling (SScontrast = -

0.33, p < 0.001), mean values and standard errors can be found in Table 3. Additionally, knowledge 

gained on grounding was higher than for reenabling (SScontrast = 0.13, p < 0.01). Given the clear 

differences in Figure 7 and low p value of the interaction effect, task step differences were further 

explored within each task step. Only the comparison of training types for knowledge gain on 

grounding showed a significant effect: A medium sized (d = -0.64), performance decrease using AR 

(SScontrast = -0.16, p < 0.01). In answer to our question then we find partial support for an effect 

opposing the hypothesized direction (H1). Grounding was performed significantly worse, while the 

overall, switching, and reenabling scores did not significantly differ between training methods. 

 

Figure 8 

Task performance for the different task steps with 95% CI’s 

 

Figure 8 shows the mean scores for task performance in each of the experimental conditions per task 

step. We wanted to know what the effect on task performance was of an AR based training with 

observational learning, when compared to traditional instructor-based learning. In our description of 

the data, we already mentioned that scores on task performance were generally very high. In line 

with expectations the overall score indicates a slight edge for the AR based training, but again this 

differs per task step. For switching and reenabling instructor-based training seems to have a very 

marginal performance benefit, while for grounding AR based training seems to have scored better. 
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The effect for grounding is larger than for the other two steps, as with knowledge gain this is 

indicative of an interaction or step specific effect, hence it requires further evaluation. Grounding 

was performed worse than the other two steps, which do not seem to differ too much from each 

other. The confidence intervals indicate that it is unlikely these differences will be significant. 

 

To assess this, a two-way repeated measures ANOVA was applied. It included task performance as 

the dependent variable and training type and task steps as independent variables. Assumptions of 

normality of the residuals, sphericity and homogeneity of variances were met. There were four 

outliers, excluding them did not affect conclusions nor significance in the model, hence they were 

kept in the data. In addition, we explored whether participants employed by Alliander scored 

differently, this was not the case; participants were treated as sampled from one group. 

 

The overall model had significant predictive value (F(73,136) = 2.77, R2
adj = 0.38, p < 0.001). Training 

type (F(1, 68) = 1.38, p = 0.24, ηp
2 = 0.02) was not a significant predictor of task performance. Its 

interaction with task step (F(2,136) = 3.45, p < 0.05, ηp
2 = 0.05) and task steps itself (F(2,136) = 40.61, 

p < 0.001, ηp
2 = 0.37) were significant predictors. Closer inspection of the task steps showed that 

grounding was performed significantly worse than switching (SScontrast = 0.11, p < 0.001) and 

reenabling (SScontrast = 0.15, p < 0.001), while switching and reenabling did not differ (SScontrast = 0.03, p 

= 0.06). The interaction effect showed an opposing result. Grounding was affected more by the AR 

training when compared to switching (SScontrast = -0.08, p < 0.05) and reenabling (SScontrast = -0.07, p < 

0.05), but there was no difference between the latter two (SScontrast = 0.01, p = 0.87). AR has a larger 

(positive) effect than for switching and reenabling where it has no effect. Given the stronger effect 

for grounding, we analyzed the training type for grounding specifically. A comparison of training 

types for grounding, showed a medium sized (d = 0.57), significant performance increase using AR 

(SScontrast = 0.07, p < 0.01). In answer to our question then we find partial support for an effect in the 

hypothesized direction (H2). Grounding was performed significantly better in the AR training, while 

the overall, switching, and reenabling scores did not significantly differ between training methods. 

 

An alternative assessment, where points were only rewarded for the ‘completed’ assessment and not 

for the ‘not completed' and ‘completed in the wrong order’ assessments, resulted in slightly lower 

scores. However, as conclusions regarding our hypotheses were no different using this approach it was 

decided to use and report the scoring method as agreed upon with Alliander staff (outlined in method 

section). 

 

Figure 8 shows the mean scores for task performance in each of the experimental conditions per task 

step. We wanted to know what the effect on self-efficacy was of an AR based training with 

observational learning, when compared to traditional instructor-based learning. The AR training had 

a slight edge overall and in each specific step as well. The figure further shows that this difference did 

not vary much in size between task steps and that differences are unlikely to be significant given the 

confidence intervals. 
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Figure 9 

Self-efficacy for the different task steps with 95% CI’s 

 

Significance was assessed in a two-way repeated measures ANOVA. It included self-efficacy as the 

dependent variable and training type and task step as independent variables. Assumptions of 

normality of the residuals and homogeneity of variances were met. The assumption of sphericity was 

not met, hence the Huyhn-Feldt corrected values were reported for the effect of task step and its 

interaction with training type. There were two outliers, excluding them did not affect conclusions nor 

significance in the model, hence they were kept in the data. Interestingly Alliander employees (M = 

6.11, SE = 0.16) had higher self-efficacy than non-employees (M = 5.67, SE = 0.11; t(67) = -2.10, p < 

0.05), however controlling for this did not affect our conclusions. 

 

The overall model had significant predictive value (F(72, 132) = 13.53, R2
adj = 0.82, p < 0.001). Neither 

training type (F(1, 67) = 0.43, p = 0.53, ηp
2 = 0.01), nor its interaction (F(2, 132) = 0.19, p = 0.97, ηp

2 = 

0.00) with task step were significant predictors of self-efficacy. Figure 9 visualizes this as differences 

between training methods are small in each task step, as are differences between these differences. 

Task step was a significant predictor (F(2, 134) = 29.52, p < 0.001, ηp
2 = 0.31). Participants generally 

rated their own ability to switch lower when compared to grounding (SScontrast = 0.41, p < 0.001) and 

reenabling (SScontrast = 0.44, p < 0.001). Reenabling did not score significantly higher than grounding 

(SScontrast = 0.03, p = 0.65). To answer our question regarding self-efficacy, there does not seem to be 

an effect of training type on self-efficacy. Our third hypothesis regarding the difference between AR 

training and instructor-based training with respect to self-efficacy is rejected. We explored whether 

this differed per task step, however it did not significantly so. 
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We also asked whether effects of training type on knowledge gain and task performance were 

mediated by self-efficacy. Given that there were no main effects (or paths) in our ANOVA for each of 

these three variables, mediation is unlikely. Nevertheless, we ran the analysis to assure no such 

pattern was present. First, a mediation analysis with training type as independent variable, self-

efficacy as mediator and mean knowledge gain, aggregated over all three task steps, as dependent 

variable was performed. The overall model for knowledge gain that included only training type as 

predictor had little predictive value (R2
adj = 0.04, p = 0.06), suggesting there is no direct path (C) 

between training type and knowledge gain (in line with ANOVA). Further assessment of the other 

paths showed that results here were mixed. The model for path a (DV = self-efficacy, IV = training 

type; R2
adj = 0.01, p = 0.52) was not significant. But the model for path b and C’ (DV = knowledge gain, 

IV = training type, self-efficacy; R2
adj = 0.14, p < 0.05) was significant. Because of the significance of 

the second model, we did assess the mediation path ab. The coefficient of this path was 

bootstrapped (1000 samples were drawn with replacement) to acquire valid results. However, no 

evidence for mediation was found as the coefficient for path ab (coefficient = 0.01, p = 0.60) was not 

significant. We tried doing the same analysis with just Grounding knowledge gain, but the outcome 

was the same, indicating no significant mediation. A second mediation analysis with training type as 

independent variable, self-efficacy as mediator and mean task performance, aggregated over all 

three task steps, as dependent variable was performed. The overall model for task performance that 

included only training type as predictor had little predictive value (R2
adj = 0.03, p = 0.07), suggesting 

there is no direct path (C) between training type and task performance (in line with ANOVA). Further 

assessment of the other paths showed that those were not significant either. The models for path a 

(DV = self-efficacy, IV = training type; R2
adj = 0.01, p = 0.52) and path b and C’ (DV = task performance, 

IV = training type, self-efficacy; R2
adj = 0.08, p = 0.05) were not significant either. We tried doing the 

same analysis with just Grounding task performance, but the outcome was the same, indicating no 

significant mediation. Both our hypotheses (fourth and fifth) regarding mediation were thus rejected. 

In addition to our first three hypotheses, mediation meant we expected effects from self-efficacy on 

task performance (b = 0.88, p = 0.28) and knowledge gain (b = 0.06, p < 0.01 ). The latter was 

significant, but the former was not.  
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Exploratory analysis 

Figure 10 

Task duration for the different task steps with 95% CI’s 

 

Time measurements were also taken. More specifically, we measured the time (in seconds) it took to 

complete the task after the training was measured per task step. These measurements do, however, 

not account for mistakes or skipping steps; hence their meaning is ambiguous. An overview of how 

long each task step took on average can be found in Table 3. A two-way repeated measures ANOVA 

fits the data structure. It included task duration as the dependent variable and training type and task 

steps as independent variables. The assumption of normality of the residuals was met. There was 

heterogeneity between variances. However, given that all groups had approximately the same 

sample size ANOVA analysis is robust to this violation. The assumption of sphericity was not met 

either, hence the Huyhn-Feldt corrected values were reported for the effect of task step and its 

interaction with training type. There were two outliers, excluding them did not affect conclusions nor 

significance in the model, hence they were kept in the data. 

 

The overall model had significant predictive value (F(71, 132) = 2.63, R2
adj = 0.36, p < 0.001). Neither 

training type (F(1, 66) = 1.66, p = 0.10, ηp
2 = 0.04), nor its interactions (F(2, 130) = 0.48, p = 0.74, ηp

2 

= 0.01) with task steps were significant predictors of duration. The effect of the task step was 

significant (F(2, 132) = 49.46, p < 0.001, ηp
2 = 0.43). Grounding included more steps as a result took 

longer than both the other steps, as can be seen both visibly (Figure 10) and statistically (Switching: 

SScontrast = -58.18, p < 0.001; Reenabling: SScontrast = -43.54, p < 0.001). Reenabling on average took 

longer than switching (SScontrast = -14.64, p < 0.05). We also checked whether an effect of training type 

on mean duration, aggregated over all three task steps, was mediated by self-efficacy. The overall 
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model for task duration that included only training type as predictor had little predictive value (R2
adj = 

0.04, p = 0.10), suggesting there is no direct path (C) between training type and task performance. 

Further assessment of the other paths showed that results here were mixed. The model for path a 

(DV = self-efficacy, IV = training type; R2
adj = 0.01, p = 0.52)  was not significant. But the model for 

path b and C’ (DV = task duration, IV = training type, self-efficacy; R2
adj = 0.09, p < 0.05) was 

significant, but none of the individual predictors were. Because of the significance of the second 

model, we did assess the mediation path ab. The coefficient of this path was bootstrapped (1000 

samples were drawn with replacement)  to acquire valid results. However, no evidence for mediation 

was found as the coefficient for path ab (coefficient = -2.84, p = 0.54) was not significant. 

Qualitative 

To further understand why (or why not) training using the HoloLens is feasible the participants were 

asked several open-ended questions regarding their use of the system. These qualitative insights can 

aid in the interpretation of the quantitative results, as well as offering insights that could not be 

captured in our quantitative measurements. 

 

Most users agreed that the HoloLens training was easy to use. They mentioned that the controls 

were easy to learn, and, by extension, ease to use. Many of them also appreciated the clear 

instructions provided by the system. However, their comments also indicated a learning curve. Many 

struggled with opening non-training-related menus or closing the training program by accident and 

did not know how to deal with this. One user suggested disabling functionalities that are not part of 

the training in future applications. 

 

The answers for the question regarding usefulness showed a strong consensus in favor of usefulness. 

However, many of the participants raised examples of conditions, restrictions, or circumstances of 

which they thought training using AR might (not) be effective in. One participant mentioned that this 

would be useful for extensive training, but not for short instructions that could just as easily have 

been explained in five minutes. Another doubted whether this was faster than training by an 

instructor. On the other hand, others mentioned that they see potential for training without an 

instructor. Comments on time and money savings also implicitly indicated potential for AR based 

training. A frequent mention was the ability to convey complete, correct  information without a 

chance of faulty explanation.  

 

Participants were asked whether the HoloLens training was a positive experience. The novelty of the 

technology was the main factor in building the experience. Many participants indicated that they 

liked the experience of AR as they had never used it before. Two specific critiques, both mentioned 

once, were that someone would have liked to be able to make notes and another doubted the 

efficiency outside of an experiment. On the other hand, two specific positives mentioned were an 

increase in confidence and concentration, both were mentioned once as well. 

 

In terms of motivation, answers were again mostly positive. Like experience, novelty of the 

technology appears to be a motivator for the user. Several participants mentioned that the 

opportunity to try AR based training motivated them. One participant mentioned that this approach 

is more interesting than books, however those that specifically compared to an instructor-based 

training were less positive. They mentioned preferring ‘normal’ or ‘one-to-one’ training.  
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In terms of wanting AR training in the future answers were less unequivocal. Many were still positive, 

but several answers indicated indifference. Short answers like (loosely translated) “I don’t really 

care” , “could be done” or “not necessarily”, are indicative of this indifference. Those that were 

positive placed several side notes. For example, more training on the use of the HoloLens is needed. 

Others mentioned seeing use for ‘some’ topics, not specifically mentioning what types of topic they 

referred to. In comparison to instructor-based training one person mentioned that (s)he thought AR 

would be less effective, with another participant mentioning that (s)he would miss tips and tricks and 

positive reassurance provided by an expert.   
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Discussion 

In this study we assessed the effectiveness of augmented reality (AR) based training in comparison to 

training by an instructor. More specifically the AR training was adapted to include aspects of social 

learning by inclusion of video instructions. We argued that a lack of social learning could explain 

mixed results in previous studies on AR based training and assessed a solution that accounted for 

this. We raised the following research question: “What is the effect of using AR training that includes 

observational learning, when compared to traditional training methods with observational 

learning?”. To answer this research question, measurements were taken of self-efficacy, task 

performance and knowledge gain in the context of an energy distribution system engineering task. It 

was hypothesized that all three of these would be higher in the AR based training. With both training 

methods including social learning through observation, other influences can come to fruition. Factors 

like motivation and engagement have been shown to be higher in AR based training and are linked to 

effectiveness, hence our hypotheses on knowledge gain and task performance. Similarly, mastery 

experience is expected to heighten self-efficacy in the AR condition. This section will address the 

results of hypothesis testing and further explorative analysis. Overall, very little of the hypothesized 

main effects were present, undermining the theoretical basis we provided. The underlying 

mechanisms considered in the theoretical basis were reconsidered in this context of insignificant 

effects. Additionally, we explored interaction and meditation effects, some of which are indicative of 

reasons for insignificant mean effects. Based on these results scientific and practical implications are 

discussed. Guidance and directions for future research are given. 

Interpretation 

Our first two hypotheses regarded knowledge gain and task performance. As mentioned, the main 

effects were mostly insignificant. This is despite the theoretical basis provided in the introduction to 

support our hypotheses being (mostly) confirmed. Both groups learned equally (non-equality could 

not be rejected) through observation, indicating video instructions were a successful integration of 

observational learning in AR. Where previous studies comparing to instructor-based training 

(Werrlich et al, 2008; Gonzalez-Franco et al, 2017) did not account for (losing) observational learning, 

an important factor in human learning (Grusec, 1992), we did through said video instructions. 

Furthermore, motivation and engagement were both higher  in the AR condition. After correcting for 

doing multiple analyses these differences became insignificant, however, given the medium sized 

effects, and qualitative remarks on motivation and experience we deem it likely these differences are 

present. The experience was not significantly different between the two, but this could be the result 

of a flawed measure as we had low sampling adequacy and reliability. Qualitative results also show 

that participants generally had a good experience, felt motivated and would like to train using AR 

again.  

 

For knowledge gain It was hypothesized that “knowledge gain is higher in the AR condition than in 

traditional training”. The results, however, show no such effect. That is, an assumption of equality 

between the two training types could not be rejected for knowledge gain. We explored whether this 

differed per task step. The interaction between task step and training type was insignificant. 

However, closer inspection showed that knowledge gain for grounding was significantly worse in the 

AR training, while there was no difference in the other steps. Therefore, we have to reject our first 

hypothesis, AR training with observational learning does not equate to higher knowledge gain when 

compared to traditional training. Contrary to expectations, knowledge gain was actually worse for 

grounding in the AR training. Additionally, knowledge gain did differ between task steps, but this is 
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merely indicative of the difficulty of the questions for each step. Given that the proposed underlying 

mechanisms are in play (equal observational learning, higher engagement, and motivation), other 

potential causes for this disparity between theory and practice must be considered. Although an 

opposing effect can be a result of chance, we deem it more likely that there was an additional 

influence, not considered in this study. A potential factor is the implementation of AR used in this 

study, which had video, text, and hologram-based instructions. Dunleavy, Dede, Mitchell (2009) 

found that a multitude of new information(sources) in combination with unfamiliarity with the AR 

system could introduce cognitive load in the context of learning and teaching. It is possible that our 

participants missed information due to high cognitive load being present. We did not measure 

cognitive load. With more familiarity with the system people might have experienced less cognitive 

load. Most people indicated they found the HoloLens easy to use, but there were mentions of a 

learning curve and not knowing what to do. The mean value of knowledge gain on average was 

higher for the three people that knew the HoloLens beforehand when compared to the rest of the 

subjects in the AR training. Unfortunately, we did not have enough participants with previous 

HoloLens experience in our sample to statistically validate this difference. A potential effect of 

cognitive load is also corroborated by the lower task performance scores for grounding when 

compared to switching and reenabling. The multitude of information streams in combination with a 

harder task may have resulted in high cognitive load. Future research should consider the cognitive 

load their participants might experience, if possible, including a measurement is ideal as this would 

allow controlling for it. More specifically for adapting the current study, future studies could 

eliminate one of the information streams and compare cognitive load between such a setup and the 

current setup.  

 

For task performance it was hypothesized that “task performance is higher in the AR condition than 

in traditional training”. The results, however, show no such effect. That is, an assumption of equality 

between the two training types could not be rejected for overall task performance. Additionally, we 

explored whether this effect differed throughout the task step. The significance of the interaction 

effect between task step and training type indicates the difference between training types differ per 

task step. The results showed that the difference in training types was more pronounced for 

grounding, when compared to switching and reenabling. Specific investigation of performance for 

grounding showed that the AR condition scored significantly better here. We interpret this as partial 

support for our hypothesis. Given that motivation and engagement are higher and observational 

learning takes place, explanation is needed for why the hypothesis is only partially supported. The 

underlying problem could be that scores for switching and reenabling were overall very high, 

resulting in lackluster distribution of the scores. This could result from a low-quality rating approach, 

a task that is too easy or a combination of both. Petrone, Hanna and Shankaranarayanan (2021) had 

a similar issue where their puzzle task was too easy, limiting them in their ability to find statistically 

significant differences. Our approach could have suffered from a similar constraint as mean ratios 

were very high and of the 35 items we included, 17 items were completed correctly by 60 or more 

participants. Two items were even performed correctly by all participants. This data does not allow 

us to pinpoint whether the problem was the task itself or the rating. However, we believe that task 

difficulty was the main crux as the checklist for rating was carefully devised in cooperation with 

Alliander’s staff. Grounding might have been a more difficult task and also included more steps 

increasing chances of making mistakes thus reducing the average scores. Overall, these results 

indicate that with a difficult enough task, AR can provide benefits with regards to task performance. 

In the current study it was not feasible to select a different task, as resources needed were only 
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available for the current task. However, if possible, it should be evaluated whether in a more difficult 

task all steps benefit (equally) from AR based training. 

 

For self-efficacy it was hypothesized that “self-efficacy is higher in the AR condition than in the 

traditional training”. The results, however, show no such effect. That is, an assumption of equality 

between the two training types could not be rejected for self-efficacy. We explored whether this 

differed per task step. Based on the insignificance of the interaction effect between training type and 

task step we have no indication that this is the case either. We had to reject our third hypothesis and 

evaluate why this is the case. One part of our reasoning, regarding mastery experience, was not in 

line with expectations. We expected mastery experience to be higher in the AR condition, which in 

turn would build self-efficacy as Bandura (1977) found that mastery experience affects self-efficacy. 

We reasoned that the more self-directed nature of the AR training would heighten mastery 

experience. One possible explanation for the equality between groups is lack of repeated experience. 

Bandara specifies that repetitive previous successes or successful overcoming of failures builds 

mastery experience. In the current setup there was a short time frame during which successes and 

failures were had for different steps, but at most twice per step (including the training). To account 

for this, future studies can take a longitudinal approach where measures are taken throughout a 

training program, rather than an approach with one small part of the training. Our study gives a 

positive indication that this would result in more pronounced effects as Alliander employees scored 

higher on self-efficacy. Although they had no, or limited, experience with the magnefix they had 

many previous experience in the field of energy distribution system engineering, potentially 

heightening their sense of mastery. An alternative explanation could be an external factor. More 

specifically, positive reinforcement (or a lack thereof) may have played a role. A qualitative study has 

found that in instructor-based training, positive reinforcements play a large role in building self-

efficacy (Lee, 2020). In the current study this was not specifically accounted for. The instructor would 

often make small remarks like “well done” or “Good! On to the next step”. These positive 

reinforcements were not present in the AR based training, participants were doing this fully self-

directed, and the system could not check or give feedback. Only at the level of switching, grounding 

and reenabling was there an informational text that said something along the lines of “Amazing! Now 

we will proceed to grounding”. Future studies assessing the effects of AR training with observational 

learning, should also consider positive reinforcements. Either by specifically preventing this in 

instructor-based training or by adapting the AR training to include it. 

 

With the (partial) rejection of our first two hypotheses it became unlikely that a mediation effect was 

present as there was close to no main effect to begin with. This was confirmed in the analysis, our 

two hypotheses (four and five) on mediation were both rejected. We discussed non-significant main 

paths and the effect of training type on self-efficacy before, but the second mediation path has not 

been addressed. The results showed that knowledge gain was affected by self-efficacy, in line with 

expectations, but task performance was not. The latter contradicts findings by Yeo and Neal (2006). 

In our data one's beliefs about ability did not correlate with actual ability. A potential explanation for 

this could be (parts of) the task that was too easy. Locke, Frederick, Lee and Bobko (1984) found that 

for people that had to achieve easy goals, their expectancy rating (self-efficacy) was not correlated 

with actual performance. As we had an easy goal or task, self-efficacy might not be a good predictor. 

We tried to validate this notion by limiting our analysis to grounding task performance and grounding 

self-efficacy. The predictive value of this model was larger, but the effect remained insignificant. As 

with our hypothesis on task performance, future studies could assess this for higher difficulty tasks. 
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As part of our exploratory analysis, we also performed several statistical analyses for time 

measurements. No difference was found between the AR training and the instructor training with 

regards to completion time, this was not mediated by self-efficacy either. The different task steps did 

differ in completion time, but this was to be expected given that they varied in workload. There was 

no interaction between task step and training type. 

 

Several of the qualitative results were touched on briefly in the interpretation of the quantitative 

results. However, the picture they provide on their own has not yet been discussed. The information 

they present is overall quite favorable for the use of AR in training. The results showed people 

generally found the system easy to use, motivating, useful, a good experience and, with some 

reservations, were open to using it in future training. This goes to show that there is more to training 

methodology than effectiveness metrics. Even though quantitative hypotheses were only partially 

supported, these qualitative insights can still provide reason to adapt AR in training. For example, 

motivation and experience can dictate whether someone (actively) participates in training at all and 

therefore is essential to a training's effectiveness. These results should however be interpreted in 

their contexts. In the current study, most participants finished their training within half an hour, 

meaning their feedback was based on short-term experiences. For motivation and experience 

novelty was often mentioned as the reason for positive evaluation, but novelty wears off over time. 

Future studies can qualitatively evaluate the use of AR in longer training schemes. 

Implications 

We found no support for the notion that knowledge gain would be higher in AR training with 

observational learning when compared to traditional training. Rather, there was no significant 

difference or AR training performed worse. This in itself is interesting and dictates a need for further 

research on what types of information transfer AR, with observational learning, is suited for. 

However, we provided an alternative explanation for these null and opposite effects(based on 

cognitive load) which should be investigated before accepting them. The effect of training type on 

knowledge gain was not mediated by self-efficacy. The fact that self-efficacy predicted knowledge 

gain is in line with earlier findings (Sawtelle, Brewe & Kramer, 2012; Moos & Azevedo, 2009) and 

further strengthens the validity of this notion. From a practical perspective the results indicate that 

the use of AR should be evaluated in light of the type of information transfer you want to achieve 

and what goal you have with the implementation of AR. If the goal is (purely) gaining knowledge (i.e., 

transfer of theoretical information) the difficulty of the task and cognitive load in the task should be 

considered. High load can create lower effectiveness in information transfer, the AR based approach 

is more suited for easier, low cognitive load tasks. Additionally, a potential loss in effectiveness 

should be weighed against the benefits. The loss might be worth it for increased cost-effectiveness, 

engagement, or motivation the AR based training can provide. For example, the investment can 

make sense if instructor/teacher hours are more expensive (long-term) than AR-based training, or no 

instructors are available. In such a scenario training/teaching could be (partially replaced) with AR 

training. 

 

Self-efficacy was not significantly predicted by training type, nor was the proposed underlying 

mechanism (higher sense of mastery experience) present. Self-efficacy was not worse in the AR 

condition, suggesting that AR based training that includes observational learning will perform on par 

with instructor-based training in this regard. This is positive, as both training methods scored positive 

in the resulting self-efficacy scores. We discussed that positive reinforcements in instructor training 

were not present in AR training. Further integration of these instructor training characteristics into 



 

 
39 

 

AR training might change the outcome for self-efficacy and needs further research. The results then 

imply self-efficacy can reach equal levels when including observational learning in AR training, but 

further adaptations are needed for higher self-efficacy. This translates into practical implications. For 

heightening self-efficacy, the results give no indication that this can be achieved without further 

research or adaptations. However, if the decision for AR based training is based on other reasons 

(i.e., expensive or scarce staffing) the current results indicate no self-efficacy is lost if observational 

learning is included in the implementation. Alliander employees scored higher in comparison to non-

employees, potentially an effect of stronger familiarity with the context. Even though these 

employees scored higher, the training types did not significantly differ for them either, suggesting AR 

with observational learning can achieve similar results even for those with stronger beliefs about 

their ability. 

 

With some reservation, we may conclude that our hypothesis regarding task performance is 

supported for a part of our task. The AR implementation we used was more effective in training than 

normal instructor-based training for grounding only. Ideally further studies would try to replicate this 

effect with harder tasks not constrained by their difficulty. As it stands, the result implies that with 

equal observational learning, other AR benefits for task performance can come to fruition. Future 

studies can try to expand these findings into other fields, where frequent practicing is equally 

important in training (e.g., medicine). From a practical perspective this means that AR based training 

with observational learning can help in building a highly skilled workforce and is preferable in terms 

of task performance. As with knowledge gain one should consider the type of information that needs 

to be transferred. Task performance (practical information) is benefitted by AR training, but as 

discussed self-efficacy was similar, while knowledge gain was worse for grounding. Given that a 

minority of participants mentioned they would prefer instructor-based training, or felt more 

motivated by instructor-based training, a hybrid solution might be optimal. A hybrid solution would 

save on instructor costs and increase the training effectiveness, while still offering some instructor-

based training for those that need or want this. If already using, or in the process of implementing 

AR, one could consider the addition of observational learning as the effectiveness of the 

implementation in our study was based on accounting for this. As both the currently available AR 

devices and developing observational learning materials in line with best teaching practice are 

expensive, there should be a clear need for the performance uplift (high risk jobs) or clear cost 

savings (even more costly instructors). 

 

Our quantitative and qualitative findings support the current knowledge base on motivation 

(Tršková, 2016; Petrone, Hanna & Shankaranarayanan, 2021) and engagement (Herbert, Wigley, Ens 

& Billinghurst, 2020). This implicates that AR based training can aid in enhancing these qualities. 

Whether these effects are sustained when novelty wears off should be studied further. 

Further research 

Several recommendations were already made for further research throughout this discussion. These 

were mostly focused on further solidifying findings or providing explanations for (null) effects. This 

section proposes some additional, explorative research directions. First off, one direction is to 

measure how motivation and engagement increases are mirrored in psychophysiological responses. 

Such a study could focus on how these increases relate to objective alertness. Another study idea 

would be to use eye or head tracking data. This data can aid in further understanding how and in 

which phase of learning observational learning material in AR is attended to. A third 

recommendation would be to further validate the findings in this study by comparing an AR based 
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solution without observational learning to an AR based solution that does include observational 

learning. Fourth, it should be evaluated how well these findings translate to different educational 

levels (e.g., children or university students). Our study focused on engineers in the energy 

distribution system network, educated mostly at secondary vocational level. Lastly, our study 

assessed an AR solution in comparison to traditional, instructor-based, training without losing 

observational learning. We provided a strong theoretical background for why this would raise the 

effectiveness of AR based training. We found partial support for an increase in task performance, an 

opposing effect for knowledge gain and could not reject equality for self-efficacy. We attributed the 

positive effects to the inclusion of observational learning as a result of which other factors (such as 

motivation) could come to fruition. Nevertheless, our study setup does not allow for validating that it 

was in fact this inclusion of observational learning that amounted to these results. The limited 

availability of participants meant it was not possible to include a third control condition with AR 

based training lacking observational learning. Ideally further studies trying to expand on our findings 

would include such a control condition. 

Conclusion 

In conclusion, this study argued that inclusion of social learning through observational learning in 

augmented reality-based training would enhance its effectiveness such that AR-based training would 

be superior to teacher-based training. We argued that previous mixed findings were a result of failing 

to account for a potential loss of observational learning and that its inclusion would allow AR training 

to reach its full potential. To validate this, we asked the following research question: “What is the 

effect of using AR training that includes observational learning, when compared to traditional 

training methods with observational learning?”.   

 

We defined several sub-questions regarding knowledge gain, task performance, self-efficacy, and 

potential mediation of an effect of the former two, by the latter. Only one of our hypotheses was 

partially supported, with task performance being the only metric that benefited significantly in one 

task. Contrary to expectations, knowledge gain was actually worse in the AR based training for one of 

the task steps. The answer to our research question therefore is that using AR training that includes 

observational learning has mixed effectiveness in comparison to traditional training. Even when 

beneficial factors are present (as motivation and engagement were), there seem to be other factors 

not considered in this study. Depending on what metric you focus on, AR based training with 

observational learning can perform better, worse, or comparable to traditional training. As we 

expected AR based training with observational learning to perform better across the board, this 

raises several questions for further studies. These studies should focus on what other factors play a 

role in the effectiveness of including observational learning in AR.  

 

From a practical perspective this mixed effectiveness indicates that AR based training benefits are 

dependent on the goals and context of its implementation. Given the investment cost associated 

with buying AR systems and developing training for the system, the current study does not justify 

large investments into AR training when there is no pressure from a financing, understaffing or other 

heavy weighing perspective. AR based training with observational learning has a slight edge in 

performance for hard tasks, motivation and engagement but is equal or worse in other regards. On 

the other hand, if there are reasons why the investment might be worth it, the current study 

validates AR based training with observational learning as a good alternative to traditional training. 

Alliander, for example, has to cope with too few skilled engineers, too few (expensive) instructors, 

and, as a result of the latter, training being too slow to meet demand for new engineers. In their case 
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AR based training with observational learning could make sense. They would not lose task 

performance or self-efficacy, potentially even gain some of the former if tasks are hard. And, in 

addition to that, they would increase factors like motivation and engagement among trainees. The 

potential loss in knowledge gain (transfer of theoretical information) can be dealt with by offering 

hybrid training. An instructor could provide the theoretical background, first look at the task, room 

for questions, and final assessment, while an AR based training can be employed to give trainees 

repeated practice. The instructor would stand guarantee for quality (assessment), but due to trainees 

being able to ‘get hours in’ on their own an instructor would be able to manage more trainees. The 

question of implementation then is one of cost effectiveness and goals in terms of information 

transfer.  
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Appendices 

Appendix A - Task performance checklist 

Schakelen 

Beschrijving - Checkbox 1: Voldaan, Checkbox 2: volgorde.   

Checkt aanwezigheid sleutel & bordje.   

Brengt de schakelsleutel goed aan.   

Verwijdert de schakelkappen.   

Verwijdert de schakelkappen in 1 vloeiende beweging.   

Verwijdert schakelsleutel correct van de schakel kappen.   

Legt de kappen weg.   

Legt de kappen weg in de goede oriëntatie.   

Plaatst de stofkappen.   

Plaatst het ‘niet schakelen bordje’.   

Plaatst het bordje correct (onderste stofkap).   

 

Aarden 

Beschrijving - Checkbox 1: Voldaan, Checkbox 2: volgorde.   

Checkt de aanwezigheid van aardingsgarnituur en spanningstester   

Draait het verlengstuk op de aardingsgarnituur   

Verbind de aardingsgarnituur met het frame   

Verbind de aardingsgarnituur op de goede plek met het frame   

Verwijdert het niet schakelen bordje   

Verwijdert de stofkappen   

Legt de stofkappen goed weg (niet op de grond bijvoorbeeld)   

Zet de spanningstester correct aan.   

Test eerst de railzijde   

Test alledrie de kabel zijdes   

Test dan nogmaals de railzijde   

Plaatst het aardingsgarnituur snel   

Plaatst het aardingsgarnituur correct (oriëntatie & goed aangeduwd)   

Verwijdert het handvat van de aardingsgarnituur   

Plaatst het handvat terug waar deze lag.   

Hangt het bordje niet schakelen terug   

Hangt het bordje in de correcte positie   

 

In bedrijf stellen 

Beschrijving - Checkbox 1: Voldaan, Checkbox 2: volgorde.   

Verwijdert het niet schakelen bordje.   

Plaatst het handvat van de aardingsgarnituur   

Verwijdert de aardingsgarnituur   

Plaatst de drie schakelkappen   

Plaatst de drie schakelkappen in de correcte oriëntatie   

Duwt krachtig aan bij het plaatsen van de schakelkappen.   

Maakt de aardingsgarnituur los van het frame   

Verwijdert handvat van aardingsgarnituur.   
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Appendix B - Survey items 

Self-efficacy 

1. Ik denk dat ik in staat ben te beoordelen of ik mag schakelen. 

2. Ik denk dat ik in staat ben om de schakelkappen te verwijderen. 

3. Ik denk dat ik in staat ben de schakelkappen correct te behandelen. 

4. Ik denk dat ik in staat ben de Magnefix volgens de regels achter te laten. 

5. Ik denk dat ik in staat ben te beoordelen of al het nodige gereedschap aanwezig is. 

6. Ik denk dat ik in staat ben de aardingsgarnituur met de aardingsknobbel te verbinden. 

7. Ik denk dat ik in staat ben spanningsloosheid aan te tonen. 

8. Ik denk dat ik in staat ben de aardingsgarnituur te plaatsen. 

9. Ik denk dat ik in staat ben de aardingsgarnituur te verwijderen. 

10. Ik denk dat ik in staat ben de aardingsgarnituur los te maken van de aardingsknobbel. 

11. Ik denk dat ik in staat ben de correctie oriëntatie voor de schakelkappen vast te stellen. 

12. Ik denk dat ik in staat ben de schakelkappen terug te plaatsen. 

 

Observational learning 

1. Ik lette goed op de voorbeelden van de handelingen door de instructeur. 

2. Het lukte mij de door de instructeur gegeven informatie over de handelingen goed op te 

nemen. 

3. De instructeurs voorbeelden waren relevant en duidelijk aanwezig. 

4. Ik kon mij concentreren op de handelingen van de instructeur. 

5. De handelingen van de instructeur waren eenvoudig te volgen. 

6. Ik focuste op de handelingsvaardigheden die de instructeur liet zien. 

7. De instructeurs voorbeelden hielden mijn aandacht. 

8. Ik was in staat de stapsgewijze aanpak van de instructeur te volgen 

9. De voorbeelden van de instructeur waren interessant. 

10. Tijdens de voorbeelden van de instructeur hielden deze mij volledig bezig. 

 

Learning mastery goal 

1. Ik wil zo veel mogelijk leren van deze training. 

2. Het is voor mij belangrijk de inhoud van deze training zo nauwkeurig als mogelijk te 

kennen. 

3. Ik hoop dat ik een bredere en diepere kennis van de inhoud van de training heb aan het 

einde. 

4. Ik wil graag de inhoud van de training mij volledig eigen maken. 

5. In een training zoals deze wil ik graag interessante dingen leren, zelfs als dit lastig is. 

6. In een training zoals deze, wil ik graag inhoud die mij uitdaagt zodat ik nieuwe kennis op 

doe. 
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Motivation & Engagement M E 

1. De training was leuk. 
2. De training was interessant 
3. Ik was betrokken tijdens de training 
4. De training was plezierig 
5. Het voelde goed om de training te doorlopen. 

x 
x 
 
x 
x 

x 
x 
x 
 

 

Experience 

1. Het doorlopen van de training was een prettige ervaring 

2. Dit soort training maakt leren interessanter 
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Appendix C - Knowledge gain 

1. Waar staat LMRA voor en wat houdt het in? 

a. Last Minute Risk Analysis, voordat je aan het werk gaat pas je je aan de risico’s 

(bijvoorbeeld het dragen van pbm’s).  

b. Last Minute Risk Adjustment, voordat je aan het werk gaat pas je je aan de risico’s 

(bijvoorbeeld het dragen van handschoenen).   

c. Last Minute Risk Adjustment, voordat je naar binnen gaat kijk je of er geen 

onverwachte risico’s zijn en bepaal je welke pbm’s je nodig hebt 

d. Last Minute Risk Analysis, voordat je naar binnen gaat gaat kijk je of er geen 

onverwachte risico’s zijn en bepaal je welke pbm’s je nodig hebt. 

2. Waarom moeten de schakelkappen voorzichtig behandeld worden? 

a. De behuizing van de schakelkappen bestaat uit een kwetsbaar isolerend materiaal 

wat niet beschadigd mag worden. 

b. De veer in de schakelkappen is belangrijk voor goede geleiding. 

c. De contacten en de veer in de schakelkap mogen niet beschadigd raken. 

d. De smeltveiligheid van de schakelkap kan beschadigd raken. 

3. Wat doe je als de situatie (bijvoorbeeld de apparatuur) die je aantreft niet is zoals 

beschreven op de werkbon? 

a. Ik verlaat de ruimte en bel de werkverantwoordelijke. 

b. Ik kijk of ik desondanks toch snel de storing kan verhelpen om zo de schade van een 

storing te beperken voor onze klanten te beperken. 

c. Ik bel direct de werkverantwoordelijke. 

d. Ik pak eerst mijn andere taken op en kom hier later terug. 

4. Waarom schakelen we een bepaalde kabel(sectie) af? 

a. Zodat er veilig onderhoud uitgevoerd kan worden. 

b. Om te testen of de veiligheidsaarding aanwezig is. 

c. Om de capaciteit van dit net onderdeel te meten. 

d. Om de smeltveiligheid te beschermen. 

5. Waarom plaats je het “Niet schakelen” bordje na het schakelen? 

a. Omdat de installatie niet meer bruikbaar is voor schakelen. 

b. Omdat je de kabel(sectie) wilt blokkeren zodat je collega's hier niet schakelen. 

c. Als herinnering voor jezelf dat hier niet geschakeld mag worden. 

d. Om zo aan te geven dat er nu stofkappen in plaats van schakelkappen geplaatst zijn. 

6. Welke kappen verwacht je aan te treffen als je ergens gaat aarden? 

a. Schakelkappen 

b. Stofkappen 

c. Geen kappen 

d. Geen van bovenstaande 

7. Welke middelen heb je nodig voor het aarden van de kabel(sectie)? 

a. Spanningstester & aardingsgarnituur. 

b. Schakelsleutel & aardingsgarnituur. 

c. Spanningstester & schakelsleutel. 

d. Spanningstester, schakelsleutel & aardingsgarnituur. 
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8. Waarom test je zowel aan het begin als aan het eind van de spanningstest of de rail zijde 

onder spanning staat? 

a. Als er geen spanning is op beide momenten mag je niet aarden. 

b. Om te kijken of de spanningstester nog werkt. 

c. Zodat je weet welke kabel(sectie)s je moet aarden. 

d. Als dit niet het geval is hoef je niet te aarden. 

9. Na het aantonen van spanningsloosheid breng je de aardingsgarnituur aan, een collega zegt 

hierover het volgende: “Dit moeten we snel mogelijk doen na de spanningsloosheid test”. 

Klopt dit? En waarom? 

a. Ja, als ik te lang wacht kan er kortsluiting ontstaan bij het aanbrengen. 

b. Nee, tijdsduur is niet van belang zolang ik maar veilig werk. 

c. Ja, want zo beperk ik de kans dat er toch weer spanning op de kabel staat. 

d. Ja, want de aardingsgarnituur mag niet te lang buiten de daarvoor bestemde tas 

liggen. 

10. Twee stellingen over het plaatsen van de schakelkappen tijdens het terug in bedrijfstellen 

van de magnefix: 

(1) Ik dien rekening te houden met de plaats van de veer. 

(2) De volgorde waarin ik de schakelkappen plaats is belangrijk. 

a. Alleen stelling 1 is juist. 

b. Alleen stelling 2 is juist. 

c. Stelling 1 en 2 zijn beide juist.  

d. Stelling 1 en 2 zijn beide onjuist. 

11. De configuratie van de magnefix waar je voor getraind hebt bevat (naast andere 

onderdelen): 

a. 2 kabelvelden, 3 fasen en 3 smeltveiligheden. 

b. 3 fasen, 3 kabelvelden en 3 smeltveiligheden. 

c. 2 kabelvelden, 3 fasen en 1 smeltveiligheid. 

d. 2 kabelvelden, 3 fasen en 2 smeltveiligheden.  

12. Wat betekent ‘spanningsloosheid’ als we deze aangetoond hebben. 

a. Dat er geen spanning is. 

b. Dat er geen gevaarlijke veilige spanning is. 

c. Dat we mogen aarden, we kunnen niks zeggen over de spanning. 

d. Dat er geen bedrijfsspanning meer op de kabel staat. 

 
 


