Is shoulder involvement in clinically suspect arthralgia an early feature of rheumatoid arthritis?

Citation for published version (APA):

DOI:
10.1093/rheumatology/keaa052

Document status and date:
Published: 01/09/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Is shoulder involvement in clinically suspect arthralgia an early feature of rheumatoid arthritis? A longitudinal ultrasound study

Rheumatology key message
- Subclinical tenosynovitis of the biceps tendon is not an early feature of RA in clinically suspect arthralgia patients.

Sir, Multiple studies have demonstrated that shoulder complaints are frequent in RA [1, 2]. Recently, it has been shown that shoulder involvement is predictive of RA development in patients with undifferentiated arthritis and its value is comparable with that of small joint involvement [3]. The phase of clinically suspect arthritis precedes the phase of clinically apparent arthritis. In this phase, subclinical tenosynovitis in small hand joints is associated with developing RA [4]. Given the similarities in predictive values between the shoulder and small joints in undifferentiated arthritis, and the predictive value of tenosynovitis in clinically suspect arthritis, we hypothesized that tenosynovitis of the biceps tendon visualized by US is also associated with developing inflammatory arthritis (IA) in clinically suspect arthralgia patients. We examined the biceps tendon, since this is the only tendon of the shoulder that is enclosed by a synovial sheath as it passes through the bicipital groove (Fig. 1A–C) [5].

To answer our research question we used data from the SONAR study, sonographic evaluation of hands, shoulders and feet in patients presenting with inflammatory arthralgia, to identify subclinical arthritis. This was a multicentre observational cohort study. In this study, US of both shoulders was made at baseline. US abnormalities of the biceps tendon [1], the Glenohumeral joint [2] and the subdeltoid bursa [3] were assessed for tenosynovitis, arthritis and bursitis. Thereafter, patients were followed for the course of 1 year (with 6-monthly visits) for the development of clinically apparent IA, which was verified by the treating physician. The medical ethics committee of Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands approved the study (MEC-2010–353). Furthermore, the study was assessed for feasibility by the local ethical bodies of the other two participating hospitals (Maasstad Hospital and Vlietland Hospital). All patients gave written informed consent before inclusion according to the Declaration of Helsinki. Student’s t test and the Mann–Whitney test were used to compare baseline values. US abnormalities between groups were compared using a ch2 test. A detailed description of the cohort, US protocol, and statistics are presented in the Supplementary Material, Methods section, available at Rheumatology online.

A flowchart is presented as supplementary material, available at Rheumatology online. No significant differences in baseline characteristics were found between included and excluded patients (Supplementary Table S1, available at Rheumatology online). Of the participants, 140 patients (82%) were female, the mean age was 45 years and the median symptom duration was 30 weeks (Fig. 1D). After 1 year, 37 patients (22%) had developed IA and, of those patients, 17 (46%) fulfilled the 2010 criteria for RA (Supplementary Table S2, available at Rheumatology online). The remaining 20 patients were diagnosed with: undifferentiated arthritis (80%), OA (15%) and PsA (5%). Shoulder pain was infrequent (5%) and only observed in the non-IA group. ACPA positivity was associated with IA development [odds ratio (OR) 3.14, 95% confidence interval 1.30–7.57, P = 0.0087] (Fig. 1D).

Although shoulder pain was infrequent, we did find US shoulder abnormalities in 50 patients (29%, Fig. 1D). None were predictive for IA development. Subclinical tenosynovitis of the biceps tendon was present in 15% and 11% of clinically suspect arthralgia patients who, respectively, did and did not develop IA (P = 0.19 and P = 0.094, respectively). Joint effusion was absent (Fig. 1D). The subgroup analysis with RA as outcome showed similar results (Supplementary Table S3, available at Rheumatology online).

US abnormalities of the shoulder were less frequent in our study than in other studies: biceps tenosynovitis 23–44%, subdeltoid bursitis 18–67% and effusion of the...
However, these studies were performed in established RA. It is plausible that these patients had developed more abnormalities in the shoulder joint over the years due to active inflammation. On the other hand, US shoulder abnormalities are also seen in healthy individuals and prevalences vary widely. Iagnocco et al., for example, showed a prevalence of 28.9%, which is comparable with our overall prevalence of 29% [8].

A strength of the current study was that US was performed by two experienced ultrasonographers who had received training prior to the start of the study. Also, a standardized US protocol and scoring system was used for scanning. In addition, analyses on primary and secondary outcomes provided similar results.

A limitation is that the number of patients that developed IA or RA and the frequency of US abnormalities within this group were relatively low. Although this may have harboured the risk of false-negative findings, there was no tendency towards more US-detected inflammation, even in the clinically suspect arthralgia patients who progressed to IA. Therefore, further US studies on the shoulder in clinically suspect arthralgia would not seem to be valuable.

In conclusion, subclinical tenosynovitis of the biceps tendon, visualized with US, is not an early feature of RA and is also not predictive of the development of RA. Based on these results, standard US screening of the shoulder is not necessary in clinically suspect arthralgia patients for determining their risk of developing IA.

Funding: This work was supported by an investigator-initiated grant from Pfizer bv. and funding from the Dutch Arthritis Society.

Disclosure statement: The authors have declared no conflicts of interest.

Supplementary data

Supplementary data are available at Rheumatology online.
Cleo Rogier, Myrthe van der Ven, Annette H. M. van der Helm-van Mil, and Pascal H. P. de Jong*

1Department of Rheumatology, Erasmus University Medical Center (Erasmus MC), Rotterdam and 2Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands. E-mail: c.rogier@erasmusmc.nl

Accepted 21 January 2020

Leiden, The Netherlands

2

Center (Erasmus MC), Rotterdam and

Pascal H. P. de Jong

1, 2, * Annette HM van der Helm-van Mil and Pascal HP de Jong

The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions, please email: journals.permissions@oup.com

References

Rheumatology 2020;59:2642–2644
doi:10.1093/rheumatology/keaa071

Advance Access publication 16 March 2020

Association between celiac disease and systemic lupus erythematosus: a Mendelian randomization study

Rheumatology key message

- Mendelian randomization study suggested celiac disease might be associated with the risk of SLE.

Sir, Celiac disease (CeD) is an autoimmune disease characterized by immune-reaction to gluten by T lymphocytes with gastrointestinal manifestations in children. Observationally, it has been reported that a variety of other autoimmune diseases are associated with CeD [1]. Correspondingly, a few cases have been reported that CeD precedes SLE [2]. In addition, >20% of patients with CeD have anti-double stranded DNA antibody, raising the intriguing question of whether abnormal immune responses in the gut play a role in systemic autoimmune disease [3]. To examine the association between CeD and SLE, I performed two-sample Mendelian randomization (MR) using the inverse-variance weighted (IVW), MR-Egger regression and weighted median methods. A two-sample MR utilizes genetic variants as instrumental variables (IVs) for assumption about causal impact of exposure on outcome derived from different samples [4].

I used the publicly available datasets of genome-wide association studies (GWASs) for CeD GWASs (12 041 cases and 12228 controls) of the European population as the exposure and SLE GWASs (1311 cases and 1783 controls) of the European population as the outcome [5, 6]. To improve inference, selection of genetic variants associated with CeD as IVs was based on a linkage disequilibrium R² value of 0.001, clumping distance of 10 000 kb and P-value threshold of 5.00 × 10⁻⁸ (genome-wide significance). Then, I examined the association between single nucleotide polymorphisms (SNPs) and risk of SLE. Finally, by combining the results acquired from of each SNPs using MR analysis, I estimated the causal association between CeD and risk of SLE. The effect size was shown by the β-coefficient. I assessed heterogeneity across SNPs by Cochran’s Q statistic. To explore whether single SNPs drive causal association, I performed a leave-one-out analysis. All MR analyses were performed in MR Base platform (http://www.mrbase.org/; App version: 1.2.2 3a435d). The R script is in the supplementary material, section ‘R Script’, available at Rheumatology online.

I obtained 11 SNPs as IVs from CeD GWASs (Supplementary Table S1, available at Rheumatology online). These SNPs were located at ZNF184 (rs13195040), HLA-DPA1 and HLA-DPB1 (rs1431403), CIITA and LOC105371080 (rs6498114), MMEL1 (rs10752747), LOC105370507 (rs10947460), LOC105369519 (rs10892258), KIAA1109 (rs13119723), TSBP1 and TSBP1-AS1 (rs9268302), and unknown genes (rs13030124, rs1257282 and rs9258302).

© The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions, please email: journals.permissions@oup.com