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A generalized approach for automatic 3-D geometry
assessment of blood vessels in transverse ultrasound

images using convolutional neural networks
Joerik de Ruijter, Judith J.M. Muijsers, Frans N. van de Vosse, Marc R.H.M. van Sambeek and

Richard G.P. Lopata

Abstract—Accurate 3-D geometries of arteries and veins are
important clinical data for diagnosis of arterial disease and
intervention planning. Automatic segmentation of vessels in the
transverse view suffers from the low lateral resolution and
contrast. Convolutional neural networks are a promising tool for
automatic segmentation of medical images, outperforming the
traditional segmentation methods with high robustness. In this
study, we aim to create a general, robust, and accurate method
to segment the lumen-wall boundary of healthy central and
peripheral vessels in large field-of-view freehand ultrasound (US)
datasets. Data were acquired using freehand US, in combination
with a probe tracker. A total of ± 36000 cross-sectional images,
acquired in the common, internal, and external carotid artery
(N = 37), in the radial, ulnar artery, and cephalic vein (N
= 12), and in the femoral artery (N = 5) were included. To
create masks (of the lumen) for training data, a conventional
automatic segmentation method was used. The neural networks
were trained on a) data of all vessels and b) the carotid artery
only. The performance was compared and tested using an open
access dataset. The Recall, Precision, DICE, and the intersect-
over-union (IoU) were calculated. Overall, segmentation was
successful in the carotid and peripheral arteries. The Multires
U-net architecture performs best overall with DICE = 0.93 when
trained on the total dataset. Future studies will focus on the
inclusion of vascular pathologies.

Index Terms—Convolutional Neural Network, Machine Learn-
ing, Medical Image Segmentation, Vascular Ultrasound.

I. INTRODUCTION

Accurate 3-D geometries of arteries are important clinical
data for grading stenosis, assessing aneurysmatic disease,
and intervention planning. For instance, the visualisation of
the vasculature can contribute to arteriovenous fistula place-
ment for hemodialysis, or stent placement in lower extremity
atherosclerotic lesions. Ultrasound (US) is the modality of
choice, due to its non-invasive nature, ease-of-use, and low
cost. However, automatic segmentation suffers from the low
lateral resolution and contrast. Deep convolutional neural net-
works (CNNs) are a promising tool for semantic segmentation
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of medical images. Long, et al. [1] first presented a fully
convolutional network (FCN) for semantic segmentation, out-
performing the traditional segmentation methods and showing
a high level of robustness. The U-net was designed for medical
image segmentation, and was proven to be successful in many
other applications [2]. U-nets perform well even without huge
amounts of labelled training data and are now the preferred
approach for medical image segmentation [3].

Since the introduction of the U-net, many variations were
introduced to optimize the performance of this type of neural
network. The U-net combines low level detail information
with high level semantic information, by the connections
between decoding and encoding blocks. However, to train
a network, large annotated datasets are required, which are
typically difficult to obtain, especially in biomedical imaging
or when developing a novel, not yet clinically used method.
A commonly used solution to increase the amount of data is
data augmentation, here the existing data is modified using
different image operations.

In the field of vascular ultrasound (US), convolutional
neural networks are already under investigation for different
purposes. Smistad, et al. [4] used a CNN to classify vessels
detected by their Vessel Candidate Search algorithm. Jain, et
al. [5] used a faster Region-CNN to localize the common
carotid artery in transverse B-mode ultrasound images. Several
groups have used a CNN to measure the intima - media thick-
ness of the common carotid artery in longitudinal images [6],
whereas [7] used a similar approach aimed at characterizing
the composition of carotid plaques. Zhou, et al. [8] used a
Residual U-net to segment the lumen-intima boundary in 2-D
carotid images from a single volume 3-D dataset. Xie, et al. [9]
used a dual-path encoder U-net to segment the carotid lumen in
longitudinal B-mode images. Smistad, et al. [10] used a U-net
to detect blood vessels and nerves in transverse images during
ultrasound-guided axillary nerve block procedures. Mishra, et
al. [11] deployed a deeply supervised FCNN to show vessel
segmentation in liver ultrasound images and IVUS images of
coronary arteries.

In this study, we aim to create a generalized, robust, and
accurate method to segment the lumen-wall boundary for
larger segments of central and peripheral arteries in large
field-of-view datasets using CNNs. The goal is to investigate
the influences of addition of various vessels to the training
data versus an augmentation strategy on the performance on a
single artery, in this case the CCA. A large dataset was created
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from stacks of transverse US images of different arteries and
veins: 1) the carotid artery including the internal carotid artery
(ICA), the external carotid artery (ECA), and the common
carotid artery (CCA); 2) the femoral artery (FA) in the upper
leg; and 3) the vasculature in the lower arm, including the
radial artery (RA), ulnar artery (UA), and the cephalic vein
(CV). The acquisitions were performed by making a sweep
along the subject’s artery or vein, this maximizes the number
of images of each subject, whilst still introducing variations
in vessel size, vessel location, surrounding tissue, contrast etc.
and allows for an assessment of 3-D geometry for a large
field-of-view.

To reduce manual labor, the masks were created using an
existing semi-automatic segmentation method [12]. To ensure
acceptable quality of masks, erroneous masks were manually
removed. This does not always result in pixel-perfect masks,
however in (vascular) ultrasound imaging this is also hard to
achieve with manual annotation since there is high inter- and
intra-observer variability [13].

The neural networks were trained with two sets of training
data: carotid data only, and data originating from all arteries.
Besides the Standard U-net, four modifications of the U-net
were tested: Residual U-net [14], Compact U-net [15], Dense
U-net [15], and Multires U-net [16]. The performance of the
different network architectures was compared and tested using
data from an online carotid database [17] and manually an-
notated in-house datasets. Finally, the best performing neural
network was used to segment blood vessels in large field-of-
view, probe-tracked, 3-D datasets to obtain a large part of their
full, 3-D geometry.

II. MATERIALS AND METHODS

A. Data acquisition

Training data were acquired using freehand US. The arteries
were primarily imaged in the transverse view, while the
probe was moved in the out-of-plane direction. This results
in obtaining multiple images of each subject with different
image features. For carotid and lower extremity imaging a
MylabOne ultrasound system (ESAOTE EUROPE, Maastricht,
NL) with a linear array (fc = 7.5 MHz) was used. For imaging
the upper extremities a Mylab70 ultrasound system (ESAOTE
EUROPE, Maastricht, NL) with a linear array (fc = 10
MHz) was used, since the arteries are smaller and a higher
resolution (and thus transmit frequency) was needed. All
probes were connected to a magnetic probe tracking device
(CUREFAB CS, Münich, Germany) for 3-D reconstructions.
Two magnetic field sensors were mounted on the ultrasound
probe, which were able to sense the magnetic field generated
by the magnetic field emitter. Utilizing the information of the
magnetic field emitters, the position and rotations (6 Degrees-
of-Freedom) of the transducer relative to the magnetic field
emitter are calculated. The position of the 2 sensors relative to
the probe head (and thus the US image) were calibrated using a
pyramid phantom. For all applications, a slow sweep at a speed
of v =∼ 5mm/s was performed along the subjects artery, so
that the vessel was continuously (fully) visible in a transverse
view. The left and right carotid artery were both imaged,

TABLE I
AN OVERVIEW OF NUMBER OF SUBJECTS, ACQUISITIONS AND THE TOTAL

NUMBER OF TRAINING IMAGES.

Type volunteers acquisitions images
Carotid 37 67 18379
Upper extremities 12 36 16069
Lower extremities 5 10 1705

starting distal to the bifurcation, moving to the proximal part
while the subject was in the supine position. To measure
the vasculature in the forearm, the volunteer was asked to
place their non-dominant arm in supination on a handcrafted
holder. The radial artery, ulnar artery, and cephalic vein were
measured from proximal to distal position in separate sweeps,
following each vessel. To measure the femoral artery, the
volunteer was laying down on a bed. Data acquisition was
performed in volunteers, see Table 1. All subjects gave their
informed consent. All separate studies were approved by the
local ethics committee of the Catharina Ziekenhuis Eindhoven
(MEC-U, Eindhoven, NL). The B-mode cineloops, with a
frame rate of 25 Hz, were extracted from the probe tracking
device, including the corresponding spatial coordinates of the
probe during the sweep.

B. Training data preparation

An (semi) automatic segmentation approach was used to
find the lumen-wall boundaries in the training data. Since all
images were acquired using a slow sweep in combination
with a probe tracking device, frame by frame segmentation
was performed, using information from the previous frame to
predict the location and size of the artery of interest in the next
frame. This automatic segmentation algorithm was recently
published [12]. In short, the algorithm uses the Star-Kalman
method to approximate the center and the size of the vessel(s)
for every frame [18]. Images were filtered with a Gaussian
low-pass filter before conversion into the 2-D monogenic
signals. Multi-scale asymmetry features were extracted from
these data, enhancing low lateral wall-lumen contrast. These
images, in combination with the initial ellipse contours, were
used for an active deformable contour model to segment the
lumen-wall boundary [19]. The output of the algorithm are
contours (100 points) for every artery. A mask was generated
(intensity = 1 for lumen pixels, intensity = 0 for background
pixels). Every contour was checked visually; if the algorithm
failed to track the artery correctly, the erroneous images/masks
were removed from the total dataset for training. The acquired
US images had different dimensions and aspect ratio’s, due to
the use of different US devices and different depth settings.
However, all input data are required to have the same size. In
general, all images had more pixels in depth compared to the
width. Hence, all images were cropped, i.e., the bottom was
removed so that every image is square. Next, the images and
masks were resized to 128 by 128 pixels. This approach was
not feasible for upper/lower extremity images, since the artery
could be located at the bottom of the image. Here, the full
image was resized, resulting in non-equidistant pixel spacing.
Padding was also considered, however the padded area does
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Fig. 1. Examples of B-mode image and training mask for the radial, common
carotid, and femoral artery.

not contribute to the pixel classification, and would require
an extra step for the learning algorithm. Figure 1 shows three
examples of the training data.

C. Network architectures
The U-net and modifications of this architecture have shown

to be very suitable for semantic segmentation. Figure 2 shows
a schematic overview of the U-net architecture, including
the encoding and decoding blocks. Besides the Standard U-
net, different state-of-the-art modifications have been tested:
Residual U-net [14], Compact & Dense U-net [15], and
Multires U-net [16]. Research showed that deeper networks,
networks with more convolutional blocks, perform better.
However, deeper networks are more difficult to train, due to
vanishing gradients. The residual networks have the strengths
of skipping connections to avoid this problem. In the Residual
U-net, the Standard U-net block has been replaced by a
Residual block, see Figure 3. Densely connected networks
have interconnections after each convolution. The Compact
version has only one connection in each building block. In
the standard building block, a 3 x 3 convolution operation is
used twice, which resembles a 5 x 5 convolution layer. In the
Multires building block, next to the 5 x 5 convolution layer, a
3 x 3 and a 7 x 7 convolution layer were added. This enables
the network to capture image features of different dimensions.
Figure 3 shows the building blocks for every archetype. In
case of encoding, the last operation is so-called max pooling,
the input is downsampled by taking the maximum value of a
2 by 2 window. For the upsampling scheme a transposed 2-D
convolution is used, also known as deconvolution. For all U-
net archetypes 32 convolutional kernels were used in the first
layer (see Figure 2). The total number of parameters of each
architecture is shown in Table II. The implementation of the
architectures was adapted from [20].

D. Training
Each network was trained using two groups of training data:

data of the carotid artery and data of all arteries. Dataset

Fig. 2. An overview of the U-net architecture. The encoding and decoding
blocks are shown in Figure 3.

Fig. 3. Building blocks for the different U-net archetypes used in this study.

”Carotid” consists of ± 18k images, dataset ”All” of ±
36k images. To make a fair comparison, dataset ”Carotid”
was doubled to 36k images using data augmentation. Due
to the sweep acquisition, consecutive frames can be similar,
to introduce more variety in the data, augmentation was also
applied to all the original data. Six augmentation techniques
were used: Deformation, rotation, zoom, gamma correction,
addition of Gaussian noise, and contrast adjustments. The
data augmentation was implemented using the Python library
’batchgenerators’ [21]. The parameters are summarized in
Table III.

The neural networks were trained in a k-folds cross-
validation approach. The training set was randomly divided
in 5 mutually exclusive subsets of equal size. Each network
was trained 5 times, subsequently with a different subset as
validation set. The networks were trained for 100 epochs
after which the validation loss improvements were found to
be minor. The batch-size was set to 10 and learning rate to

TABLE II
THE TOTAL NUMBER OF PARAMETERS FOR EACH ARCHITECTURE USED IN

THIS STUDY.

Architecture Total parameters
Standard 7.8M
Compact 10.7M
Dense 15.8M
Residual 8.1M
Multires 7.3M
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TABLE III
THE PARAMETERS USED FOR DATA AUGMENTATION.

Augmentation type Parameters
Rotation (range in degrees) [−15◦, 15◦]
Deformation (α, σ) α = [0, 200] σ = [9, 13]
Zoom [0.75, 1.25]
Gaussian noise [0.0, 0.05]
Contrast [0.3, 3]
Probability 0.2

1e−5. The DICEloss was used as loss metric (Equation 3), the
weights were saved when the validation loss improved after
an epoch. Training was performed on a GPU (NVIDIA Tesla
K40m) provided by the SURF Cooperative (Amsterdam, The
Netherlands) .

E. Metrics
In the training sets there is an imbalance in classes (number

of background pixels � number object pixels). The DICE
index (DICE) (also known as the Similarity Index) is a
metric that is insensitive to this imbalance problem. An other
commonly used quality metric is intersection over union (IoU).
The equations for the DICE and IoU are given by:

DICE =
2 ·A ∩B

A+B
(1)

IoU =
A ∩B

A ∪B
(2)

Here, A and B are the set of pixels classified as ’vessel’ in
the ground truth and prediction, respectively. The loss function
used for training and validation is given by:

DICEloss = 1−DICE (3)

Besides the pixel based metrics, the network’s ability to
detect the vessel is of interest. Recall (R) describes complete-
ness of the model’s positive predictions versus the ground
truth. Precision (P) is a metric that shows the correctness
of the models positive predictions versus the ground truth.
A predicted object is defined as a group of more than 10
connected pixels in the binary prediction image. A prediction
is considered true positive (TP) when the DICE between the
predicted object and the corresponding ground truth is higher
than 0.5, otherwise the predicted object is counted as false
positive (FP). When a ground truth object does not have a
corresponding prediction with a DICE higher than 0.5, this is
considered as false negative (FN).

R =
NTP

NTP +NFN
(4)

P =
NTP

NTP +NFP
(5)

here, NTP is the total number of true positive predictions
and NFP is the total number of false positive predictions.
NFN is the number of false negative predictions [22]. Test set
1 is an online CCA database that only provides a detection
box (center coordinates, box height and box width). These
detection boxes, used as ground truth, are larger than the actual
vessel, therefore the DICE threshold was reduced to 0.25 for
Test Set 1.

TABLE IV
OVERVIEW OF THE TEST SETS USED IN THIS STUDY.

Name Source images Annotation Location
Test Set 1 Online 971 Location only CCA
Test Set 2 Online 269 Manual CCA
Test Set 3 In-house 94 Manual CCA
Test Set 4 In-house 100 Manual Arm

F. Test sets

The training data cannot be regarded as ground truth
data, since the masks were generated using a semi-automatic
method. Hence, these data cannot be used as test set. Four
test sets were used to test the segmentation results of each
trained network. Test Set 1 and 2 originate from an online
CCA database [17], consisting of 971 transverse US images
of the CCA acquired with two different US machines: an
Ultrasonix (538 images) and Toshiba US system (433 images).
The database included the position of the center and radius
of the carotid artery for each cross-section. For each image
it was tested if the neural network was able to detect the
position of the artery. Test Set 2 contains 269 images obtained
with an Ultrasonix US device, these images were segmented
manually. Test Set 3 is a CCA dataset, acquired in-house
with a MylabOne, which were also segmented manually. The
manual annotations were compared with the predicted images,
and the DICE, IoU, Recall, and Precision were calculated.
Additionally, an in-house dataset consisting of 100 images of
the cephalic vein, radial artery, and the ulnar artery of two
volunteers, that were not included in the training data, were
segmented manually (Test Set 4). Note that in this set only the
vessel of interest was annotated. It was not feasible to annotate
all small vessels that appear during the sweep, since it was not
always clearly recognizable to the observer. A summary of the
test sets is given in Table IV.

G. Geometry reconstruction

In this study, the resulting lumen geometry was recon-
structed to visualize the vasculature in 3-D. Each sweep
dataset, containing images and probe tracking coordinates for
each image, is exported to MATLAB 2019a (MathWorks,
USA). The segmentation is performed by the Compact U-net.
An empty voxel volume is created, with the dimensions of the
sweep. Here, the length of the z-axis is set to the length of the
sweep. For each pixel classified as lumen, the 3-D coordinates
are calculated according to the probe tracking coordinates.
Next, the nearest voxel is categorized as lumen. This is
repeated for every pixel. The voxel volumes are visualized
using an isosurface representation of the volume data.

III. RESULTS

A. Training

All networks were implemented in Keras [23] a Python
library built upon TensorFlow [24]. The neural networks were
trained using a 5-folds cross-validation approach as described
in Section II-D. Figure 4 shows the average DICE of all 5 folds
combined on the training and validation sets after each epoch



JOURNAL OF TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 5

for each architecture. It can be observed that during training
the DICE is increasing on both the training and validation set.
The maximum DICE values on the validation set are obtained
after 95-100 epochs. The validation loss improvements are
minor so the models are considered to have converged. The
differences of the maximum validation DICE between the
different architectures are very small, for the training set
”Carotid” 0.03% and training set ”All” 0.15%, respectively.
The maximum validation DICE for networks trained with
carotid data (0.971) are higher compared to networks trained
with all training data (0.953- 0.955). The standard deviation of
the Dense U-net architecture is higher compared to the other
architectures.

B. Segmentation performance on test sets

Table IV clarifies the different test sets that are used in this
section. Table V shows the average Recall and Precision (of
the 5 folds) on Test Set 1. Here the networks trained with
training set ”All” perform better in terms of Recall than the
networks trained with Carotid data. However, this is at the
expense of the Precision, which is higher for the networks
trained with only carotid data. The Multires U-net shows the
best trade-off in Recall and Precision. Table VI shows the
DICE, IoU, Recall and Precision values for each network on
Test Set 2. The Multires U-net trained with ”All” data achieved
the highest average DICE of 0.923 and IoU of 0.870. The
Multires U-net shows high consistency over all folds (low
standard deviation). The maximum DICE of a single fold was
0.940, achieved by the Compact U-net trained on carotid data.
The DICE and IoU scores of the Dense U-net are significant
lower compared to the other architectures. This is caused by
a low Precision, thus there are a high number of false positive
predictions, whilst the Recall is still acceptable. Figure shows
5 samples from Test Set 2 with corresponding boundaries
of the segmentation performed by the different architectures.
The first three images are selected to showcase segmentation
errors. The first example (left) shows an artery shaped, false
positive prediction by the Dense U-net and the Residual U-
net is not able to detect an artery (false negative). In the
second image the background shows irregular shaped objects,
falsely detected by the Dense and Compact U-net. Image 3
shows over-estimation of the vessel area by the Compact and
Multires U-net. A video of the segmentation results on Test
Set 2 using the Multires U-net is shown in the Supplementary
Materials. Table VII shows the performance on Test Set 3. The
average DICE coefficients are all in the range between 0.927-
0.932. Overall, the networks trained on Carotid data achieve
a slightly higher DICE (0.3%) compared when trained on
”All” data. The maximum DICE of a single fold was 0.9340,
achieved by the Residual U-net trained on ”All” data. All
trained architectures show a very high Recall and Precision, in
many cases there were only true positive predictions and no
false negative and false positive predictions (This is shown
by a Recall and Precision value of 1.000). Overall higher
DICE, IoU, Recall and Precision are obtained on Test Set 3
compared to Test Set 2. Test Set 2 consists of images obtained
with the same US set-up (US device + transducer) as used

TABLE V
THE RECALL AND PRECISION WERE CALCULATED ON TEST SET 1 FOR

BOTH TRAINING SETS. THE AVERAGE VALUES OVER 5-FOLDS ARE SHOWN.

Test Set 1 Training set: Carotid Training set: All
Architecture Recall Precision Recall Precision
Standard 0.987 0.987 1.000 0.948
Compact 0.992 0.828 0.999 0.876
Dense 0.957 0.478 0.998 0.598
Residual 0.991 0.987 0.998 0.942
Multires 0.997 0.985 0.999 0.960

for the training data. Figure 6 shows the DICE distribution
for architectures trained with training set ”Carotid” and ”All”.
Here the DICE was calculated for every architecture for the
five folds and scores were combined in the histogram. The
DICE distributions on Test Set 3 of ”Carotid” and ”All” are
similar, the maximum difference for a bin is 0.6% of the total
set. Test Set 2 shows more DICE scores between 0.00-0.30
and 0.95-1.00 for architectures trained with ”Carotid”. Table
VIII shows the comparison between segmentation of Test Set
3, using the Compact U-net and the semi-automatic method
that was used to generate the masks. The images from Test
Set 3 were sampled from ten different B-mode sequences. In
each B-mode sequence a manual seed was placed at the first
frame of the CCA. The images from Test Set 3 were selected
and the metrics were calculated. The semi-automatic algorithm
was able to track the arteries in all cases, showing a recall and
precision of 1.000. With a DICE of 0.922 and IOU of 0.858
the semi-automatic algorithm performs slightly worse than the
different U-net architectures.

Table IX shows the performance of the different archi-
tectures on Test Set 4. The networks trained with dataset
”Carotid” show poor performance (DICE < 0.4) on this test
set, which is expected since these networks are not trained
with arm data. When trained with dataset ”All”, the Standard
U-net performed best on this test set in terms of DICE, IoU
and Recall. The Multires has the highest Precision (0.860).
Compared to Test Set 2 & 3 the performance is worse.

C. Segmentation performance on test sets per epoch.

In this study, the test sets are different from the training
and validation data, i.e., the test sets are manual annotated
and different US devices were used. It could be that the best
performing network on the validation data does not result in
the best performance on the test sets. Figure 7 shows the DICE
evaluated after each epoch on Test Set 2 and 3. On average, the
maximum DICE was found after 11 epochs for Test Set 2 (x)
and 33 epochs for Test Set 3(*). After this, the DICE slowly
decays with increasing epochs, this in contrary to the DICE on
the validation data, that kept increasing each epoch (Figure 4).
This decay is more pronounced on Test Set 2 compared to Test
Set 3. Although this decay is also present in the Multires U-
net, this architecture shows the most consistent performance
on Test Set 2 and 3. The Multires U-net gives the overall
maximum DICE of 0.943 on Test Set 2, when trained on ”All”
data, whereas the Standard U-net reaches the overall maximum
DICE of 0.940 on Test Set 3 (also trained on ”All” data).
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Fig. 4. The DICE per epoch during training is shown for the training set (black) and validation set (dashed blue). This is the average DICE of the 5-folds,
the standard deviation is shown by the error bars. The legend shows the maximum average DICE over all epochs for the training and validation set.

TABLE VI
THE AVERAGE DICE, IOU, RECALL AND PRECISION WITH THE CORRESPONDING STANDARD DEVIATION OF THE 5 FOLDS WERE CALCULATED ON TEST

SET 2. THE RESULTS ARE SHOWN FOR TWO SETS OF TRAINING DATA: ”CAROTID” AND ”ALL”.

Test Set 2 Training set: Carotid Training set: All
Architecture DICE IoU Recall Precision DICE IoU Recall Precision
Standard 0.912 ± 0.014 0.863 ± 0.013 0.966 ± 0.018 0.982 ± 0.010 0.911 ± 0.013 0.859 ± 0.013 0.968 ± 0.013 0.973 ± 0.010
Compact 0.915 ± 0.019 0.863 ± 0.020 0.974 ± 0.020 0.901 ± 0.113 0.882 ± 0.058 0.821 ± 0.072 0.978 ± 0.019 0.899 ± 0.126
Dense 0.785 ± 0.051 0.707 ± 0.056 0.964 ± 0.031 0.486 ± 0.105 0.862 ± 0.074 0.796 ± 0.090 0.990 ± 0.005 0.680 ± 0.227
Residual 0.916 ± 0.028 0.866 ± 0.025 0.971 ± 0.031 0.974 ± 0.020 0.906 ± 0.023 0.853 ± 0.023 0.966 ± 0.024 0.966 ± 0.029
Multires 0.919 ± 0.016 0.869 ± 0.016 0.977 ± 0.015 0.987 ± 0.004 0.923 ± 0.008 0.870 ± 0.007 0.986 ± 0.010 0.982 ± 0.012

DICE S:0.88 C:0.95 D:0.72 R:0 M:0.96 DICE S:0.91 C:0.51 D:0.58 R:0.88 M:0.88 DICE S:0.94 C:0.84 D:0.9 R:0.94 M:0.84 DICE S:0.95 C:0.95 D:0.94 R:0.96 M:0.95 DICE S:0.98 C:0.98 D:0.98 R:0.98 M:0.98

GT
Standard
Compact
Dense
Residual
Multires

Fig. 5. Five images of Test Set 2, including the boundaries of the segmentation of the 5 architectures, fold 1. The corresponding ground truth is shown in
red. The DICE for each segmentation is displayed in the title for the Architectures: Standard (S), Compact (C), Dense (D), Residual (R) and Multires (M).
The networks were trained with training set ”All”. The first three images are selected based on different errors.

TABLE VII
THE AVERAGE DICE, IOU, RECALL AND PRECISION WITH THE CORRESPONDING STANDARD DEVIATION OF THE 5 FOLDS WERE CALCULATED ON TEST

SET 3. THE RESULTS ARE SHOWN FOR TWO SETS OF TRAINING DATA: ”CAROTID” AND ”ALL”.

Test Set 3 Training set: Carotid Training set: All
Architecture DICE IOU Recall Precision DICE IOU Recall Precision
Standard 0.928 ± 0.008 0.872 ± 0.009 0.994 ± 0.010 0.994 ± 0.014 0.927 ± 0.008 0.869 ± 0.007 0.996 ± 0.006 0.996 ± 0.010
Compact 0.932 ± 0.001 0.875 ± 0.002 1.000 ± 0 0.998 ± 0.005 0.927 ± 0.008 0.869 ± 0.008 0.985 ± 0.017 0.996 ± 0.010
Dense 0.928 ± 0.007 0.870 ± 0.009 0.996 ± 0.006 0.967 ± 0.068 0.927 ± 0.007 0.869 ± 0.008 0.987 ± 0.011 0.996 ± 0.006
Residual 0.932 ± 0.001 0.872 ± 0.001 1.000 ± 0 1.000 ± 0 0.930 ± 0.005 0.872 ± 0.006 0.998 ± 0.005 0.998 ± 0.005
Multires 0.930 ± 0.006 0.874 ± 0.008 0.998 ± 0.005 0.992 ± 0.014 0.927 ± 0.007 0.869 ± 0.006 1.000 ± 0 0.996 ± 0.010
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TABLE VIII
THE PERFORMANCE OF THE SEMI-AUTOMATIC METHOD ON TEST SET 3

VERSUS THE COMPACT U-NET TRAINED WITH TRAINING SET ”CAROTID”.

Test Set 3 DICE IOU Recall Precision
Semi-automatic method[12] 0.922 0.858 1.000 1.000
Compact U-net 0.932 0.875 1.000 0.998

Fig. 6. The DICE histogram for architectures trained with the ”Carotid”
and ”All” datasets on Test Set 2 and Test Set 3. All DICE results of the 5
architectures and 5 folds were combined in these histograms.

D. Reconstruction Geometries in 3-D

Figure 8 shows a 3-D geometry of the carotid artery
including the bifurcation. The segmentation was performed
using the Compact architecture, trained with ”All” training
data. Acquisitions of the arm of two volunteers were left out
of the training set. Three sweeps were made along the cephalic
vein, radial artery, and the ulnar artery. Figures 9 and III-D
show the geometries reconstructed from each sweep, and the
combined B-mode data. The images were segmented using the
Compact architecture. Each sweep consisted of approximately
900 images.

IV. DISCUSSION

In this study we have presented a generalized method to
segment the lumen-wall boundary in transverse US images of
central and peripheral blood vessels using CNNs. Semi-3D
data were acquired using freehand sweeps while performing
2-D US imaging. The training data were labeled by a semi-
automatic segmentation algorithm [12] and the lumen-wall
boundary segmentation was visually checked before inclusion
to the training set. The semi-automatic segmentation method
was developed for sequences of transverse US images of the
carotid artery and requires manual input, whereas the method
proposed is fully automatic and works on stand-alone images
(or sequences) of different arteries and veins of different sizes
and at different depths. To ensure the semi-automatic method’s
performance on images of the forearm and leg, multiple start-
ing seeds were selected manually, thereby avoiding tracking
errors. Training CNNs requires large datasets, however, in the
field biomedical engineering training data are not often widely
available. In order to create a larger database, data of different
arteries and veins were combined. The jugular vein next to
the carotid artery was not included, since it is most of the
times compressed or/and has a non-circular shape, and also
small blood vessels were neglected. Small blood vessels in
the image could result in false positive predictions, however

these predictions could be easily removed in post-processing
since they lack continuity in the sweeps. Five state-of-the-
art U-net architectures were tested and trained in 5-folds
cross-validation with two different training sets: transverse
US images of the carotid artery, and transverse US images
of multiple arteries. We found that the addition of images
of different blood vessels (radial artery, ulnar artery, femoral
artery and cephalic vein) to the training set not only enabled
segmentation of different types of arteries, but also slightly
improved the general performance of the neural network for
the segmentation tasks of the carotid artery, despite differences
in size, structure, and surrounding tissues of the input training
sets provided. The different architectures all converged when
training on the training/validation sets and did not show signs
of overfitting (both training loss and validation loss kept
decreasing). The performance of the segmentation is tested
using an online CCA database (Test Set 1 and 2) and two in-
house datasets (Test Set 3 and 4), an overview is given in Table
IV. Modification of the building blocks of the U-net shown in
3 have a small influence on the performance of the network
compared to the Standard U-net on the test sets. However, the
Multires architecture shows the highest training consistency,
revealing a high performance of all folds on all test sets. In this
study, the Dense U-net showed precarious results on Test Set
1 and 2, showing a very low DICE, IoU and Precision. Whilst
the performance on Test Set 3 and 4 were comparable to the
other architectures. Thus this network performed insufficient
on images made by a different US machine than those in
the training set. However, it should be noted that the hyper-
parameters were not optimized for each network separately.

It is observed (Tables V, VI) that the inclusion of all blood
vessels to the training set improves the detection of the CCA
(higher Recall), however, this comes with a lower Precision.
This means that there are more false positive predictions,
which could be caused by the nature of the arm and leg
images in the ”All” vessel training set, since they contain
multiple arteries/ veins in one image. These false positive
predictions cause the slightly lower DICE and IOU scores for
networks trained with ”All”. This can also be seen in Figure
6, where there are less low DICE scores between 0.00-0.30,
which indicate better detection. But there are also lower scores
between 0.95-1.00 when trained with ”All”. In terms of the
DICE and IoU we do not see differences between the two
training sets. However, when Test Set 2 & 3 are evaluated
after each epoch (Figure 7), the highest DICE on Test Set
2 and 3 are achieved by networks trained with ”All” vessel
data (DICE of 0.943 and 0.940, respectively). This supports
the conclusion that could be beneficial to add data of other
arteries for segmentation purposes, especially when limited
training data are available.

The training/validation sets could not be used as test set,
since the masks were semi-automatically generated, and even
though the bad samples were removed, this cannot be con-
sidered as ground truth. Figure 7 shows the evaluation of
the DICE after each epoch on Test Set 2 and 3. For all
configurations the maximum DICE was already found after
10-40 epochs, whilst for the validation sets this was always
between 90-100 epochs (Figure 4). This indicates that the
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TABLE IX
THE AVERAGE DICE, IOU, RECALL AND PRECISION WITH THE CORRESPONDING STANDARD DEVIATION OF THE 5 FOLDS WERE CALCULATED ON TEST

SET 4.

Test Set 4 Training set: Carotid Training set: All
Architecture DICE IOU Recall Precision DICE IOU Recall Precision
Standard 0.381 ± 0.040 0.352 ± 0.037 0.412 ± 0.043 0.833 ± 0.076 0.759 ± 0.009 0.671 ± 0.014 0.874 ± 0.017 0.837 ± 0.036
Compact 0.396 ± 0.033 0.363 ± 0.030 0.424 ± 0.044 0.775 ± 0.047 0.735 ± 0.021 0.661 ± 0.015 0.840 ± 0.040 0.845 ± 0.030
Dense 0.346 ± 0.067 0.313 ± 0.062 0.384 ± 0.073 0.600 ± 0.254 0.731 ± 0.017 0.662 ± 0.011 0.842 ± 0.016 0.825 ± 0.035
Residual 0.335 ± 0.027 0.303 ± 0.025 0.360 ± 0.032 0.771 ± 0.057 0.741 ± 0.019 0.671 ± 0.019 0.848 ± 0.018 0.830 ± 0.044
Multires 0.374 ± 0.047 0.343 ± 0.045 0.408 ± 0.053 0.783 ± 0.072 0.745 ± 0.015 0.657 ± 0.019 0.848 ± 0.016 0.860 ± 0.011
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Fig. 7. The DICE evaluated after each epoch on Test Set 2 (black) and Test Set 3 (blue). The maximum average DICE is marked with (*) for Test Set 2 and
a (x) for Test Set 3.
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Fig. 8. Example: Automatically created 3-D geometry of the carotid artery
including CCA, ICA and ECA.

model is learning complex features after 10-40 epochs that
are specific for the training/validation sets, but are not general
features (i.e. specific for US machine (Test Set 2) or for the
semi-automatic method (Test Set 3)). Thus when aiming for
a more generalized segmentation model of blood vessels, it
could be beneficial to not fully converge the training, even
though this would yield better results on the validation set.

The performance is compared with literature using an online
CCA database (Test set 1 and 2). On Test Set 1, Recall of
1.000 was achieved by multiple architectures trained using

Fig. 9. Example 1: lower arm vasculature, including the cephalic vein, radial
artery, and the ulnar artery. Each sweep is displayed separately with a subset
of the US images overlaid.

”All” vessels. Literature shows an accuracy of 88% and a
detection rate of 90% on 433 images from the same database
[5]. A detection rate of 97% was reported by [17]. A DICE
of 0.94 and an IoU of 0.88 were achieved on Test Set 2 and
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Fig. 10. Example 2: lower arm vasculature, including the cephalic vein, radial
artery, and the ulnar artery. Each sweep is displayed separately with a subset
of the US images overlaid.

3. This is higher when compared to literature: several state-
of-the-art studies report a DICE of 0.91 on healthy CCA US
images, however, the validation analyses were not performed
on the same datasets [25]. The semi-automatic method that
was used to generate the masks showed a DICE of 0.91 on
the CCA in the original paper [12]. On Test Set 3 a DICE
of 0.922 was found, which is slightly lower than the different
U-net architectures on Test Set 3.

Large area 3-D geometries of arteries and veins are con-
structed, based on 2-D transverse B-mode sequences in com-
bination with a probe tracking device. Figure 8 shows the
geometry of a carotid artery including the bifurcation. The
pulsation of arterial wall is visible., which could be removed
in post processing. Figures 9 and III-D show the obtained 3-
D geometries of the RA, UA, and CV in the lower arm of
two volunteers. Upon visual inspection, the cephalic vein and
radial artery segmentation performances are good. The ulnar
artery is smaller and lies deeper in the image, so the image
quality is less optimal, or the ulnar artery is not visible in
the image at all. This causes the gaps in the 3-D geometry.
The segmentation results on Test Set 4 were less accurate
than on the other test sets. An average DICE of 0.759 was
found using the Standard U-net. It should be noted that
annotations only contain segmentations of the artery/vein that
was followed during the acquisition, since it was not possible
to correctly manually segment all vessels present in the image.
Furthermore, the acquisition itself could be improved in future
studies by developing more dedicated measurement protocols
for the different applications.

One study reported 3-D geometry assessment of radio-
cephalic arteriovenous fistula, a connection between the
cephalic vein and radial artery [26], [27]. Here, the segmen-
tation was performed with commercial software and required
manual interventions. Prevost, et al. [28] showed 3-D recon-
struction of sweep data without external probe tracking, but by
using a CNN to estimate the motion of successive ultrasound

frames. This creates new future opportunities, also for large
clinical trials, using existing equipment and without the use
of a probe tracking device. Combining CNN-based probe
tracking with our segmentation could generate 3-D geome-
tries directly from B-mode sequences without any dedicated,
hardware-based probe tracking. The geometries presented in
this study, display direct results of the segmentation, without
further post-processing or cosmetics. To create a final 3-D
anatomical map, several steps could be taken such as centerline
detection, heartbeat removal and spatial filtering [29], [26],
[12]. However, the validity and applicability of such post-
processing steps depend on the final application.

Unfortunately, there was no ground truth data available
for 3-D geometry validation. This would require contrast
angiography imaging using CT or MRI, which would be an
extra burden to the volunteers, and would have to be executed
in the clinic. In a future study, these verification measurements
could be possible using clinically available multi-modality
datasets of patients. This is beyond the scope of the present
study, which is aimed at investigating the feasibility and merit
of training a CNN on a generalized dataset for segmentation
of stacks of 2-D vascular US images.

In this study, single frame-by-frame segmentations were per-
formed, yet the possible benefit of using multiple frames, or a
3-D reconstructed volume frame as input remains unexplored.
A fully annotated dataset (manual segmentation) would be
preferable for the training of the network. However, this study
shows that the segmentation results on manual segmented test
sets are good, despite the use of semi-automatic annotated
masks for the training data. The segmentation method and
results of previous studies were used as training dataset, since
these segmentations were already validated, and to reduce
manual labor. In addition, all frame-by-frame results were
checked by trained observers to improve the accuracy of the
training set further.

V. CONCLUSION

A CNN was successfully deployed for the segmentation of
stacks of transverse Ultrasound B-mode images of different
arteries in vivo. Five different configurations of the U-net
architecture were tested. Overall, the Multires U-net architec-
ture showed the most consistent performance, with DICE =
0.93 and IoU = 0.88 on 269 manual segmented images of
an online CCA database. A Recall of 0.999 and a Precision
of 0.960 were found on 971 images. The addition of images
of different arteries can be a valuable strategy to generate
more data to train a CNN for the task of segmenting a single
artery despite different size, structure, surrounding tissue etc.
It enables generalized segmentation of different vessels with
a single network, whilst maintaining the segmentation quality.
With this set-up, large area vasculature can be imaged in the
extremities, automatically segmented, and converted into a 3-D
geometry for diagnosis or intervention planning. Future work
will focus on patient studies and validation of the method
proposed.



JOURNAL OF TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 10

ACKNOWLEDGMENT

This study was funded by Stichting Lijf and Leven. This
work was carried out on the Dutch national e-infrastructure
with support by SURF Cooperative.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[3] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical image
analysis, vol. 42, pp. 60–88, 2017.

[4] E. Smistad and L. Løvstakken, “Vessel detection in ultrasound images
using deep convolutional neural networks,” in Deep Learning and Data
Labeling for Medical Applications. Springer, 2016, pp. 30–38.

[5] P. K. Jain, S. Gupta, A. Bhavsar, A. Nigam, and N. Sharma, “Localiza-
tion of common carotid artery transverse section in b-mode ultrasound
images using faster rcnn: a deep learning approach,” Medical & Biolog-
ical Engineering & Computing, pp. 1–12, 2020.

[6] S. S., J. K. B., R. C., N. Madian, and S. T., “Convolutional neural
network for segmentation and measurement of intima media thickness,”
Journal of Medical Systems, vol. 42, no. 8, p. 154, Jul 2018. [Online].
Available: https://doi.org/10.1007/s10916-018-1001-y
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