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1 Introduction

The analog design assistance tool Adapt [5, 6] has been developed to help
analog electronic circuit designers tuning design parameters, such that the
functional design specifications are met, given process technology constraints.
Tuning is based on an optimization process, in which each iteration of the
optimization loop implies the evaluation of the circuit by an analog circuit
simulator. Considering the simulator as a black box tool, the choice of the
optimization technique is restricted, because the simulator does not auto­
matically supply derivatives of the design metrics and numerical noise is in­
herently present (for instance due to adaptive time stepping). This excludes
optimization algorithms that adopt finite-difference schemes to approximate
derivatives.
One of the two optimization algorithms available in Adapt is the NeIder-Mead
(NM) method [7]. Adapt includes constraints by adding quadratic penalty
terms to the cost function when using NM. The NeIder-Mead algorithm is
very robust but has rather poor performance characteristics.
The subject of the current paper is the second available algorithm in Adapt,
named Gridmom. This algorithm uses an augmented Lagrangian as a merit
function [1], which is minimized by a grid-based Trust-Region approach. In
this process, the cost function is locally approximated by a (smooth) model
function. This model function is minimized within the Trust Region, in which
the model is assumed to be a good approximation. The minimum of the model
defines the next evaluation point for the simulator. The evaluation results are
used to update the approximating function and to adapt the Trust Region
(by moving, by shrinking, or by expanding it). Clustering of evaluation points
at an early stage is prevented by restricting evaluation to points on a grid
[2]. A special feature of Adapt is the concept of priority groups that allows
for a dedicated sequence of optimization problems. We briefly describe how
Gridmom can accommodate this.
Finally, we apply Gridmom to a small example optimization problem.
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2 Constrained optimization by augmented Lagrangian

The search for the optimal values of the optimization variables (OVs) x can
be formulated as a nonlinear constrained optimization problem in n variables
with m constraints,

minimize f(x), x = (X1,X2,'" ,Xn)T,

subject to Ci(X)::; 0, i = 1, , m,

aj ::; x j ::; bj , j = 1, , n,

(1)

where Xj denotes the j-th OV. The values of the objective function f(x) and
the constraining functions Ci(X) are obtained from circuit simulation. The
performance and stability of the optimization algorithm is affected by the
scaling ofthe OVs, of f(x) and ofthe Ci(X) [6]. By introducing a slack variable
Si ~ 0, each inequality constraint in (1) can be rewritten as an equality:
Ci(X) + Si = O. The augmented Lagrangian penalty function can then be
written as [1]

m m

4iALAG,s(X, >.., J-L, s) = f(x) + L Ai [Ci(X) +Si] + L fldCi(X) + Si]2, (2)
i=1 i=1

.L:(x,>.)

in which £ is the standard Lagrangian. The parameters Ai and fli are La­
grange multipliers and penalty factors, respectively. Minimization over the
slack variables Si yields a simplified merit function that is used in the Grid­
mom algorithm,

m { [ Ai] 2 A~}<PALAG(X,>",J-L)=f(x)+L flimax Ci(X)-~,O -~ .
i=1 fl, fl,

(3)

In constrained minimization one may not have \lxf(x*) = 0 at the minimum.
However, together with optimal>"*, (x*, >..*) becomes a stationary point of £
and satisfies the Karush-Kuhn-Tucker (KKT) conditions [1]

\lx£(X*,>..*) =0, (4)

Ci(X*) < 0, A7 < 0, A7ci(X*) =0, i=l, ... ,m.

Hence there are Iflil < 00 such that <PALAG has a local minimum in (x*, >..*).
Clearly, using the augmented Lagrangian is a better method for constrained
minimization than just adding a quadratic penalty term to the objective func­
tion f(x), which is done by Adapt when using NeIder-Mead.
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3 Method of Multipliers and Trust-Region Minimization

The algorithm uses the method of multipliers (MOM) to solve the problem (1),
with the augmented Lagrangian (3) as a merit function [5, 6]. The variables
Xi and the penalty factors J-Li are initialised to x~O) and J-L~O) , respectively, and

the multipliers Ai are set to A~O) = O. Now the values of Ai and J-Li are fixed
and the merit function,

(k+l) ( ) ( ,(k) (k))<PALAG x = <PALAG x,,, , J-L , (5)

is minimized, resulting in the argument X(k+l) = argmin",<p~ilb(x). In case
of insufficient decrease in the i-th constraint violation, we increase the penalty
factor J-L~k+l) := 10 * J-L~k). Otherwise, we update the multiplier, based on
comparing \7x<PALAG with \7x.c(X,A), by

(6)

This is repeated until the termination criteria have been satisfied. A combined
set of variable values x· and multipliers A· is regarded as a solution of (1),
if the KKT conditions (4) are fulfilled. Each bound-constrained subproblem

involves the minimization of a merit function <P~iAG(X). To this purpose, an
algorithm is applied that is similar to the one reported in [3]. This algorithm

uses a grid and applies a Trust-Region approach. In addition <P~iAdx) is
approximated by a quadratic model function,

1
q(x) = a + gT(x - xref) + -(x - xref)TG (x - xref ), (7)

2

which is minimized within a Trust Region B = {x E ~n Illx - xrefll oo ::; L1}
with radius L1 centered at the reference point x ref . In the Trust Region, q(x)
is assumed to be a good estimate of the true merit function <P~iAG(X). Since
q(x) is smooth, gradient type optimization algorithms are allowed.
Evaluation of the merit function <P~iAG (x) is restricted to points on a grid.
Note that the merit function can be re-evaluated cheaply at a gridpoint, after
updating Ai or J-Li, if f(x) and the Ci(X) have been calculated before and have
been saved. This speeds up the building of the model function q(x). Which
evaluation points are used in building q(x) depends on the distance to xref .
An accurate estimate of the gradient g is more crucial than an accurate ap­
proximation of the Hessian G. Therefore, the accuracy of the gradient is im­
proved locally by performing a second least-squares fit, with a fixed Hessian
obtained from the first fit, using a small number of evaluation points close
to xref [6]. Let XO be the gridpoint nearest to the optimum point of q(x). If
XO is a new gridpoint, f(xO) and the Ci(XO) are evaluated and one sticks to
the current grid, otherwise the grid is refined. The application of successively
refined grids prevents the clustering of evaluation points in an early stage.
The rules for updating the Trust-Region radius L1 are based on the ratio [2]
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,p(k) (xref) _ ,p(k) (Xo)
~ ALAG ALAG

P = q(xref) _ q(xo)

(which tends to 1 for a good approximation) and are according to

p~ ;::: pffiax =} .<1 := 2.<1,
A' 1

p'-' < pffim =} .<1 := -.<1,
2

pffiin ~ p~ < pffiax =} no change.

Furthermore, .<1ffiin ~ .<1 ~ .<1 ffiax .

The criterion for updating x ref is determined by

(8)

(9)

where x best is the best current estimate of the optimum point of ,p<:'2AG (xref ).

Then x ref is updated according to

pref ;::: pffiin =} xref := xbest,

lef < pffiin =} no change.

At initialization, the merit function is evaluated at as many points as are
necessary to enable the construction of an approximating function. The Grid­
mom algorithm starts using the Uniform Design (UD) approach [4]' which is
based on number theory. Another way is to adopt so-called Priority Groups
(PG), that allows for splitting a multi-objective optimization problem into a
sequence of optimizations, with increasing priority. It reflects the way ana­
log and mixed-signal designers treat the various specifications in traditional
design, but also elsewhere the approach is well-known. Target specifications
values from previous PGs are treated as constraints in following groups. This
clearly may narrow the region for the final x*. However, also interesting prob­
lems arise when stepping to the next PG: (1) The set of optimization variables
may change (even by dimension); (2) The objective function f may change; (3)
The constraints Ci may change. To reduce costly evaluations one might express
f and Ci into subquantities that can be saved allowing cheap re-evaluation of
,pALAG(X, A, J-L).

4 Example and Conclusion

In Fig. 1 a small Bandpass Filter optimization example is shown. In the spec­
ifications, the Group Delay GD = Ii argJ:(w)) is to be kept constant, and the
3dB Bandwidth BW and Lower and Upper sideband suppression SBL, SBU,
have to be maximized. The design variables in the schematic are the four in­
ductors Li and the four capacitors Ci . They are coupled by the fixed notch
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Fig. 1. Bandpass Filter: Top-Left: Quantities in specification of frequency transfer
H(w), Top-Right: Schematic, Bottom-Left: IH(21r"/)I, Bottom-Right: arg(H(2-rrf))

frequencies: WI = -JC~L2' wr = -JdaLa' by which the number of optimization
variables reduces to 6. The dotted and straight lines show the initial and final
results, respectively, for IH(2-rrf) I and arg(H(27rf)).
Our experience is that Gridmom is more efficient than NeIder-Mead within a
single Priority Group. However, NeIder-Mead exploits the PG concept better.
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