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We study the k-center problem in a kinetic setting: given a set of continuously moving 
points P in the plane, determine a set of k (moving) disks that cover P at every time step, 
such that the disks are as small as possible at any point in time. Whereas the optimal 
solution over time may exhibit discontinuous changes, many practical applications require 
the solution to be stable: the disks must move smoothly over time. Existing results on 
this problem require the disks to move with a bounded speed, but this model allows 
positive results only for k < 3. Hence, the results are limited and offer little theoretical 
insight. Instead, we study the topological stability of k-centers. Topological stability was 
recently introduced and simply requires the solution to change continuously, but may 
do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii 
of an optimal but unstable solution and the radii of a topologically stable solution—the 
topological stability ratio—considering various metrics and various optimization criteria. 
For k = 2 we provide tight bounds, and for small k > 2 we can obtain nontrivial lower and 
upper bounds. Finally, we provide an algorithm to compute the topological stability ratio 
in polynomial time for constant k.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The k-center problem or facility location problem asks for a set of k disks that cover a given set of n points, such that the 
radii of the disks are as small as possible by some measure. The problem can be interpreted as placing a set of k facilities 
(e.g. stores) such that the distance from every point (e.g. client) to the closest facility is minimized. Since the introduction 
of the k-center problem by Sylvester [22] in 1857, the problem has been widely studied and has found many applications in 
practice. Although the k-center problem is NP-hard if k is part of the input [16], efficient algorithms have been developed 
for small k. Using rectilinear distance, the problem can be solved in O (n) time [7,14,21] for k = 2, 3 and in O (n log n)

time [18,19] for k = 4, 5. The problem becomes harder for Euclidean distance, and the currently best known algorithm for 
Euclidean 2-centers runs in O (n log2 n(log log n)2) time [3].
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Fig. 1. A small change in point positions causes a large change in the smallest 2 covering disks: moving the points along the arrows changes the opti-
mal solution from the red to the blue solution. The optimal centers are marked in grey, while sub-optimal solutions are shown as dashed circles. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In recent decades there has been an increased interest, especially in the computational geometry community, to study 
problems for which the input points are moving, including the k-center problem. These problems are typically studied in 
the framework of kinetic data structures [1], where the goal is to efficiently maintain the (optimal) solution to the problem as 
the points are moving. The kinetic version of the k-center problem also finds a lot of practical applications in, for example, 
mobile networks and robotics. A number of kinetic data structures have been developed for maintaining (approximate) 
k-centers [5,10–12], but in a kinetic setting another important aspect starts playing a role: stability. In many practical 
applications, e.g., if the disks are represented physically, or if the disks are used for visualization, the disks should move 
smoothly as the points are moving smoothly. As the optimal k-center may exhibit discontinuous changes as points move 
(see Fig. 1), we need to resort to approximations to guarantee stability.

The natural and most intuitive way to enforce stability is as follows. We assume that each point is moving with at most 
unit speed, and then we bound the speed of the disks. Durocher and Kirkpatrick [9] consider this type of stability for Eu-
clidean 2-centers. They show that an approximation ratio on the maximum disk radius of 8/π ≈ 2.55 can be maintained 
when the disks can move with speed (at most) 8/π + 1 ≈ 3.55. Similarly, in the black-box KDS model, where the complete 
input is not known beforehand, de Berg et al. [4] show an approximation ratio of 2.29 for Euclidean 2-centers with maxi-
mum speed 4

√
2. Furthermore, a similar approach was already used by Bespamyatnikh et al. [2] to find approximations for 

1-centers on moving points.
However, this natural approach to stability is typically hard to work with and difficult to analyze. This is caused by the 

fact that several different aspects are influencing the optimality of solutions that move with bounded speed:

1. How is the quality of the solution influenced by enforcing continuous motion?
2. How “far” apart are combinatorially different optimal (or approximate) solutions, that is, how long does it take to 

change from one solution to the other?
3. How often can optimal (or approximate) solutions change their combinatorial structure?

Ideally we would use a direct approach and design an algorithm that (roughly) keeps track of the optimal solution and 
tries to stay as close as possible while adhering to the speed constraints. However, especially the latter two aspects make 
this direct approach hard to analyze. It is therefore no surprise that most (if not all) approaches to stable solutions are 
indirect: defining a different structure that is stable in nature and that provides an approximation to what we really want 
to compute. Although interesting in their own right, such indirect approaches have several drawbacks: (1) techniques do not 
easily extend to other problems, (2) it is hard to perform better (or near-optimal) for instances where the optimal solution 
is already fairly stable, and (3) these approaches do not offer much theoretical insight into how optimal solutions (or, by 
extension, approximate solutions) behave as the points are moving. To gain a better theoretical insight into the concept of 
stability, we need to look at the aspects listed above, ideally in isolation.

Recently, Meulemans et al. [17] introduced a new framework for algorithm stability. This framework includes the natural 
approach to stability described above (called Lipschitz stability in [17]), but it also includes the definition of topological 
stability. An algorithm is topologically stable if its output behaves continuously as the input is changing. The topological 
stability ratio of a problem is then defined as the optimal approximation ratio of any algorithm that is topologically stable. 
The analysis of upper and lower bound on this ratio, as in [17], is independent of the problem at hand, and can therefore 
be applied to not only the kinetic k-center problem, but also other variants such as kinetic robust k-center, k-means, and 
k-median, but also many other unrelated problems. A more formal definition of this type of stability and of continuity are 
given in the paragraph explaining topological stability.

Due to the fact that it allows arbitrary speed, topological stability is mostly interesting from a theoretical point of view: 
it provides insight into the interplay between problem instances, solutions, and the optimization function; an insight that 
is invaluable for the development of stable algorithms. Nonetheless, topological stability still has practical uses: an example 
of a very fast and stable change in visualization can be found when opening a minimized application in most operating 
systems. The transition starts with the application having a very small size, even as small as a point. The application quickly 
grows to its intended size in a very smooth and fluid way, which helps the user grasp what is happening.
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Fig. 2. An instance for k = 3 with unbounded Lipschitz stability.

Next to the results for Lipschitz stability on the 2-center problem mentioned above, Durocher and Kirkpatrick also 
showed that for k-centers with k > 2, no approximation factor can be guaranteed with disks of any bounded speed [8]. 
Fig. 2 shows an instance that requires infinite speed of the disk centers for k = 3. In Fig. 2 (left) we see point a and b
moving closer, and c and d moving apart. When the distance between a and b becomes less than the distance between c
and d, one of the disks covering a or b has to move to c or d, to keep the radius of the disks minimal. The resulting solution 
can be seen in Fig. 2 (right). Since the distance between a, b and c, d can be arbitrarily large, either a disk has to move with 
arbitrarily high speed, or, given bounded speed, the radius of the disk has to be arbitrarily large to ensure that all points are 
covered at all times. This configuration can occur in any instance of the k-center problem for k ≥ 3, hence the K -Lipschitz 
stability ratio of the k-center problem may be unbounded for any bounded speed K .

k-center variants An instance of the k-center problem arises from three choices to obtain variants of the problem: the 
number k of covering shapes, the geometry of the covering shapes and the criterion that measures solution quality. In 
this paper, we consider two types of covering shapes: (a) in the Euclidean model, the covering shapes are disks; (b) in 
the rectilinear model, the covering shapes are axis-aligned squares. The radius of a covering shape is the distance from its 
center to its boundary, under L2 for the Euclidean model and L∞ for the rectilinear model. Furthermore, we distinguish two 
criteria: (a) in the minmax model, the quality of a solution is the maximum radius of its covering shapes, the optimization 
criterion is to minimize this maximum radius; (b) in the minsum model, the quality of a solution is the sum of radii of all 
k covering shapes, the optimization criterion is to minimize this sum of radii.

The above results in four variants of the problem that can be defined for any k ≥ 2. We use the notation k-EC and k-RC 
to denote the Euclidean and rectilinear k-center problem, appending either -minmax or -minsum to indicate the quality 
criterion.

Topological stability Let us now interpret topological stability, as proposed in [17], for the k-centers problem. Let I
denote the input space of n (stationary) points in R2 and Sk the solution space of all configurations of k disks or squares 
of varying radii. Let � denote the k-center problem with criterion f : I ×Sk →R (minmax or minsum). We call a solution 
in Sk valid for an instance in I if it covers all points of the instance. An optimal algorithm OPT maps an instance of I to a 
solution in Sk that is valid and minimizes f .

To define instances on moving points and move towards stability, we capture the continuous motion of points in a 
topology TI ; an instance of moving points is then a path π : [0, 1] → I through TI . Similarly, we capture the continuity of 
solutions in a topology T k

S , of k disks or squares with continuously moving centers and radii. A topologically stable algorithm 
A maps a path π in TI to a path in T k

S .1 We use A(π, t) to denote the solution in Sk defined by A for the points at 
time t . The stability ratio of the problem � is now the ratio between the best stable algorithm and the optimal (possibly 
nonstable) solution:

ρTS(�,TI ,T k
S ) = inf

A
sup

π∈TI
sup

t∈[0,1]
f (π(t),A(π, t))

f (π(t),OPT(π(t)))

where the infimum is taken over all topologically stable algorithms that give valid solutions. For a minimization problem 
ρTS is at least 1; lower values indicate better stability.

Contributions In this paper we study the topological stability of the k-center problem. Although the obtained solutions 
are arguably not stable, since they can move with arbitrary speed, we believe that analysis of the topological stability ratio 
offers deeper insights into the kinetic k-center problem, and by extension, the quality of truly stable k-centers.

In Section 2, we prove various bounds on the topological stability for this problem, as summarized in Table 1. For k-
EC-minmax, the ratio is 

√
2 for k = 2; for arbitrary k, we prove an upper bound of 2 and a lower bound that converges to 

2 as k tends to infinity. For small k, we show an upper bound strictly below 2 as well. For the other three variants, the 
stability ratio is exactly 2 for any k ≥ 2. In Section 3, we provide an algorithm to compute a topologically stable solution for 
an instance of the kinetic k-center problem in polynomial time for constant k. The approximation ratio for such a solution 
is generally better than the generic bounds we prove in Section 2.

1 Whereas [17] assumes the black-box model, we allow omniscient algorithms, knowing the trajectories of the moving points beforehand. That is, the 
algorithm may use knowledge of future positions to improve on stability. This gives more power to stable algorithms, potentially decreasing the ratio. 
However, our bounds do not use this and thus are also bounds under the black-box model.
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Table 1
Overview of the bounds on the topological stability ratio for the k-center problem.

ρTS(�,TI ,T k
S ) k = 2 k = 3 k > 3
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cl

id
ea
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minmax
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2

(
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)
/2 2
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√

3 sin(
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2k )
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2 2 2
�
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2 2 2

�
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2. Bounds on topological stability

As illustrated above, some point sets have more than one optimal solution. If we can transform an optimal solution 
into another, by growing the covering disks or squares by at most (or at least) a factor of r, we immediately obtain an 
upper bound (or respectively a lower bound) of r on the topological stability. To analyze topological stability of k-center, 
we therefore start with an input instance for which there is more than one optimal solution, and continuously transform 
one optimal solution into another. This transformation, which we also call a morph, allows the centers to move along a 
continuous path, while their radii can grow and shrink. At any point during this morph, the intermediate solution should 
cover all points of the input. In particular, the following property holds: The solution before and after a morph each cover 
all the points, hence all points live in the intersection of these two solutions. The maximum approximation ratio r that we 
need for such a morph, gives a bound on the topological stability of k-center. We can simply consider the input to be static 
during the morph, since for topological stability the solution can move arbitrarily fast. Before analyzing topological stability, 
we first use the two properties described above, points living in the intersection of two optimal solutions and points being 
static during morphs, to model relevant problem instances and their optimal solutions in 2-colored intersection graphs. These 
graphs allow us to reason about morphs between two optimal solutions. We then focus on the Euclidean minmax case. 
Finally, we briefly consider the minsum and rectilinear cases.

2-colored intersection graphs Consider a point set P and two sets of k convex shapes (disks, squares, ...), such that each 
set covers all points in P : we use R to denote the one set (say, red) and B to denote the other set (blue). We now define 
the 2-colored intersection graph G R,B = (V , E): each vertex represents a shape (V = R ∪ B) and is either red or blue; E
contains an edge for each pair of differently colored, intersecting shapes. A 2-colored intersection graph always contains 
equally many red nodes as blue nodes, since the nodes of each color represent the k covering shapes in an optimal solution. 
Additionally, both solutions represented in a 2-colored intersection graph must cover all points, and hence there may be 
points only in the area of intersection between a blue and red shape. If there are points that are not covered by one of the 
two colors, then this color is not a valid solution to the k-center problem In the remainder, we use intersection graph to 
refer to 2-colored intersection graphs.

Lemma 1. An intersection forest has at least one node of degree at most 1 of each color.

Proof. Let F be an intersection forest. We prove that F has at least one red node of degree at most 1; the blue case is 
symmetric. Since F contains equally many blue and red nodes, there must be a tree T in F having at least as many red 
nodes as blue nodes. To arrive at a contradiction, assume that T has only blue leaves.

We decompose T into paths as follows. Pick an arbitrary leaf as a root. Partition the nodes of T into paths such that 
each path starts at a nonroot leaf, e.g. by running a BFS from each such leaf simultaneously following edges towards the 
root or using a heavy-path decomposition. Because T is part of an intersection graph, each path alternates between red and 
blue nodes. Hence, the path ending at the root, starting and ending at a blue leaf, has one more blue node than red nodes; 
the other paths cannot have more red nodes than blue nodes, since at least one endpoint is a leaf and thus blue. Now, T
has more blue than red nodes, which contradicts that T has at least as many red as blue nodes. Thus, T cannot have only 
blue leaves. �
Lemma 2. Consider two sets R and B of k convex translates each covering a point set P . If intersection graph G R,B is a forest, then R
can morph onto B without increasing the shape size, while covering all points in P .

Proof. We prove this lemma by induction on k. For the base case, k = 0, the intersection graph is empty and thus we can 
trivially morph all red shapes onto the blue shapes.

For k > 0, we reason as follows. Since G R,B is a forest, Lemma 1 tells us that there is a red node r with degree at most 
1. If r has degree 1, then its one neighbor b must be a blue node; if r has degree 0, then we pick any blue node b. We 
morph r onto b by linearly moving the center of r to the center of b. Since r and b are convex translates, this covers their 
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Fig. 3. Configuration where the smallest angle α occurs in a cycle of overlapping disks. The diameter of red disk r1 after covering its initial area and point 
i is 1 + x.

intersection at all times. Now, the new position of the red shape covers any point originally covered by r or b. Consider 
R ′ = R \ {r} and B ′ = B \ {b}. These sets have size k − 1 and define an intersection forest G R ′,B ′ with k − 1 shapes. The 
induction hypothesis readily tells us that there is a morph from R ′ into B ′ without increasing their size. The morph of r
onto b, followed by the morph of the smaller instance yields us a morph from R to B . �
Euclidean minmax case We are now ready to analyze the Euclidean minmax case. Without loss of generality, we assume 
here that the disks all have the same radius. If not all disks have the same radius, we can simply grow all disks to have the 
same radius as the largest disk, since this does not change the optimality nor the validity of a solution. We first need a few 
results on (static) intersection graphs, to argue later about topological stability.

Lemma 3. Let R and B to be optimal solutions to a point set P for k-EC-minmax. Assume the intersection graph G R,B has a 4-cycle 
with a red degree-2 vertex. To transform R in such a way that G R,B misses one edge of the 4-cycle, while covering the area initially 
covered by both sets, it is sufficient to increase the disk radius of a red disk by a factor 

√
2.

Proof. To morph from R to B , a red disk r1 has to grow to cover the intersection of an adjacent blue disk b with the 
other (red) neighbor r2 of b. Once r1 has grown to overlap the intersection between a blue disk and r2, r2 no longer has to 
cover this intersection and can be treated as a degree-1 vertex in G R,B . A cycle in the intersection graph corresponds to an 
alternating sequence of red and blue disks, where each consecutive pair has at least one point in its intersection. Applying 
the above modification will turn two consecutive degree-2 nodes into degree-1 nodes, removing the cycle.

As we have a 4-cycle of intersections, a, b, c, d, we either have to cover both a and c while covering d or b, or we 
have to cover b and d while covering either a or c. Let pa ∈ a and pc ∈ c be the pair of points whose distance is the 
longest of any pair from a and c, and similarly pb ∈ b and pd ∈ d for b and d. We claim that distance (pa, pc) or (pb, pd)

is shorter than 2
√

2. Assume that distance (pa, pc) > 2
√

2, otherwise we are done. Since the disks have radius 1, distances 
(pa, pb), (pb, pc), (pc, pd), (pd, pa) are at most 2. Our assumption on (pa, pc) now implies that the distance from either pb
or pd to the middle of the line between pa and pc is shorter than 

√
2. By the triangle inequality, distance (pb, pd) is now 

shorter than 2
√

2.
Assume w.l.o.g. that (pa, pc) is shorter than 2

√
2 and that pa and pb are covered by a red disk with only two overlaps. 

Combining this with the fact that (pa, pb), (pb, pc) are at most 2, we can conclude that triple (pa, pb, pc) can be covered 
by growing the red disk with only two overlaps to radius 

√
2. �

Lemma 4. Let R and B be optimal solutions to a point set P for k-EC-minmax. Assume the intersection graph G R,B has only degree-2 
vertices. To transform the disks of R onto B, while covering the area initially covered by both sets, it is sufficient to increase the disk 
radius by a factor 

(
1 +

√
1 + 8 cos2( π

2k )
)

/2.

Proof. As the problem is invariant under scaling, we assume w.l.o.g that the maximum radii of the disks is 1. To arrive are 
the claimed upper bound, we propose a morph from R to B in which a red disk r1 grows to cover the intersection of an 
adjacent blue disk b with the other (red) neighbor r2 of b. Specifically, we grow r1 to fully cover its initial disk and the 
intersection between b and r2 (see the dashed red disk in Fig. 3(a)). As a result, we now have to consider only r1, b, r2
without concerning ourselves with the other neighbor of r1 or r2.

Let r1 be the red disk that has to grow the least, of all red disks in our instance. Let 0 ≤ d1, d2 ≤ 2 be the distance 
between the centers of r1 and b and between r2 and b respectively. We know that d1 ≤ d2, as otherwise r2 has to grow less 
than r1 to cover the other intersection of b. However, if d2 is smaller, the intersection between b and r2 is larger so r1 has 
to grow more to cover the intersection. We can therefore conclude that in the configuration that maximizes the factor by 
which r1 has to grow, it holds that d1 = d2 = d.
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Fig. 4. Lower bound construction for the stable minmax Euclidean k-center problem, shown for k = 2, 3, 4. The optimal solution changes from the solid red 
to the dashed blue solution. To break the cycle one of the red disks has to grow to the dashed red disk.

We use α to denote the angle at the center point of b (see figure). Disk r1 can be the least-growing disk, only if α is 
as small as possible. Larger values of α readily lead to a higher maximum radius for stretching r1. Since G R,B is a cycle, 
the 2k disk centers thus form the vertices of a simple polygon and we find that the smallest angle in such a polygon is 
α ≤ π(k−1)

k : the sum of interior angles of a 2k-gon is π(2k − 2), hence the smallest angle is never larger than 1/2k-th 
of the total angle. The boundaries of b and r2 intersect in at least one point; we are interested in the point i that is the 
furthest away from the center point of r1. Let β denote the angle at the center of b between rays towards i and the center 
of r2. We know that cos(β) = d/2. The distance x between i and the center of r1 can be found using the Law of Cosines: 
x2 = d2 + 12 − 2d cos(α + β). The diameter of r1 when overlapping its initial area and the intersection between b and r2 is 
1 + x. If the described configuration occurs only with the smallest angle α at a red disk (instead of at a blue disk as shown 
here), the red disk can grow to overlap both its intersections and fully cover one of the blue disks adjacent to it. This results 
in a disk with diameter 1 + x that is sufficient to break the cycle.

Since d1 = d2 = d, we can symmetrically repeat the above construction to find a point j at the intersection of r1 and b, 
an equivalent of point i, under the same angle β at the center of b. The area enclosed by a line through i and j and disk b, 
containing both intersections with r1 and r2, must enclose a diametrical pair of b, otherwise b is not an optimal disk. We 
therefore find that α + 2β ≥ π . Given our assumption on the radii of the disks and the bound on α we can only ensure that 
α + 2β > π by forcing d to become smaller. Consider the triangle with sides x, y, z as in Fig. 3(b). We can show that the 
length of x decreases as d decreases: looking at the derivatives of y = d +cos(π −α−β) and z = sin(π −α−β), we see that 
they are both positive functions for α ≥ π/2, 0 ≤ d ≤ 2, and β = arccos d

2 , namely δy
δd = 1 − sin(π −α − arccos d

2 )/

√
1 + ( d

2 )2

and δz
δd = cos(π − α − arccos d

2 )/

√
1 + ( d

2 )2. This means that decreasing d results in a smaller diameter 1 + x for r1, after 
growing to cover i. To find a worst case ratio between the radii of r1 before and after growing, we therefore get α +2β = π , 
resulting in β = π 1

2k . Hence, α + β = π − β and we can derive that cos(α + β) = cos(π − β) = − cos(β). Since d = 2 cos(β)

we find that 1 + x ≤ 1 + √
1 + d2 − 2d cos(α + β) ≤ 1 +

√
1 + 8 cos2( π

2k ). Since 1 + x is the diameter of r1 after growing, its 
radius is exactly half this expression. �
Lemma 5. Let R and B be optimal solutions to a point set P for k-EC-minmax. Assume the intersection graph G R,B has only degree-2 
vertices. To transform the disks of R onto B, while covering the area initially covered by both sets, it may be necessary to increase the 
disk radius by a factor 2 sin(

π(k−1)
2k ).

Proof. Consider a point set of 2k points, positioned such that they are the corners of a regular 2k-gon with unit radius, 
i.e., equidistantly spread along the boundary of a unit circle. There are exactly two optimal solutions for these points (see 
Fig. 4). To morph from R to B , one of the red disks r1 has to grow to cover the intersection of an adjacent blue disk b with 
the other (red) neighbor r2 of b (see dashed red disk in Fig. 4). Since the points are all at equal distance from each other on 
a unit circle, they are the vertices of a regular 2k-gon. The diameter of the disks in our optimal solution equals the length of 
a side of this regular 2k-gon. This means that a red disk has to grow such that its diameter is equal to the distance between 
a vertex of the 2k-gon and a second-order neighbor. Hence, the radius of r1 has to grow by a factor of 2 sin(

π(k−1)
2k ). �

We are now ready to prove bounds on the topological stability of the minmax Euclidean case for moving points. The 
upcoming sequence of lemmata establishes the following theorem.
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Theorem 6. For k-EC-minmax, we obtain the following bounds:

• ρTS(2-EC-minmax, TI , T 2
S ) = √

2

• √
3 ≤ ρTS(3-EC-minmax, TI , T 3

S ) ≤ (
1 + √

7
)
/2

• 2 sin(
π(k−1)

2k ) ≤ ρTS(k-EC-minmax, TI , T k
S ) ≤ 2 for k > 3.

Lemma 7. ρTS(k-EC-minmax, TI , T k
S ) ≤ 2 for k ≥ 2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote the solution that matches the optimal 
solution at t − ε and B the solution at t + ε for arbitrarily small ε > 0. Let C be the maximum radius of the disks in R and 
in B . Furthermore, let intersection graph G R,B describe the above situation. First we make a maximal matching between red 
and blue vertices that are adjacent in G R,B , implying a matching between a number of red and blue disks. The intersection 
graph of the remaining red and blue disks has no edges, and we match these red and blue disks in any way. Note that the 
matched pairs of disks that do not coincide with intersection graph edges do not necessarily intersect.

We find a bound on the topological stability as follows. All the red disks that are matched to blue disks they already 
intersect grow to overlap their initial disk and the matched blue disk. Now the remaining red disks, which are matched to 
blue disks they do not necessarily intersect, can safely move to the blue disks they are matched to, and adjust their radii 
to fully cover the blue disks. Finally, all red disks shrink to match the size of the blue disk they overlap to finish the morph 
(since each blue disk is now fully covered by the red disk that eventually morphs to be its equal). When all the red disks 
are overlapping blue disks, the maximum of their radii is at most 2C , since the radius of each red disk grows by at most 
the radius of the blue disk it is matched to. �

To prove the lower bound on the topological stability ratio in the next lemma, we must give an instance of the k-center 
problem for which it is not possible to keep a stable solution close to an optimal solution. Since we consider the kinetic
k-center problem, such an instance consists of moving points. We prove a lower bound of r by considering a static instance 
with two optimal solutions, that requires a stable solution to grow by a factor of r with respect to the optimal solution 
during a morph. We then show that there is a movement of the points that forces this morph to happen, precisely when 
the points are in the static configuration we considered. Executing a morph at any other point in time will require the 
solution to grow more than a factor of r.

Lemma 8. ρTS(k-EC-minmax, TI , T k
S ) ≥ 2 sin(

π(k−1)
2k ) for k ≥ 2.

Proof. The bound readily follows from Lemma 5, if we can show that a set of moving points exists that force the solution 
to change exactly as in Lemma 5. To this end, consider 2k points that move at unit speed along tangents of the unit circle. 
The tangents touch the unit circle at the corners of an inscribed regular 2k-gon. The direction of the points is alternatingly 
clockwise and counterclockwise with respect to the circle. We use t to indicate the time at which the moving points are 
the corners of the inscribed regular 2k-gon, which are the positions required for Lemma 5 (see also Fig. 4).

To see that a morph has to happen at time t , consider the following. At some time t′ before t the pairs of points covered 
by the red disks in the construction at time t are all coinciding: hence the optimal solution then has maximum radius 0; 
to not violate our bound, we must have this solution at that time. Morphing R into B between t′ and t requires a red disk 
to grow its radius more than a factor 2 sin(

π(k−1)
2k ), since the red disks are still smaller than at time t , while the disks in 

(combinatorial) solution B are still larger. Analogously, we can argue that we must morph to the blue solution, before a 
time t′′ at which the pairs covered by blue disks in the construction coincide. We conclude that the morph has to happen 
at time t and thus requires the maximum radius to grow by a factor 2 sin(

π(k−1)
2k ) by Lemma 5. �

Lemma 9. ρTS(2-EC-minmax, TI , T 2
S ) = √

2.

Proof. The lower bound follows directly from Lemma 8 by using k = 2. For the upper bound, consider a point in time t
where there are two optimal solutions; let R denote the solution that matches the optimal solution at t − ε and B the 
solution at t + ε for arbitrarily small ε > 0. If G R,B is a forest, Lemma 2 applies and we do not need to increase the 
maximum radius during the morph. If G R,B contains a cycle, the entire graph must be a 4-cycle, since in a cycle red and 
blue alternate and there is at most a single edge between any pair of vertices. Lemma 3 gives an upper bound of 

√
2 for 

transforming the intersection graph G R,B to no longer have this 4-cycle, resulting in a tree. Finally, we can morph R into B
without further increasing the maximum radius using Lemma 2. �
Lemma 10. 

√
3 ≤ ρTS(3-EC-minmax, TI , T 3

S ) ≤ (
1 + √

7
)
/2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote the solution that matches the optimal 
solution at t − ε and B the solution at t + ε for arbitrarily small ε > 0. If intersection graph G R,B is a forest, then Lemma 2
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applies and we do not need to increase the maximum radius during the morph. If G R,B contains a cycle, then either the 
entire graph is a 6-cycle, or there are smaller cycles. If the entire graph is a 6-cycle, the upper bound follows from Lemma 4
and the lower bound from Lemma 8.

Consider the case where G R,B contains a cycle, but no 6-cycle. There is at least one 4-cycle. As k = 3, every vertex has 
degree at most 3. Note that two overlapping disks can be covered by a single disk without increasing the maximum radius 
beyond 

(
1 + √

7
)
/2, if 1 + d/2 ≤ (

1 + √
7
)
/2, where d is the distance between the centers of the disks. We now distinguish 

the following cases:

• If there is at most one red degree-3 vertex, every 4-cycle contains at least one degree-2 red vertex. Therefore, Lemma 3
can be used to break one of the 4-cycles by increasing the radius of a red disk by at most 

√
2. If G R,B has another 

4-cycle after breaking the first one, we can apply Lemma 3 again. However, if breaking the first 4-cycle resulted in a 
6-cycle, then the distance between the center points of two adjacent disks in the 4-cycle was less than 

√
2 <

√
7 − 1. 

We can therefore fully cover this pair of adjacent disks with the red disk instead of breaking the 4-cycle. We need a 
radius of at most 1 + √

2/2 < 1 + (
√

7 − 1)/2 = (
1 + √

7
)
/2 for this. Since the red disk now covers all intersections of 

the blue disk, the resulting intersection graph is a tree.
• If there are two or more red degree-3 vertices, we look at the distances d between the center points of overlapping 

disks. If there is a pair of red and blue disks for which 1 + d/2 ≤ (
1 + √

7
)
/2, we can fully cover the blue disk with the

red disk. The remainder of the red disks can now be seen as vertices of 
degree-2 or less in the intersection graph. If there is still a 4-cycle, then 
Lemma 3 can be used to break the cycle. If for every pair of red and blue
disks 1 + d/2 >

(
1 + √

7
)
/2 holds, then the centers of the red disks that over-

lap the three blue disks can be at most 2 − d away from each other (see 
figure). We can cover two red disks r1, r2 with a single red disk r1 of radius 
1 + (2 −d)/2 < 1 −(

1 +√
7
)
/4 <

(
1 +√

7
)
/2. We can then freely transform red 

disk r2 to a blue disk. Again the remainder of the red disks can now be seen 
as vertices of degree-2 or less in the intersection graph. If a 4-cycle remains, 
then Lemma 3 can be used to break the cycle.

In both cases G R,B consists of trees after the changes that were made, thus R
can morph into B without further increasing the maximum radius by Lemma 2. 
In all the above cases we need to grow the maximum radius during the transformation from R to B by at most a factor (
1 + √

7
)
/2, while in some cases it is necessary to grow to by a factor of 

√
3, for example to resolve a 6-cycle. �

The above proof shows the strengths and weaknesses of the earlier lemmata. While in many cases we can get close to 
tight bounds, dealing with high degree vertices in the intersection graph requires additional analysis. Furthermore, in general 
we cannot upper bound the approximation factor needed for stable solutions with bounded speed [8], but Theorem 6 acts 
as lower bounds for such bounded speed solutions.

Rectilinear and minsum cases We now turn to the remaining cases. As it turns out, the stability ratio is 2 for any value 
of k ≥ 2, as captured in the following theorems.

Theorem 11. ρTS(k-RC-minmax, TI , T k
S ) = 2 for k ≥ 2.

Proof. The upper bound readily follows from the argument of Lemma 7. We prove the lower bound for k = 2, understanding 
that higher values of k cannot lead to a weaker lower bound.

Consider an instance consisting of four points: two points move with unit speed over the lines y = 1 and y = −1
respectively, in opposite directions, while the other two points move with unit speed along the lines x = −1 and x = 1 in 
opposite directions. Assume that at some time t the points are in the positions (0, 1), (1, 0), (0, −1), (−1, 0). There is exactly 
one optimum solution for this instance before t and exactly one optimum solution after t . However, at time t there are two 
possible optimum solutions (see Fig. 5(a)).

To ensure that the squares together cover all points at all times, and that the centers of the squares move in continuous 
fashion, one of the squares has to grow to cover at least three of the points. After this has happened the second square can 
move in position of the other optimum solution, followed by shrinking the square that covers three points. To cover at least 
three points, one of the squares has to grow its radius (r = 1) to two times the size of the maximum radius of any of the 
optimum solutions (r = 1

2 ) (see Fig. 5(b)).
At any point in time, covering three points with a single square, requires a square of radius at least 1. Moreover, the 

radius of the largest square in an optimum solution is smaller than 1
2 before and after t , while this radius is exactly 1

2
at time t . Hence the ratio between the radius of a square covering three points (during any transition) and the optimum 
radius, is at its smallest at time t , resulting a lower bound of 2 on the topological stability ratio. �
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Fig. 5. Lower bound construction for the kinetic minmax rectilinear 2-center problem. (a) The optimal solution changes from the solid red to the dashed 
blue solution, both having radius 1/2. (b) Continuous transformation requires a maximum radius of 1, to cover at least three points simultaneously using 
the large black square.

Theorem 12. ρTS(k-EC-minsum, TI , T k
S ) = ρTS(k-RC-minsum, TI , T k

S ) = 2 for k ≥ 2.

Proof. The upper bound for the Euclidean case follows from Lemmata 13 and 14 below. The proofs only use the triangle 
inequality and therefore work for general metrics, in particular they work for the rectilinear case.

The lower bound construction for k = 2 uses three points: (0, −1), (0, 0), (0, 1), admitting two optimal solutions, both 
with a disk of radius 1/2 and a disk of radius 0 (see Fig. 6). Morphing between these require an intermediate state that 
double-covers (0, 0), or one disk covering all three: the total radius is then 1. Since the lower bound construction is essen-
tially one dimensional, the disks can be interchanged by squares, and thus works for both the Euclidean and the rectilinear 
case. �
Lemma 13. ρTS(k-EC-minsum, TI , T k

S ) ≤ 2 for k ≥ 2.

Proof. Consider a point in time t where there are two optimal solutions; let R denote the solution that matches the 
optimal solution at t − ε and B the optimal solution at t + ε for arbitrarily small ε > 0. Let C be the sum of radii of R , and 
equivalently the sum of radii of B . We morph R onto B while covering all the points with a sum of radii of at most 2C .

First make a matching between disks in R and disks in B . If we look at the intersection graph G R,B , we want to create 
a matching between red and blue vertices that are adjacent. Finding such a matching is easy for cycles since they have as 
many red disks as blue disks. However, in some cases we might not be able to find a matching between overlapping disks. 
When G R,B is a forest there can be trees that have more red disks than blue disks and vice versa. In these cases we map 
the remaining red disks (leaves in G R,B ) to the remaining blue disks (also leaves in G R,B ) arbitrarily.

We find a bound on the topological stability as follows. All the red disks that are matched to blue disks they already 
intersect grow to overlap their initial disk and the blue disk they are matched to. Now the remaining red disks can safely 
move to the blue disks they are matched to, and adjust their radius to fully cover the blue disks. Finally, all red disks shrink 
to match the size of the blue disk they overlap to finish the morph. When all the red disks are overlapping blue disks, the 
sum of radii is at most 2C , since the radius Cr of each red disk r grows by at most the radius Cb of the blue disk b it is 
matched to. �
Lemma 14. ρTS(k-EC-minsum, TI , T k

S ) ≥ 2 for k ≥ 2.

Proof. We first construct an instance for k = 2 that forms the basis of an instance for any k. Consider three points on the 
line y = 0. One point is at the origin and does not move, while the other two points move at unit speed to the left over 
y = 0. Assume that at some time t the points have positions (−1, 0), (0, 0), (1, 0). At any time before and after t there is a 
single optimal solution. However, at time t there are two optimal solutions; see Fig. 6(a), namely covering one of the outer 
points and the middle one with a single disk, while covering the remaining point by a radius-0 disk.

We want to minimize the sum of the radii of the disks while the points move. If we change from the red to the blue 
solution at time t in a topologically stable way, we need to cover all three points with a single disk, or grow the smaller disk 
to also cover the middle point; see Fig. 6(b). In both cases the sum of the radii doubles from 1

2 to 1. We cannot preemptively 
change to the other solution before t , since we still need a sum of radii of 1 during the change, but the optimal solution 
uses a sum smaller than 1

2 . The case of changing after t is symmetric.
The instance for k = 2 can be extended to hold for any k by having k −2 points that are all covered by their own radius-0

disk. Placing the remaining points right of (5, 0) at least 2 units away from each other prevents them from being covered 
by anything but a radius-0 disk in an optimal solution. �

153



I. van der Hoog, M. van Kreveld, W. Meulemans et al. Theoretical Computer Science 866 (2021) 145–159

Fig. 6. Lower bound construction for the kinetic minsum Euclidean 2-center problem. (a) The optimal solution changes from the solid red solution to the 
dashed blue solution; the smaller disks have radius zero and thus these solutions have total radius 1/2. (b) Continuous transformation requires a situation 
that doubly covers the center point (illustrated) or where one disk covers all three points (not illustrated); either way, the total radius is 1.

3. Unstable and stable algorithms for k-center on moving points

Topological stability captures the worst-case penalty that arises from making the transitions in a solution continuous. 
In this section we are interested in the corresponding algorithmic problems that generally result in smaller penalties for a 
specific instance: how efficiently can we compute the (unstable) k-center for an instance with n moving points, and how 
efficiently can we compute the stable k-center? When we combine these two algorithms, we can determine for any instance 
how large the penalty is when solving the given instance in a topologically stable way. We examine these questions for all 
four k-center variants.

The second algorithm gives us a topologically stable solution to a particular instance of k-center. This solution can be 
used in a practical application requiring stability, for example as a stable visualization of k disks covering the moving points 
at all time. Since we are dealing with topological stability, the solution can sometimes move at arbitrary speeds. However, 
in many practical cases, we can alter the solution in a way that bounds the speed of the solution and makes the quality of 
the k-center only slightly worse.

3.1. Unstable k-center algorithms

Let P be a set of n points moving in the plane, each represented by a constant-degree algebraic function that maps time 
to the plane. We denote the point set at time t as P (t) and will develop an algorithm that computes the optimal radius/sum 
or radii C needed to cover all points with k disks at any point in time in the minmax or minsum model, respectively.

Observe that the minimum covering disks of a point set P (t), denoted B∗(t), is a set of k disks where each disk is 
defined by three points in P (t), two points as a diametrical pair, or a singleton point. In other words, we can define B∗
as the Cartesian product of k triples, pairs, and singletons of distinct points from the set P (t). Not every triple is always 
relevant: if the circumcircle of the three points is not the boundary of the smallest covering disk, then the triple is irrelevant 
at that time. Pairs and singletons always define relevant disks. This formalization allows us to define what we call candidate
k-centers.

Definition 15 (Candidate k-centers). Any set of k disks D1, . . . , Dk where each disk is the minimum covering disk of one, two 
or three points in P (t) is called a candidate k-center and is denoted B(t). A candidate k-center is valid if the union of its 
disks covers all points of P (t).

This definition allows us to rephrase the goal of the algorithm: For each time t we want to compute the smallest value 
C(t), such that there exists a valid candidate k-center B(t) where the disks in B(t) have at most radius C(t) or where their 
radii sum to C(t) for the minmax and minsum model respectively.

Unstable k-EC-minmax For each singleton, pair, or triple in P we can find the minimum covering disk. Let the radius 
of this disk be r. As the points move along their trajectories, the radius of the minimum covering disk changes over time 
(unless defined by a singleton point). The function over time giving this radius is continuous for circumcircles because 
the points that define this radius move continuously. For this reason, the only possibility for discontinuities is when the 
minimum covering disk of three points changes from being defined by three points to two points or vice versa. However, 
this change happens only when one of the three points enters/leaves the circumcircle of the two other points. Hence the 
change between relevant and irrelevant for triples does not introduce discontinuities, as the transition takes place when 
the circumcircle of the triple coincides with the circumcircle of one pair within the triple. Each such triple is relevant 
on O (1) time intervals. Taking every singleton, pair, and triple of points, we get O (n3) functions that represent the radii 
of the minimum covering disks. Any pair of these functions (their images) intersects O (1) times, since the points move 
along trajectories represented by constant-degree algebraic functions. This implies that the functions form an arrangement 
of complexity O (n6). We refer to the images of the functions as curves, for brevity.

Since any pair of curves intersects O (1), in particular the following two functions have this property: consider the 
function for an arbitrary triple of points a, b, c, along with a function for a triple of points that shares exactly two points 
with a, b, c. Whenever the functions intersect, the disks which are represented by the functions have the same radius. Let 
p be the point in the second triple that differs from the first triple a, b, c, then whenever the disks have the same radius, 

154



I. van der Hoog, M. van Kreveld, W. Meulemans et al. Theoretical Computer Science 866 (2021) 145–159

Fig. 7. Visualization of the unstable k-EC-minmax algorithm (for k = 2). (Left) A point set is shown for two time steps. The pairs of dashed disks form valid 
candidate k-centers, while the pairs of filled disks form valid candidate k-centers with minimal maximum radius. Disks of the same color are defined by 
the same points. Disks not drawn are either larger than the drawn disks, or require a larger disk to form a valid candidate k-center. (Right) The arrangement 
obtained by plotting the radii of the drawn disks and disks on singleton points. In the bottom arrangement, curves that are not maxcurves are dashed, 
while the maximum radii of the optimal solution are marked in grey.

they may coincide and hence all four points considered here may be co-circular. In such a moment, p can enter or exit the 
circle defined by a, b and c. Since this can happen O (1) times, for each point p, we can split the function for a, b, c into 
O (n) pieces where the disk contains the same subset of the input points.

Observation 16. Each of the O (n3) curves can be split into O (n) pieces where the same subset of points of P (t) are inside the disk 
corresponding to the curve.

We are not interested in the arrangement as a whole, but only in the parts where the curves show the maximum radius 
of a valid k-center: we want to know when the minimum covering disk is the largest of the k disks that cover all the points. 
The curve of such a pair or triple may define a part of the solution to the minmax radius problem. For ease of description 
we will now first continue with the algorithm for the 2-center case, and then show how to extend it to larger values of k.

Assume that a pair a, b or triple a, b, c ∈ P has a minimum covering disk D1 with radius r1 at time t . Let P1 ⊆ P be 
all the points covered by D1. To solve the 2-center problem, we need to cover all other points with another disk. Let the 
minimum covering disk of P2 = P \ P1 be D2 with radius r2. We say that the curve for pair a, b or triple a, b, c is a maxcurve
at time t if r1 ≥ r2 at time t .

A curve can only become a maxcurve at intersections of the curves, since the radii of two covering disks will be equal at 
an intersection. We refer to a piece of curve between intersections as an arc. If we take the arrangement of all maxcurves, 
we still get an arrangement of complexity O (n6). It takes O (n7) time to compute this arrangement, since we need to check 
if an arc is a maxcurve only at a single time for every arc in the arrangement. As we take all maxcurve arcs, we know 
that we keep only the parts of the initial arrangement where the maximum radius of a solution is represented. The lower 
envelope of this arrangement will therefore show the maximum radius of an optimum solution at any point in time for 
this instance of the Euclidean 2-center problem. See Fig. 7 for a visualization of an input instance and the corresponding 
arrangements.

Finding the lower envelope of this arrangement takes O (λs+1(n6) log(n)) time when every pair of curves intersects at 
most s times with each other [13], where λs(n) is the maximum length of a Davenport–Schinzel sequence of order s with 
n distinct values [20]. The time needed to compute the lower envelope is dominated by the O (n7) time we spend on 
computing the arrangement of maxcurves itself.

To extend this algorithm to the Euclidean k-center, we observe that we can start with the same set of O (n3) curves for 
all singletons, pairs, and triples of moving points. We define a curve to be maxcurve if the not yet covered points can be 
covered by at most k − 1 disks of no larger radius. For each of the O (n6) arcs of the arrangement this implies solving a 
static (k − 1)-center problem, which takes O (n2k−1) [6] or nO (

√
k) time [15].

Theorem 17. Given a set of n points whose positions in the plane are determined by constant-degree algebraic functions, the 2-EC-
minmax problem can be solved by an algorithm that runs in O (n7) time. The k-EC-minmax problem can be solved in O (n2k+5) or 
nO (

√
k) time.

Unstable k-EC-minsum We continue with the minsum version of the Euclidean k-center problem. In this variant we can 
no longer use maxcurves which define the important radii. Instead, choose k curves and their corresponding k-center, and 
trace it over time to determine when the k-center covers all points. The number of times when a point enters or leaves 
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any of the k disks of the k-center is O (kn) = O (n). Hence, any choice of k curves gives O (n) time intervals where the k-
center is valid. We sum the k curves (radii) on these intervals to get candidate k-center values and new, summed curves. In 
total, there are O (n3k+1) new curves that are the sum of k original curves, and their lower envelope represents the desired 
function R(t).

Theorem 18. Given a set of n points whose positions in the plane are determined by constant-degree algebraic functions, the k-EC-
minsum problem can be solved by an algorithm that runs in O (λc(n3k+1) log n) time for some constant c, where λc(n) is the maximum 
length of a Davenport–Schinzel sequence of order c with n distinct values.

Unstable k-RC-minmax The rectilinear version of the k-center problem in the minmax model is solved by similar methods 
as the Euclidean version, albeit simpler and more efficient. We use pairs of points to define curves that define the radius 
over time by letting the points be on opposite sides of a smallest covering square. This square is not unique, as the points 
on opposite sides block movement only in a single direction. Thus, there are O (n) different subsets of points that can 
be covered by such a square. We first consider the 2-center case, where it is sufficient to take the two extreme squares: 
two squares that cover points with extremal coordinates, for example one square covers the topmost point while the other 
covers the bottommost point. Extreme squares are sufficient, because in the case where the second square must cover points 
that lie beyond two opposite sides of the first square, then that second square must be larger. Therefore, in comparison the 
solution using two extreme squares has a smaller or equal maximum radius.

In total we have O (n2) curves, defined by pairs of points on opposite sides of a square, which form an arrangement of 
complexity O (n4). We again use the concept of maxcurves: we are interested in those arcs of the arrangement for which 
the not yet covered points can be covered by a square of no larger size. While we can test this easily in linear time for each 
of the O (n4) arcs, we can use the arrangement to do this faster. For each curve C corresponding to a square S , we process 
the points moving in and out of S and maintain the leftmost, rightmost, bottommost and topmost uncovered points, for 
example using heaps. As the points move, each square will start and stop covering other points O (n) times. The uncovered 
points can swap places O (n2) times in an ordering of their x- and y-coordinates. Thus we maintain the left-, right-, top-, 
and bottommost points in O (n2 logn) for each curve C , and determine in constant time whether each of the O (n2) arcs 
along the curve is a maxcurve. Finally, we compute the lower envelop of the maxcurves in time linear in the number of 
maxcurve, since the maxcurves are disjoint arcs.

For k-centers, the observation that one can use the two extreme squares for a pair of points no longer holds. We therefore 
define squares by triples as in the Euclidean case, the main difference being that the O (n3) curves we get have considerable 
overlap: there must still be two defining points on opposite sides of the covering squares defined by triples, hence all O (n)

squares that have these exact points on opposite sides must have the same area. The arrangement of the O (n3) curves is 
therefore equivalent to the arrangement for the O (n2) curves defined above, and each arch of the arrangement can be part 
of O (n) curves. Since the O (n2) curves form an arrangement of complexity O (n4), we need to test O (n5) arcs for being 
maxcurves. Following the analysis as in the Euclidean case, we obtain:

Theorem 19. Given a set of n points whose positions in the plane are determined by constant-degree algebraic functions, the 2-RC-
minmax problem can be solved by an algorithm that runs in O (n4 log n) time. The k-RC-minmax problem can be solved in O (n2k+4)

or nO (
√

k) time.

Unstable k-RC-minsum We can use exactly the same approach as in the Euclidean case, and obtain:

Theorem 20. Given a set of n points whose positions in the plane are determined by constant-degree algebraic functions, the k-RC-
minsum problem can be solved by an algorithm that runs in O (λc(n3k+1) log n) time for some constant c, where λc(n) is the maximum 
length of a Davenport–Schinzel sequence of order c with n distinct values.

3.2. Topologically stable k-center algorithms

In this section we describe an algorithm to compute a topologically stable solution for the Euclidean k-center variants. 
We use only combinatorial properties of solutions, which also hold for the rectilinear k-center variants. Hence the same 
algorithm, replacing disks by squares, also solves the rectilinear variants.

Intuitively, the unstable algorithm finds the lower envelope of all the valid radii by traversing the arrangement of all valid 
radii over time. At each time t a minimal enclosing disk D1 (defined by a set of at most three points) in the set of optimal 
disks B∗(t) needs to be replaced with another disk D2, we “hop” from our previous curve to the curve corresponding to 
the new disk D2. If we require that the algorithm is topologically stable these hops have a cost associated with them.

We first show how to model and compute the cost C(t) of a topological transition between any two k-centers at a fixed 
time t . We then extend this approach to work over time. Let t be a fixed moment in time where we want to go from 
one k-center B1 to another candidate k-center B2. The transition can happen at infinite speed but must be continuous. We 
denote the infinitesimal time frame around t in which we do the transition as [0, T ]. We extend the concept of a k-center 
with a corresponding partition of the input points at time t P (t) over the disks in the k-center:
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Definition 21 (Disk set). For each disk Di of a candidate k-center B for P (t) we define its disk set Pi ⊆ P (t) ∩ Di as the 
subset of points assigned to Di . A candidate k-center B with disk sets P1, . . . , Pk is valid if the disk sets partition P (t). We 
say B is valid if there exist disk sets P1, . . . , Pk such that B with disk sets P1, . . . , Pk is valid.

During a continuous transformation, the disk sets of a valid candidate k-center will change in the time interval [0, T ]
while the points P (t) do not move. In essence the time t is equivalent to the whole interval [0, T ]. For ease of understanding, 
we use t′ to denote any time in the interval [0, T ]. Observe that our definition of topological stability leads to an intuitive 
way of recognizing a stable transition:

Lemma 22. A transition from one candidate k-center B1(t) to another candidate k-center B2(t) in the time interval [0, T ] is topo-
logically stable if and only if the change of the disks’ centers and radii is continuous over [0, T ] and at each time t′ ∈ [0, T ], B(t′) is 
valid.

Proof. Note that by definition the disks must be transformed continuously and that all the points in P (t) are covered in 
[0, T ] precisely when a valid candidate k-center exists. �

Now that we can recognize a topologically stable transition, we can reason about what such a transition looks like:

Lemma 23. Any topologically stable transition from one k-center B1(t) to another k-center B2(t) in the timespan [0, T ] that minimizes 
C(t) (the largest occurring minsum/minmax over [0, T ]) can be obtained by a sequence of events where in each event, occurring at a 
time t′ ∈ [0, T ], a disk Di ∈ B(t′) adds a point to Pi and a disk D j ∈ B(t′) removes a point from P j . We call this transferring.

Proof. The proof is by construction. Assume that we have a transition from B1(t) to B2(t) and that the transition that 
minimizes either the sum or the maximum of all radii contains simultaneous continuous movement. Let this transition take 
place in [0, T ].

To determine C(t) we need to look only at times t′ ∈ [0, T ] where a disk Di ∈ B adds a new point p to its disk set Pi
and another disk D j removes it from P j . Only at t′ must both disks contain p; before t′ disk D j may be smaller and after 
t′ disk Di may be smaller.

We claim that any optimal simultaneous continuous movement of cost C(t) can be discretized into a sequence of events 
with cost no larger than C(t). We do so recursively: for the continuous movement there exists a t0 ∈ [0, T ] as the first time 
a disk Di ∈ B adds a point p to Pi . Then at t0, Di has to contain both Pi and p and must have a certain size d. All the other 
disks D j ∈ B with j �= i only have to contain the points in P j so they have optimal size if they have not moved from time 
0. In other words, it is optimal to first let Di obtain p in an event and to then continue the transition from [t0, T ]. Applying 
this argument recursively allows us to discretize the simultaneous movement into sequential events. �
Corollary 24. Any topologically stable transition from one k-center B1(t) to another k-center B2(t) in the timespan [0, T ] that min-
imizes C(t) (the largest occurring minsum/minmax over [0, T ]) can be obtained by a sequence of events where in each event the 
following happens:

• A disk Di ∈ B1(t) that was defined by one, two or three points in P (t) is now defined by a new set of points in P (t) where the two 
sets differ in only one element.

With every event, Pi must be updated with a corresponding insert and/or delete. We call these events a swap because we intuitively 
swap one of the defining elements.

The cost of a single stable transition Corollary 24 allows us to model a stable transition as a sequence of swaps but how 
do we find the optimal sequence of swaps? A single minimal covering disk at time t is defined by at most three unique 
elements from P (t) so there are at most O (n3) subsets of P (t) that could define one disk of a k-center. Let these O (n3)

sets be the vertices in a graph G . We create an edge between two vertices vi and v j if we can transition from one disk to 
the other with a single swap and that transition is topologically stable. Each vertex is incident to only a constant number 
of edges (apart from degenerate cases) because during a swap the disk Di corresponding to vi can only add one element 
to Pi . Moreover, the radius of the disk is maximal on vertices in G and not on edges. The graph G has O (n3) complexity 
and takes O (n4) time to construct, as we need to check for each vertex which edges should be added. This can be done by 
checking all O (n) vertices for which the disk set differs by one element.

This graph provides a framework to trace the radius of the transition from a single disk to another disk. However, we 
want to transition from one k-center to another. We use the previous graph to construct a new graph Gk where each 
vertex wi represents a set of k disks: a candidate k-center Bi . We again create an edge between vertices wi and w j if 
we can go from the candidate k-center Bi to B j in a single swap. With a similar argument as above, each vertex is only 
connected to O (k) edges. The graph thus has O (n3k) complexity and can be constructed in O (n3k+1) time. This time, each 
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Fig. 8. The G2 graph on four points. Vertices of G2 in the grey area all have an edge to the vertex on the right. This rightmost vertex has a disk defined by 
the red and blue points and another disk defined by the yellow and green points.

of the O (n3k) vertices has to check O (kn) = O (n) other vertices to determine whether there should be an edge: for each 
of the k disks there are O (n) vertices for which the disk set differs by one element. Each vertex wi gets assigned the cost 
(minmax/minsum) of the k-center Bi where the cost is ∞ if Bi is invalid. Fig. 8 shows an example of a G2 graph.

Any connected path in this graph from wi to w j without vertices with cost ∞ represents a stable transition from wi to 
w j by Corollary 24, where the cost of the path (transition) is the maximum value of the vertices on the path. We can now 
find the optimal sequence of swaps to transition from any vertex wi to w j by finding the cheapest path in this graph in 
O (n3k log n) time, for examply using an adapted version of Dijkstra’s algorithm to maintain the highest cost of the cheapest 
path. The running time is dominated by the O (n3k+1) time it takes to construct the graph.

Maintaining the cost of a flip For a single point in time we can now determine the cost of a topologically stable transition 
from a k-center Bi to B j in O (n3k+1) time. If we want to maintain the cost C(t) for all times t , the costs of the vertices in 
the graph change over time. If we plot the changes of these costs over time, the graph consists of monotonously increasing 
or decreasing segments, separated by moments in time where two radii of disks are equal. A straightforward counting results 
in O (n3k) of such events, dominated by splitting the cost function of each vertex in monotone segments. These events also 
contain all events where the structure of our graph Gk changes and all the moments where a vertex in our graph becomes 
invalid and thus gets cost ∞, which happens when four points become co-circular. The result of these observations is that 
we have a O (n3k) size graph, with O (n3k) relevant changes, where with each change we spend O (kn) = O (n) time per 
vertex to restore the graph by recomputing the edge set. We can then compute an optimal solution as described in the 
previous paragraph, at each event update Gk and use the updated graph to find the cost of a continuous transition, if the 
event coincides with a discrete change in the optimal solution. This leads to an algorithm which can determine the cost of 
a topologically stable movement in O (n6k+1) time.

Theorem 25. Given a set of n points whose positions in the plane are determined by constant-degree algebraic functions, the k-EC-
minmax/-minsum problem can be solved by an algorithm that runs in O (n6k+1) time.

If we run the unstable and stable algorithms on the moving points, we obtain two functions that map time to a cost. The 
ratio of these two costs over time corresponds to the approximation ratio of the computed topologically stable solution at 
any point in time. The maximum of this ratio over time is the topological stability ratio of this solution, which is therefore 
obtained in O (n6k+1 time as well. Since the stable algorithm is constructive, we can also find a topologically stable solution 
in the same time, by returning the set of disks corresponding to the minimum cost path through the time-varying graph 
Gk .

4. Conclusion

We considered the topological stability of common variants of the kinetic k-center problem, in which solutions must 
change continuously but may do so arbitrarily fast. We have established tight bounds for the minsum case (Euclidean and 
rectilinear) as well as for the rectilinear minmax case for any k ≥ 2. For the Euclidean minmax case, we proved nontrivial 
upper bounds for small values of k and presented a general lower bound tending towards 2 for large values of k. We also 
presented algorithms to compute topologically stable solutions together with the cost of stability for a set of moving points, 
that is, the growth factor that we need for that particular set of moving points at any point in time. A practical application 
of these algorithms would be to identify points in time where we could slow down the solution to explicitly show stable 
transitions between optimal solutions.
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Future work It remains open whether a general upper bound strictly below 2 is achievable for k-EC-minmax. We conjec-
ture that this bound is indeed smaller than 2 for any constant k, since this is clearly the case for configurations where the 
intersection graph forms a tree or cycle. What remains is to acquire more insight in how to resolve an intersection graph 
with more general structures, in particular how combinatorial properties can help resolve high degree nodes. Our algorithms 
to compute the cost of stability for an instance have high (albeit polynomial) run-time complexity. Can the results for KDS 
(e.g. [4]) help us speed up these algorithms? Alternatively, can we approximate the cost of stability more efficiently?

Lipschitz stability requires a bound on the speed at which a solution may change [17]. This stability for k > 2 is un-
bounded, if centers have to move continuously [8], as Fig. 2 shows in the introduction. A potentially interesting variant of 
the solution space topology, is one where a disk may shrink to radius 0, at which point it disappears and may reappear at 
another location. This alleviates the problem in the example; would it allow us to bound the Lipschitz stability?
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