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The notion of “oval” arose in the study of finite projective planes. We extend the
notion to arbitrary projective designs — indeed to arbitrary designs. Most of the
elementary facts admit of direct generalization and ovals appear to abound in
nonclassical projective designs.

1. INTRODUCTION

Ovals have always been of interest in the theory of finite projective planes
but the direct generalization of the notion to projective designs has never
been considered as far as we know, presumably because, for the classical
projective designs coming from points and hyperplanes of PG ,(q), one never
sees nontrivial collections of points no three on a block except when n = 2.
We here consider the direct generalization to projective designs and hope
to show that the notion is of considerable interest. One can define ovals
for arbitrary designs and a few amusing—even interesting—facts emerge.
In the interest of conciseness we relegate this further generalization to our
remarks and examples.

After reviewing basic definitions in Section 2 we give the generalization
and the main facts in Section 3. Section 4 is devoted to examples but also
contains some theoretical results. Section 5 explains the relationships with
algebraic coding theory. Finally, in Section 6, we give a somewhat more
elegant description of the connection between odd-order biplanes and even-
order planes which was first described in [2].

2. BASIC PRELIMINARIES

A projective design or a (v, k, A)-design is a collection # of v k-subsets of

a v-set & with the property that each two distinct members of & intersect

in a set of cardinality A. Elements of & are called points, elements of & blocks

(or sometimes lines), and k — A is the order of the design. The incidence
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matrix of such a design is the v by v matrix of 0’s and 1’s whose columns are
indexed by & and rows by # with the entry at (B, p) 1 precisely when p € B.
If M is this incidence matrix it follows that M?* (the transpose of M) is the
incidence matrix of a projective design with the same parameters (v, &, A),
where the notions of points and blocks are interchanged. This design is
called the dual of the original design; it may or may not be isomorphic to
the original design. When A = 1 a projective design is nothing but a pro-
jective plane and when A = 2 we call the design a biplane, following Cameron.
When there is a unique biplane of order m we denote it by B(m). The com-
plement of a projective design consists of the v-sets & — B, where B runs
through the blocks of the design. It is a projective design and if the original
design has parameters (v, k, A) the complement’s parameters are (v, v — k,
( — k) —k — D/ — D).

Now a projective design is a 2-design in the sense that each 2-subset of
# is contained in precisely A blocks. More generally a t-design or a
-t — (v, k, A)-design is a collection # of k-subsets of a v-set with the property
that each z-subset of & is contained in precisely A of the elements of %,
again called blocks. For a 2-design, or 2 — (v, k, A)-design, Fisher’s inequality
shows that | # | = v (whenever k < v) and the case of equality is precisely
the case of a projective design; i.e., projective designs and 2-designs with v
blocks are equivalent notions. All the above notions and facts are quite
elementary and the novice reader may wish to:-consult [8, 9, 13] for a fuller
discussion.

In what follows, a code always means a linear code and is simply a sub-
space C of F”, the vector space of n-tuples over a finite field, F. If C is of
dimension / the code is referred to as an (n, I) code and » is called the block
length. C*, the dual of C, is defined to be {ae F™ | Y a;c; = 0 for all ce C}.
The weight of an n-tuple, a = (a, , a5 ,..., a,) of F*, is simply the number of
nonzero coordinates of a and the support of a is {i|a; % 0}; ie,
| support (a)| = weight (a). The minimum weight of a code C is Ming«.cc
weight (¢). Connections between codes and designs frequently arise because
the collection of supports of the minimum-weight vectors of a mathematically
interesting code has a good chance of being a design. There are many well-
known instances of such connections. For a discussion of these connections
and a fuller discussion of the notion of a code the novice reader may wish
to consult [7].

3. OvALs
Consider a projective design with parameters (v, k, A). We call a collection

S of points of the design an arc if no three points of S lie on a block. In other
words, for every block, B, of the design, B N S has cardinality 0, 1, or 2.
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Correspondingly, we call such a block an exterior block, tangent block,
or secant block.

Now suppose S is an arc with at least one tangent, B, say. Let p be the
single point of § N B, . Given ¢ in S, g = p, there are precisely X blocks B
with SN B = {p, q}. As ¢ runs through S — {p} the A(| S| — 1) blocks
obtained are distinct. Hence A(| S| — 1) < k — 1 since there are but k — 1

blocks through p other than B, . We obtain the bound

k+A—1

1S < 3

If, on the other hand, there are no tangents, then choosing p € S and letting
g run through S — { p} we have that A(| §| — 1) = k and hence that
k+ A
IS =5+

In particular then, an arc without tangents can occur only when A divides
k and its cardinality is then determined. For such an arc S choose a point!
p not on S and consider the k blocks through p. Suppose x of them actually
meet S (in necessarily two points). Then 2x = A | S| and therefore k + X =
A| S| is necessarily even. Since k + A = k — A (mod 2) an arc without
tangents can occur only in a projective design of even ordie (with, more-
over, A dividing k).

More can be said: Suppose (k + A — 1)/A is an integer (and thus, for
A > 1, A does not divide k) and we have an arc § with the maximal number
of points, (k + A — 1)/A. Then, through each point p on S there must pass
precisely one tangent. Assuming further that k — A, the order of the design
is odd, let p be on S and let B be the tangent through p. Suppose there is a
g on B, q # p, through which there are no other tangents besides B. Then,
the £ — 1 remaining blocks through g are either secants or exterior. Suppose
there are y secants. Now A — 1 of these pass through p and hence meet S
precisely once more. Hence y — A + 1 meet S — { p} twice and thus

A(—k~i§;1_1):>\—1+2(y_)\+1),

or k—1=2y— A+ 1 Thus k —A=2(y— A1) is even, a contra-
diction. It follows that through every point not on S there pass either no
tangents or at least two. Further, with p and B as above count flags of the
form (g, T) where ge BN T, g #~ p, T + B, and Tis a tangent of S. Then
Mk +A—DA)—1) =37, — 1) x;, where x; is the number of q’s
through which there pass i tangents. On the other hand 37, x; = k — 1.

*Such a choice is possible except for the design with parameters (3,2, 1) where the
point set itself is the arc.



310 ASSMUS AND VAN LINT

Hence Srox; =k —1=3;,(i— 1)x;. Since all x; are nonnegative

X3 = x4 = - = 0. Thus, through each g€ B, ¢ # p, there pass precisely
two tangents. (This proves, incidentally, that the (X 4+ A — 1)/A tangents
form an arc meeting the bound in the dual design.) We call such a point

an exterior point of S. Points g, g ¢ S, through which no tangents pass are
called interior points. Clearly the number of exterior points is $(k — 1) X
((k + A — 1)/A) and thus the number of interior points is easily calculated.
Itis 2k — D({(k — A — D)/A).

The above results are generalizations of known results for A = 1 (the case
of projective planes). We summarize them in the following

THEOREM 1. In a projective design with parameters (v, k, A) with k > 2,
the number of points of an arc is bounded by

k+A-—1
A

provided either the design is of odd order or of even order with k = 0 mod A.
For a projective design of even order with k = 0 (mod Q) the bound is

k+ A
—

In the odd-order case whenever (k -+ X — 1)/A is an integer and an arc exists
meeting the bound, then through each point of the arc passes exactly one
tangent and through a point not on the arc there pass either two tangents
(exterior point) or none (interior point). Moreover, the tangents form an arc
in the dual design.

Our primary interest is in planes and biplanes. Here the extra condition
that A divide & in the even-order case is automatically satisfied and hence there
is a natural dichotomy between even and odd orders. It is, of course, well
known [8] that in a projective plane of odd order m an arc can have at most
m -+ 1 points and in a projective plane of even order at most m - 2 points
(the bounds or our theorem, the order here being kK — 1). For biplanes (i.e.,
projective designs with A = 2) we have that in a biplane of odd order
m = k — 2 an arc can have at most

m-+ 3
2

points and for even order at most

m+4 4
2

points.
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“If a projective design with parameters (v, k, A) has an arc of cardinality at
least 3, then by Theorem 1 we must have

k4 A
3K 3 :)—I-l.

a~

Since k/A = (v — 1)/(k — 1) we have easily

ProrosiTioN 1. If a (v, k, A)-design has an arc of cardinality at least 3,
then

2k < v+ 1.

For a projective design of odd order with (k - A — 1)/A an integer, an
arc with (kK + A — 1)/A points will be called an oval; for a projective design
of even order with A dividing k, an arc with (k -+ A)/A points will be called
an oval; finally, for a projective design of even order with A > 1 and A
dividing k — 1, an arc with (kX + A — 1)/A points will be called an oval.
The term is new for designs with A > 1 and differs from customary usage
for projective planes of even order where a set of m + 2 points no three
collinear is sometimes called a hyperoval. If D is a'projective design, Oval(D)
denotes the set of avals of the design.

Our next two propositions have very easy proofs (which we omit); the
proofs involve only standard counting arguments.

PROPOSITION 2.  An oval in a projective design of even order (with A dividing
k) has k(k 4 N)/2X secants and (k — 2)(k — X)/2X exterior blocks (and,
of course, no tangents).

Remark. Taking as points the exterior blocks of such an oval and as
blocks the points not on the oval, one obtains a 2-design. The parameters are

2_((k—22)f\k—/\)’k;)\’)‘)‘

Caution. For A > 1 this 2-design may very well have repeated blocks;
e.g., for (16, 6, 2)-designs the parameters are 2 — (4, 2, 2) and hence the
design consists of the six 2-subsets of a 4-set, each 2-subset repeated.

PRrROPOSITION 3.  An oval in a projective design of odd order (with X dividing
k—1) has (k + A — 1)JA tangents, (k + A — D(k — 1) secants,
(k — A — Dk — 1)]2X exterior blocks, (k+ X — D(k — 1)/2X exterior
points, and (k — A — 1)k — 1)/2A interior points. Moreover, the points
of a tangent are exterior except for the point of contact, an exterior block
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contains (k + XA — 1)/2 exterior points and (k — X - 1)/2 interior points,
while a secant (besides the two points of the oval) contains (k + X — 3)/2
exterior points and (k — A — 1)/2 interior points.

The theorem and propositions above are the basic counting results con-
cerning ovals in projective designs. Next, we elaborate on the inequality of
Proposition 1, settling the question of when equality occurs.

We first observe that the projective design consisting of the (v — 1)-
subsets of a v-set has as its ovals all the 2-subsets of the point set. Its com-
plement is the denerate projective design with A = 0 whose only “oval”
is the point set itself. Eschewing this uninteresting case we have the following
consequence of Proposition 1.

PROPOSITION 4. Suppose a projective design with parameters (v, k, ))
is such that both it and its complement have arcs of cardinality 3. Then for
each design the arcs of cardinality 3 are the ovals and in fact the design is a
Hadamard design or its complement; i.e., the parameters are either (4X + 3,
2204 1, ) or (4X — 1, 2X, X) with A even.

Proof. Proposition 1 yields
v—1 <2k <v+1.

For v odd the accounced parameters are obtained from the two equalities
and the arcs of cardinality 3 are the ovals. So suppose v is even. Then 2k = v,
impossible parameters for a projective design since then v(v — 2) = 4A(v — 1)
and hence

02— (244X v+ 4\ =0,

implying that 4 4 16A% is a square. But then 1 + (2))? would also be implying
that A = 0.

Consider such a (4A + 3,22 + 1, A) design. Now, a “line” of a design
is the intersection of all blocks containing two distinct points. In this case
a line will consist merely of these two points or three points [8]. The non-
trivial lines are precisely the ovals of the complementary design. Precisely
we have the following

PROPOSITION 5.  The ovals of a (4 — 1, 2u, p)-design are precisely those
lines of the complementary design whose cardinality is three.

Proof. The complementary design has A = u — 1. Consider three points
and let x; , i = 0, 1, 2, 3, denote the number of blocks containing 7 of these
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points. From > x, =4A+ 3, Yix; =32A+ 1), and T () x; = 3 it
follows that

Xo+ X3 = A

But for a line / of cardinality 3, x; = A and hence x, = 0. Thus / is an oval.
On the other hand an oval with three points has no tangents and hence
every block of the complementary design meeting it twice must contain it.
Thus it is a line of the complementary design.

Thus the ovals of the complements of Hadamard designs are well-known
geometric objects. These ovals will never form a 2-design except in the
classical case of the complement of PG ,(2), a fact easily derivable from alge-
braic coding theory and well known [8]. In fact, as we remarked in the Intro-
duction, the classical projective designs consisting of points and hyperplanes
of PG,(q) cannot have an arc of cardinality 3 for n > 2. There is this one
case, however, where the complement of a classical projective design has
ovals. The precise result follows easily from Proposition 1. It is

PROPOSITION 6. If the complement of a classical projective design has an
arc of cardinality 3, then q = 2 and the arcs of cardinality 3 are the ovals
and consist precisely of the lines of PG ,(2).

Proof. The classical design has parameters

=)

and hence the complement has & = ¢™. Proposition 1 now implies that

qn+1 _ 1

qg—1 i

29" <
or that
"t <2q"+q—2.

Hence g <2 4 (g — 2)/g™ or g < 2. Thus the parameters of the design are
(2™t — 1,27,2" 1) and the arcs of cardinality 3 are the ovals. Since every
line of PG,(2) meets every hyperplane, the lines are ovals of the comple-
mentary design. On the other hand any three points of PG,(2) that meet
every hyperplane (i.e., form an oval of the complementary design) must
constitute a line of PG,(2).

Remark. As a final comment concerning basic general results we note
that arcs can be defined more generally for an arbitrary 2-design.
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Denoting the parameters by 2 — (v, k, A) define r by

Ao — 1)
TTTR=1

Then the order of the design is defined to be r — A. The bounds of Theorem 1
obtain upon replacing k by r. Defining ovals in the obvious way, one can
easily verify the following facts:

(a) For a Steiner triple system (i.e., a 2 — (v, 3, 1)-design) of even order
(i.e., 3(v — 3) is even) the ovals are precisely the complements of the maximal
subsystems (i.e., subsystems on (v — 1)/2 points).

(b) Given a 3-design which is a Steiner system (i.e., has parameters
3 — (v, k, 1)) contracting on a point gives a 2-design with parameters
2 — (v — 1,k — 1,1). The blocks of the 3-design not containing the point
of contraction are clearly arcs. When these blocks are in fact ovals of the
contraction, then in the even-order case the 3-design must be the extension
of a projective plane of order 2, 4, or (possibly) 10 and in the odd-order
case the 3-design must be an inversive plane of odd order.

(c) For the Desarguesian projective planes. of even order g, the ovals
form a 2-design. The ovals of this 2-design are the lines of the projective
plane.

(d) More generally, if the ovals of an even-order 2-design with A
dividing r form a 2-design, then this 2-design is of even order with its “A”
dividing its “r” and, moreover, the blocks of the original design are among
its ovals.

4. EXAMPLES

1. In the seven-point Fano plane, the projective plane of order 2, the
ovals are precisely the complements of the lines and these seven ovals form
the unique biplane of order 2. The ovals of this biplane are precisely the lines
of the Fano plane. Thus, Oval(PGy(2)) = B(2) and Oval (B(2)) = PGx(2).
The fact that the ovals of B(2) form a 2-design is a characterization of this
projective design in the following sense: Suppose a (v, k, A)-design has
k = 0 (mod 4), A = 2 (mod 4), and A divides k. Then, if its ovals form a
2-design, we have k = 4. That is, it must be B(2). We sketch a proof.

Let C be the row space of the incidence matrix over the field with two
elements. Clearly, C C C*and C is “doubly even” (i.e., all vectors have weight
congruent to 0 modulo 4). The congruence conditions on k and A allow one
to conclude (using the theory of elementary divisors and a result of Bruck’s
[6,15]) that the dimension of C is (v — 1)/2 and hence that C* = C @
Fy(1,1,..., 1); i.e., C is of codimension 1 in C* and C" is obtained from C
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by throwing in the all-one vector. By now almost standard arguments
[1, 7] (cf. Section 3, final remark (d)) determine the minimum weights of
C and C*+. They are d = k, d* = (k + X)/A. Next suppose ¢ and ¢’ are
minimum-weight vectors of C*. They are not in C but their sum is.
The weight of ¢ + ¢’ is

(50

where a = | support (c) N support (¢’)|. Since 2(k/A + 1) is congruent to
2 modulo 4, ais odd. But a > 1 implies that the weight of ¢ + ¢’ isless than k,
an impossibility. Therefore a = 1. Thus, the supports of the minimal-
weight vectors of C* form a 2-design in which every two blocks meet exactly
once. Hence they are a projective plane of order k/A and v = (k/A)? +
k/A -+ 1.Butv = 1 + (1/X) k(k — 1). It follows that k = 4 and we have the
characterization.

2. For the unique biplane of order I the ovals are precisely the 2-sub-
sets of the underlying 4-set and hence this biplane has six ovals. Although
this is a trivial example we will make use of it in a nontrivial way in Section 6.
In general when one has a projective design with parameters (v, v — 1, v — 2),
(k + A — 1)/A = 2 is an integer and the ovals are the 2-subsets of the under-
lying point set.

3. The three biplanes of order 4 have been extensively studied. It is
quite easy to to survey the ovals via algebraic coding theory using the
MacWilliams equations. Here an oval has four points. Denoting the three
biplanes of order 4 by By, B;, Bs (for an explanation of the notation see
[4]), we have that | Oval(Bg)| = 60, | Oval(B;)| = 28, | Oval(Bg)| = 12.
Since B; has a doubly transitive automorphism group the 60 ovals form a
2-design; the parameters are 2 — (16, 4, 3). This design can be broken
up into the disjoint union of an affine plane of order 4 and a 2-design with
parameters 2 — (16, 4, 2) and this latter 2-design cannot be broken up into
the disjoint union of two affine plane of order 4.

4. The quadratic-residue design that yields B(3), the unique biplane of
order 3, i.e., an (11, 5, 2)-design, has ovals of cardinality 3. One sees easily
that there are 55 such ovals forming a 2-design with parameters 2 — (11, 3, 3).
In Section 6 we will make use of this result.

5. There are precisely four biplanes of order 7 [12]. The oval structure
of one of these biplanes is intimately related to PG4(8). The difference set
biplane has no ovals. The other three have 63 ovals (Mezzaroba and Salwach,
private communication).

6. There are four known biplanes of order 9. The one related to the
strongly regular graph has precisely 336 ovals. The other three have 120,
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64, and 48, respectively (Mezzaroba and Salwah, private communica-
tion).

7. The remaining two known biplanes are of order 11 and are duals of
each other. They hence have the same number of ovals by Theorem 1. We
have not determined that number, but we know that ovals do exist.*

8. The (25,9, 3)-design (number 20 of the Fisher-Yates table) has 16
ovals. (Caution: The entry in Hall’s table contains an error.)

9. There are precisely five (15, 7, 3)-designs [5]. Consider the collection
of 3-subsets of the point set of such a design and let y,, i = 0, 1, 2,3, be
the number of 3-subsets contained in precisely i blocks. Thus Yo is the number
of ovals of the design and y, the number of lines. We have the following
equations:

15
yo+)’1+)’2+)’3:(3) =5-:7-13,

7
Nt a3y =15-(y) =5-7-15,

Vs + 3y, = (125) =7-15.

Only the last equation needs explication; it is a count of flags of the form
“a 3-subset contained in two blocks.” One deduces immediately that

Yo +y3 = 35

Bhat and Shrikhande [5] have determined y; for each of the five designs.
Hence we can determine the number of ovals. Observe that for the classical
design coming from PG,(2) the lines of the design are the lines of the geometry
(whence the term and here y, = 0 as it should. Two (15, 7, 3)-designs have
7 lines and hence 28 ovals. One has 24 ovals and one 16 ovals. The one
with 16 ovals has an incidence matrix that can be recorded succinctly;
we do so: Let / be the 3 x 3 identity matrix, J the 3 x 3 all-one matrix,
E; the 3 X 3 matrix with 1's in row i and 0’s elsewhere, and let F, be the
transpose of E;. The incidence matrix is

I E, E  E, J
J—F J—1 I I T
J—F, I J—1 I I
J—Fy, I I J—17T

0 J—T J—1 J—T I

The first three points constitute an oval. The automorphism group of the

! Added in proof. There are precisely 77.
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design has order 96 and the subgroup fixing the oval is Sym(3), the auto-
morphism group being transitive on the set of 16 ovals.

10. We shall now describe the construction of a (85,21, 5)-design,
&, with an oval L. Here | L | = 5. The construction will first produce a
resolvable 2 — (64, 16, 5). We then adjoin a copy of PG,(4) as a block and
to each block of a parallel class in the resolvable design, %, we add a line
of PGy(4). We shall do this in such a way that a prescribed set of five points
will form the oval. Consider four copies of 4G,(4) which we call 4, , 4,,
Ay, Ay . These are one of the parallel classes of 16-point blocks in %. Let
II'be a PG(2, 4). Choose P, in A; (i = 1,...,4) and Py in I1. These five points

will form the oval. Take a line / in IT not through P, and adjoin I

to 44,..., A, . We now have five blocks of 2. Since each of these contains one
point of L they will be tangents to the oval. Observe that the points of /
are on all the tangents.

For the main part of our construction we need an auxiliary affine plane
P of order 4 with a circle C (a set of four points, no three on a line). We
observe that the five parallel classes of lines in P split the four points of C

into two pairs three times and into four single points twice (i.e., if two points -

of C are on a line, then the other two are on a parallel line).

We now describe the construction of 16 blocks of #, divided into four
parallel classes. In each of the 4; we pick a parallel class of lines. This gives
~ us 16 lines. We identify these 16 lines with the 16 points of P in such a way
that the four lines in any A4, correspond to four points of a line in P and
furthermore such that the lines containing P, , P,, P,, P, correspond to the
points of C. We saw above that this is possible. Now the structire of P
immediately yields 20 blocks of 16 points divided into five parallel classes,
one of which is {4, , 4, , A5, A}. In this way we have found 16 new blocks
of #. Three of the parallel classes have two blocks containing two points
from {P,, Py, P3, P,}. In IT there are 15 lines different from / and not con-
taining P;. These lines we adjoin in an arbitrary way to the 15 parallel
classes mentioned above. The remaining lines of T are adjoined to the other
parallel classes of blocks in .£. This completes the construction, and it is
obvious that L is an oval. (This construction is based on a suggestion by
R. M. Wilson.)

If we copy this construction replacing PGy(4) by PG,(3) and the four copies
of AG,(4) by three copies of 4G ,(3), each with a specified point P, (i = 1, 2, 3)
and finally use an auxiliary 4G ,(3) with three points not on a line, we con-
struct a (40, 13, 4) with a 3-arc. This design is obviously not equivalent to
PG4(3). However, it does not have an oval; in fact we have not been able to
find a (40, 13, 4)-design with an oval

We have already discussed all the known biplanes and several projective
designs with A .> 3. We conclude this section with a list, followed by com-
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ments, of the 11 parameter sets of projective designs with A >> 3and & < 15
for which ovals could exist.

. I by Vg WUEy [ s
v K A Uvdl dIZLC

Odd order
1 31 10 3 4
2 19 9 4 3
3 40 13 4 4
4 27 13 6 3

Even order
Alk 525 9 3 4
6 71 15 3 6
7 15 8 4 3
8 23 12 6 3

Even order
Ak—1) 9 15 7 3 3
10 23 11 S 3

11 31 15 7 3

Comments. 1. Design 40 of Hall’s table [9] possesses ovals. In fact,
his points 0, 1,,..., 6, contain a projective plane of order 2 whose ovals
are ovals of the design. So there are at least seven.

2. All (19, 9, 4)-designs have been found. All but the classical quadratic-
residue design have ovals. A proof of this assertion can be extracted from
[11].

3. See the last paragraph of Example 10. This is the only set of parameters
listed above for which there is some doubt concerning the existence of a
design with ovals.

4. A Hadamard design. The construction of one with ovals should present
little difficulty.
5. See Example 8.

6. A design with these parameters possessing an oval has been constructed
by Beker and Haemers (private communication).

See Proposition 5 and Example 9.
Hadamard.
9. See Example 9.
10. Hadamard.
11. Hadamard.
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5. OVALS FROM THE POINT OF VIEwW OF CODING THEORY

The problem breaks naturally into two cases: even order and odd order.
The even order case is more transparent and we treat it first.

S"ppOSP we are given a projective design with parameters (v, k, A) where

— A is even and A divides k. Then, as we have seen, an oval is a set L of
(k + A)/A points of the design with the property that | L N B is either 0
or 2 for every block of the design. Clearly then an oval is a vector of weight
(k 4+ A)/A in C* where C is the row space over F, of the design’s incidence
matrix. In fact, C*’s minimal-weight vectors are the ovals; precisely we have
the following

ProrosiTioN E. For a (v, &, A)-design of even order with A dividing £,
the minimum weight of C~ is at least (k + A)/A and the vectors of weight
(k + A)/A are precisely the ovals of the design. Here C is the row space over
F, of the design’s incidence matrix.

Proof. Let v be a vector in C* and set S = support(v) = {p | v, = 1}.
Pick p, in S§. Now, each of the k blocks through p, meets S evenly and hence
in at least one other point of S. Counting flags of the form (g, B) where
ges, g # p, with { p, , ¢} C B, a block, yields

AMS|—=1D =3 BN —{p)l.
DEB
This yields immediately that | S| > (k + A)/A with equality if and only if
| BN (S —{po})| = 1 for each block through p, . This proves the proposition.

Remarks. 1. For A =1, i.e., for projective planes of even order, this
result is well known and, in fact, more is true: The minimum weight of C
is k and the minimum-weight vectors are precisely the lines of the plane.
For A > 1 the minimum weight of C may or may not go down; e.g., for
B it is 6 and the minimum-weight vectors are the blocks, while for B,
and By the minimum weight is 4. Moreover, for B, and B, the vectors of
weight 6 in C include not only the blocks of the design but others as well.
For a complete discussion see [4].

2. Knowing the weight distribution of C allows one to compute, via
the MacWilliams equations, the weight distribution of C* and hence the num-
ber of ovals of the design. This was the method used in many of the examples
of Section 4.

ExampLes. 1. For PGy(2) the weight distribution of C and C* is

Weight 0 3 4 7
No.ofvectors 1 7 7 1 C
1 0 7 0 C*
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2. For PGy(4) the weight distribution of C and C+ is

Weight 0 5 6 8 9 10 12 13 14 16 21
No. of 1 21 0 216 280 0 280 210 021 1 C
vectors 1 0 168 210 0 1008 280 0 360 21 0 C*

The vectors of weight 6 are, of course, the ovals. The vectors of weight 14
are easily seen to be the complements of the projective planes of order 2
contained in PGy(4). The vectors of weight 16 are the affine planes of order 4.
The vectors of weight 9 are the affine planes of order 3. These results are
very easily obtained and we omit the details. The only other projective plane
of even order for which the weight distribution has been obtained is PGy(8). It
It was a formidable task, even with electronic computation, to obtain it
—especially 20 years ago when Eugene Prange did so. We do not include it
here.

3. For our final example we give the weight distribution of the modulo 2
row space of the (25, 9, 3)-design of Example 8 of Section 4. It was obtained
for us by Chester Salwach via a few seconds of electronic computation.
Since dim C = 13 and the extended code is self-dual (¥ and A both being
odd), C is simply the even-weight subcode of C (as in Example 1 above).

Weight 0 4 5 8 9 12 13 16 17 20 21 25
No. of 1 16 36 486 961 2596 2596 961 486 36 16 1

vectors

We next discuss ovals in projective designs of odd order. Thus we give
ourselves a (v, k, A)-design with k — A odd and k = 1 (mod ), and our ovals
will be certain subsets of the points of the design of cardinality (k 4+ A — 1)/A.
Now it is well known [10] that the code C over F, given by the row space of
the design’s incidence matrix is uninteresting unless the prime g divides
k — ). We want to locate the ovals in C* for those primes dividing k — A.
We have the following

ProrosiTION O. Let L be an oval in a projective design of odd order with
parameters (v, k, ) and C be the row space of the design’s incidence matrix
over F, where q is a prime dividing k — A. Then the following vector v is in
Ctv,=1—Xforpel,v, =1 for p an exteriror point, and v, = 1 — 2X
for p an interior point.

Proof. We must show that for every block, B, of the design 3,5 v, = 0.
Now a block is either exterior, a tangent, or a secant. Since by Proposition 3
all points of a tangent are exterior points except for the point of contact,
when B is a tangent Y,cp v, =1—2A+ (k—1) =k — A =0 since ¢
divides &k — A.
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Again by Proposition 3, for B an exterior block,

2172,:_16__*—_;\;1_}_(1_2)‘)(

DPEB N

KA - na—n =0,

Finally, for B a secant, Proposition 3 yields

k+A—3 k—)\——l)

Yoo, =21—2+ +(1—2/\)( 5

k- na—n =o.

Remark. For A =1, i.e., for projective planes, Proposition O was proved
by Assmus and co-workers [3, 4]. In fact in this case more is true; roughly
speaking Proposition 0 becomes an “if and only if.”” This ought to be true for
A > 1 also, at least when one works over Z, but we have not been able to
prove it.

ExampLE. For B(3), the (11, 5, 2)-design, one must take ¢ = 3. C here
is nothing but the ternary Golay code and C* C C. There are 110 weight-9
vectors in C and 55 of them have three —1’s and six 1’s. These 55 vectors
yield the ovals; i.e., the three coordinate positions where the —1’s occur are
not on a block as one easily sees from elementary facts concerning the Golay
code.

6. THE PLANE-BIPLANE CONNECTION

Assmus et al. [2] describe four methods of producing codes from projective
designs. One of these methods relates odd-order biplanes and even-order
projective planes. The theorem detailing the connection has a more succinct
statement in the context of ovals and we give that statement here together
with the known examples.

By way of preparation, recall that given a projective plane of even order,
i.e., a projective design with parameters (m®2 +m -+ 1, m + 1, 1), m even,
the modulo 2 span of its bordered incidence matrix (i.e., the design’s incidence
matrix bordered by a column of 1’s) is a self-orthogonal code of block length
m? 4+ m + 2 and minimum weight m + 2. If C is this code, calling oo the
added coordinate, we have that the vectors of weight m + 2 of C with a
1 at oo are precisely the lines of the plane (with an overall parity check added)
while the vectors of weight m 4 2 in C* with a 0 at oo are precisely the ovals
of the plane. Of course, C C C* with equality whenever m = 2 (mod 4).

Now consider a biplane of odd order #, i.e., a projective design with para-
meters

(I 4+ 3+ 2)(n+ 1), n + 2,2),nodd.
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Let M be its incidence matrix, set v = | + $(n + 2)(n + 1), and consider
the row space modulo of the v by 2v matrix G where G’s first v columns are
those of the identity matrix /, and the last v columns are those of M.
Call this row space B. Clearly, B is seif-dual (2v, v) code over F, . Incredibly,
one can determine not only the minimum weight of B but its minimum-
weight vectors as well. Precisely, we have the following

THEOREM 2. If M is the incidence matrix of an odd-order biplane, M? its
transpose, then the row spaces over Fy of G = 1,| M and G’ = M*| 1, are
identical. This row space B is-a self-dual (2v, v) code over F, with minimum
weight n -+ 3, n being the order of the biplane. Moreover, the minimum-weight
vectors are, besides the rows of G and G', the characteristic functions of the sets
of the form L® U L, where L is an oval of the biplane and L® its dual.

Before sketching a proof we give some examples:

1. Consider the unique biplane of order 1, i.e., the (4, 3, 2) projective
design consisting of the four 3-subsets of a 4-set. Its ovals are the six 2-subset
of the 4-set. The (8, 4) binary code obtained is, of course, the extended
Hamming code with minimum weight 4 and the minimum-weight vectors
are precisely the Steiner system of type 3 — (8, 4, 1). This system is, of course,
the extension of a projective plane of order 2 and could equally well be ob-
tained as the row space of this plane’s bordered incidence matrix.

2. Consider the unique biplane of order 3, i.e., the (11, 5, 2) projective
design described in Example 4 of Section 4. It has 55 ovals; they are the
3-subsets of the 11-set not contained in a block. Hence B is a (22, 11) self-
dual code over F, with 77 minimum-weight vectors, 11 each from G and G’
together with the 55 of the form L¢ U L, L and oval. Since B is self-orthogonal
any two minimum-weight vectors have either two or no 1’s in common.
It follows immediately that any 3-subset of the 22-set is covered by a unique
minimum-weight vector and hence these vectors form a Steiner system of
type 3-(22, 6, 1), i.e., the extension of a projective plane of order 4. Observe
that if C is the row space over F, of the bordered incidence matrix of the
projective plane of order 4, then dim C = 10 and dim C+ = 12. CCC+
and there are therefore three 11-dimensional subspaces between C and C*.
FEach of them is a copy of the B produced by the theorem and these three
subspaces yield the classical splitting of the 168 ovals of the plane into three
groups of 56.

3. There are no biplanes of order 5 (indeed none of order congruent to
5 modulo 8). There are precisely four of order 7 [12]. Each yields a (74, 37)
self-dual code over F, with minimum weight 10. One of these codes is related
to the projective plane of order 8, the other three are not. A fuller account
is in [2].
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4. There are four known biplanes of order 9. No one of them yields
a projective plane or order 10; they do not have enough ovals. The two known
biplanes of order 11 (duals of one another) do not yield a projective plane
of order 12 for the same reason. There are no other odd order biplanes
known.

Since a proof of Theorem 2 has already appeared we give only a sketch
here: The fact that G and G’ have the same row space follows either from the
fact M* = M~ (modulo 2) or the fact that B is self-dual. That the minimum
weight is n 4 3 follows from the fact that the sum of fewer than i(n + 3)
rows of G has too high a weight on the last v coordinates. Moreover, a
weight n + 3 vector which is not a row of G or G’ must of necessity have
(n + 3)/2 I’s both in the first v coordinates and in the last v coordinates.
Now, if L is an oval of the design, the modulo 2 sum of the tangents is clearly
of the form L¢ U L in veiw of Theorem 1. Moreover, given a vector of weight
n + 3 in B which is not a row of G or G’ it has one half of its 1’s in the first
v coordinates and one half in the last ». Denoting by L the positions in which
there is a 1 in the last v coordinates for each point p of L there is at least
one block B with BN L = { p} and because of B’s self-orthogonality these
#(n + 3) blocks must correspond precisely to the L(n + 3) 1’s in the first
v coordinates with every other block meeting L either twice or not at all.
That is, the vector is of the form L? U L.
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