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1 Introdnction 

In the model-checking approach [CES86, LP85, QS81] to program verification, a model of the pro­
gram is constructed over which formulae are checked for satisfaction. The model reflects the possible 
behaviours of the program, the formulae express certain required properties of such behaviours. Obvi­
ously, the size of the model is the limiting factor to the feasibility of the model-checking approach. In 
the worst case, it doubles with every extra bit of memory that the program may access. This problem 
is referred to as the state explosion problem. One solution to it is the application of abstraction tech­
niques, which aim to abstract the model to a smaller one, in such a way that if some property holds for 
the abstracted model, it also holds for the original model. 

Such abstraction techniques are formalized in the framework of Abstract Interpretation [CC77], 
which was originally conceived as a unifying theory of compile-time (data-flow) analyses. Applica­
tions of Abstract Interpretation have traditionally been focussed on the analysis of universal safety 
properties, that hold in all states (safety) along all possible executions (universality) of the program.1 

With the advent of reactive systems, interest has broadened to a larger class of properties. Reac­
tive systems are systems whose main role is to maintain an ongoing interaction with the environment, 
rather than to produce some final result on termination. Usually, such systems consist of several con­
current processes, and display a non-deterministic behaviour. Typical examples are flight reservation 
systems, industrial plant controllers, embedded systems and operating systems. In the presence of non­
determinism, one may be interested to know whether some property holds along some possible execu­
tion path. Such properties will be called existential. Besides safety, another kind of property that is of­
ten considered is liveness, meaning that something should hold eventually (given an execution). Thus, 
we have classified properties into four kinds by the criteria universal/existential and safetylliveness. 
A typical combination of universal safety and existentialliveness properties is "along every possible 
execution path, in every state there is a possible continuation which will eventually reach a reset state". 

The semantic models and abstraction techniques used in the analysis of universal safety proper­
ties cannot be used for properties which involve aspects of existentiality and eventuality. The reason 
is that these techniques abstract away from information about the choices that a program encounters 
during execution. The analysis of existentiality and eventuality properties of behaviours, however, re­
quires models which, in addition to information about single states, also provides the transitions be­
tween states. For this reason, in model checking reactive systems, transition systems are used to model 
the behaviour of programs. Being directed graphs over program states, such transition systems give de­
tailed information about program executions, including the possible choices in every state. Our aim is 
to find notions of abstraction of such transition systems that preserve certain combined forms of univer­
sal/existential safetylliveness properties. This means that in order to know that such a property holds 
in the original system, it suffices to know that it holds in the abstracted system. 

The properties may be formalized by expressing them in a formal logic whose formulae can be 
interpreted over transition systems. One commonly used logic is CTL* (computation tree logic, see 
[EH86]). It contains universal and existential quantification over execution paths, as well as temporal 
operators that express that, along a path, some property will hold (a) in the next state, (b) in every state 
(safety), or (c) in some state (liveness). 

The structure of this paper is as follows. The next section introduces the formal machinery to be 
used. In Sect. 3, a notion of abstract transition system is developed which preserves properties from 
CTL *. Such an abstract system is an optimal (in a sense that is made precise in Sect. 2) description 

1 The notions of universality and safety of a property are not always distinguished as explicitly as we do in this paper. 
What we call "universal safety" is elsewhere often just tenned "safety" or "invariance". 
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of a (concrete) transition system. In computing such abstract models, one may decide to sacrifice op­
timality in exchange for a gain in efficiency. The approximation ordering between abstract systems, 
defined in Sect. 4, formalises this notion of sub-optimality. Sect. 5 then shows how abstractions may 
be computed directly from a program text by "lifting" the operations of a programming language to 
a domain of data descriptions. Conditions are given under which the constructed models are optimal, 
and an alternative construction method is indicated which yields optimal models even in absence of 
those conditions. Furthermore, it is shown that sub-optimal models are constructed when computing 
approximations to the lifted operations. An elaborate example is presented in Sect. 6. Sect. 7 briefly 
indicates the consequences of insisting on strong preservation, meaning that not only truth, but also 
falsehood of formulae is preserved. Sect. 8 compares ours to related work, and Sect. 9 concludes. 

2 Preliminaries 

Temporallogic Given is a set Prop of propositions. We choose to define CTL * in its negation normal 
form, i.e., negations only appear in front of propositions. This facilitates the definition of universal and 
existential CTL *. The set of literals is defined by Lit = Prop U { .p I p E Prop}. 

2.0.1 DEFINITION. The logic CTL * is the set of state formulae which is inductively defined by the 
following clauses. 

1. If p E Lit, then p is a state formula. 

2. If'P and 'IjJ are state formulae, then so are 'P II 'IjJ and 'P V 'IjJ. 

3. Any state formula is also a path formula. 

4. If'P and 'IjJ are path formulae, then so are 'P II 'IjJ, 'P V 'IjJ, X 'P, 'P U 'IjJ and'P V 'IjJ. 

5. If'P is a path formula, then 1f'P and O3'P are state formulae. 

For'P E CTL *, the formula ''P is considered to be an abbreviation of the equivalent CTL * formula 
in negation normal form (obtained in the usual way). The abbreviations true,false and -+ can then be 
defined as usual. For a path formula 'P, F'P and G'P abbreviate true U 'P andfalse V 'P respectively. 

IfCTL * and O3CTL * (universal and existential CTL*) are subsets ofCTL* in which the only allowed 
path quantifiers are If and 3 respectively. 

Transition systems CTL * formulae are interpreted over transition systems 7 = (2;, I, R) where 2; 

is a set of states, I <;; 2; is a set of initial states, and R is a transition relation over 2; which is total and 
image-finite, so that for every s E 2; there exists a positive, finite number of t E 2; for which R( 8, t) 
holds. A path in 7 is an infinite sequence 7r = 808, ... of states such that for every i E IN, R( Si, 8i+') 
holds. The notation 7rn denotes the suffix of 7r which begins at 8 n . For s E 2;, a (7, 8 )-path (or s-path 
when 7 is clear from the context) is a path in 7 that starts in s. 

We assume a function 11·11 : Lit -+ P(2;), satisfying Ilpll n lI.pll = 0 for every proposition 
p E Prop, which specifies the interpretation of literals over states. Intuitively, Ilpll is the set of states 
where p holds. Transition systems thus defined are essentially the same as Kripke structures ([Kri63ll. 
The only difference is that we have the function 11·11 instead of a labelling function from 2; to sets of 
literals. 
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5 Computing Abstract Models by Abstract Interpretation 

After having defined abstract models and proven their preservation properties, we now get to the topic 
of how to compute such models directly from a program. We will do this through abstract interpretation 
of the program text. An abstract interpretation may be viewed as a non-standard semantics defined over 
a domain of data-descriptions, where the functions are given corresponding non-standard interpreta­
tions. The abstract states are then valuations of program variables over the domain of data-descriptions, 
and the abstract transitions are computed by evaluation of the abstract semantic functions over these 
domains. 

In order to further develop the theory, we first need to fix a programming language. We use a lan­
guage which is based on action systems [BKS83], which, although being very simple, will help to grasp 
the idea of how to abstractly interpret operations in "real" programming languages, as it contains rudi­
mentary forms of the common notions of assignment, test and loop. A program is a set of actions of 
the form Ci( x) --+ ti( x, x'), where x represents the vector of program variables, Ci is a condition on 
their values and ti specifies a transformation 7 of their values into the new vector x' (i ranges over some 
index set J). Executing an action means evaluating its condition Ci and, if and only if this yields true, 
updating the program variables as specified by the associated transformation ti. A program is run by 
repeatedly nondeterministically choosing an action and executing it. We let Val denote the set of val­
ues that the vector x may take, and IVai <; Val the set of values that it may have initially. Thus, each 
Ci is a predicate over Val and each ti a relation on Val2 

5.0.1 DEFINITION. LetP be the program {Ci(X) --+ ti(X,X') i E J}. ItsconcretemodelC is 
defined as follows: 

• I; = Val, 

• I = IVai, 

• R = {(v, v') E Val 2 I 3iEJ Ci(V) II ti(V, v')}. 

Next, we assume a set 0 Val of descriptions of sets of values in Val, via a Galois insertion (a,,), 
and define two types of non-standard, abstract interpretations of the cis and tis over 0 Val in such 
a way that approximations of the abstract models of a program may be computed by interpreting the 
operators in the program correspondingly. 

5.0.2 DEFINITION. Fora, bE a Val, 

• cna) {} 3"E'y(a) Ci(V); 

• ti (a, b) {} b E {a(Y) lYE min {Y' I ti 33( ,( a), Y')}}; 

• cf(a) {} V"E'y(a) Ci(V); 

• tf(a, b) {} bE {a(Y) lYE min{Y' I ti'v'3(,(a), Y')}}. 

Furthermore, we define the abstract model AM = (0I;, 01, oRF, oRC) where: 

7We could have represented this transformation as the simultaneous assignment x' := tl(X). However, by abstracting 
the function ti, it may become a relation, and we prefer to denote both the concrete and the abstract transformations in the 
same way. 
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fa = think, odd(n) -----> fo:= eat 
£0 = eat -----> fo:= think, n := 3 * n + 1 

£1 = think, even(n) -----> £1 := eat 
n:= 3*n+1 

eatl 

f1 = eat, even(n) -----> £1 := think, n:= n/2 

(b) 

(aJ 

Figure I: The dining mathematicians (a). Expressed as an action system (b). 

The program may be viewed as a protocol controlling the mutually exclusive access to a common 
resource of two concurrent processes, modelling the behaviour of two mathematicians, numbered 0 
and I. They both cycle through an infinite sequence of "think" and "eat" states. The right to enjoy 
a meal in strict solitude is regulated by having them inspect the value of n before eating, letting the 
one go ahead only if n has an odd value, and the other only if n is even. Upon exit from the dining 
room, each mathematician has its own procedure for assigning a new value to n. Transitions can only 
be taken when the enabling conditions are satisfied, e.g., mathematician I can only leave the dining 
room if n is divisible by 2. An execution is any infinite sequence of (arbitrarily) interleaved steps of 
both processes which starts in a state where both mathematicians are in their thinking state, and n is 
set to some arbitrary positive integer value. We want to verify mutual exclusion and the absence of 
individual starvation along every execution. In order to formalize this, we first express the program as 
an action system. As data and control are treated uniformly in such systems, we introduce variables 
fa and flo both ranging over {think, eat}, to encode the effect of "being in a location" thinki or eati. 
See Fig. I (b). The state space L; of this program is the set { think, eat} 2 X lV \ {O} of values that the 
vector (£0, £1, n) of program variables may assume. The initial states are I = {(think, think, n) I 
n E lV \ {O}}. Its transitions are defined as in Def. 5.0.1, using the standard interpretations of the 
tests =, even, odd and operations 3*, + 1 and /2 (the latter three are considered as operations on one 
argument, i.e., functional binary relations). 

The properties to be verified are expressed in CTL * as follows. 

IIG,(£o = eat 1\ £1 = eat) (7) 

IIG(£o = eat --+ II F£1 = eat) (8) 

IIG(f1 = eat --+ II F£o = eat) (9) 

As these formulae are in IICTL*, we can verify them via a free abstraction. 
The abstract domain is defined by providing abstractions of the components which comprise the 

concrete domain. We choose to leave the component {think, eat}2 the same. Formally, this means that 
we take an abstract domain with two elements whose concretizations are {think} and {eat}, however, 
for readability we just denote these elements by think and eat respectively. To abstract lV \ {O}, we 
choose an abstract domain in which n may take the values e and D, describing the even and odd positive 
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integers respectively, i.e, 1'( e) = {2, 4, 6, ... } and 1'( 0) = {1, 3, 5 ... }. To both abstract domains, we 
add a top element T. The set 0 Z; of abstract states is now defined as follows. 

oZ; = {think, eat, T}2 X {e, 0, T} 

It is easily verified that the concretization function thus defined determines a Galois insertion (a, 1') 
from P(Z;) to oZ;. For the abstract initial states we have: 

oJ = {(think,think,e),(think,think,o)} 

Having chosen an abstract domain, we also have to provide abstract interpretations, over this do­
main, of the operations that appear in the program, along the lines of Def. 5.0.2. The tables (a) and (b) 
in Fig. 2 give the definitions of the free abstract interpretations of the transformations and tests on the 
abstract domain {e,o, T}. The operations 3*, +1 and /2 are considered single symbols. The tables 
have to be interpreted as indicated by the following examples. The entry true in table (b), row evenF, 
column e, indicates that evenF(e) holds, i.e. (cf. Def. 5.0.2), 3n E'y(e) even(n). The entry false in 

table (a), row +1F, column (e,e), means that +1F(e,e) is false, i.e., for any minimal Y such that 
+ 133 ( 1'( e), Y), we have a(Y) # e (see Defs. 5.0.2 and 2.0.4). From these diagrams we see for ex-

I FREE· II (e e) I (e 0) I (e T) I (0 e) 1(00) I (0 T) I (T e) I (T 0) I (T, T) I , , , , , , , , 
3*1' true false false false true false true true false 
+1F false true false true false false true true false 

/2" true true false false false false true true false 

(a) 

I FREE· II e o T I CONSTR· II (0 100) I (0 e) I (00) I (0 T) I .. , , , , 
evenF true false true 3*" false false true false 
odd" false true true +1" false true false false 

(b) (c) 

I CONSTR.: II 100 I e o T I CONSTR· II think I eat .. T 

evenCJ true true false false = think(.J true false false 
oddCJ false false true false = eatU false true false 

(d) (e) 

Figure 2: Free abstract interpretations of operations (a) and some of the tests (b). Constrained abstract 
interpretations of some operations (c) and tests (d and e). 

ample that /2 F is not functional (table (a), row /2F, first two columns), illustrating that a function may 
become a relation when abstracted. The tables (c)-(e) are explained below. 

Now we can abstractly interpret the program over this abstract domain, using the interpretations 
given in the tables. Such an abstract execution yields the abstract model of Fig. 3. In this model, only 
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<think, 
think, 

0> 

Figure 3: The free abstract model. 

the reachable abstract states are shown. We see that in no reachable state the property fa = eat /I f 1 = 
eat holds. Hence we have established property (7). Furthermore, the only path from the state where 
fo = eat reaches fl = eat within 2 steps, so we have also verified property (8). 

However, the abstraction does not allow verification of the other non-starvation property, (9): a 
counterexample in the abstract models is the path cycling infinitely between (think, think, e) and 
(think, eat, e). It turns out that the negation of property (9) can also not be established via the con­
strained transition relation. So, only refinement of the abstract domain may bring the answer. In this 
case, the abstract states where n = e would have to be unraveled into infinitely many states represent­
ing the cases where n is divisible by 4, by 8, by 16, .... Hence, with our methodology, it is impossible 
to verify property (9) through a finite abstraction. 

Nevertheless, an interesting question is how the refinement of an abstract model, in order to decide 
indeterminate results, can be computed. In [DGG93a] we identify conditions under which a strongly 
preserving abstraction may be computed by a successive refinement which is guided by the form of the 
formula to be checked. 

In order to illustrate the use of the constrained abstraction, we consider a small extension to the 
program: we add a third concurrent process which can "restart" the system by setting n to value 100. 
This may only be done when both mathematicians are thinking, otherwise there may be executions 
possible which violate the mutual exclusion property. To this effect, the following fifth action is added 
to the program: 

fa = think, fl = think ----> n:= 100 

We want to check whether it is always possible to reach a "restart" state. Writing restart for thinko /I 
think! /I n = 100, this property is expressed in CTL * by: 

VG3Frestart (10) 

We extend the abstract domain for n by the value 100, where ,(100) = {lOO}. Formula (10) being in 
full CTL*, we need a mixed abstraction. The tables (c)-(e) in Fig. 2 provide some of the entries which 
will be needed in an abstract execution of the program. The tables from Fig. 2 have to be extended in 
order to take into account the new abstract value 100. Being straightforward, these extensions are left 
to the reader. 

The resulting abstraction is depicted in Fig. 4. Solid arrows denote free transitions, dashed arrows 
represent constrained transitions. Note that it is not in general the case that oRe <;; oRF, as is illus­
trated by the arrow from (think, eat, e) to (think, think, T). Property (10) is verified on this model, 
interpreting the universal quantification along the free paths, and the existential quantification along 
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_ = restart 

Figure 4: The mixed abstract model for the modified program. 

the constrained paths. It can easily be seen that (10) holds, hence, we have established its validity in 
the concrete program. 

As an example of the computation of approximations by choosing non-optimal abstract interpreta­
tions Ii of operations in the program, consider the dining mathematicians again (without the "restart" 
extension). Take optimal free abstract interpretations of all operations but 3" for which we take the 
following approximation: 3,F( 0, T) = true and 3,F(0, e) = 3,F( 0,0) = false. Furthermore, take 
(think, think, T) as the abstract initial state. This gives the free abstraction of Fig. 5, from which still 
various properties may be deduced, such as the fact that at least one mathematician will keep engaged 
in a cycle of thinking and eating. 

<eat, 
think, 

0> 

eat, 
e> 

Figure 5: An approximation to the free abstraction. 

7 Strong Preservation 

In Sect. 5.1, we have identified conditions under which computed abstract models are optimal in the 
standard sense of Abstract Interpretation (see Sect. 2). This notion of optimality concerns the quality 
of the abstract interpretation used to compute an abstraction, aI( P), relative to the "ideal" abstraction 
a(I( P)). In particular, it is optimality with respect to a given abstract domain. 
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properties. This generalization consists in allowing the next-state relation of a non-deterministic tran­
sition system to be abstracted to a relation, and not a function as is common practice. This allows the 
analysis, via the abstraction, of not only universal properties - expressing that something holds along 
all possible executions -, but also existential properties - expressing the existence of paths satisfying 
some property. Furthermore, both safety as well as liveness properties are preserved. We have proven 
that the truth of every property expressible in CTL * is preserved from abstract to concrete model. As is 
common in Abstract Interpretation, the attained reduction depends solely on the choice of the abstrac­
tion function, thus allowing better reductions than is the case with minimization based on bisimulation. 
This was possible by considering abstract transition systems having two different transition relations, 
each preserving a seperate fragment of CTL *. The use of a Galois insertion to relate concrete and 
abstract states allowed the definition of both types of transitions over the same set of abstract states, 
resulting in the preservation of full CTL *. The price to be paid is that there exist formulae - and in­
creasingly many when the abstraction becomes coarser - which do not hold in the abstraction, and 
neither do their negations. In case of persistence on strong preservation (i.e., preservation of both truth 
and falsity of formulae), which renders the abstract model bisimilar to the concrete model, we have 
shown the implications for the form that the abstract domain takes. 

From the viewpoint of property-preserving characteristics of simulation relations, we have man­
aged to define a notion of precision which "all owes to separate the wheat from the chaff". An abstrac­
tion function a specifies the optimal abstract model for a given concrete system, while an approxi­
mation order ::S distinguishes the relative precision between abstract models. The embedding of the 
property preservation results for simulation in the framework of Abstract Interpretation opens up the 
possibility of constructing abstract models directly from the text of a program, thereby avoiding the 
intermediate construction of the full concrete model. This construction is possible by associating non­
standard, abstract interpretations with the operators in a programming language which allows their 
evaluation over descriptions of data. To this purpose, we chose a simple programming language and 
defined abstract interpretations of its tests and operations. Conditions were given under which the free 
and constrained abstract transition relations thus computed coincide with the optimal relations as spec­
ified by a. Furthermore, a notion of approximation on the level of operations was given by which the 
user may simplify the task without loosing the preservation results. Furthermore, such approximations 
can accelerate the computation of abstract models, be it at the risk of obtaining a model that does not 
contain enough information in order to verify the property. It was illustrated by an example that these 
techniques can be applied to verify properties of systems with an infinite state space. 

Further work As pointed out in Sect. 6, the construction of abstract models that strongly preserve 
a given property of interest requires refinement of the abstract domain. The framework of Abstract 
Interpretation, being based on a given abstract domain, does not offer a methodological approach to 
such refinement. A trial-and-error approach would benefit much from the development of heuristics 
which are specific to the domain of application, while also a set of powerful diagnostic tools in addition 
to the model checker are invaluable in that case. 

In the light of the quest for fully automated verification methods, we are currently investigating 
the use of partition refinement algorithms for the construction of strongly preserving models; see the 
papers [DGG93a] and [DGD+94]. Other, rather preliminary ideas point in the direction of using the­
orem provers and algebraic manipulation tools. Although the problem is undecidable in general, there 
may well be interesting subclasses that can be decided efficiently. 

In a recent paper, [KDG95], we apply the ideas developed in this paper and in [KeI94] to verify 
",-calculus properties of a production cell ([DHKS95]) in a compositional fashion. 
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