
https://research.tue.nl/en/publications/d8ced363-26f7-4e14-b422-646c62577949

ISSN 0926-4515

All rights reserved

Eindhoven University' of Technology
Department of Mathematics and Computing Science

Abstrdct Interpretation of Reactive Systems:
Preservation of CTL *

by

Dennis Dams, Oma Grumbcrg and Rob Gerth
95/16

editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 95/16
Eindhoven, May 1995

1 Introdnction

In the model-checking approach [CES86, LP85, QS81] to program verification, a model of the pro­
gram is constructed over which formulae are checked for satisfaction. The model reflects the possible
behaviours of the program, the formulae express certain required properties of such behaviours. Obvi­
ously, the size of the model is the limiting factor to the feasibility of the model-checking approach. In
the worst case, it doubles with every extra bit of memory that the program may access. This problem
is referred to as the state explosion problem. One solution to it is the application of abstraction tech­
niques, which aim to abstract the model to a smaller one, in such a way that if some property holds for
the abstracted model, it also holds for the original model.

Such abstraction techniques are formalized in the framework of Abstract Interpretation [CC77],
which was originally conceived as a unifying theory of compile-time (data-flow) analyses. Applica­
tions of Abstract Interpretation have traditionally been focussed on the analysis of universal safety
properties, that hold in all states (safety) along all possible executions (universality) of the program.1

With the advent of reactive systems, interest has broadened to a larger class of properties. Reac­
tive systems are systems whose main role is to maintain an ongoing interaction with the environment,
rather than to produce some final result on termination. Usually, such systems consist of several con­
current processes, and display a non-deterministic behaviour. Typical examples are flight reservation
systems, industrial plant controllers, embedded systems and operating systems. In the presence of non­
determinism, one may be interested to know whether some property holds along some possible execu­
tion path. Such properties will be called existential. Besides safety, another kind of property that is of­
ten considered is liveness, meaning that something should hold eventually (given an execution). Thus,
we have classified properties into four kinds by the criteria universal/existential and safetylliveness.
A typical combination of universal safety and existentialliveness properties is "along every possible
execution path, in every state there is a possible continuation which will eventually reach a reset state".

The semantic models and abstraction techniques used in the analysis of universal safety proper­
ties cannot be used for properties which involve aspects of existentiality and eventuality. The reason
is that these techniques abstract away from information about the choices that a program encounters
during execution. The analysis of existentiality and eventuality properties of behaviours, however, re­
quires models which, in addition to information about single states, also provides the transitions be­
tween states. For this reason, in model checking reactive systems, transition systems are used to model
the behaviour of programs. Being directed graphs over program states, such transition systems give de­
tailed information about program executions, including the possible choices in every state. Our aim is
to find notions of abstraction of such transition systems that preserve certain combined forms of univer­
sal/existential safetylliveness properties. This means that in order to know that such a property holds
in the original system, it suffices to know that it holds in the abstracted system.

The properties may be formalized by expressing them in a formal logic whose formulae can be
interpreted over transition systems. One commonly used logic is CTL* (computation tree logic, see
[EH86]). It contains universal and existential quantification over execution paths, as well as temporal
operators that express that, along a path, some property will hold (a) in the next state, (b) in every state
(safety), or (c) in some state (liveness).

The structure of this paper is as follows. The next section introduces the formal machinery to be
used. In Sect. 3, a notion of abstract transition system is developed which preserves properties from
CTL *. Such an abstract system is an optimal (in a sense that is made precise in Sect. 2) description

1 The notions of universality and safety of a property are not always distinguished as explicitly as we do in this paper.
What we call "universal safety" is elsewhere often just tenned "safety" or "invariance".

2

of a (concrete) transition system. In computing such abstract models, one may decide to sacrifice op­
timality in exchange for a gain in efficiency. The approximation ordering between abstract systems,
defined in Sect. 4, formalises this notion of sub-optimality. Sect. 5 then shows how abstractions may
be computed directly from a program text by "lifting" the operations of a programming language to
a domain of data descriptions. Conditions are given under which the constructed models are optimal,
and an alternative construction method is indicated which yields optimal models even in absence of
those conditions. Furthermore, it is shown that sub-optimal models are constructed when computing
approximations to the lifted operations. An elaborate example is presented in Sect. 6. Sect. 7 briefly
indicates the consequences of insisting on strong preservation, meaning that not only truth, but also
falsehood of formulae is preserved. Sect. 8 compares ours to related work, and Sect. 9 concludes.

2 Preliminaries

Temporallogic Given is a set Prop of propositions. We choose to define CTL * in its negation normal
form, i.e., negations only appear in front of propositions. This facilitates the definition of universal and
existential CTL *. The set of literals is defined by Lit = Prop U { .p I p E Prop}.

2.0.1 DEFINITION. The logic CTL * is the set of state formulae which is inductively defined by the
following clauses.

1. If p E Lit, then p is a state formula.

2. If'P and 'IjJ are state formulae, then so are 'P II 'IjJ and 'P V 'IjJ.

3. Any state formula is also a path formula.

4. If'P and 'IjJ are path formulae, then so are 'P II 'IjJ, 'P V 'IjJ, X 'P, 'P U 'IjJ and'P V 'IjJ.

5. If'P is a path formula, then 1f'P and O3'P are state formulae.

For'P E CTL *, the formula ''P is considered to be an abbreviation of the equivalent CTL * formula
in negation normal form (obtained in the usual way). The abbreviations true,false and -+ can then be
defined as usual. For a path formula 'P, F'P and G'P abbreviate true U 'P andfalse V 'P respectively.

IfCTL * and O3CTL * (universal and existential CTL*) are subsets ofCTL* in which the only allowed
path quantifiers are If and 3 respectively.

Transition systems CTL * formulae are interpreted over transition systems 7 = (2;, I, R) where 2;

is a set of states, I <;; 2; is a set of initial states, and R is a transition relation over 2; which is total and
image-finite, so that for every s E 2; there exists a positive, finite number of t E 2; for which R(8, t)
holds. A path in 7 is an infinite sequence 7r = 808, ... of states such that for every i E IN, R(Si, 8i+')
holds. The notation 7rn denotes the suffix of 7r which begins at 8 n . For s E 2;, a (7, 8)-path (or s-path
when 7 is clear from the context) is a path in 7 that starts in s.

We assume a function 11·11 : Lit -+ P(2;), satisfying Ilpll n lI.pll = 0 for every proposition
p E Prop, which specifies the interpretation of literals over states. Intuitively, Ilpll is the set of states
where p holds. Transition systems thus defined are essentially the same as Kripke structures ([Kri63ll.
The only difference is that we have the function 11·11 instead of a labelling function from 2; to sets of
literals.

3

5 Computing Abstract Models by Abstract Interpretation

After having defined abstract models and proven their preservation properties, we now get to the topic
of how to compute such models directly from a program. We will do this through abstract interpretation
of the program text. An abstract interpretation may be viewed as a non-standard semantics defined over
a domain of data-descriptions, where the functions are given corresponding non-standard interpreta­
tions. The abstract states are then valuations of program variables over the domain of data-descriptions,
and the abstract transitions are computed by evaluation of the abstract semantic functions over these
domains.

In order to further develop the theory, we first need to fix a programming language. We use a lan­
guage which is based on action systems [BKS83], which, although being very simple, will help to grasp
the idea of how to abstractly interpret operations in "real" programming languages, as it contains rudi­
mentary forms of the common notions of assignment, test and loop. A program is a set of actions of
the form Ci(x) --+ ti(x, x'), where x represents the vector of program variables, Ci is a condition on
their values and ti specifies a transformation 7 of their values into the new vector x' (i ranges over some
index set J). Executing an action means evaluating its condition Ci and, if and only if this yields true,
updating the program variables as specified by the associated transformation ti. A program is run by
repeatedly nondeterministically choosing an action and executing it. We let Val denote the set of val­
ues that the vector x may take, and IVai <; Val the set of values that it may have initially. Thus, each
Ci is a predicate over Val and each ti a relation on Val2

5.0.1 DEFINITION. LetP be the program {Ci(X) --+ ti(X,X') i E J}. ItsconcretemodelC is
defined as follows:

• I; = Val,

• I = IVai,

• R = {(v, v') E Val 2 I 3iEJ Ci(V) II ti(V, v')}.

Next, we assume a set 0 Val of descriptions of sets of values in Val, via a Galois insertion (a,,),
and define two types of non-standard, abstract interpretations of the cis and tis over 0 Val in such
a way that approximations of the abstract models of a program may be computed by interpreting the
operators in the program correspondingly.

5.0.2 DEFINITION. Fora, bE a Val,

• cna) {} 3"E'y(a) Ci(V);

• ti (a, b) {} b E {a(Y) lYE min {Y' I ti 33(,(a), Y')}};

• cf(a) {} V"E'y(a) Ci(V);

• tf(a, b) {} bE {a(Y) lYE min{Y' I ti'v'3(,(a), Y')}}.

Furthermore, we define the abstract model AM = (0I;, 01, oRF, oRC) where:

7We could have represented this transformation as the simultaneous assignment x' := tl(X). However, by abstracting
the function ti, it may become a relation, and we prefer to denote both the concrete and the abstract transformations in the
same way.

II

fa = think, odd(n) -----> fo:= eat
£0 = eat -----> fo:= think, n := 3 * n + 1

£1 = think, even(n) -----> £1 := eat
n:= 3*n+1

eatl

f1 = eat, even(n) -----> £1 := think, n:= n/2

(b)

(aJ

Figure I: The dining mathematicians (a). Expressed as an action system (b).

The program may be viewed as a protocol controlling the mutually exclusive access to a common
resource of two concurrent processes, modelling the behaviour of two mathematicians, numbered 0
and I. They both cycle through an infinite sequence of "think" and "eat" states. The right to enjoy
a meal in strict solitude is regulated by having them inspect the value of n before eating, letting the
one go ahead only if n has an odd value, and the other only if n is even. Upon exit from the dining
room, each mathematician has its own procedure for assigning a new value to n. Transitions can only
be taken when the enabling conditions are satisfied, e.g., mathematician I can only leave the dining
room if n is divisible by 2. An execution is any infinite sequence of (arbitrarily) interleaved steps of
both processes which starts in a state where both mathematicians are in their thinking state, and n is
set to some arbitrary positive integer value. We want to verify mutual exclusion and the absence of
individual starvation along every execution. In order to formalize this, we first express the program as
an action system. As data and control are treated uniformly in such systems, we introduce variables
fa and flo both ranging over {think, eat}, to encode the effect of "being in a location" thinki or eati.
See Fig. I (b). The state space L; of this program is the set { think, eat} 2 X lV \ {O} of values that the
vector (£0, £1, n) of program variables may assume. The initial states are I = {(think, think, n) I
n E lV \ {O}}. Its transitions are defined as in Def. 5.0.1, using the standard interpretations of the
tests =, even, odd and operations 3*, + 1 and /2 (the latter three are considered as operations on one
argument, i.e., functional binary relations).

The properties to be verified are expressed in CTL * as follows.

IIG,(£o = eat 1\ £1 = eat) (7)

IIG(£o = eat --+ II F£1 = eat) (8)

IIG(f1 = eat --+ II F£o = eat) (9)

As these formulae are in IICTL*, we can verify them via a free abstraction.
The abstract domain is defined by providing abstractions of the components which comprise the

concrete domain. We choose to leave the component {think, eat}2 the same. Formally, this means that
we take an abstract domain with two elements whose concretizations are {think} and {eat}, however,
for readability we just denote these elements by think and eat respectively. To abstract lV \ {O}, we
choose an abstract domain in which n may take the values e and D, describing the even and odd positive

17

integers respectively, i.e, 1'(e) = {2, 4, 6, ... } and 1'(0) = {1, 3, 5 ... }. To both abstract domains, we
add a top element T. The set 0 Z; of abstract states is now defined as follows.

oZ; = {think, eat, T}2 X {e, 0, T}

It is easily verified that the concretization function thus defined determines a Galois insertion (a, 1')
from P(Z;) to oZ;. For the abstract initial states we have:

oJ = {(think,think,e),(think,think,o)}

Having chosen an abstract domain, we also have to provide abstract interpretations, over this do­
main, of the operations that appear in the program, along the lines of Def. 5.0.2. The tables (a) and (b)
in Fig. 2 give the definitions of the free abstract interpretations of the transformations and tests on the
abstract domain {e,o, T}. The operations 3*, +1 and /2 are considered single symbols. The tables
have to be interpreted as indicated by the following examples. The entry true in table (b), row evenF,
column e, indicates that evenF(e) holds, i.e. (cf. Def. 5.0.2), 3n E'y(e) even(n). The entry false in

table (a), row +1F, column (e,e), means that +1F(e,e) is false, i.e., for any minimal Y such that
+ 133 (1'(e), Y), we have a(Y) # e (see Defs. 5.0.2 and 2.0.4). From these diagrams we see for ex-

I FREE· II (e e) I (e 0) I (e T) I (0 e) 1(00) I (0 T) I (T e) I (T 0) I (T, T) I , , , , , , , ,
3*1' true false false false true false true true false
+1F false true false true false false true true false

/2" true true false false false false true true false

(a)

I FREE· II e o T I CONSTR· II (0 100) I (0 e) I (00) I (0 T) I .. , , , ,
evenF true false true 3*" false false true false
odd" false true true +1" false true false false

(b) (c)

I CONSTR.: II 100 I e o T I CONSTR· II think I eat .. T

evenCJ true true false false = think(.J true false false
oddCJ false false true false = eatU false true false

(d) (e)

Figure 2: Free abstract interpretations of operations (a) and some of the tests (b). Constrained abstract
interpretations of some operations (c) and tests (d and e).

ample that /2 F is not functional (table (a), row /2F, first two columns), illustrating that a function may
become a relation when abstracted. The tables (c)-(e) are explained below.

Now we can abstractly interpret the program over this abstract domain, using the interpretations
given in the tables. Such an abstract execution yields the abstract model of Fig. 3. In this model, only

18

<think,
think,

0>

Figure 3: The free abstract model.

the reachable abstract states are shown. We see that in no reachable state the property fa = eat /I f 1 =
eat holds. Hence we have established property (7). Furthermore, the only path from the state where
fo = eat reaches fl = eat within 2 steps, so we have also verified property (8).

However, the abstraction does not allow verification of the other non-starvation property, (9): a
counterexample in the abstract models is the path cycling infinitely between (think, think, e) and
(think, eat, e). It turns out that the negation of property (9) can also not be established via the con­
strained transition relation. So, only refinement of the abstract domain may bring the answer. In this
case, the abstract states where n = e would have to be unraveled into infinitely many states represent­
ing the cases where n is divisible by 4, by 8, by 16, Hence, with our methodology, it is impossible
to verify property (9) through a finite abstraction.

Nevertheless, an interesting question is how the refinement of an abstract model, in order to decide
indeterminate results, can be computed. In [DGG93a] we identify conditions under which a strongly
preserving abstraction may be computed by a successive refinement which is guided by the form of the
formula to be checked.

In order to illustrate the use of the constrained abstraction, we consider a small extension to the
program: we add a third concurrent process which can "restart" the system by setting n to value 100.
This may only be done when both mathematicians are thinking, otherwise there may be executions
possible which violate the mutual exclusion property. To this effect, the following fifth action is added
to the program:

fa = think, fl = think ----> n:= 100

We want to check whether it is always possible to reach a "restart" state. Writing restart for thinko /I
think! /I n = 100, this property is expressed in CTL * by:

VG3Frestart (10)

We extend the abstract domain for n by the value 100, where ,(100) = {lOO}. Formula (10) being in
full CTL*, we need a mixed abstraction. The tables (c)-(e) in Fig. 2 provide some of the entries which
will be needed in an abstract execution of the program. The tables from Fig. 2 have to be extended in
order to take into account the new abstract value 100. Being straightforward, these extensions are left
to the reader.

The resulting abstraction is depicted in Fig. 4. Solid arrows denote free transitions, dashed arrows
represent constrained transitions. Note that it is not in general the case that oRe <;; oRF, as is illus­
trated by the arrow from (think, eat, e) to (think, think, T). Property (10) is verified on this model,
interpreting the universal quantification along the free paths, and the existential quantification along

19

_ = restart

Figure 4: The mixed abstract model for the modified program.

the constrained paths. It can easily be seen that (10) holds, hence, we have established its validity in
the concrete program.

As an example of the computation of approximations by choosing non-optimal abstract interpreta­
tions Ii of operations in the program, consider the dining mathematicians again (without the "restart"
extension). Take optimal free abstract interpretations of all operations but 3" for which we take the
following approximation: 3,F(0, T) = true and 3,F(0, e) = 3,F(0,0) = false. Furthermore, take
(think, think, T) as the abstract initial state. This gives the free abstraction of Fig. 5, from which still
various properties may be deduced, such as the fact that at least one mathematician will keep engaged
in a cycle of thinking and eating.

<eat,
think,

0>

eat,
e>

Figure 5: An approximation to the free abstraction.

7 Strong Preservation

In Sect. 5.1, we have identified conditions under which computed abstract models are optimal in the
standard sense of Abstract Interpretation (see Sect. 2). This notion of optimality concerns the quality
of the abstract interpretation used to compute an abstraction, aI(P), relative to the "ideal" abstraction
a(I(P)). In particular, it is optimality with respect to a given abstract domain.

20

properties. This generalization consists in allowing the next-state relation of a non-deterministic tran­
sition system to be abstracted to a relation, and not a function as is common practice. This allows the
analysis, via the abstraction, of not only universal properties - expressing that something holds along
all possible executions -, but also existential properties - expressing the existence of paths satisfying
some property. Furthermore, both safety as well as liveness properties are preserved. We have proven
that the truth of every property expressible in CTL * is preserved from abstract to concrete model. As is
common in Abstract Interpretation, the attained reduction depends solely on the choice of the abstrac­
tion function, thus allowing better reductions than is the case with minimization based on bisimulation.
This was possible by considering abstract transition systems having two different transition relations,
each preserving a seperate fragment of CTL *. The use of a Galois insertion to relate concrete and
abstract states allowed the definition of both types of transitions over the same set of abstract states,
resulting in the preservation of full CTL *. The price to be paid is that there exist formulae - and in­
creasingly many when the abstraction becomes coarser - which do not hold in the abstraction, and
neither do their negations. In case of persistence on strong preservation (i.e., preservation of both truth
and falsity of formulae), which renders the abstract model bisimilar to the concrete model, we have
shown the implications for the form that the abstract domain takes.

From the viewpoint of property-preserving characteristics of simulation relations, we have man­
aged to define a notion of precision which "all owes to separate the wheat from the chaff". An abstrac­
tion function a specifies the optimal abstract model for a given concrete system, while an approxi­
mation order ::S distinguishes the relative precision between abstract models. The embedding of the
property preservation results for simulation in the framework of Abstract Interpretation opens up the
possibility of constructing abstract models directly from the text of a program, thereby avoiding the
intermediate construction of the full concrete model. This construction is possible by associating non­
standard, abstract interpretations with the operators in a programming language which allows their
evaluation over descriptions of data. To this purpose, we chose a simple programming language and
defined abstract interpretations of its tests and operations. Conditions were given under which the free
and constrained abstract transition relations thus computed coincide with the optimal relations as spec­
ified by a. Furthermore, a notion of approximation on the level of operations was given by which the
user may simplify the task without loosing the preservation results. Furthermore, such approximations
can accelerate the computation of abstract models, be it at the risk of obtaining a model that does not
contain enough information in order to verify the property. It was illustrated by an example that these
techniques can be applied to verify properties of systems with an infinite state space.

Further work As pointed out in Sect. 6, the construction of abstract models that strongly preserve
a given property of interest requires refinement of the abstract domain. The framework of Abstract
Interpretation, being based on a given abstract domain, does not offer a methodological approach to
such refinement. A trial-and-error approach would benefit much from the development of heuristics
which are specific to the domain of application, while also a set of powerful diagnostic tools in addition
to the model checker are invaluable in that case.

In the light of the quest for fully automated verification methods, we are currently investigating
the use of partition refinement algorithms for the construction of strongly preserving models; see the
papers [DGG93a] and [DGD+94]. Other, rather preliminary ideas point in the direction of using the­
orem provers and algebraic manipulation tools. Although the problem is undecidable in general, there
may well be interesting subclasses that can be decided efficiently.

In a recent paper, [KDG95], we apply the ideas developed in this paper and in [KeI94] to verify
",-calculus properties of a production cell ([DHKS95]) in a compositional fashion.

24

Acknowledgements We thank Susanne Graf for many interesting and stimulating discussions, and
Nissim Francez for his helpful comments. Anthony McIsaac pointed out some mistakes. The anony­
mous referees are acknowledged for their valuable suggestions.

References

[BCG88] M. C. Brown, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in proposi­
tional temporal logic. Theoretical Computer Science, 59: 115-131, 1988.

[BFH+92] A. Bouajjani, J.-c. Fernandez. N. Halbwachs, P. Raymond, and C.Ratel. Minimal state graph gen­
eration. Science of Computer Programming. 18 (3):247-27I,June 1992.

[BKS83] RJ.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In 2nd
ACM SIGACT-SIGOPS Symp. on PoDC, pages 131-142. ACM, 1983.

[CC77] P. Cousot and R. Causal. Abstract intetpretation: A unified lattice model for static analysis of pro­
grams by construction or approximation of fixpoints. In Proceedings 4th ACM Symp. Principles
Prog. Lang., pages 238-252, Los Angeles, California, 1977.

[CC79] P. Cousot and R. Causal. Systematic design of program analysis frameworks. In Proceedings 6th
ACM Symp. Principles Prog. Lang., pages 269-282, San Antonio, Texas, 1979.

[CC92a] P. Cousot and R. Causal. Abstract intetpretation and application to logic programs. Journal of Logic
Programming, 13:103-179,1992.

[CC92b] P. Cousot and R. Causal. Abstract intetpretation frameworks. Journal of Logic and Computation,
2(4):511-547,1992.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent sys­
tems using temporal logic specifications. ACM Transactions on Programming Languages and Sys­
tems, 8(2):244-263,January 1986.

[CFM94] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic programs. ACM
Transactions on Programming Languages and Systems, 16(3):649-686, May 1994.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems, 16(5), September 1994.

[CIY94] R. Cleaveland, S.P. Iyer, and D. Yankelevich. Abstractions for preserving all CTL' formulae. Tech­
nical Report 94-03, N.C. State University, April 1994.

[CR94] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems. In B. Jonsson and
J. Parrow, editors, CONCUR '94: Concurrency Theory, Lecture Notes in Computer Science 836,
pages 417-432. Springer-Verlag, August 1994.

[DGD+94j D. Dams, R. Gerth, G. Dohmen, R. Herrmann, P. Kelb, and H. Pargmann. Model checking using
adaptive state and data abstraction. In Dill [DiI94].

[DGG93a] D. Dams, R. Gerth, and O. Grumberg. Generation of reduced models for checking fragments of
CTL. In C. Courcoubetis, editor, Proc. Fifth Conf. on Computer-Aided Verification (CAV), number
697 in Lecture Notes in Computer Science, pages 479-490. Springer-Verlag, July 1993.

[DGG93b] D. Dams, O. Grumberg, and R. Gerth. Abstract intetpretation of reactive systems: Abstractions
preserving ACTL', ECTL' and CTL'. Draft, July 1993.

[DGG94] D. Dams, O. Grumberg, and R. Gerth. Abstract intetpretation of reactive systems: Abstrac­
tions preserving VCTL', 3CTL' and CTL'. In E.-R. Olderog, editor, Proceedings of the
IFlP WG2.IIWG2.2IWG2.3 Working Conference on Programming Concepts, Methods and Calculi
(PROCOMET), IFIP Transactions, Amsterdam, June 1994. North-HollandlElsevier.

25

[DHKS95] W. Damm, H. Hungar, P. Kelb, and R. SchlOr. Using graphical specification languages and symbolic
model checking in the verification of a production cell. In C. Lewerenz and T. Lindner, editors,
Formal Development of Reactive Systems: Case Study "Production Cell", number 891 in Lecture
Notes in Computer Science. Springer, 1995.

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
ACM Distinguished Dissertations. The MIT Press, 1989.

[Dil94] D. Dill, editor. Proc. Sixth Conf. on Computer-Aided Verification (CAV), number 818 in Lecture
Notes in Computer Science, 1994.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching versus linear
time. Journal of the ACM, 33(I): 151-178, 1986.

[Gin68] A. Ginzburg. Algebraic Theory of Automata. ACM Monograph Series. Academic Press, New
YorklLondon, 1968.

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In C. Cour­
coubetis, editor, Proceedings of the Fifth Conference on Comput.-Aided Verification, LNCS 697.
Springer-Verlag, July 1993.

[Gra94] S. Graf. Verification of a distributed cache memory by using abstractions. In Dill [Dil94]. To appear
in Distributed Computing.

[Har87] D. Hare!. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231-274,1987.

[KDG95] P. Kelb, D. Dams, and R. Gerth. Efficient symbolic model checking of the full It-calculus using
compositional abstractions. To appear, March 1995.

[KeI94] P. Kelb. Model checking and abstraction: A framework preserving both truth and failure informa­
tion, 1994. OFFIS, Oldenburg, Germany.

[Kri63] S. Kripke. A semantical analysis of modal logic I: normal modal propositional calculi. Zeitschrift
far Mathematische Logik und Grundlagen der Mathematik, 9:67-96, 1963. Announced in Journal
of Symbolic Logic, 24, 1959, p. 323.

[Kur89] R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker, w.-P. de Roever, and
G. Rozenberg, editors, Proceedings of the Workshop on Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages 414-
454. Springer, 1989.

[LGS+93] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions
for the verification of concurrent systems. Spectre technical report RTC40, LGI/IMAG, Grenoble,
France, 1993. To appear in Formal Methods in System Design.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proceedings of the Twelfth ACM Symposium on the Principles of Programming
Longuages (POPL), pages 97-107, New Orleans, Louisiana, January 1985. ACM Press.

[Mar93] K. Marriott. Frameworks for abstract interpretation. Acta Informatica, 30(2): 103-129, 1993.

[Mil7l] R. Milner. An algebraic definition of simulation between programs. In Proceedings of the Second
International Joint Conference on Artificial Intelligence, pages 481-489. BCS, 1971.

[Par81] D. Park. Concurrency and automata on infinite sequences. In 5th GI-Conference on Theoretical
Computer Science, number 104 in Lecture Notes in Computer Science. Springer-Verlag, 1981.

[QS81] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proceedings afthe 5th International Symposium on Programming. volume 137 of Lecture Notes in
Computer Science, pages 337-351. Springer, 1981.

26

[Sif82]

[Sif83]

J. Sifakis. Property preserving homomorphisms and a notion of simulation for transition systems.
Rapport de Recherche 332, IMAG, Grenoble, France, November 1982.

J. Sifakis. Property preserving homomorphisms of transition systems. In E. Clarke and D. Kozen,
editors, 4th Workshop on Logics of Programs, number 164 in Lecture Notes in Computer Science,
pages 458-473, Pittsburgh, June 1983. Springer Verlag.

27

	Abstract
	1. Introduction
	2. Preliminaries

