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Abstract

In this thesis gas-wall interaction modelling for rarefied gases is further investigated. As
a starting point, gas-wall interaction data from molecular dynamics simulations of argon
gas between two parallel gold walls is analyzed. The performance of standard parametric
kernels as well as Gaussian mixture based scattering kernels is tested. It is found that
Gaussian mixture based scattering kernels outperform the standard parametric kernels on
the molecular dynamics data in several aspects. Further, a general coupling procedure
between Gaussian mixture based scattering kernels and the lattice Boltzmann method is
proposed for gas-wall interaction modelling. The coupling procedure is tested in the lattice
Boltzmann method on rarefied Couette flow simulations with velocity slip near the walls.
It is found that the performance of the coupled boundary condition correctly converges to
the analytical solution. Additionally, the results show an improvement on existing rarefied
gas-wall interaction boundary conditions.
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1. Introduction

1.1 Rarefied gas flows

One way to quantify the type of flow regime in a fluid dynamics problem is by an indication
of the mean free path of the molecules with respect to the size of the system. To do this,
generally the Knudsen number is being used which is defined as Kn = % Here, A is the
mean free path length of a molecule and L is the characteristic length scale of the system
under consideration. The Knudsen number allows for classification of a flow problem in
several flow regimes which are continuum flow (Kn < 0.01), slip flow (0.01 < Kn < 0.1),
transitional flow (0.1 < Kn < 10) and free-molecular flow (Kn > 10)[1]. When the Knudsen
number of a flow problem starts to become large enough for the problem to move into the
transitional flow regime, well known continuum approaches start to become inaccurate [2,
3]. In these cases of increasing rarefaction one needs to resort to approaches that allow for
taking into account the microscopic behaviour of the molecules.

Before looking more in depth into how to model rarefied flow problems it is interesting
to discuss some situations where these phenomena occur. In terms of technological appli-
cations, especially lithography and flights high up in the atmosphere stand out. During
the fabrication of chips, atomic layers are being etched at close to vacuum conditions.
Given that it is nearly impossible to remove all gas molecules from the light-exposition
environment, the behaviour of the present gas is important to model since it can cause
contamination of the system’s components [4]. High altitude flight is another distinct ap-
plication of rarefied gas flows. In this case one is usually dealing with low Reynolds/high
Mach number flows. While this reduces the need for turbulence modelling, accurately
computing aerodynamic forces and heat generation still remains challenging [5].

1.2 (Gas-wall interaction modelling

As with all fluid dynamics problems, accurately predicting the behaviour in the bulk is
vital for obtaining a correct solution. Hence, there has already been much effort to model
gas-gas interactions when modelling rarefied gases. This can be seen by the vast amount of
literature available on the topic. However, if the gas-wall interaction is not also accurately
taken care of the solution of the full low problem quickly deteriorates. When the Knudsen
number is small and in the hydrodynamic regime, gas-wall interaction can be modeled on
a macroscopic scale by means of the no-slip condition. Though, when the gas becomes
rarefied, its molecular behaviour becomes more expressive on the macroscopic scale and
this condition can no longer be seen as accurate. In these cases, one commonly resorts to
scattering kernels to describe the interaction of gas molecules with a solid surface.

The interactions of gas-molecules with solid surfaces under rarefied conditions have been
investigated as much as the behaviour in the bulk [6]. For these interactions, the used
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gas-wall interaction model appears to be able to significantly alter the dynamics of a flow
problem [7]. Previous research has come up with several empirical gas-wall interaction mod-
els. Unfortunately, these gas-wall interaction models are generally not expressive enough
to model the actual gas-wall interaction with sufficient accuracy.

1.3 Project goals

The goal of this thesis is to take a more in depth look into approaches to model gas-wall
interaction throughout the entire Knudsen range. This will be done by making use of
molecular dynamics (MD) simulations. While there already exist several empirical models
(6, 8-13], as well as some exploratory work with machine learning to model rarefied gas-
wall interaction [14-17], there are still various unexplored research directions. Given the
unexplored research directions, the goal of this thesis is to take a better look at machine
learning to find an accurate description for this gas-wall interaction. Such an interaction
model can then be applied as a new type of boundary condition in higher level simulation
methods like the lattice Boltzmann method (LBM). How such a coupling can be done will
also be further investigated.

1.4 Thesis outline

This thesis is structured in nine chapters and implicitly structured into two main parts. The
first part is focused on analyzing MD data and constructing scattering kernels based upon
this data. This will be done in the conventional way via standard parametric scattering
kernels as well as by means of machine learning to construct parametric scattering kernels
from which the parameters are learned. As a machine learning model, Gaussian mixture
models (GMMs) are being used. This part consists of the following four chapters:

e Chapter 2: In this chapter the molecular dynamics will be further elucidated upon.
The fundamentals of the simulation technique as well as the current setup will be
discussed.

e Chapter 3: The topic of Chapter 3 are the parametric scattering kernels that can be
widely found in literature. Theory as well as application to the current problem will
be debated.

e Chapter 4: In this chapter the Gaussian mixture based machine learning technique
to construct parametric scattering kernels with learned parameters will be discussed
upon.

e Chapter 5: Chapter 5 is devoted to determining the performance of the scattering
kernels considered in Chapter 3 and 4. The kernels will be compared with the data
provided by the molecular dynamics simulations from the setup discussed in Chapter
2.
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The second part looks further into a possible coupling of the scattering kernels developed
in the first part to the lattice Boltzmann method. This is done by making use of a
discretization of the scattering kernel learned by the machine learning model. Herein,
the following chapters can be distinguished:

e Chapter 6: In this chapter of the thesis the used LBM setup will be elaborated upon.
This chapter acts as a preparation for the next chapter on the coupling algorithm.

e Chapter 7: In this chapter the coupling algorithm to couple the Gaussian mixture
based scattering kernels to the lattice Boltzmann method is worked out.

e Chapter 8: The results of the hybrid simulation technique will be elaborated upon
in this chapter. Special attention will be given to quantifying the performance of the
proposed boundary condition for simulation of a rarefied Couette flow.

Finally, Chapter 9 presents the main conclusions of the thesis and a discussion.



2. Molecular dynamics

One way of simulating the gas-wall interactions of rarefied gases is via molecular dynamics
simulations. In this chapter the underlying principles as well as the current setup will be
discussed.

2.1 Molecular dynamics fundamentals

For simulations on the microscale level, like molecular dynamics simulations, all individual
molecules in a system are tracked. While it would be the preferred way to describe the full
dynamics of a system, such a microscopic description of the dynamics of the state of a gas
is a nearly impossible task in practice. Given the vast amount of gas molecules that need
to be considered for macroscopic volumes, it is inconceivable from a computational point
of view. This makes such a description for macroscopic systems only useful for conceptual
purposes. However, if a small amount of molecules is being considered it is still possible
to compute the full dynamics of a fluid problem on a microscopic scale.

To simplify the description of the dynamics, as well as the state of a system, it is useful
to only consider monatomic gases. For this type of gases the microscopic descriptions
that are used in molecular dynamics simulations are relatively simple. The dynamics of
these gas molecules are characterized by classical mechanics, which is nothing more than
Newton’s laws of motion, and an interaction potential between molecules to compute forces.
Therefore, this enables us to write the equation of motion for the particles in a system as
dVZ'

Mg = F,. (2.1)
Where 7 is an index that denotes a particular particle and m; denotes the mass of that
particle. The velocity of the particle is equal to v; and the time derivative of v; corresponds
to the particle’s acceleration. Furthermore, the force acting on this particle F; can be

written as
F,=—> VU(ry). (2.2)

Here, a summation is done over all other particles to compute the force they exercise on
particle . The force is defined by the gradient of the interaction potential U which is
dependent on the distance 7;; between the molecules ¢ and j. While there exist several
interaction potentials in literature, the most simple potential and the most commonly used
when studying rarefied gases is the Lennard-Jones (LJ) potential. This potential can be

written as ; 6
Ul(ri;) = 4e [(:—J) _ (%) ] . (2.3)

This inter-particle potential consists of a steep repulsive term, (O‘/Tij)m, that becomes
prevalent for short distances as well as a smoother attractive term for larger distances,

4
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(o] Tij)ﬁ. Here, € and o are parameters denoting the well depth and the van der Waals
radius respectively [18].

When an inter-particle potential is chosen, the state of a system at a later time can be
computed by integrating the equations of motion of all particles to compute new velocities
and positions. Doing this for a large amount of time steps makes it possible to compute
how a particular system evolves in time. As a result, complex molecular systems can be
simulated from which the dynamics cannot be predicted analytically.

2.2 Gas-wall interaction simulation techniques

To be able to thoroughly describe gas-wall interactions it is necessary to have a solid un-
derstanding of the scattering dynamics that are at play. Molecular dynamics is an excellent
simulation technique to simulate gas-wall interaction on an atomic scale. However, as dis-
cussed before it is also computationally very expensive which makes it impossible to use
directly as a simulation method for gas-wall interaction in macroscopic systems. Although,
it is possible to use this simulation technique to compute the scattering dynamics between
a gas and a wall for very small systems. The results that are obtained for these simula-
tions can then be used as boundary conditions for other less computationally expensive
simulation techniques.

As an example, one of the methods that can be used is by looking at the temperate gradient
along a nanochannel filled with a gas during a simulation. Scattering interactions can then
be computed by splitting the distributions moving to and from the wall. This was done in
a paper by Nedea et al. [19].

Another possible approach is to look at changes in velocities after a molecule hits the wall.
In this case several methods are possible like molecular beam models [20]. With these
models, molecules are being shot at a wall after which changes in particle properties are
being measured. A disadvantage of this approach is that gas-gas interactions are not taken
into account. Therefore, this approach can only be considered valid when highly rarefied
gases are studied.

A different method that looks at changes in velocities after a molecule hits the wall is based
upon doing molecular dynamics simulations between two plates with periodic boundary
conditions [17, 21]. A virtual border is then placed just in front of the wall, at the cut-off
distance of the wall’s interaction potential, and particles are being tracked whenever they
cross the virtual border. Changes between the properties of the particles between two
consecutive border crossings are being stored and counted as a single gas-wall interaction.
With this approach also gas-gas interactions are taken into account in the gas-wall inter-
action. Hence, this can be regarded to give valid results for arbitrary Knudsen number.
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2.3 Current simulation setup

In this thesis an equivalent setup with parallel walls is being used for data generation. A
schematic of this three-dimensional setup can be seen below in Figure 2.1. This system to
investigate gas-wall interactions is, apart from certain parameter settings, identical to the
setup in the papers by Nejad et al. [17, 21].
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Figure 2.1: A schematic of the molecular dynamics (MD) simulation setup. Two walls with a
temperature T; and Tj kept a distance d apart from each other. The top wall is moving with a
velocity +u,, and the bottom wall with a velocity —u,,. Gas-wall interactions are recorded at the
virtual borders which are placed at the cut-off distance of the wall’s interaction potential.

The upper and bottom plate at which the gas-wall interactions occur, have a cross-section
A of 12.5nm by 12.5nm and lie parallel to the z-z plane in the simulations. However,
given that the simulation borders in the  and the z-direction are periodic the simulation
practically extends over the entire x-z plane. Both walls are made of 9610 gold atoms
arranged in a face-centred cubic (FCC) structure. The outermost layers of gold atoms in
both walls that are not bordering the gas molecules have a fixed positioning. This is to
make sure the wall cannot undergo any translational or rotational motion. Although, all
the other layers that are close to the gas molecules can move to make sure that the gas-wall
interaction can still be simulated accurately. For the dynamics of the wall molecules, the
embedded atom potential (EAM) is used [22]. The wall temperature is set by making use
of a Berendsen thermostat with a damping constant of 100 fs.

The gas molecule used in all the simulations is argon and the molecule used for the wall is
gold. Since the gas molecule is monatomic, this avoids the need to take non-translational
degrees of freedom into account for gas-wall interactions. No external forces act on the gas
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molecules, their dynamics are only influenced by Lennard-Jones based interactions with
other gas and wall molecules. The distance between the two walls is denoted as d and
is equal to 110 nm for all the simulations in this report. The number of gas molecules is
denoted as N, and is equal to 18000. These parameters together with the cross-section
of the wall were chosen to accommodate for a Knudsen number Kn = 0.01. Therefore,
all the considered simulations can be classified to be in the slip flow regime according to
the Knudsen number. Hence, it can be assumed that rarefaction effects only need to be
taken into account near the walls while the macroscopic behaviour of the bulk can still be
described by the Navier-Stokes equations.

Simulations are initialized by setting the temperature of the gas equal to the temperature
of the bottom wall 7}, = 300 K. The temperature of the top wall is a parameter that differs
between simulations. After the initialization the system undergoes no changes in the num-
ber of particles, volume or total energy (NVE/microcanonical ensemble). Subsequently, an
equilibration phase of 3ns is performed after which execution continues for another 25ns
to do the data generation. The time step used for the entire simulation is 1fs.

To simulate non-equilibrium cases, a temperature difference between the plates can be set.
For this thesis, the convention that the bottom wall has a lower or equal temperature than
the upper wall is applied. As stated before, the temperature of the bottom wall is denoted
with Tj, and the temperature of the upper wall with 7;. Furthermore, non-equilibrium cases
can also be simulated by setting a velocity difference between the walls in the z-direction.
Here, the convention is applied that the bottom walls moves with a velocity —u,, and the
top wall moves with a velocity +u,,. This allows for setting up a dimensionless speed ratio
which can be used to quantify how fast the walls are moving. This speed ratio S,, is defined
as "

Sy = (2.4)

\/2/<:Tb/mg

where £ is the Boltzmann constant and m, the molecular mass of the argon gas molecules.

As can be seen in Figure 2.1, in the setup there are virtual borders present close to the
walls. These borders stretch over the full cross-section and are placed at the cut-off distance
of the Lennard-Jones potential between the gas and the wall molecules. Accordingly, the
virtual borders are placed a distance d,;, = 1.2nm away from the walls. Due to the cut-off
of the potential, whenever a gas molecule crosses a virtual border towards one of the walls,
it can be stated that the molecule is interacting with the wall. Whenever the molecule
crosses this virtual border again but in the direction of the bulk it can be affirmed that a
gas-wall interaction has occurred. A dataset with information on the gas-wall interaction
for a particular setup is generated by storing the state of the gas molecule at the virtual
border; incoming and outgoing velocity vector pairs are being stored for later analysis. It
should be noted that no information is stored on what actually happens between the virtual
border and the wall. Both gas-gas and gas-wall interactions can influence the velocity and
the trajectory of the molecules in this region. Though, this information is only indirectly
captured by the stored velocity vectors.



2. MOLECULAR DYNAMICS

2.4 Analyzed simulations

For the results in this report four molecular dynamics simulations were analyzed. These
simulations generated datasets for five different gas-wall interaction velocity distributions.
The simulations can be classified into three groups. First there is the equilibrium simu-
lation were both walls are at the same temperature and the walls are not moving with
respect to each other. Secondly two simulations were conducted where both walls are still
at the same temperature but moving with respect to each other. Finally, there is also
one simulation where the walls are not moving with respect to each other but there is a
temperature difference between the walls. Given that the temperature gradient depends on
the wall one is looking at, this simulation gave two datasets to analyze. The velocity dis-
tributions are dependent on whether the hot or the cold wall is being considered. Below in
Table 2.1 the parameter settings of the four simulations/five generated datasets is further
elucidated upon. The datasets are abbreviated with E1 for the equilibrium situation that
was conducted, V1 and V2 for the two datasets with a wall velocity and T1 and T2 for the
two datasets with a different wall temperature. Thorough analysis of these simulations will
be postponed till Chapter 5. First, the used scattering kernels will be further explained
upon in Chapter 3 and Chapter 4.

Table 2.1: The molecular dynamics simulations that were conducted for this thesis. The first
column denotes the abbreviation that will be used to refer to a particular dataset. Besides, the
second column displays the number of data points the dataset consists of. Furthermore, the third
column indicates whether the top (¢) or bottom (b) wall was used to generate the data points. In
the last four columns numerical values for the wall velocity and temperatures are given.

. Velocity parameters | Thermal parameters
Dataset abbr. | Data points nr. | Wall S [ wy /5] 7, [ T, [K]
E1 227741 b 0.00 0.00 300 300
V1 236103 b 0.25 88.35 300 300
V2 240051 b 0.50 176.69 300 300
T1 333679 b 0.00 0.00 300 600
T2 240878 t 0.00 0.00 300 600




3. Parametric scattering kernels

In this chapter standard parametric scattering kernels wnll be discussed. In particular, it
will be discussed what kinds of standard parametric scattering kernels will be used in the
rest of the thesis as well as how these can be related to the molecular dynamics data and
sampled.

3.1 Scattering dynamics

A depiction of the monatomic scattering dynamics generated by the molecular dynamics
setup described in Section 2.3 can be seen below in Figure 3.1. For each gas-wall interaction
the incident-outgoing velocity vectors v/-v at the virtual border are stored in the generated
datasets. From these velocity vectors, the incident-outgoing vertical angles 7'~y can be
computed for further processing. Other angles that are important to compute are the
horizontal deviation angle from the tangential vector 7, as well as the horizontal deviation
angle from the x-axis 7,.

For the scattering kernels of the molecules at the virtual border several assumptions are
made. First of all, it is assumed that the scattering at the virtual border happens instan-
taneously. As a result, a time dependency of the scattering process between the virtual
border and the wall does not have to be taken into account. Second, it is assumed that
the particle crosses the virtual border again at the same location. Here, two arguments are
given why these assumptions could be considered reasonable. First, it should be noted that
the characteristic dimensions and timescales of these effects are in the order of nanometers
and nanoseconds. Therefore, when considering macroscopic systems these effects easily
become negligibly small. Second, with the current setup the situation can be supposed to
vary statistically only in the y-direction. Hence, in each z-z plane the situation can be
considered approximately equivalent everywhere. Since this also includes the plane which
contains the virtual border the previously described effects can be ruled out.



3. PARAMETRIC SCATTERING KERNELS

Figure 3.1: A schematic depiction of the scattering of a monatomic gas molecule from the virtual
border with incident-outgoing velocity vectors, v'-v, incident-outgoing vertical angles, 4'-, and
horizontal deviation angle from the tangential vector, ;. The normal and the tangential vector
are denoted with n and t respectively.

3.2 Accommodation coefficients

To describe gas-wall interactions by parametric models, usually several dimensionless
parameters are computed that describe the average scattering behaviour of incoming
molecules. These parameters are called accommodation coefficients (ACs) and can be
seen as parameters providing a description for the gas and the wall in terms of their prop-
erties. For the stochastic interaction models that will be discussed in Section 3.3, several
accommodation coefficients form part of the input commonly.

Given that the value of an accommodation coefficient is generally very sensitive to many
gas and surface conditions, special care should be taken when computing them. Therefore,
the method with which these ACs are being computed is very important, inconsistencies
between different methods often exist [20]. There are several approaches available with
which accommodation coefficients can be computed. Most of these are based on simu-
lating the scattering behaviour of individual molecules by means of molecular dynamics
simulations, as described in Section 2.2.

Independent of the method used to simulate the gas-wall interaction, the standardized
form to compute ACs is
in out
o= M (3.1)
(o) = {pmell)
for accommodation coefficients « related to energies. In this equation, the brackets (...)
denote averaging over the molecular quantity ¢ inside. Incoming populations with respect
to the wall are denoted with the superscript in whereas outgoing populations are indicated

10
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with out. When properties that hold for the thermal wall distribution are referred to,
the subscript wall is used to indicate this. A similar formula can be used to compute
accommodation coefficients related to momentum o. While the values for in- and outgoing
distributions in this equation can be computed from the molecular dynamics simulations,
the values for the property denoted by wall need to be computed from the equilibrium
distributions at the wall.

Equation (3.1) is a widely accepted approach to compute accommodation coefficients for
gas-wall interactions. However, when the temperature of the gas approaches the temper-
ature of the wall, the distributions of the incoming velocities and the thermal wall start
to coincide. As a result, the denominator in (3.1) is approaching zero which invalidates
the computation. To counter this issue, another method to compute the accommodation
coefficients was proposed in a paper bij Spijker et al. [23]. This method makes use of the
velocity correlations between the in- and outgoing particles. As stated in the paper, the
goal of this approach is to have an AC close to zero when the velocity correlation is strong
(reflective collisions) and an AC close to one when a velocity correlation is nonexistent (dif-
fusive collisions). This can be done by computing the accommodation coefficients based
on a line that best fits the collision data by doing least-squares regression. Thereafter, this
line can be compared with the diagonal (reflective collisions) and the horizontal (diffusive
collisions). Next, it should be noted that reflective and diffusive collisions are extreme
cases and all other collision distributions will give a value in between these two generally.
Accordingly, an energy accommodation coefficient is given as @ = 1 — § where [ is the
slope of the least squares regression of the collision data. As such, a different computation
for the accommodation coefficients is
> (@ = (™)) (@t = (™))
a=1--= , — : (3.2)
> (@i = (™)

(2

In this formula, the superscripts have their usual meaning while the index ¢ denotes a
particular particle. Thereupon, accommodation coefficients are computed by doing sum-
mations over the particle properties. Given its superior performance when the ingoing
distribution starts to overlap with the wall distribution, this method to compute ACs will
be used in this thesis.

Finally, some words on the terminology used to denote various types of accommodation
coefficients. To denote an accommodation coefficient in formula notation, the Greek letter
o is used for momentum accommodation coefficients and « for energy accommodation co-
efficients. The subscript denotes the direction over which this accommodation coefficient
is computed. Furthermore, in this report as well as other literature accommodation coeffi-
cient in text are often abbreviated as AC. The first letter before AC denotes the physical
property over which the accommodation coefficient is being computed. Here MAC stands
for momentum accommodation coefficient and EAC for energy accommodation coefficient.
Furthermore, usually there is also a distinction in the direction with respect to the wall

11
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for which an accommodation coefficient is being computed. In this case, normal and tan-
gential directions are being distinguished. Hence, NMAC stands for normal momentum
accommodation coefficient and TMAC for tangential momentum accommodation coeffi-
cient. One thing should be noted when considering tangential accommodation coefficients:
with these ACs it is possible to distinguish several types. First, there are general tangential
ACs which are computed for both tangential directions simultaneously; the vector norm
of the projection of the velocity vector on the tangential plane is used. Second, there are
also tangential ACs that are computed for one tangential direction in particular. In the
rest of the report it will be ensured that it is clear from the context which tangential ACs
are meant when they are used.

3.3 Interaction models

In this section, the most common description for stochastic gas-wall interaction models
will be further elaborated on. The goal of a gas-wall interaction model is to accurately
map the properties of gas molecules before collision to the wall with the properties of gas
molecules after collision. This is generally done by predicting the velocity distribution of
gas molecules bouncing from the wall based on their incoming velocity distribution. An
important parameter herein is the scattering kernel P(v' — v) which is the conditional
probability of an incoming particle with velocity v’/ being bounced back with an outgoing
velocity v. The full velocity distribution functions of the in- and outgoing particles can be
computed by means of the scattering kernel by

w0 = [P sy )ay. 33)

In this equation the terms f*(v') and f°%(v) are the velocity distribution functions of
the incoming and the outgoing molecules respectively. The subscript n is used to denote a
normal component and the letter n to denote the normal vector of the wall pointing towards
the gas. Furthermore, v,, and v}, denote the scalar normal projection of the velocity vectors.

3.4 Scattering kernels

Several scattering kernels have been developed to describe gas-wall interaction by means of
(3.3). In this section the most common scattering kernels will be discussed for usage in this
equation. These scattering kernels take into account different accommodation coefficients
as well as scattering dynamics. Therefore, the resulting scattering behaviour of molecules
differs per scattering kernel.

12
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3.4.1 Purely reflective kernel

The first kind of scattering kernel that will be considered here is the purely reflective kernel.
This kernel can be displayed as

PV =-v)=4§(V —v+2nv,) (3.4)

and was first introduced as a gas-wall interaction model by Maxwell in 1879 [8]. A collision
is purely reflective when a particle collides with a wall that is perfectly smooth and there
exists an infinite interaction potential with the wall. In simple physics, this means that
the wall is hard and does not deform when it is hit by the particle, neither is there energy
exchange between the wall and the particle. In this case the particle is bounced from the
wall with the normal velocity component inverted and the parallel velocity components
unchanged. As can be seen in (3.4) this is denoted by a Dirac delta function from which
the argument is zero only when the reflection is purely specular. Consequently, also the
outgoing velocity distribution function U is the ingoing velocity distribution f* with the
normal component inverted when this scattering kernel is used in (3.3).

3.4.2 Thermal wall kernel

Another wall model proposed by Maxwell is the thermal wall model [8]. This wall model
can be seen as the opposite of a purely reflective wall as discussed above. In the thermal
wall model, the wall is assumed to be so rough that when a molecule collides with the wall
it undergoes a whole series of collisions with the wall. Given that the wall is rough, it is
assumed that after the series of collisions the velocity of the particle is fully randomized
and therefore uncorrelated to the initial velocity. Hence, it is assumed that when the
particle leaves the wall, f°" is equal to the equilibrium distribution of a gas which has the
same temperature as the wall T,,. For an ideal gas this results in a Maxwell-Boltzmann
distribution wherefore the scattering kernel is equal to

m2v mu?
P(v R L — . )
V=V = T P < 2kTw) 39

In this equation, the symbols have their usual meaning. Besides, m denotes the mass of
an impinging particle and v the vector norm of the velocity vector v.

3.4.3 Maxwell kernel

The two kernels discussed above can be combined by means of linear superposition to form
the Maxwell scattering kernel which describes combined specular and diffusive reflection
of incoming molecules. This scattering kernel can be written as

m2v mu?
PV -sv)=1-a)d(v —v+2nv,) +a——e - 3.6
(v = v) = (- i jragien (<g) G0
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and is a combination of the two kernels discussed above with the exemption of a scaling
factor. As holds for the individual components, this linear combination has also been
described by Maxwell in [8]. To scale the two parts of the kernel an accommodation
coefficient is used which can be the TMAC or the EAC depending on the flow situation
[9]. In this case the EAC is chosen as an accommodation coefficient to scale the kernels; it
can be seen as the factor denoting the ratio between the two scattering regimes. The EAC
scales the weight of the diffusion present in the gas-wall interaction and is between zero
and one by definition. In the extreme cases, the purely reflective and thermal wall kernel
are re-obtained.

3.4.4 Extended Maxwell model/Maxwell-Yamamoto kernel

The Maxwell model as described in the section above has been extended by Yamamoto et
al. to allow for different accommodation coefficients for the tangential and normal velocity
components [9]. This scattering kernel decomposes the dependence between both velocity
components as

m mu?
P, = v)=(1-0a)d(v; —v) + oy kT, exp (— ijfw) (3.7)
for the two tangential components, and
2
, o , muy, _muy,
P (v, = v,) = (1 —ay)d (v, +v,) + Ozn—kTw exp ( QkTw) (3.8)

for the normal component. In these two equations, a; denotes the TEAC for the x and
z directions which should be computed separately. Further, a,, denotes the NEAC in the
direction normal to the wall. As can be seen, these two scattering kernels look very similar
to (3.6). It is notable that with this kernel there is no direct correlation between the normal
and the tangential velocity components. There is only an implicit relation between their
accommodation coefficients, which can be seen as a shortcoming of the model.

3.4.5 Cercignani-Lampis-Lord kernel

Another scattering kernel that is often used to describe gas-wall interactions is the Cercignani-
Lampis-Lord (CLL) kernel [6, 10] which originates from the kernels developed by Cercignani
and Lampis [11-13]. The kernel can be written as

P (v, =) = L ) exp (_ (ve = (1= 00) ) ) (3.9)

oy (2 — oy o1 (2 —oy)

for the two tangential components and as

P (v, — v,) = 2—u10 (2 (1- an)vnv;> exp <_ (v + (1 = o) vf)) (3.10)
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for the normal component. The Cercignani-Lampis kernel has three accommodation coeffi-
cients that are directly related to physical properties of the system. These accommodation
coefficients, denoted here by o, and «,, are two TMACs and one NEAC respectively. I
denotes the zeroth order Bessel function of the first kind. This kernel imposes an empirical
relation between the TMACs and TEACs, that is, oy = 0y (2 — ;). Therefore, as can also
be seen in (3.9), this kernel produces a reflected distribution of molecules that is a drifting
Maxwell-Boltzmann distribution with a temperature of o;T,, where «; is the empirically
computed AC. Furthermore, using this empirical relation the mean velocity of the reflected
molecules is equal to /1 — a; times the impinging velocity for this kernel. This model al-
lows a direct relation between the normal and tangential velocity components. Although,
as stated, several accommodation coefficients are only taken into account empirically.

3.5 Sampling Algorithms

Before most of the scattering kernels discussed in Section 3.4 can be used it is necessary to
first compute the correct accommodation coefficients from the molecular dynamics data.
Given that the walls can be moving it is necessary to first transform the velocity data
from the simulations to the moving inertial system of the wall being considered. This
transformation only has a small influence on the values of the accommodation coefficients
that have a dependency on the direction in which the wall is moving. However, it has to
be taken into account to ensure that the scattering results produced by the parametric
kernels are correct.

To sample the kernels, an equivalent transformation of the velocity data is being done as
with the accommodation coefficients. Since the walls can move, the velocities in the dataset
that form the ingoing distribution have to be transformed towards the inertial system of
the wall. Hereafter, the velocity data can be fed to the parametric scattering kernels from
which outgoing velocities can be sampled. To do this sampling, two cases are distinguished:
sampling of kernels that are closely related to the Maxwell kernel and sampling of the CLL
kernel.

3.5.1 Maxwellian kernel sampling

For kernels that are related to the Maxwell kernel, kernels that consist of a specular re-
flective part, a diffusive reflective part or both are considered. This includes every kernel
in Section 3.4 except the CLL kernel. Given that a specular reflective part can be imple-
mented by doing nothing more than an inversion of the normal velocities, the difficulty lies
in the diffusive reflections. Fortunately it is possible to separate a three-dimensional dif-
fusive reflection into three equations that denote a diffusive reflection along all coordinate
directions. This reduces the problem towards sampling a one dimensional probability dis-
tribution. Sampling these kinds of distributions can be done quickly as long as cumulative
distributions functions and percent point functions can be readily computed. This is the
case for the distributions being dealt with.
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3.5.2 Cercignani-Lampis-Lord kernel sampling

To sample the Cercignani-Lampis-Lord kernel the distributions are not sampled directly.
Instead, use is made of an algorithm developed by Peddakotla et al. [24]. This algorithm
can be seen below in Table 3.1 where some symbols were changed to accommodate for the
notation used in this thesis.

Table 3.1: The algorithm used to compute the scattered velocities for the CLL kernel. z1 ¢
are random numbers sampled uniformly between 0 and 1 and v;npﬁ is the most probable speed of
the ingoing velocities. The accommodation coefficients for the tangential directions x and z are

computed by the empirical formulas a, = 0, (2 — 0,) and a, = 0, (2 — 0,,) respectively.

r-component y-component z-component
Ty =\ —QyInT] Ty =/ —0yInxs r, =+ —a,Ilnxs
0, = 2mxy 0, = 2mxs 0, = 2mrxg
_ vh/1-a. _ vy 1oy _ vl/1—a;
Uz,m - T Uy,m o vz,m - T
mp,s mp,s mp,s
Uy = Uppps (Vom + T2 c080,) | vy =0y, \/7’% + 02, + 20y meost, | v, =0, (U, + 7. sing,)

Finally, the scattered velocities of all kernels are transformed back to the stationary inertial
system. This terminates the sampling procedures.
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4. Gaussian mixture based scattering
kernels

In this chapter, the Gaussian mixture based scattering kernels that were used are further
elucidated upon. These kernels are based upon Gaussian mixture models as a machine
learning technique for the molecular dynamics data. The basis for these models will be dis-
cussed first. Hereafter, data preprocessing, fitting procedures, sampling and hyperparameter
optimization will be debated.

4.1 Gaussian mixture models

In this thesis, Gaussian mixture models will be used as a basis for scattering kernels.
Setting up a scattering kernel is in principle the same as finding a suitable conditional
density estimation model to describe the scattering behaviour of the molecules. To do
this several options are available from which the most notable are the standard parametric
models from which several have been described in Chapter 3. As will be shown in Chapter
5, the performance of these parametric models provides a relatively accurate description
of the scattering but can be improved. Therefore, it becomes viable to also look into
other approaches for doing conditional density estimation. In previous years several new
techniques have been developed and tested to describe the scattering of molecules. Among
these are non-parametric models based on kernel density estimation or distributed element
trees [14, 15] as well as parametric models based on Gaussian mixtures [16, 17]. Although
Gaussian mixture models are classified as parametric models, their performance does not
have to be inferior to non-parametric models given that the number of parameters can be
set arbitrarily. This also gives them arbitrary flexibility. Other approaches that would be
possible for probability density estimation to be used in scattering kernels are for instance
histograms and neural density estimation [25]. However, all of these methods have their
drawbacks which could make them less preferable than Gaussian mixture models for the
current problem. The computational complexity of non-parametric models scales with the
number of data points, histograms have unwanted smoothing problems and neural density
estimation is more suited for high-dimensional data [25]. With GMMs, the computational
complexity can be tuned together with the models predictive accuracy. Furthermore, with
GMNMs there is a direct correlation between the velocity profiles in all directions. This is
not trivial for several other methods. Therefore, the focus will be on Gaussian mixture
models for estimating the probability densities in this thesis.

4.2 Data preprocessing

Before the molecular dynamics data can be fitted with a Gaussian mixture model, it is
necessary to apply several transformations on the dataset. In principle, it is not necessary
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to transform the velocities to the inertial system of the wall. Given that this is only a
linear transposition of the data points, the Gaussian mixture model has enough flexibility
to capture this. Only adjusting the means of the internal Gaussian functions is enough to
obtain the same performance. However, given that a transformation to the inertial system
of the wall offers considerable advantages when coupling Gaussian mixture model based
scattering kernels to the lattice Boltzmann method, this transformation is still applied.

Furthermore, it is necessary to make sure that the support constraints of the Gaussian
distributions used by the model as well as the molecular dynamics data correspond. The
support constraints of the normal components, v/, < 0 and v,, > 0, are not compatible with
Gaussian distributions. To ensure compatibility, the normal components of the molecular
dynamics data will be preprocessed by transforming these approximately Rayleigh distri-
butions to approximately Gaussian distributions. This is based on an equivalent procedure
by Liao et al. [16]. First, the probability density function of the Rayleigh distribution

Flu) = %e—“/@@z), w>0 (4.1)

is fitted through the absolute values of the velocities in the normal directions to obtain a
scale parameter 6 for the ingoing velocities v/, as well as a scale parameter for the outgoing
velocities v,,. This scale parameter can then be used to transform the normal components
to an estimated Gaussian distribution via the transformation

T (u) = V26 erf™ [1 — 2exp (—2“—;)1 : (4.2)

Applying this transformation on the normal data will ensure that the data points obey
approximately Gaussian distributions in all directions. Moreover, the support constraints
of the Gaussian functions are satisfied after which a Gaussian mixture model can be fitted
through the data. When the fitting of a Gaussian mixture model is completed, samples
can be transformed backwards by the transformation

T ) = \/ —92621n B . %erf (ﬁ)] (4.3)

while using the same scale parameters as obtained before.

4.3 Fitting procedure

After the data preprocessing, a Gaussian mixture can be fitted on the scattering data.
This mixture model based scattering kernel can be written as

PV V) =PV |¥) = P(X)= 36,7 (X) = S 0N (X |0, 5)  (44)
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to produce the desired density estimate. In this equation, the index j runs over the K
multivariate Gaussian distributions A that are in the mixture model. Each multivariate
Gaussian distribution j is weighted by mixing coefficient ¢;, has a mean vector p; and
covariance matrix X;. In addition, each of the multivariate Gaussian distributions in (4.4)
can generally be written as

1 1 1 _
N (X | ;%) = 2m)72 |5 |72 P {_5 (X —ny) = (X - “j)} (4.5)
J

with d the length of the feature vector. Given that the vectors for both the incoming as
well as the outgoing velocities have three components d equals six. Furthermore, the other
parameters of the two equations above can be further written out as

v . l’l’jv o 2jvv Ejvv’
X = |:V/:| ’ Hi= |:/J’jv’:| ’ E] B |:EjV’v EjV’v’:| ’ (46)

where v/ and v in the subscripts act as indices to denote to which velocities the particular
part of the matrices is associated.

4.3.1 Expectation—maximization algorithm

Assuming a suitable parameter initialization, optimization of the parameters ¢;, p; and
3; can be done for all K multivariate Gaussians on different datasets by means of the
expectation-maximization (EM) algorithm [26]. This algorithm is an iterative procedure
which consist of an expectation and a maximization step. During the expectation step the
likelihood £ of the dataset on a particular set of parameters is computed. This can be

done as
L=1[Px) =D &N (Xi| ;%)) (4.7)
i i
where the index 7 runs over all N samples in the dataset. Equation (4.7) only holds

exactly when all samples are generated independently. Also, it is possible to compute the
possibility of a sample ¢ being drawn from cluster j by

_ON (X |y %))

-Pi'
’ P(X;)

(4.8)

With this information on the likelihood of a dataset and the cluster sample probabilities
P;; for all values ¢ and j the algorithm can continue with the maximization step. During
this step, the parameters of the Gaussian mixture model are optimized to yield the largest
likelihood on the full dataset. This can be done in the following way for the parameters
¢j, p; and X; that define the model:

~ 1
¢; = ¥ Z Fij, (4.9)
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- > PiX
= 2t 4.10
! Zsz ( )
~ (X, — . X, —
Ej — El( Z I'LJ) ®( ¢ l'l']) (411)

Zi Pij
Where the hat denotes the new parameters to be used for the next EM-iteration. The

algorithm can now continue with a new iteration. The iterations should continue till the
parameters converge or until another stopping criterion is met.

4.4 Sampling algorithm

There are two sampling techniques used in this thesis for the kernels based on Gaussian
mixture models. First, there is the full distribution sampling which can be used to compare
the probability density functions of the fitted Gaussian mixture with the probability density
functions of the molecular dynamics data as well as other scattering kernels based on
sampled data. Second, there is the conditional sampling of the Gaussian mixture model.
This allows for the implementation of traditional scattering procedures were the ingoing
velocity of a particle is known and the outgoing velocity should be sampled. Furthermore,
the conditional sampling procedure makes it possible for the GMM based scattering kernel
to be implemented in MD simulations as well as Direct Simulation Monte Carlo (DSMC).

4.4.1 Full distribution sampling

Sampling from the full distribution can be done by making use of (4.4). For each sample X
to be drawn from the fitted Gaussian mixture, first all K individual multivariate Gaussian
distributions with means p; and covariance matrices 3; need to be sampled [27]. There-
after, one of these samples needs to be chosen by sampling a multinomial distribution. The
probability for returning the sample taken from the ith Gaussian is equal to the value of
the mixing coefficient ¢;.

4.4.2 Conditional distribution sampling

When the Gaussian mixture needs to be sampled conditionally, the ingoing velocity v’ is
known and the outgoing velocity v should be sampled from the distribution. In this case,
the marginal distribution for each multivariate Gaussian can be written as [27, 28]

P (V') = /PJ (v, V)dv =N (V' | . Sjor) - (4.12)

This enables the conditional probability distribution for each Gaussian multivariate to be
written as
Py (v,v)

P

Pi(v|Vv)= )

=N (v| Hojlv Siviv) (4.13)
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with means

I’l’jV‘V/ = l’l’jv —|— EjVV/ Ej_vl/v’ (V/ - l,l/jv/> (414)
and covariance matrices
Siviv = Zjvv — Zjuv B Sy (4.15)

Given the equation for the conditional probability distribution of a single Gaussian mul-
tivariate distribution, the conditional probability distribution for the full GMM can be
formed and is equal to

(v |v) Zgbj (v]Vv) (4.16)
with mixing coefficients
" ¢; P (V')
b; = . 417
D STy 1

4.5 Hyperparameter optimization

The Gaussian mixture model scattering kernels used in this report are built upon the
Gaussian mixture model implementation available in scikit-learn [29]. Therefore,
several hyperparameter optimization options are available out-of-the-box. For GMMs, the
most important hyperparameter to optimize is the number of Gaussian distributions, also
called the number of components, used for the mixture. For the results in this report the
number of components was varied from 1 to 256 for which the results will be discussed in
Chapter 5. The number of components was not increased to values higher than 256 due
to computational limitations. Furthermore, several covariance types were tested. While
it is possible to couple the covariance matrices of different Gaussian distributions in (4.4)
this was not done. For coupled matrices, the computation times were approximately equal
although the performance was worse. Therefore, full covariance matrices that are not
coupled were used everywhere. The initialization state of the weights as well as the means
were left at their defaults. The results for these settings appeared to be good already.
Likewise, the regularization settings were left at their very small defaults. Given that the
number of data points was higher than 200K for all datasets and the number of Gaussian
distributions not more than 256, the chances of overfitting are very small. Hence, applying
extra regularization does not make a lot of sense.
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5. Scattering kernel performance com-
parison

In this chapter the performance of the scattering kernels will be compared with the molecular
dynamics data. First, the accommodation coefficients between the generated datasets are
discussed. Hereafter, Kullback-Leibler divergences along with outgoing velocity distributions
will be further elaborated upon.

5.1 Data generation

This chapter is devoted to investigating how well the scattering kernels discussed in Chapter
3 and 4 perform with respect to the results from the molecular dynamics simulations in
Chapter 2. Therefore, the ingoing velocity data from the MD datasets will be fed to the
scattering kernels to make them generate outgoing velocities. To check how well the kernels
perform, the distribution of the generated outgoing velocities will be compared with the
outgoing velocity distribution of the MD data. This makes it possible to see how well
the scattering kernels can reproduce the velocity distribution of the MD data. To keep
this chapter somewhat concise only the kernel performance on a fraction of the molecular
dynamics datasets will be discussed in this chapter. To treat the results for an equilibrium
simulation, a simulation with moving walls as well as a simulation with a temperature
gradient, the three datasets E1, V1 and T1 were chosen to be discussed more extensively.

To check the performance of the parametric scattering kernels, the accommodation co-
efficients for the parametric kernels are computed from the molecular dynamics data as
described in Section 3.5. Hereafter the incoming velocity distribution from the molecular
dynamics data is fed to these kernels and outgoing velocities are generated as described
in the same section. To make the generated velocity distributions displayed in this chap-
ter more trustworthy each incoming velocity is scattered 16 times before generating the
distributions. Furthermore, to keep this chapter to the point only the most advanced
parametric kernels from Chapter 3 will be discussed. The analysis will be limited to the
Maxwell, Maxwell-Yamamoto and CLL kernel.

Before the properties of the Gaussian mixture model based scattering kernels are inspected,
they are first fitted on the datasets as described in Section 4.4. Hereafter, to analyze
the performance of the Gaussian mixture kernels conditional distribution sampling can
be chosen to generate outgoing velocities. However, this kind of sampling is relatively
expensive with respect to full distribution sampling. Therefore, full distribution sampling
will be used for the Gaussian mixture models. Since we are only interested in the outgoing
velocity distributions it can be stated that due to the law of large numbers, sampling a
large number of velocity sets makes the differences between the two methods negligible. In
this case, the outgoing velocity distribution produced by the conditional sampling will be
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equivalent to the velocity distribution that is generated by sampling the full distribution
and discarding the incoming velocities.

5.2 Accommodation coefficients

One way of checking how well a scattering kernel performs is by looking at the accom-
modation coefficients that can be computed from the generated outgoing distributions.
Furthermore, while this allows for checking the performance of the standard parametric
kernels with respect to the molecular dynamics data in the first place, it can also be used as
an optimization procedure for the GMM kernels. Below, in Figure 5.1 the EAC and TMAC
for the molecular dynamics data as well as the standard parametric kernels discussed in
this chapter are shown. Also, the performance on these accommodation coefficients of the
GMM kernel is plotted for an increasing number of components. The EAC and TMAC
were chosen here given that they are often used as accommodation coefficients to quantify
gas-wall interaction in the case of a Couette or a Poisseuille flow.
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Figure 5.1: The tangential momentum accommodation coefficient (TMAC) and the energy
accommodation coefficient (EAC) plotted against the number of Gaussian distributions K in
the Gaussian mixture model (GMM) based scattering kernels. The displayed plots are for the
datasets E1, V1 and T1 in Table 2.1. The accommodation coefficients obtained from the MD data
are denoted with (—). Further, the accommodation coefficients for the velocity data generated
by kernels is denoted as: Maxwell kernel (——), Maxwell-Yamamoto kernel (——), CLL kernel
(——) and the GMM kernel (——).

As can be seen from Figure 5.1 the EACs and TMACs computed for the standard paramet-
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ric kernels are not excellent; they generally deviate significantly from the accommodation
coefficients computed from the molecular dynamics data. Note that although the Maxwell
kernel appears to perform very well for the EACs this might be a bit of a deceiving figure
since this accommodation coefficient is given directly as an input parameter. As expected,
the performance of the GMM kernel improves when the number of components is increased.
The value of the accommodation coefficients for this kernel moves closer towards the value
of the molecular dynamics data it is fitting. As can be seen, for a large number of com-
ponents the performance of the GMM kernel on the ACs gets better than the standard
parametric kernels in general.

5.3 Kullback-Leibler divergence

Another possibility to quantify how well the generated outgoing velocity distributions
match is by making use of some kind of divergence measure. Since the velocity distri-
butions considered are continuous it is possible to use approximations for the generally
applied Kullback-Leibler (KL) divergence [30]. The KL divergence between the continuous
probability distributions P and @ that exist on R? is defined as

dP
DKL(PHQ)E/R dPlog — 10

In this case, since P and @) are reflective velocity distributions with three components,
d = 3. To compute values for this divergence several approaches are possible. Since the
outgoing velocity distributions produced in this report cannot be described exactly by an
analytical formula for as far as known, working with probability densities based on samples
from these distributions is a natural choice. The probability densities of the underlying
distributions can be approximated in several ways which will be discussed below in Section

5.3.1 for estimates based on binning and in Section 5.3.3 for estimates based on k-Nearest
Neighbors (k-NN).

(5.1)

5.3.1 Binning based estimates

The first method used is based on dividing the domain in which the distributions are
defined in several bins. The probability density for distribution P in bin ¢ can then be

estimated as N
hy = 5.2
S (5.2)

Hereafter, the computed probability density estimates p; and ¢; for all bins can be used to
approximate the KL divergence as

DxL(P||Q) = sz 10g (5.3)

In this report this method will be used to estimate the KL divergences between full outgoing
probability distributions as well as projections of these distributions on different axis.
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5.3.2 Component optimization

Computing approximations of KL divergences can also be used to optimize the number of
components of the Gaussian mixture based scattering kernels. To compare the performance
improvement of the Gaussian mixture based scattering kernels with the parametric kernels,
Kullback-Leibler divergence ratios will be used. In the plots and tables below, the KL
divergences of the parametric scattering kernels with the MD data will be divided by the
KL divergence of the GMM based scattering kernel with the MD data. Hence, ratios are
obtained were a value of zero indicates the performance of a kernel is as good as it can
be and perfectly in line with the predictions from the MD data. A ratio between zero
and one means better than the GMM kernel and a ratio above one means worse than
the GMM kernel. The KL divergence ratio of the GMM kernel is one by definition. This
makes it possible to easily compare the performance of the GMM kernels with the standard
parametric kernels.

Below in Figure 5.2 the Kullback-Leibler divergence ratios computed by the binning proce-
dure described above are shown for the full multidimensional outgoing velocity distributions
and plotted for GMM scattering kernels with a varying number of components. The bin-
ning interval for the molecular velocities was chosen to be between —1000 m/s and 1000 m/s
for the tangential directions. For the normal direction, the binning interval was chosen to
be between 0m/s and 1000 m/s. For each of the three directions, use was made of 3 bins
which gives a total of 3% = 27 three-dimensional bins for the full velocity distributions.
The number of bins in each direction was kept low to ensure that even for the bins at the
ends of the domain samples are available. Hence, there will be no divisions by zero in the
KL divergence computation and the results do not have to be invalidated immediately.
However, it should be noted that it is hard to exactly quantify how well the estimates for
this method based on binning converge to the true value for these distributions. Although,
one can still use them as a measure for making comparisons between distributions.

4 4

w
T
L
w

KL divergence ratio
Do
%
[
[\

—
—

020 2‘2 2‘4 2‘6 98 020 2‘2 2‘4 2‘6 98 020 2‘2 2‘/1 26 98
K K K
Dataset E1 Dataset V1 Dataset T1

Figure 5.2: The Kullback-Leibler (KL) divergence ratios plotted against a varying number of
components of the GMM kernel. The KL divergence of the MD data (—) is by definition zero
and the KL divergence of the GMM based kernel (——) is by definition one. The parametric
kernels are denoted with (——) for the Maxwell kernel, (——) for the Maxwell-Yamamoto kernel
and (——) for the CLL kernel.
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5. SCATTERING KERNEL PERFORMANCE COMPARISON

In Figure 5.2 it can be seen that although the KL divergence ratio estimates slightly increase
for a larger number of components for the full outgoing velocity distributions, they do not
vary a lot when the number of components of the Gaussian mixture models is increased.
Taking this into account together with changes in the accommodation coefficients displayed
in Figure 5.1 as well as computational requirements, 64 components were chosen for the
Gaussian mixture models in the scattering kernels for the rest of the thesis. For this
number of components the accommodation coefficients give results that are close to the
molecular dynamics data as well as not being unworkable computationally expensive. The
KL divergences shown in Figure 5.2 do not give a strong hint which number of components
should be preferred.

5.3.3 k-NN based estimates

In addition, next to binning samples to get probability density estimates also knowledge of
the nearest neighbors of the samples can be used for this purpose. The distance of sample
X; to its nearest neighbor {Xj}j _; in a set of samples {X1,...,X,} from distribution P
can be computed as

pn(i) = X = X (5-4)
J= 1, ,n,J
with || - || the L? norm in R?. Furthermore, the distance from sample X; to a sample Y; in
a set of samples {Y7,...,Y,,} drawn from @) can be computed as
V(1) = min |[X; =Y. (5.5)
j=1l,...m

As proposed by [31], the latter two equations can then be used to approximate the KL
divergence between probability distributions P and @) via

(5.6)

Drr(PQ) = 21 —

This can be extended from only using nearest neighbors to using k-nearest neighbors which
results in better convergence properties. Furthermore, using k-NN evades problems with
identical samples from the outgoing velocity distributions. For the current datasets a
number of neighbours k = 128 was chosen which was found to be sufficient to avoid
problems with identical samples. Also, it proved to be relatively stable while not being
computationally too expensive. Though, this divergence measure was only used on the full
outgoing velocity distributions due to the computational complexity. It should be noted
that also for this method it is hard to exactly quantify how well the estimates converge to
the true value for these distributions.

5.3.4 Performance evaluation

In the tables below the KL divergence ratios for the standard parametric scattering kernels
are computed via the same method as discussed in Section 5.3.2. As is also discussed
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in Section 5.3.2 the number of components of the GMM scattering kernels will be fixed
to 64 for these tables as well as the remainder of the thesis. In the tables below, binning
estimates for the KL divergence are computed for the full outgoing velocity distributions as
well as for the projections of these distributions on the Cartesian axis. For the projections
on the Cartesian axis 30 bins are used for the density estimates. These bins lie between
—1000 m/s and 1000 m/s for the tangential directions. For the normal direction the binning
interval was chosen to be between O0m/s and 1000 m/s. For the full velocity distributions,
the same binning procedures as described in Section 5.3.2 are used. k-NN is only used on
the full distribution due to the computational requirements.

Table 5.1: Rounded KL divergence ratios for the parametric scattering kernels on dataset E1.

Procedure — Binning k-NN
Kernel | Data — Uy Uy v, A A
Maxwell kernel 2.46 5.92 1.41 1.25 1.79
Maxwell-Yamamoto kernel | 1.32 7.58 1.11 1.45 2.59
CLL kernel 1.13 817 106 1.71 2.99

Table 5.2: Rounded KL divergence ratios for the parametric scattering kernels on dataset T1.

Procedure — Binning k-NN
Kernel | Data — Uy Uy U, v v
Maxwell kernel 0.77 827 226 1.23 2.16
Maxwell-Yamamoto kernel | 1.36 9.34 2.09 1.52 2.63
CLL kernel 1.31 10.53 294 1.55 2.70

Table 5.3: Rounded KL divergence ratios for the parametric scattering kernels on dataset V1.

Procedure — Binning k-NN
Kernel | Data — Vg Uy v, v %
Maxwell kernel 1.00 743 090 1.33 1.18
Maxwell-Yamamoto kernel | 0.92 825 0.89 1.44 1.78
CLL kernel 1.01 933 081 1.76 1.37

As can be seen from the tables above, the KL divergence indicates that the GMM based
scattering kernels mainly improve modelling the distribution in the direction normal to
the wall. For this direction the KL divergence ratios are sometimes even more than a
factor ten. Interestingly, according to the KL divergences, the performance for the GMM
kernels appears to be worse for the two directions tangential to the wall for several cases.
Here, the computed divergence ratios are smaller than one. However, when looking at the
values for the KL divergence estimates computed by binning as well as k-NN for the full
velocity distributions it appears that GMM based scattering kernels still show a significant
improvement upon the standard parametric ones.

27



5. SCATTERING KERNEL PERFORMANCE COMPARISON

5.4 Cartesian velocity distributions

In Figure 5.3 the projections of the outgoing velocity distributions on the Cartesian axes
are plotted. The probability densities plotted are generated in the same fashion as for
the probability densities used for the binning based KL divergence computations in the
previous section. Here, 30 bins are used with the same cut-off velocities dependent on the
projection axis. Hence, it is possible to directly compare these distribution visualizations
with the KL divergences in the three tables of Section 5.3.4. As can be seen in Figure 5.3,
for all the kernels the distributions appear to coincide with the data from the molecular
dynamics simulations. Although, there are some subtle deviations. For instance, looking
at the leftmost data point of the distributions of the normal directions it can be seen that
the Maxwell, Maxwell-Yamamoto and CLL kernel persistently underpredict the probabil-
ity density at this point. This can be seen as an explanation why the KL divergences
for the normal directions are so much larger than the KL divergences of the tangential
directions. Furthermore, also interesting to note is the deviation that can be seen between
the tangential directions for the figures of dataset V1. As can be seen, there is a shift away
from zero velocity in the peak of the distribution for the z-direction. This is due to the
fact that the wall is moving in this direction.

5.5 Angular velocity distributions

In Figure 5.4 the angular velocity distributions for the outgoing velocities can be seen for the
vertical angle v and the horizontal deviation angle from the z-axis 7,.. Also, the probability
densities are approximated by means of binning samples here. For the vertical angle, 30
bins or one bin per three degrees were used to approximate the local probability density
and therefrom construct the plots. For the horizontal deviation angle 36 bins or one bin
per ten degrees were used. As can be seen from the plots of the vertical angle, deficiencies
between the standard parametric scattering kernels and the molecular dynamics data are
the biggest for an angle of approximately 45°. As can also be seen, the performance of
the GMM kernels for the vertical angles is better than the performance of the standard
scattering kernels. What is especially noticeable from the plots of the horizontal deviation
angles is the shift of the distribution for the dataset V1 with the moving wall. It can clearly
be seen that the velocities are biased towards the negative z-direction or a 180° horizontal
deviation angle.
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Figure 5.3: The velocity distributions projected on the Cartesian axis for dataset E1, V1 and T1
as well as the velocity distributions generated by the kernels. The lines denote the following data
or kernel: MD data (—), Maxwell kernel (——), Maxwell-Yamamoto kernel (——), Cercignani-
Lampis-Lord kernel (——) and the GMM kernel (——).
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6. Lattice Boltzmann method

In this chapter the lattice Boltzmann method simulation technique will be further discussed.
First, the fundamentals of the simulation technique along with its relation to the funda-
mental equations of fluid dynamics will be treated. Hereafter, the setup that will be used for
tests in this thesis will be reviewed. This includes a discussion of the simulation of gas-wall
interactions with the lattice Boltzmann method.

6.1 Underlying theory and equations

6.1.1 Navier-Stokes equations

When considering fluid dynamics problems that could be modelled by continuum me-
chanics, the first and foremost mathematical framework used to describe the underlying
dynamics of a problem is the Navier-Stokes equations. The general vector form of these

equations can be written as
du

Pt
Here p denotes the local density of a fluid element, u the velocity vector of a fluid element
and F an external force like gravity that might be acting on the fluid element that is
currently being considered. P denotes a general stress tensor that normally contains pres-
sure and viscosity related stress components. Furthermore, % denotes the total derivative.
There are several simulation techniques available that are based on direct discretization of
this equation. These simulation techniques can be classified as conventional computational
fluid dynamics (CFD) and are most notably finite volume, element and difference meth-
ods. The Navier-Stokes equations unavoidably break down when the particulate nature of
a fluid becomes more expressive. Since the equation used to describe the dynamics breaks
down also the simulation techniques that are directly based on it start to show deficiencies.
Therefore, these simulation techniques are not suitable to simulate rarefied gases, at least
not up to a highly rarefied level.

—V.P4+F. (6.1)

In previous work it was found that in the slip flow regime of the Knudsen number, the
resulting flow phenomena can still be modelled correctly by the Navier-Stokes equations as
long as velocity slip at the boundaries is taken care of [32]. However, when the degree of
rarefaction increases further and the flow enters the transition regime other techniques need
to be used. The first possibility is applying corrections on the Navier-Stokes equations that
include higher order approximations on the stress tensor and heat flux [33]. The second
and most generic approach is by discarding the Navier-Stokes equations and resorting to
kinetic theory to describe the underlying physics. This is the approach that will be taken in
this thesis to make the developed boundary conditions as generally applicable as possible.
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6.1.2 Kinetic theory

Between full macroscopic approaches based on the Navier-Stokes equations and full mi-
croscopic approaches that model the particulate nature of a flow directly, also mesoscopic
approaches are available to model fluid dynamics problems. These approaches are partic-
ularly suitable for mildly rarefied conditions given that the focus is on descriptions for the
distribution of particles in a gas rather than continuum descriptions or tracking individual
molecules. The behaviour of distributions of particles is described by the framework of
kinetic theory which is at the basis of all mesoscopic simulation techniques.

While kinetic theory can in principle be formulated for every kind of fluid it is usually
applied on rarefied gases. To simplify the discussion, as with the rest of the thesis, only
monatomic gases will be considered. This avoids the need of having to take vibrational
and rotational degrees of freedom into account for the molecules. All changes of state can
be written as a translational change in the position of the molecules. Therefore, it can be
stated that all molecules in the monatomic gas that we consider collide elastically because
no energy transfer is possible to other degrees of freedom. Kinetic theory is based on
capturing this information on the state of a gas in a so-called particle distribution function
which will here be denoted as f(x,u,t). In this expression, x is a position vector, u a
velocity vector and ¢ the time. To express changes in the distribution of particles, the
Boltzmann equation can be used which is an essential part of describing gases by means
of mesoscopic descriptions.

6.1.3 Boltzmann equation

The Boltzmann equation in its general form can be written as

of of F of
E%—u-a—xjt;-a—u—ﬂ(f) (6.2)

and can be seen as an advection equation for particle distributions [34]. In this equation,
the symbols have their usual meaning. It is important to note, however, that the molecular
velocity u in (6.2) is an independent variable. The first two terms on the left-hand side
denote the material derivative of the particle distribution function. Therefore, these terms
illustrate the time rate of change. The third term on the left-hand side describes the
influence of external forces. On the right-hand side, Q(f) is used to denote the total
differential of the particle distributions. It is the source term which represents the local
redistribution of f due to collisions. Therefore, the source term €(f) is often called the
collision operator [35]. The Boltzmann equation forms the backbone of several simulation
techniques from which the most notable are the Lattice Boltzmann Method (LBM), Direct
Simulation Monte Carlo (DSMC) and the Method of Moments (MoM). How this equation
relates to the lattice Boltzmann method will be discussed in the next section.
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6.1.4 Lattice Boltzmann equation

The Boltzmann equation, (6.2), can be discretized in physical space, velocity space and
time to find the lattice Boltzmann equation

This equation expresses that particles f;(x,t) move with velocity c; to a neighbouring point
x + ¢;At at the next time step t + At [35]. Furthermore, at the same time particles are
affected by a collision operator §2;(x,t). The index ¢ runs over all velocities in a velocity
set ¢; that form the velocity discretization. Given that position, velocity and time are
discretized, this equation can be implemented on a lattice and so-called moments can be
computed for every lattice node. The first two and most important moments are

p= Z i (6.4)

and

pa = Z cifi (6.5)

)

which denote the mass and momentum density [36]. The space and time dependencies of
the parameters are omitted for brevity. Furthermore, in case it is assumed that thermal
fluctuations in a system are negligible it is possible to find a direct relation between the
pressure, speed of sound and the density. This relation is

p=cp (6.6)

with p the pressure in the system and ¢, the speed of sound. For all general non multi-speed
velocity sets ¢; the speed of sound can be further defined as

»  1Aa?

In this equation Az is the spacing of the lattice nodes and At is the time step.

6.2 Lattice parameters

For the LBM simulation setup to be studied in this thesis, a Couette flow was chosen.
Additionally, given that the goal of this thesis is to couple both simulation techniques,
isothermal simulations were chosen as a proof of concept. This makes MD simulations E1,
V1 and V2 suitable for usage and makes it possible to ignore temperature gradients in the
lattice Boltzmann method. Hence, it is viable to apply temperature related simplifications
to LBM. Given that the Knudsen number of the molecular dynamics simulations in this
thesis is 0.01, they are in the slip flow regime. In this regime of the Knudsen number,
rarefaction effects are mainly noticed at the boundaries were a no-slip condition can no
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longer be seen as sufficient. However, in the bulk the continuum hypothesis imposed by the
Navier-Stokes equations can still be considered to hold. Hence, it can be assumed that for
accurately simulating a rarefied Couette flow rarefaction effects only need to be taken into
account in the gas-wall interaction. Also, this enables various simplifications in the used
LBM setup. For the bulk, only the moments of the weights w; up to the fifth order need
to be isotropic on the used lattice [37]. Therefore, if we would like to simulate a Couette
flow in two dimensions, using a D2Q9 velocity set is sufficient. This velocity set can be
displayed as

Co =(0,0)c
c; =< c¢1,C,¢3,¢4 = (1,0)c,(0,1)c,(—1,0)¢, (0,—1)c (6.8)
C5,Cq,C7,Cg = (]_, 1)0, (—]_, 1)6, (—1, —1)0, (1, —1)6

with ¢ the lattice constant equal to Ax/At. As a result, the velocities of a single lattice
Boltzmann method node can be graphically displayed as is shown in Figure 6.1.

O

Figure 6.1: The discrete lattice velocity vectors of a D2Q9 lattice.

Furthermore, the weights of this velocity set can be written as

Wo = 4/9
w; = Wi, Wy, w3, wy = 1/9 (6.9)
ws, we, Wy, wg = 1/36

for the discrete lattice velocities. For a Couette flow simulation, pressure fluctuations in
the system should be almost non-existent. Consequently, it is possible to make use of the
simplest collision operator that still allows for the reconstruction of the solution of the
Navier-Stokes equations in the bulk. This is the Bhatnagar-Gross-Krook (BGK) collision

operator A
t e
Q=—=(fi—f"Y (6.10)

T
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with 7 the relaxation time. For the slightly compressible case, the second order equilibrium
populations can be computed as

3 9 3
[ =wp (1—1-;(‘1'01')-1-@(“'%)2_?(u'u)) (6.11)

for this collision operator [38].

6.3 Simulation matching

To simulate Couette flows with the lattice Boltzmann method, several parameters that are
used internally by the lattice Boltzmann simulations need to be matched to ensure correct
behaviour. To do this, first it is useful to define dimensionless parameters to be used in the
simulations. These parameters can then be mapped on the correct physical units by means
of conversion factors. In this thesis, these dimensionless parameters will be denoted with
a star (x). Therefore, the generally applicable lattice units for the dimensionless length
scale, the dimensionless timescale as well as the initial dimensionless density of the system
can be defined as

Ax* =1, At*=1, p;=1 (6.12)

Next, it can be stated that the lattice velocity ¢ should be set equal to the root-mean-square

velocity of an ideal gas
|3kT
Vpms = 3— (6.13)
m

for a D2Q9 lattice with a BGK collision operator [38]. This makes it possible to directly
relate the Knudsen number to the dimensionless relaxation time of the lattice as

T 3 1
f= = =/ KnNpy + - 14
T TAL g nVasr 45 (6.14)

with N, the number of dimensionless length scales in the characteristic length direction
between the walls [39, 40]. This parameter for the number of length scales, Na,+, is also
often called the lattice number. With this information, a complete set of conversion factors
between the LBM simulations and physical unit systems can be generated as

H

Co= 5 (6.15)
Ca
C, = — (6.16)

In this equation, H is the channel size in the lateral direction in the Couette flow simulations
and pg is a reference density. These conversion factors for the length, time and density
should be multiplied by the corresponding quantities in the lattice to obtain the result in
the desired physical unit system.
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6.4 Boundary conditions

To apply a lattice Boltzmann boundary condition, more populations need to be set than the
available macroscopic variables. Since there are more parameters to be set than the amount
of equations available, this gives rise to a non-uniqueness problem which is evidenced by
the large amount of lattice Boltzmann boundary schemes available [35]. As stated above,
a Couette flow will be studied. First, to simplify the discussion it is convenient to make
use of straight boundaries aligned with the lattice nodes. This makes it obvious to solve
this problem in the direction parallel to the walls by making use of periodic boundaries.
However, this still leaves the boundary condition problem at the location of the walls open.
Given that the boundary conditions at these walls should be able to cope with rarefied
conditions, and therefore with velocity slip, further complications arise.

Before digging deeper into the available boundary conditions, first, it should be noted that
two big families can be distinguished in the large amount of lattice Boltzmann boundary
conditions available. These are link-wise and wet-node boundary conditions. As the name
suggests, link-wise boundary conditions apply the boundary on a lattice link between two
nodes. Wet-node boundary conditions work with nodes that are partially in the fluid do-
main and partially part of a boundary. Generally speaking, wet-node boundary conditions
allow for more variation in the procedure applied since they have more degrees of free-
dom than link-wise boundary conditions. Furthermore, this also means that they can be
more accurate than link-wise boundary conditions. Hence, all the boundary conditions
considered below will be wet-node boundary conditions.

Second, it should be noted that the boundary conditions discussed below can be written
in a kernel formulation. Using such a scattering kernel notation for a boundary condition
will make a comparison with the coupling algorithm discussed in Chapter 7 easier. As
proposed by Sbragaglia and Succi [41], it is possible to write a LBM boundary condition
as a discrete scattering kernel on the populations as

=K (6.18)

In this equation, f]‘?“t is a vector of the outgoing populations from a wall node that are
being injected back into the fluid domain based on the incoming populations f*. The
indexes 7 and j stand for the particular in- and outgoing populations respectively. &C;; is
the discrete analogue of a boundary scattering kernel that captures the interaction of a gas
with a wall. To ensure mass and normal momentum conservation, all mass of an ingoing
population should be redistributed over all outgoing populations. Therefore, the following

should hold:
> Kji=1 (6.19)
j

To simplify the discussion somewhat, the focus will be on stationary boundary conditions
for the south wall on the used D2Q9 lattice. For a wall node on this wall, there are
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three populations incoming and three populations outgoing. As depicted in Figure 6.2
the incoming populations are f7 (v + Az, y + Ay), fi(x,y + Ay) and fs (z — Az, y + Ay).
Here, the argument between brackets denotes the location of the lattice node from which the
population originates. These populations should be mapped on the outgoing populations
f5(z,y), f2 (z,y) and fs (z,y). It is possible to write this mapping in a discrete scattering
kernel formulation as

fS(l'ay) f7([L‘+A$,y+Ay)
fo (2,y) fs (@ — Az,y + Ay)

for the depicted node. Here, the scattering kernel I is a 3 x 3 matrix. This scattering
kernel should be applied on the node’s populations after the streaming step as an alternative
collision operation for the wall node.

(z —Az, y +Ay) (z, y +Ay) (z +Az, y +Ay)

|C2

v wall
' (x +Az, y)

Figure 6.2: A depiction of the velocity vectors entering and exiting a boundary node on the
south side of the domain.

Finally, it should be stated that the boundary conditions formulated here only work for
stationary walls in the current form. This is of course not in agreement with the moving
walls considered in a Couette flow. To resolve this issue, population transformations to
ensure correct scattering can be used. The transformations discussed here can be seen as
a general transformation to move the populations from the stationary inertial system of
the lattice to the moving inertial system of the wall. Furthermore, while they are applied
here on the south wall of a D2Q9 lattice the concepts are generally applicable. First, for
the particular case considered, it can be shown that the mass and tangential momentum
equations for the fluid at the walls are

fs+ fa+ fr=np, f8‘f7:PUguidv (6.21)
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as in accordance with (6.4) and (6.5) for mass and momentum conservation respectively.
The superscript fluid denotes the populations of the wall node that are in the fluid do-
main. The locational arguments of the populations as shown in (6.20) are omitted for
brevity. Only the populations that are adding tangential momentum to the wall need to
be transformed. For the particular case of the wall and the lattice being considered, this
means that population f; and fg need to be changed as shown in Figure 6.2. Besides, the
following momentum equation in the inertial system of the moving wall should hold:

£y = (™). (6.22)

Here, the superscript ¢ denotes the transformed populations that are in the inertial system
of the wall. Since f; does not influence the velocity of the fluid at the wall in the tangential
direction, it is not changed when doing the transformation. Therefore, after combining
(6.21) and (6.22) the following expressions for the transformed populations can be obtained:

1 : 1
= Lo -y - Ly, 029
=1, (6.24)

1 . 1
fst _ §p (Ugmd o u;vall + 1) _ §f4 (625)

After these transformations, a scattering kernel can be applied to obtain the transformed
post-scattered populations. To transform these populations back to the inertial system of
the lattice, the mass movement in the transformation step is undone again. For the current
situation this can be shown as

fs =I5+ (fi = fr), (6.26)
fo=fs, (6.27)
fo = fo + (fs — fs), (6.28)

for the populations being injected back into the fluid domain. In this equation ff, f& and
f¢ are populations computed from scattering the incoming transformed populations with a
scattering kernel. Naturally, care needs to be taken that the populations considered never
become negative during any of these steps.

In the sections below, the LBM boundary conditions that will be used in this report will
be considered. While there exists a large amount of LBM boundary conditions, focus is in
particular on boundary conditions that allow for rarefaction effects. Furthermore, also the
possibility of writing a kernel formulation for a particular boundary condition was taken
into account.

6.4.1 Slip-reflection kernel

The first class of rarefied boundary conditions that can be distinguished are models that
make use of a combination of bounce-back and specular reflection. As was shown analyt-
ically by [42], using a bounce-back condition to model a wall results in zero velocity slip.
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Furthermore, specular reflected populations give rise to a free-slip boundary condition since
there is no momentum exchange with a wall. Therefore, it is possible to combine bounce-
back with specular reflection to get a partial slip boundary condition as was proposed by
Succi [43]. This has been further related to the accommodation coefficients by Sbragaglia
and Succi [41] and can be written for the considered south wall on a D2Q9 lattice as

f5 = %C&f7 -+ (1 — %O&) fg, (629)
f2 = fa, (6.30)
f6 = %Oéfg + (1 — %O&) f7, (631)

where the node locations are omitted for brevity and usage is made of the EAC as an
accommodation coefficient. Additionally, this can be written in terms of a slip-reflection
kernel formulation as

%oz 01— %oz
K= 0 1 0 (6.32)
1-— %a 0 %a

for usage in (6.20).

6.4.2 Maxwell kernel

The second type of boundary condition that will be considered is a boundary condition
which is directly based on the well known Maxwell kernel from continuous kinetic theory.
The Maxwell kernel can be written as a boundary condition in the lattice Boltzmann

method as
ch~n<0 |Ck ' n| fk
> epmsolCro | £

for a stationary wall [39, 44]. As with the slip-reflection kernel, (6.20), also here the EAC
is used as an accommodation coefficient. Equation (6.33) for the Maxwell kernel can be
written as a discrete scattering kernel by making use of an adjustment to the slip-reflection-
accommodation model proposed by Sbragaglia and Succi [41]. Since bounce-back is not
incorporated in the model discussed here, the kernel for the south wall can be written as

f]'?‘“ =1 —a)f™|c;-n|+« x fi4 (6.33)

J

OéWg OéWg 1—a+ &Wg)
K= OéWl 1— Oé(l — Wl) OéWl (634)
1—a(l—Ws) aWsy aWs

with Wy = 2/3 and W,y = 1/6. The presence of these weights is due to the fact that this
kernel is based on the discrete analog of the perfect accommodation kernel. Here, perfectly
accommodated means that the scattered particles have an uniform Maxwell distribution
with the temperature of the wall.
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7. Coupling algorithm

In Chapter 7 a coupling algorithm for the molecular dynamics data and the lattice Boltz-
mann method will be proposed. First, a discrete scattering kernel for the lattice Boltzmann
method based on trained Gaussian mixture based scattering kernels will be further elabo-
rated upon. Second, matching this kernel to the state of a wall node in lattice Boltzmann
method simulations for interpolation purposes will be discussed. This chapter is concluded
by a discussion on manipulation of kernels and interpolation options.

7.1 Coupling procedure

To improve upon the performance of the boundary conditions debated upon in Section
6.4, one possibility is to make use of more information than a single accommodation co-
efficient. This is what will be discussed in this section, transferring information on the
scattering from molecular dynamics data directly into a scattering kernel that can be used
by the lattice Boltzmann method. The coupling procedure which is described here could
be trivially extended to higher dimensions, different velocity sets and multi-speed lattices
in full generality. However, for simplicity the same case of a south wall on a D2Q9 lattice,
as discussed in Section 6.4, will be considered to further illustrate the method.

The coupling procedure can be split in two steps from which the first one is to construct
a continuous scattering kernel that can be used directly in particle based simulations.
This is necessary since finite probability densities need to be computed for the scattering
dynamics. As has been extensively discussed in Chapter 4 scattering kernels based on
Gaussian mixture models are an excellent candidate for this purpose. Their large number
of tunable parameters allows for taking into account the coarse scattering dynamics as
well as more subtle scattering behaviour. This has been further illustrated in Chapter 5
where it was shown that the performance of these kernels generally improves over several
well known standard parametric kernels. Furthermore, values for the learned probability
density function can be computed with ease.

The second step is to cast this continuous scattering kernel into a discrete kernel that can
be used in a procedure as described in Section 6.4. The entries of this discrete scattering
kernel K denote the probabilities of a particle of population ¢ to be bounced in the direction
and velocity of population j. The Gaussian mixture based scattering kernel P (v — v)
denotes the probability density function of particles to be scattered in a particular direction
and velocity. If it can be assumed that P (v — v) is continuous, the ratio of probabilities
of a molecule to be scattered in one or another discrete direction can be written as the
ratio of the values of the probability density function. For the scattering kernel based on a
Gaussian mixture we have a guarantee that the probability density function is continuous
since it is a superposition of multivariate Gaussian distributions. Hence, for the Gaussian
mixture based scattering kernel it is possible to use the values of its probability density
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function directly as matrix entries for I as long as mass conservation given by (6.19) is
ensured.

This can also be shown by directly discretizing (3.3). First, it needs to be ensured that the
integral on the right-hand side runs over a continuous function. Since this is the case with
GMM based kernels it is possible to discretize this integral as a summation over different
values of the incoming velocity distribution function and associated probability density
given by the scattering kernel. Therefore, this equation reduces to

= Z NP (c; = ¢;) f;" (7.1)

c; - n<0

where the normalization factors from the normal velocities that should ensure mass con-
servation are replaced by A;. For computing multiple outgoing populations (7.1) can be
casted in a scattering kernel formulation as long as mass conservation parameters are ap-
propriately scaled.

For the case of a south wall on a D2Q9 lattice this enables writing the discrete scattering

kernel as
AP (c; —c5) MP(cy—c5) AsP(cs — c5)

K= >\7P (C7 — C2) /\4P (C4 — Cg) )\8P (Cg — Cg) (72)
/\7P (C7 — CG) P (C4 — CG) )\8P (Cg — CG)

for usage in (6.20). In this discrete scattering kernel, A7,g are constants that ensure
mass conservation and are equal to one divided by the sum of the probability densities in
a column. This safeguards that the columns sum to one as enforced by condition (6.19).
Therefore, mass conservation is guaranteed given that the mass of all incoming populations
is redistributed over all outgoing ones. It should be noted that the probability densities in
(7.2) should be computed with the parameters in non-lattice units. The lattice constant
¢, to be used in the probability density function computations, should be set equal to the
root-mean-square velocity in (6.13) for this D2Q9 lattice.

7.2 Kernel matching

As is shown in (7.2), a discrete scattering kernel can be computed directly from a fitted
Gaussian mixture for application in (6.20). For the results in Chapter 8 this will be done
for the kernel from equilibrium simulation E1. This discrete scattering kernel will be fed
directly into LBM to be used as a boundary condition for the Couette flow simulations.
However, this approach does not allow for adaption of a kernel based on a particular flow
situation at a boundary. For this, other approaches need to be followed.

A kernel can be matched to a specific situation at a wall only for a very limited number
of situations where there is an equivalent molecular dynamics simulation available. For
the lattice Boltzmann method simulations in this thesis, temperature gradients will not be
considered. Of course thermal effects can be considered as well, but for a proof of concept
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this will likely not give added value. Therefore, only velocity gradients between the fluid
and the wall will be taken into account where use can be made of MD simulations E1, V1
and V2. This implies that missing kernels for a particular flow situation at a wall should
be computed by means of interpolation which will be discussed in Section 7.4. Though,
before this can be further quantified, velocity gradients in LBM first need to be linked to
the molecular dynamics simulations.

For the molecular dynamics datasets in this thesis the velocity of the top wall is always
set equal to the inverse of the velocity of the bottom wall. Furthermore, for the molecular
dynamics simulations in which there is no temperature difference between the walls it can
trivially be stated that both walls are equivalent. Accordingly, this implies that no matter
how large the slip velocity of the molecules at the walls is, statistically speaking, there is
no drift of the particles in the bulk. Therefore, it can be stated that the velocity difference
between the bulk of the fluid and both walls in the MD simulations is equal to the wall
velocity u,, when looking at the fluid from a macroscopic level. Furthermore, when looking
at the system from a macroscopic level it can be assumed that the distance between the
wall and the virtual border as well as the bulk of the fluid is negligibly small. Therefore, for
macroscopic length scales the behaviour of the gas at the wall can be captured in a single
LBM wet-node. As an extension of this, for the interpolation based kernels the following
is assumed: when the velocity difference between the fluid and a wall is known at an LBM
wet-node boundary condition, it can be matched with a scattering kernel for a molecular
dynamics simulation with the same underlying wall velocity.

7.3 Kernel manipulation

As stated above, the molecular dynamics datasets E1, V1 and V2 are suitable for the LBM
simulations in this thesis. Given that dataset E1 comes from a simulation that is in full
equilibrium it can be concluded that the symmetry condition

PV —v)=PY(v—>V) (7.3)

should hold on the probability distribution function. Although, it cannot be guaranteed
that this also holds for the scattering kernel learned by the Gaussian mixture. Conse-
quently, for the discrete scattering kernel that is obtained from this simulation it is useful
to explicitly enforce this by applying

Kji + K jt1m—it1

eq __

(7.4)

as a symmetrization procedure for the discrete scattering kernel. In this equation, the
subscripts denote the matrix entries. Further, KC;; can be a general kernel of size m X m
where m = 3 for the D2Q9 case. Equation (7.4) ensures kernel point symmetry around
the entry (mT“, mTH) After this procedure proper mass conservation should be imposed

again by linearly scaling the entries of all columns to make sure (6.19) holds.
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Second, by negating the value of the wall velocity an equivalent discrete scattering kernel
can be obtained for the datasets V1 and V2. This can be done by manipulating the discrete
scattering kernel by applying

Kii = Km—jt1m—i+1 (7.5)

on the full kernel matrix. This equation inverts the scattering kernel in terms of the
velocity, entries are swapped as such that the kernel holds for the inverted velocity. Thus,
two extra discrete scattering kernels with corresponding wall velocities are acquired for
usage in the LBM simulations.

7.4 Kernel interpolation

With five discrete kernels, for five discrete velocities, interpolation between the acquired
kernels can finally be discussed. For the results in this thesis, two types of interpolation are
used which are step wise linear and quadratic interpolation. Both types work separately
for every individual entry of the matrices. For the step wise linear interpolation a velocity
difference between the fluid and the wall which is between the obtained discrete scattering
kernels is interpolated linearly. To this aim, the entries of the two kernels that are the
closest are used. The quadratic interpolation works in an equivalent fashion. Nevertheless,
for quadratic interpolation three kernels are used to compute the missing entries. Naturally,
mass conservation as given by (6.19) is enforced everywhere.
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8. Hybrid algorithm results

In this chapter the performance of the discrete scattering kernels coupled with the molecular
dynamics data will be compared with two traditional kernels to model rarefied gases in lattice
Boltzmann method simulations. First, the computed velocity profiles will be investigated.
Hereafter, the velocity slip between the gas and the walls will be examined.

8.1 Velocity profiles

In this chapter the performance of the discrete scattering kernels discussed in Section 6.4
along with the kernels constructed from the coupled kernels in Chapter 7 will be further
investigated. Given that isothermal LBM simulations are being examined, results need
to be compared by means of velocity differences between the simulations. Here, special
attention is given to the slip velocities at the wall. Nonetheless, to get a general idea of
the performance of the developed MD kernels first the full generated velocity profiles are
delved into. In Figure 8.1, the normalized velocity profiles for the Couette flow simulations
for these kernels are shown. Note that the Couette flow studied here is different from the
Couette flow studied for the molecular dynamics simulations. Here, one of the walls has
zero velocity while the other wall has a velocity u,,. For the constructed velocity profiles,
a total of 32 LBM nodes is used in the lateral direction. Given that the dimensionless
relaxation time for every simulation is computed by means of (6.14) this gives 7" ~ 0.84.
The wall velocity was set to a low value of u,, = 0.001 in lattice units to get maximum
accuracy as well as a guarantee on stability. However, given that both axis in Figure 8.1
are normalized the result is not dependent on the wall velocity and the LBM simulations
will produce the same plots as long as stability criteria are not violated. In these plots, the
vertical axis denotes the fluid velocity divided by the wall velocity. Besides, the horizontal
axis denotes the normalized location in the lateral direction. The LBM simulations were
stopped after convergence was reached. Here, the simulation is considered converged when
the following inequality holds,

lu(x,t) —u(x,t—1)] <1072 (8.1)

for every lattice node in lattice units. Further, the outputs of the LBM simulations are
plotted next to the analytical solution of the Navier-Stokes equations for a Couette flow
with velocity slip at the boundaries. This analytical solution is given as

u £ 4+ Knx®

S _HT o 8.2
Uy 14 2Kn%=2 (8.2)

with both the fluid velocity u/u, on the left-hand side and the channel location in the
lateral direction x/H on the right-hand side made non-dimensional and normalized [45].
The EAC that is used in this equation as well as the traditional LBM boundary conditions
is computed from MD dataset E1. While strict equilibrium is not the case with moving
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walls, the LBM simulations are close to equilibrium which makes it viable to assume that
the EAC does not change a lot. This can be further substantiated by comparing with the
EACs computed from dataset V1 and V2. For these MD simulations with increasing wall
velocities the EACs remain close to the EAC computed from E1 with differences being in
the order of 1073,

1

/
/
/
/
0.8+ 0.8 yd B 0.8
/
/
7
/
061 0.6 F s 0.6 -
<
04 0.4 p B 0.4
%
pd
)
0.2} 02} S 1 o02f
7
e
/
/
0 . . . . 0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z/H z/H x/H
MD equilibrium kernel MD linearly interpolated kernel MD quadratically interpolated kernel

Figure 8.1: The dimensionless velocity profiles generated by the lattice Boltzmann method
(LBM) simulations. The analytical solution is plotted with (——). The other lines are the
following kernels based on the molecular dynamics data: the equilibrium kernel (——), the linearly
interpolated kernel (——) and the quadratically interpolated kernel (——). The dots denote the
lateral location of the lattice nodes.

As can be seen from Figure 8.1, the velocity profiles for all kernels used in the LBM
simulations show a reasonable overlay with the analytical velocity profile. The velocity
profile in the bulk should follow a straight line given that the behaviour of the gas in the
bulk can be described by the Navier-Stokes equations. Therefore, the deviation between
the profiles can be fully quantified by looking at the velocity slip near the walls. An
illustration of this velocity slip can be seen in Figure 8.2. Here, the velocity profile at the
wall is zoomed in on.
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Figure 8.2: An inset zooming of the difference in the velocity profiles near the wall displayed
in Figure 8.1. In addition to the kernels based on the MD data, also the velocity profiles for
the traditional kernels are displayed. The lines denote the following LBM gas-wall interaction
kernels: (——) is the slip-reflection kernel, (——) is the Maxwell kernel, (——) is the kernel based
on MD simulation E1, (——) is the kernel based on MD simulations E1, V1 and V2 with linear
interpolation and (——) is the kernel based on MD simulations E1, V1 and V2 with quadratic
interpolation. Note that the lines for the slip-reflection and the Maxwell kernel lie on top of each
other.

It can clearly be seen from Figure 8.2 that the kernels do not exactly predict the analytical
solution for this number of LBM nodes in the lateral direction. How the solutions converge
when the number of LBM nodes is increased will be studied in the next section where the
convergence behaviour will be inspected.

8.2 Convergence behaviour

To compare the slip velocities between the LBM simulations of a Couette flow, use is made
of the fluid velocity at the nodes closest to the walls. Given that all considered boundary
conditions are wet-node boundary conditions the last nodes should lie exactly on the wall.
Therefore, the difference between the fluid velocities at these nodes and the velocity of
the wall that lies on these nodes is the slip velocity Aw in the LBM simulations. For
the analytical solution in (8.2) an equivalent procedure can be followed. For an x value
of 0 or H the fluid velocity at the walls can be obtained. Hereafter, this value can be
compared with the wall velocity at both walls to get the slip velocity. In Figure 8.3 the
slip velocities are compared against the number of lattice nodes. The rounded values for
the dimensionless relaxation time that are associated with the number of lattice nodes are
shown in Table 8.1.
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Table 8.1: The rounded 7* values computed from the number of LBM nodes in the characteristic
length direction used in the simulations. The number of LBM nodes is displayed in terms of the
lattice number as Nag+« + 1. The values are computed according to (6.14).

Npge + 1 ‘ 23 24 25 26 27 28 29 210 oll 912
T*‘0.58 0.66 0.84 1.18 1.88 3.27 6.05 11.60 22.72 44.95

Hereafter, the slip velocities can be computed from the LBM simulations. These velocities
are plotted in Figure 8.3 to check convergence with the analytical solution. On the vertical
axis the dimensionless slip velocity is shown. The horizontal axis denotes the number of
lattice nodes in the lateral direction. This number of LBM nodes will be shown in terms
of the lattice number N« + 1.
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Figure 8.3: The normalized slip velocities generated by the LBM simulations plotted against the
number of lattice nodes in the lateral direction. The analytical solution is displayed with (—).
The gas-wall interaction kernels in the LBM simulations are denoted with: (——) for the slip-
reflection kernel, (——) for the Maxwell kernel, (——) for the kernel learned from MD simulation
E1l, (—) for the kernels learned from simulation E1, V1 and V2 with linear interpolation and
(——) for the kernels learned from simulation E1, V1 and V2 with quadratic interpolation.

As can be seen from Figure 8.3, when the number of LBM nodes in the lateral direction
is increased the values for the velocity slip appear to converge. When comparing this with
the analytical solution, it appears that the values for the interpolated MD kernels converge
towards a too low value. This cannot be said from the Maxwell kernel, the slip-reflection
kernel as well as the non-interpolated kernel learned from MD simulation E1. It appears
that these kernels converge to the exact value provided by the analytical solution. Here, the
slip-reflection kernel and the Maxwell kernel produce exactly the same solution for these
simulation setups. Hence, their lines in Figure 8.3 lie exactly on top of each other. What
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was found in Chapter 5 is also indicated in this plot, kernels based on Gaussian mixtures
improve upon the performance of the Maxwell kernel. This is suggested by Figure 8.3
given that the value for the kernel learned from MD simulation E1 gives a slip velocity
that is closer to the analytical solution than the tested traditional kernels. Furthermore,
this result also gives an indication that the coupling procedure works.

To quantify the performance improvement of the kernel learned from MD simulation E1 on
the slip-reflection and Maxwell kernel, Figure 8.4 was made. In this Figure, the L? norm
for the error between the computed and the analytical solution is plotted as a function of
the number of lattice nodes in the lateral direction.
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Figure 8.4: The L? norm for the error between the computed and the analytical solution plotted
as a function of the number of lattice nodes in the lateral direction. The lines denote the following
LBM gas-wall interaction kernels: (——) is the slip-reflection kernel, (——) is the Maxwell kernel,
(——) is the kernel based on MD simulation E1, (——) is the kernel based on MD simulations E1,
V1 and V2 with linear interpolation and (——) is the kernel based on MD simulations E1, V1
and V2 with quadratic interpolation.

As can be seen from Figure 8.4 the L? norm for the error of the LBM solutions shows de-
creasing behaviour for the slip-reflection kernel, the Maxwell kernel and the kernel learned
from MD simulation E1 when the number of lattice nodes in the lateral direction is in-
creased. What can also be seen from Figure 8.4 is that the L? norm of the error shows
better convergence for the kernel learned from MD simulation E1. While it appears that
the error for the slip-reflection and the Maxwell kernel reaches some kind of plateau for 2°
LBM nodes, the kernel learned from MD simulation E1 keeps on reducing the error in the
displayed window. For 2!'? lattice nodes in the lateral direction a reduction of more than
79% in terms of the L? norm of the error is obtained when comparing the MD based kernel
with the slip-reflection and the Maxwell kernel.
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What should also be noted from Figure 8.3 and Figure 8.4 is that the interpolated kernels
do not work flawlessly. The discrepancy with the analytical solution can be due to several
causes. Hereof, the two most possible causes are likely the following: too crude assump-
tions for the interpolation and not enough MD datasets. As stated in Section 7.2 several
assumptions were made before interpolation could be applied on the learned discrete scat-
tering kernels. It cannot be ruled out whether these assumptions on the state of the flow
and its relation to the wall velocities are too coarse. Besides, not enough MD datasets
could also be a viable cause for the discrepancies. Interesting to note here is that the
quadratic interpolation gives better results than the linear interpolation. This indicates
that more datasets to be used in the interpolation could improve the results. Moreover,
the wall velocities differ a lot between consecutive MD simulations in the interpolation.
Between the learned discrete scattering kernels a speed ratio difference of 0.25 or a wall
velocity difference of more than 88 m/s holds for the MD simulations. For the interpolated
discrete kernels, this could lead to too much influence by the kernels learned for moving
walls when the flow state at a wall is close to equilibrium. Hence, the velocity difference
between fluid and wall could be reduced to a too small slip velocity.
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9. Conclusions

In this thesis gas-wall interaction modelling for rarefied gases was further investigated. To
this end, gas-wall interaction data from MD simulations of argon gas between two parallel
gold walls was analyzed. The performance of standard parametric scattering kernels was
tested on the gas-wall collision data as well as the performance of non-standard Gaussian
mixture based scattering kernels. The GMM based scattering kernels showed improved
performance with respect to the standard parametric kernels due to the higher number of
parameters that could be used to describe the corresponding distributions.

To quantify this performance improvement several approaches were followed. The accom-
modation coefficients as well as the Kullback-Leibler divergences that were computed for
the velocity distributions show better values for the GMM based scattering kernels. Also,
for the plotted velocity distributions several differences can be observed between the ker-
nels types. Likewise, it can be noted that the Gaussian mixture based scattering kernels
outperform the standard parametric ones.

Hereafter, a method to directly couple the GMM based scattering kernels to boundary
conditions in the lattice Boltzmann method was proposed. The proposed method does
not rely on an empirical relation to model the gas-wall interaction but instead sets all
the required parameters directly from the learned Gaussian mixture based scattering ker-
nels. Furthermore, the proposed method can be trivially extended in full generality to
higher dimensions as well as multi-speed lattices of arbitrary size. Besides, given that non-
equilibrium molecular dynamics simulations are possible, the coupling can also be applied
to simulate non-equilibrium gas-wall interaction in the lattice Boltzmann method.

As a proof of concept, the coupling algorithm was tested in the lattice Boltzmann method
for rarefied Couette flow simulations in the slip flow regime. The scattering kernel con-
structed by the coupling algorithm from a GMM based scattering kernel trained on the
data from the equilibrium MD simulation shows satisfactory convergence with the analyt-
ical solution. The L? norm of the error is almost one fifth of the error norm of the discrete
Maxwell kernel for 2'? lattice nodes. Given that a performance improvement also holds
for their continuous variants it can be seen as an indication that the algorithm produces
correct results.

Additionally, interpolated versions of the discrete scattering kernels produced by the cou-
pling algorithm from different MD simulations were tested. This interpolation provides
relatively low overhead given that only the computed discrete kernels are interpolated.
The constructed interpolated kernels did not deliver adequate convergence for the rarefied
Couette flow simulations. There are two probable reasons for this performance gap. First,
the assumptions underlying the matching between MD simulations and the state of the
fluid near the wall in LBM might be incorrect. Second, more MD simulations might be
needed so the discrete scatterings kernels can be more accurately interpolated.
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