
https://research.tue.nl/en/publications/6190a63d-a9fe-4f58-9009-551f5ac591d8

Composition of the Thesis Evaluation Committee:

Chair: Prof.dr.ir. Mark van den Brand

Members: Ir. Camiel Rouweler

Fernando Velho Dutra, MSc

Dr.ir. Tom Verhoeff

Ir. Sander van den Berg

Dr. Kees Huizing

The design that is described in this report has been carried out in accordance
with the rules of the TU/e Code of Scientific Conduct.

Eindhoven University of Technology

ii

Eindhoven University of Technology

iv

Eindhoven University of Technology

vi

Eindhoven University of Technology

viii

Eindhoven University of Technology

x

5.4 Detailed design ... 23
5.4.1. Application layer ... 24
5.4.2. Communication layer... 24
5.4.3. Hardware abstraction layer .. 27

5.5 Sequence diagrams ... 28

6. Implementation .. 30

6.1 Environment setup and C++ DDF bindings .. 30
6.1.1. Environment setup ... 30
6.1.2. C++ DDF bindings .. 30

6.2 Use case Implementation snippets .. 30
6.2.1. Driver startup and shutdown .. 30
6.2.2. Hardware initialization and termination .. 31
6.2.3. Frame grabbing .. 32

6.3 Implementation of the redesign improvements ... 32

7. Verification and Validation .. 33

7.1 Validation process .. 33

7.2 Verification process .. 33
7.2.1. Unit testing .. 33
7.2.2. Integration testing .. 34
7.2.3. System testing .. 36

7.3 Performance quality ... 37

7.4 Extendibility quality.. 38

8. Conclusion .. 39

8.1 Results .. 39

8.2 Future work .. 39

8.3 Good practices on migrating C codebase into C++ .. 40
8.3.1. Understand the codebase thoroughly and extract the main use cases 41
8.3.2. Prioritize the use cases and migrate step by step ... 41
8.3.3. Have a C++ reference guideline at an early stage of the migration 41
8.3.4. Use C++ STL libraries over company-specific C macros ... 42

9. Project Management ... 43

9.1 Work-breakdown structure ... 43

9.2 Project planning ... 43

9.3 Risk management .. 45

10. Project Retrospective ... 47

10.1 Challenges .. 47
10.1.1. Understanding the domain and learning the tools.. 47
10.1.2. Extracting main functionalities from a legacy code .. 47

10.2 Lesson learned .. 47
10.2.1. Communicate project progress and concerns openly... 47
10.2.2. Ask people around and do not wait ... 47

Eindhoven University of Technology

xiii

Eindhoven University of Technology

12

Stakeholder Interest Concerns

Image sensor subsystem
software development
team

Software development using the
OO approach helps to have effi-
cient, flexible, reusable, and main-
tainable code. This motivates the
development team to transit from
old C to C++, which allows them to
facilitate their development and de-
liver a high-quality product to their
customer.

The OO approach (C++) transi-
tion might introduce additional
burdens such as studying and ap-
plying the OO approach using
C++. Documentation of all the ex-
periences and practices gained in
this project solves this problem.

Eindhoven University of Technology

15

Req_Id Description, Rationale, and verification Priority

Verification: This will be tested by running the camera driver on
Devbench and activating the trace mode. The test passes if the trace is
correctly logged in the trace file of the ASML tracing facility.

Req-6

Description: A brief guideline reference on migrating a C component to
C++ shall be formally reported in a document for future reference in ad-
dition to this final report. The guideline report is added as an appendix
to the confidential version of this final report.

Rationale: The findings, challenges, guidelines, and best practices can
be used as a reference for future use or decision making in the image
sensing domain and possibly other ASML domains.

Verification: The guideline reference will be reviewed by an expert. In
addition, periodic progress updates through presentations, demos, and
reports will be done with all stakeholders to ensure that all project find-
ings and progress are discussed clearly.

Must

Req-7

Description: The complete solution (design and implementation) shall
be integrated with the existing image sensor subsystem driver and other
TwinScan generic facilities.

Rationale: The implementation of the redesign should be integrable with
its client and other software components.

Verification: This will be tested by executing integration tests; after the
implementation of the main use cases are fully developed.

Must

Req-8

Description: The redesign shall be extendable for new image sensors or
relay devices.

Rationale: New image sensors or relay devices can be introduced in the
near future.

Verification: This will be tested through reviews by supervisors and
stakeholders.

Must

Req-9 Description: The redesign shall avoid cyclic dependency between the
different layers of the driver component.

Rationale: Cyclic dependency between the layers increases complexity.
Hence, the cyclic dependency between layers of a component should be
avoided.

Verification: This will be tested through reviews by supervisors and
stakeholders.

Must

Eindhoven University of Technology

18

Req_Id Requirements Priority

PR7 The camera driver shall be able to grab a frame using the specified sen-
sor type

Must

PR8 The camera driver shall deactivate the specified sensor type Must
PR9 The camera driver shall request a test frame from the specified sensor

or relay.
Should

PR10 The camera driver shall provide diagnostic data access facilities for the
specific image sensor hardware registers

Should

Eindhoven University of Technology

26

Figure 15: UML class diagram for sensors and relays

As shown in the UML class diagram above, there are two controller classes: SensorController and Re-
layController. The SensorController class is responsible for managing the different sensor types and
storing the instances of these sensors by delegating the creation of the sensor objects to the ISensorFac-
tory class. Similarly, the RelayController class is responsible for detecting the type of relay devices and
managing the instances of these specific relay devices. This class delegates the creation of relay objects
to the IRelayfactory class. Both the SensorController and RelayController classes depend on generic
abstract classes for accessing the operation of their respective concrete classes as well as for creating
an instance of the concrete device type. Hence, SensorController and RelayController act as entry points
for accessing sensor and relay operations, respectively. This approach is commonly known as the Fa-
çade design pattern [10].

The ISensor class defines a generic interface for relay-type devices. It contains functions for any oper-
ations that the camera driver must be able to perform with any relay-type device. Likewise, the Irelay
class defines an interface for all sensor-type devices. It consists of methods for any operations that the
camera driver should be able to perform with any sensor-type device. The concrete classes of sensor
and relay provide functions that are specific to the concrete hardware type. Factory Method [11] pattern
is used to create an instance of a relay and sensor. This design is flexible enough to extend a new relay
or sensor device in the near future as both the controller and concrete classes depend on a generic inter-
face.

The design uses two factory method interfaces for creating sensor and relay objects. The structure and
behavior of these two factory interfaces are similar. Therefore, they can be combined so that one generic
factory can be applied to create a relay or sensor object. This is achieved through an Abstract Factory
design pattern [11]. We decided to have a separate controller rather than one for each sensor and relay
to decouple between the sensor and relay. This is because both sensors and relays have different func-
tionality. The updated UML class diagram of the sensor and relay is shown in Figure 16.

Eindhoven University of Technology

27

Figure 16: Updated UML class diagram for sensors and relays

The updated sensor and relay UML class diagram has one generic abstract factory class to create both
relay and sensor. This design is stable and decided as final for realization purposes. Additionally, this
design is flexible for code optimization and extension of a new sensor or relay. For code optimization,
an abstract class can be introduced between each of the interface and concrete classes if two or more
sensors or relays have some common behavior. Similarly, the extendibility depends on the hardware
types and versions. If the new sensor or relay hardware is different from the existing ones, then this new
sensor or relay should implement its respective common interface. If the new sensor or relay is an
upgraded version of an already existing type, then it should inherit from its original hardware type.

5.4.3. Hardware abstraction layer
This layer provides an abstraction to the firmware in the image sensor hardware components. The cam-
era driver does not directly access the hardware modules. It uses another software component to access
all these hardware components. The hardware modules are the DHP module and the SBD module. The
DHP module is equipped with HSSL and DMA hardware. The HSSL is used to communicate with the
camera hardware modules (COB, Relay, Sensor), which are described in the communication layer sec-
tion above, to send and request frame data. The DMA is used to store the received frame data from the
sensor in memory. SBD is used for synchronization with other subsystem software components. There-
fore, four classes are designed to manage and access the functionality of these aforementioned hardware
modules. The UML class diagram for the hardware abstraction layer is shown in Figure 17.

The HPMCommunication, SBDCommunication, HSSLCommunication, and DMACommunication
classes provide abstraction functions for DHP, SBD, HSSL, and DMA hardware, respectively. There
are two options,i.e., whether to access the actual hardware or its simulated versions. A generic interface
class is introduced to bind these two options dynamically. The four classes depend on this generic in-
terface so that these classes do not require to know the details about whether the commands are sent to
access the real hardware or simulated one. The access mode of these classes is set during the initializa-
tion of the driver by the InitializationAndTermination class of the application layer.

Eindhoven University of Technology

31

Figure 20: Driver startup and shutdown snippets

6.2.2. Hardware initialization and termination
Different hardware types in the image sensor subsystem need to be initialized to communicate and
execute the requested hardware command properly. These hardware components are initialized in a
step-wise manner under the control of the client. The client uses the provided DRIVERxINIT interface
to initialize hardware one step at a time. The dispatcher of the camera driver handles this request and
dispatches the request to the proper function in the application layer module. The function then checks
if the requested step to initialize hardware is valid. If it is valid, the function dynamically invokes a
class that is responsible for initializing the corresponding hardware of the given step. The signature of
the dispatcher function for a step-wise hardware initialization use case is shown in Figure 21.

Eindhoven University of Technology

34

Generate test doubles
A unit test generator from the ATTEST toolset is used to generate makefiles and mocks needed to
develop a unit test for the SUT. For C code, the tool generates all the test doubles or mocks needed to
break the dependencies of the SUT. However, for C++ code, there are some dependencies that cannot
be generated fully using the unit test generator. Another tool called test double generator from the AT-
TEST is used to overcome the limitation. The test double generator tool takes a C++ header file as input
to generate test doubles needed by the SUT.

Create test cases
After the above steps are correctly followed and all the dependency mocks are generated, the next step
is to develop a test case. For demonstration purposes, let us consider one of the classes called COBIni-
tialization that is responsible for initializing the COB hardware. We tested both good weather and bad
weather test scenarios. A good weather scenario describes where the sequence of events to initialize
COB succeeds, whereas a bad weather scenario describes where the sequence of events to initialize
COB fails. Table 5 describes the two test cases for the good and bad weather test scenarios.

Table 5: Test cases for COB initialization

Test case name Description
test_initialize_cob_board_good_weather Given state = TERMINATED

 = BIST is TRUE
When initialize_cob is invoked
Then state = INITIALIZED

test_initialize_cob_board_bad_weather Given state = TERMINATED
 = BIST is FALSE
When initialize_cob is invoked
Then state = Exception thrown

Figure 23 shows the result of the two test cases after they were developed and built successfully.

Figure 23: test case results for COB initialization

In a similar fashion, other classes of the camera driver were tested. At least one test case was devel-
oped and tested for each class. The test output for each of the test cases is in the development reposi-
tory.

7.2.2. Integration testing
After the main uses cases of the camera driver were developed, an integration test was applied to verify
that the different modules within the camera driver and the camera driver with its client are well

Eindhoven University of Technology

36

e) In the Devbench, run the image sensor subsystem driver as a stand-alone application (ADT
tool). This will open a GUI with the main functionality options of the driver

f) From the GUI, click the step-wise initialization button and a new dialog box will be opened to
test the driver initialization

The GUI of the step-wise initialization provides options to test the driver initialization one by one or all
at once. Either way, when we run the step-wise test case, the corresponding box becomes green if a test
case is successful; Otherwise, it becomes yellow, and the program terminates with an error. Figure 25
shows the results before and after running the step-wise initialization test cases.

Figure 25: Integration test results before and after step-wise initialization

7.2.3. System testing
After successfully testing the main use cases of the camera driver in the Devbench, the driver behavior
should be tested in an environment that involves real hardware. By doing this, we verify the correctness
of the driver commands being sent to the image sensor hardware components and the integration of the
driver not only with its client but also with the rest of the TwinScan software components. The main
use case of the camera driver is to capture wavefronts of the TwinScan at the wafer stage. To test this
use case, a test platform called Testbench is used. The Testbench tool is similar to the Devbench, but it
involves real hardware modules and other required software components that are not stubbed. The fol-
lowing steps were used to test the frame grabbing use case.

a) Create a patch from the project stream view
b) Install the created patched on the Testbench and configure hardware setups if necessary
c) Start the TwinScan application in the Testbench
d) Initialize all the drivers in the TwinScan machine
e) Grab a frame using one of the configured sensor types

The test was successful, and we were able to capture a frame using one of the available sensor types in
real time. Figure 26 shows one of the captured frames.

Eindhoven University of Technology

37

 Figure 26: System test result for grabbing frame use case

7.3 Performance quality
The performance quality was validated by the total number of lines of code (LOC) and time measure-
ment metrics. The TICS tool was used to calculate the LOCs for both the original and prototype imple-
mentation. In the prototype implementation, the camera driver's main use cases are developed and ap-
proximately 85%1 of the codebase is migrated. The total number of LOCs in the original codebase,
including comments, is 33,000, whereas the total number of LOC in the C++ prototype implementation
is 17,000. Taking into account the code that was not migrated and the immense comments in the orig-
inal codebase, it can be concluded that the total number of LOC is reduced by at least 15% in the
prototype implementation. For instance, there is a class that is responsible for HSSL hardware commu-
nication. In the original implementation, the driver has a total of 988 LOCs, whereas, in the prototype
implementation, it has 556 LOCs, including comments. This is because function tables and many if
statements were used in the C implementation. In the C++ implementation, these are improved by pol-
ymorphism and try-catch, hence, improving maintainability and readability.

Time measurement was also applied to measure the time performance of the prototype implementation.
The timing measurements were taken when a program enters and leaves a function use case. Figure 27
shows the boxplot of the performance measurement of grabbing a frame use case. The vertical axis
represents the response time in milliseconds. The blue plot shows the performance of the original C
implementation, whereas the orange plot shows the performance of the C++ prototype implementation.
To produce this plot, 100 measurements were taken. As can be seen from the figure, the C++ imple-
mentation appears to be generally slower than the original C implementation. This is because there are
many virtual functions that are dynamically bound to one of the sensor types at run-time. The perfor-
mance difference between the two is insignificant and does not hurt the performance. However, the

1 Total number of use cases = 6
 Migrated use cases = 5, (5/6 ~ 85%)

Eindhoven University of Technology

38

results of the C++ implementation show that the values are more spread out, which might not be good
for drivers that are very strict with time requirements.

Figure 27: Performance measurement for grabbing frame use case

7.4 Extendibility quality
The validation process of the extendibility (modifiability) was performed by means of a qualitative
method. This section shows how the implementation of the redesign improves the original implemen-
tation. Compared to the original codebase, where many function tables and an array of structs were used
to mimic OO principles, the redesign implementation obtained better modularity by introducing generic
interface classes and dividing a large class into smaller classes. As a result, code reusability and ex-
tendibility for new features are achieved because changes only need to be applied to required classes.
For instance, Figure 28 illustrates the process of adding new sensor and relay types. When a new sensor
or relay is introduced, the developers only need to implement the specific features of the new sensor or
relay. The other features can be easily extended from the existing ones. The example diagram assumes
the new sensor and relay have more features in common to the existing SensorTwo and RelayTwo,
respectively.

Figure 28: UML class diagram for extending a new sensor and relay

Eindhoven University of Technology

41

8.3.1. Understand the codebase thoroughly and extract the main use cases
Understanding the codebase in detail mainly concerns extracting the main use cases and identifying the
main non-functional requirements for the redesign of a driver.

Extracting the main functional use cases
Before rushing to the legacy code of a driver, it is a good idea to understand the driver's domain. This
helps to grasp the bigger picture of the system and comprehend how the software components com-
municate and work together. Once the domain is grasped, the next step is to dive deeply into the legacy
code. This is because the driver's behavior and functionalities live within the sources in addition to its
documentation. Understanding the legacy code well is crucial for extracting the main use case function-
alities and identifying the key non-functional requirements. Extracting these key use cases not only
helps to thoroughly understand the current design and behavior of the driver, but it also helps to plan
the migration process very well.

Redesigning the driver
After extracting and understanding the main use cases of the driver, the next process is to redesign the
driver. It is impossible to incorporate and achieve all the quality attributes of the driver in the redesign
because the redesign solution might have a negative or positive impact on a certain quality attribute.
Hence, the redesign should mainly focus on a few non-functional requirements that have to be addressed
during the project. In addition to the legacy code, analyzing the shortcomings of an existing design
document, if it exists, is helpful to easily identify the key non-functional requirements. It is good to
follow object-oriented design standards in the redesigning process and apply OOD techniques such as
design patterns and SOLID principles [6] as much as needed.

8.3.2. Prioritize the use cases and migrate step by step
The logical order and prioritization of the extracted uses cases have to be put in place before starting
implementation. Knowing the size and logical order of these use cases helps to estimate the time it takes
for each of them and build the minimum end-to-end functionalities of the driver. It is also important to
identify the development approach that has to be followed during the implementation of the use cases,
i.e., either develop one use case and apply its functional test before implementing the next use case or
develop all use cases first and apply the functional tests later.

Even though choosing what approach to follow depends on the behavior and context of a driver, expe-
rience from this project shows that applying an iterative process is a good practice. Implementing one
use case and testing its functionality before moving to the next step helps to debug easily, reassess, and
adjust the estimated plan. It also gives you more insights along the way that can provide an idea to
improve the redesign as soon as possible. Besides, use cases of a driver have different sizes and devel-
opment times. This project's experience also shows that driver initialization use case takes more devel-
opment time than other use cases. This is because, in an embedded software environment, driver ini-
tialization has many operations and validations as it is the basic precondition for the primary operations
of a driver.

8.3.3. Have a C++ reference guideline at an early stage of the migration
After going through the legacy code of a driver and understanding the nature of its codebase, it is good
practice to have a short strategy guideline on what type of C++ techniques should be used during mi-
gration into C++ on aspects such as on loops, containers, memory management, and exception handling.
This does not only improve the efficiency and fasten the development time but also helps to have con-
sistency in the new migrated code. For instance, it is good to know when to apply smart pointers because

Eindhoven University of Technology

42

if we use them by default everywhere without caution, they will have a negative impact on performance.
Similarly, overusing the try-catch pair on every function implementation is not a good practice as it
makes the code not clean and readable. For more tips and guidelines, refer to Appendix A of the confi-
dential version of this document.

8.3.4. Use C++ STL libraries over company-specific C macros
C++ STL contains a family of functions and classes that are related to iterators, algorithms, and con-
tainers. These libraries are efficient, type-safe, and valuable to write clean as well as readable code. In
a driver legacy code, company-specific C macros are used that are less efficient and error prone than
the STL. Hence, when we migrate a legacy code into C++, replacing these company-specific C macros
using their corresponding C++ STL is better.

Eindhoven University of Technology

48

project without waiting for much time when I was stuck or needed more insights. I was good at asking
questions and get insights, especially at the beginning of the project. This helped me to obtain the re-
quired insights of the project at the early stage of the project. Therefore, it is recommended that a trainee
need to be proactive and ask as many questions as possible, especially during the first three months of
the project.

	Redesigning the image sensor subsystem driver
	Foreword
	Preface
	Acknowledgments

