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The object-oriented paradigm™

P. Americal M. van der Kammen R.P. Nederpelt**  0O.S. van Roosmalen **
H.C.M. de Swart?

December 24, 1993

Abstract

In this paper we discuss the fundamental concepis present in the object-criented
methodology.

First we concentraie on the notion of an object, the key concept in this approach.
A (software) object is the abstract representation of a physical or conceptual object. It
consists of a name, a specified set of data-elements and methods. Data-elements can have
values attached to them.

Data-hiding is the feature that certain data and methods can be kept invisible (=
hidden) for the outside of an object, thus facilitating its description. Only knowledge on
the nature of the visible data-elements and methods is required to make proper use of the
object. This is called data-abstraction. A related concept is encapsulation, a technique
for achieving both data-hiding and data-abstraction.

A class is a template for a number of similar objects. Classes do not prescribe values
for the data-elements nor fixed implementations for their methods. A class can be seen as
a set of objects that satisfy the same specification for data-elements and method-behavior.

An alternative grouping of objects may take place by means of object types, as we
will describe. A type is a set of objects that satisfy the same exzfernel specification, i.e.,
specification of the visible data-elements and methods, Thus, a classification via types
differs from an ordering into classes, as we shall explain. The notion of type brings along
a notion of subtyping.

We also discuss different forms of inheritance between classes. By means of inheritance
a class can use data- and method-descriptions from another class. We describe, among
other things, single inheritance, multiple inheritance and overriding. We also discuss
multiple preferred inheritance and runtime inheritance.

Finally, we show how aciual programming can take place in an object oriented ap-
proach. For that we need a description of inter-object communication by means of mes-
sages. Relevant aspects are: synchronous and asynchronous message passing, scheduling
and delegation.

The paper concludes with an overview and a number of summarizing remarks.

*This paper originates from Marc van der Kammen’s master’s thesis “The logic of objects; object oriented
programming in a logical perspective”. It is the revised version of his chapter 0, which contains an overview
of the most important basic notions concerning object-oriented programming.

tPhilips Research, Eindhoven, The Netherlands

**Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, the
Netherlands
!Department of Philosophy, Tilburg University, Tilburg, the Netherlands



1 Introduction

Recently, there has developed a growing interest in object-oriented programming, both in
research and in the industry. It is more the name of a methodology than a collection of
language features.

Languages can support this methodology, just like PASCAL supports structured program-
ming. But, naturally, there is no langnage that enforces this approach to such an extend that
one is guaranteed to develop *proper object-oriented systems.

Unfortunately, it is not easy to say what features are required in an object oriented language,
although there is a growing consensus on the minimal set of features that must be present to
call it object-oriented. This consensus causes a convergence int the features offered by popular
object-oriented languages.

In this paper we shall discuss the most nmportant aspect of object-orientation. The central
concept is, of course, that of an object. We shall give an idea of what an object is and what
can be its values (or states). By means of objects we can encapsulale data and code. Related
concepts are classes and lypes.

When the concept of an object has been made sulficiently clear, we will take a look at
inter-ohject relations. We will explain the idea of inheritance, as hoth an inter-class and an
inter-object relation. Next we will discuss message passing between objects. Together with
inheritance we will treat subtyping, which has been taken as a means of implementing and
describing inheritance by some authors.

Finally, we will give an overview of our presentation and we draw a number of conclusions.

2 Objects and values

In tlie seventies, structured programming was one of the keywords used in the programming
community ([Dahl et al. 72]). The rationale behind this approach was the growing conviction
that the best solution for a realistic problem could be found in the use of a methodology that
takes the logical structure into account. Structured programming is now generally accepted
as a proper way of programming.

Object-oriented programming is based on the idea that the physical and conceptual objects in
a problem domain can be used as a template to structure programs: First, reality is modelled
as a set of objects, including object-properties and relations, that are relevant to the problem
to be solved. Thus a problem is structured into small units that turn out to be relatively
independent of each other. Second, the units thus obtained are directly mapped onto the
program.

Naturally the modelling of reality is not an casy process. The actual partitioning that one
obtains depends on many factors, the most important one heing the way one perceives reality.
Thus, on the one hand the approach offers intuitive means to support the analysis and design-
process, on the other hand it puts a higher burden on the power of abstraction and creativity
of the software-enginecr.

The independent pieces of reality that one is looking for can be found by establishing the
aspects that one comsiders of importance to the problem at hand. For example, for the
modeling of an old-fashioned alarm-clock we could consider the following aspects as relevant:
the time it is indicating (the current time); the point of time at which it is supposed to
sound (the wake-up time); the little switches on the back with which the alarm time can be
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changed; and the mechanisms it uses to operate. There are also things of lesser importance
in this example, such as the subsiance the clock is made of. It follows that one usually
considers only a small part of reality to be interesting. These interesting aspects can be
further divided: the little wheels inside the alarm-clock are things that we do not take into
consideration immediately, the direct concern is to be awoken at the proper time. Thus a
distinction is made between externally observable aspects and internal ones.

Reality Abstract model

Object
Name
my_alarm
Data-elements
my_alarm (the real thing) current_time
wake_up_time
Methods
set_current_time
set _wake_up_time

Figure 1: The introduction of the abstract model.

The step to the abstract model is now very easy. We introduce for this purpose the notion
of objects, that are tuples of data-clements and methods 1. The data-clements of an object
represent the modeled aspects, like the time the clock indicates, or the time it is set to sound.
The methods of an object represent the transformations which can be performed on the data-
elements. For example, we can change the time the alarm-clock is set o sound by turning

the appropriate switch on the back. /

An object can be seen ([America and Rutten 39]) as a black box which can store some data
and act upon it. An object can only change its own data, and not that of another object.
Other objects are involved in realizing an object’s behavior, e.g. the wheels of the clock that
implement its mechanism. The required cooperation is made possible through inter-object
communication. This communication can he done in several ways as will be explained later.
Objects can be created and destroyed. This creates a dynamic structure: the part of reality
that the model is supposed to describe can change in the process.

An object-oriented program in execution will be called a system. Such a system can be
thought of as being a varying set of communicating objects.

In figure 1, we show an abstract model of an alarm-clock in the form of an object. Note that
this object is indeed an abstraction of reality, i.c. we can do more with a real alarm-clock
than only setting the current time and the wake_up_time (even if the clock is not intended

'Different authors use different terminology. In e.g. [Madsen and Mgller-Pedersen 88] these are called
attributes and actions, respectively. One also eften reads about variablet and procedures.



to be used for other purposes). It is our personal choice {in accordance with our aims) to
disregard all features of the alarm-clock that are not modeled.

The data-elements in an object have, apart from their name, a certain value. If it is nine
o’clock PM, the value of the data-element current_time is supposed to reflect this, e.g. as
the number 21:00. ‘

In [MacLennan 82] the values of the data-elements in an abstract model have the following
four properties:

— abstraction: Values are abstractions {rom real values.

— changeability: Values do not change, they are constant and static. We cannot change the
value 21:00; the only thing that can change is the current {ie.

— state: Values do not have a state; because they are constant, they represent only one real
value.

— referential transparcncy: If a data-clement has a value @, and the value a equals the value
b, then the data-element has also value b.

About the last-mentioned property, we note the following. In general, a model has referential
transparency if and only if equal values can be substituted for each other, without affecting
the model. This is clearly the case with values: values cannot be duplicated, they are unique.
Therefore there is referential transparency in the abstract model at value-level.

This is not so trivial as it seems; suppose we know that ”The number of inhabitants of
Amsterdam decreases” and thal ”The number of inhabitants of Amsterdam equals the number
of inhabitants of Rotterdam”. We do not necessarily also know then that ”The number of
inhabitants of Rotterdam decreases™.

Here we encounter the difference between the indension and the extension of a notion. The
numnber of inhabitants of Amsterdam is only equal to the number of inhabitants of Rotterdam
in an extensjonal sense. It is in fact the extension, viz., the value of the number of inhabi-
tants of Amsterdam, that equals the vafue of the number of inhabitants of Rotterdam. Now
the number of inhabitants (the intension) can decrease, but the valuc of that number (the
extension) cannot. (See [Dowty et al. 81].)

Values of data-elements can be used to characterize an object. The state of an object in
the abstract model, at a particular moment, consists of the values of the data-elements (at
that moment). We do not take methods as entries in the state. The reason is that the
set of methods of an object does not change in time. Hence, the state of an object at any
moment cousists exclusively of values of data-elements. It changes in discrete steps, and not
continuously. Moreover, an object is (in our abstraction) fully characterized by its state.

Of course, methods have their effect on the data-elements of an object. In order to guarantee
that methods do not interfere, we assume that at any one moment, in any object, only one
method can be active,

Suppose that an object contains other data-elements than the ones that actually occur in the
methods of tlie object. Then these data-elements do not contribute to the intuitive meaning of
the object, since they will never change, nor do they have an effect on any method. Therefore,
we may consider not to include them in the state.

In the example depicted in figure 2, where x and y are the only data-elements occurring in
the methods mg and my, the usclulness of z could be questioned. As therc is no method which
makes use of or changes the value of z, it is inaccessible.



Object
Name
a
Data-elements
X

¥y
z

Methods
mg = ... X ...
= X Y ...

mj

Figure 2: Too many data-elements.

Slight variations on these general principles for ohjects can be found in the literature. For
example, in the language POOL ([America and Rutten 29]), objects do not only have data-
elements and methods acting on thesc data-clements, but also a body, which is a process that
starts executing upon creafion of the object. In this fashion concurrency is introduced in
POOL.

Another variation is proposed by [Goguen and Meseguer 87]. Objects are there seen as de-
scriptions of reality using only equations. There is no distinction between data-elements and
methads. Every object is meant to embody a relation between properties.

There is a clear distinction between objects and values (which is not always made in liter-
ature). Just like in real life, where the perception of a certain entity will change, objects
— which represent this entity in the abstract model — can change too. If for example time
changes (which continually happens), the current_time of my_alarm will get a different value.
(We are not interested here in the question whether we have a continuum of values for the
current_time, or that we only have a discrete set of values.)}

Tts original value, of course, does not change (as values are nnchangeable), and neither does
its new value. Only the data-clement changes (see above; recall that a data-element is a pair
of a name and a value).

It is further possible to have two alarm-clocks which are similar. If two alarm-clocks look
very much alike, we arc very soon inclined to say that they are equal. In our abstract model,
it is therefore possible that two identical objects exist apart from each other: they form two
instances of the same kind (see also section 4). We are then inclined to say that the two
objects have the same state.

Of course, this equality can change. When one of the alarm-clocks is set to sound at a different
time, its state changes and with that its equality to the other alarm-clock, which will stil
sound at the original time.

Concluding, we list some properties of an object as follows:

— abstraction: Objects are abstractions from pieces of reality.

- changeability: Objects are subject to change in time: they can be created, change their
state and disappear,

- state: At any one moment in time, objects have exactly one state; this state is composed
of the momentary value of all data-elements the object contains.

o



- referential transparency: Objects can have duplicates, which can act independently; two
objects that have the same state (are “cqual”) at a certain moment can be different the next
moment.

From our discussion above it is clear thal there is no reflerential transparency at object level.
This causes problems, for example with aliasing?.

Objects can, as is clear from the above, be used to represent (sets of) values. The interested
reader is encouraged to read [America and Rutten 89], where this is actually done.

3 Data-hiding, data-abstraction and encapsulation

The description of reality by means of objects gives a uniform view. Objects are seen as
modules which consist of data and methods. For the object itself, it is very important how
the methods change the data, but for a user of the object, this is of no interest. The mere
fact that the data chauge is enough for the user, and no more.

Let’s take the alarm-clock as an example again. The fact that its current time changes is
something an observer sees. The observer notices that the hands of the alarm-clock move.
But what the observer does not nced (or want!) to know, is which wheels inside the alarm-
clock do work. However, if the alarm-clock wouldn’t know how to change the position of its
hands, it would be useless. Therefore, the method turn_hands should be known to the object
my_alarm, but need not be visible to any other object.

Reality Abstract model
[ Object
Name
my_alarm

Data-clements
current_time
wake_up_time
my_alarm (the real thing) || Hidden data-elements
tick_count
Methods
set_current_time
set_wake up_time
Hidden methods
turn_hands

Figure 3: Hidden object features in the abstract model.

*We talk of aliasing whenever we have two names for the same thing, and use one of these names to change
it; one of the mentioned problems is that one often forgets that it has also changed when we use this thing
with the other name.



As we may infer from this example, the concept of data-hiding appears to be very important
in object oriented approaches. Data-hiding is a way to keep irrelevant information away from
the observer.

This idea is closely related to the modular approach of programming. A natural conse-
quence of a modular approach is that sets of related methods and the data they manipulate
are put together in one module; this facilitates the hiding of unimportant information (see
[Stroustrup 87]). Actually, the term ‘data-hiding” does not fully cover its load; we had better
talk about data- and method-hiding (or information-hiding), as from the example given above
it is already clear that methods are also in the same module. In figure 3 we have inserted
examples of a hidden data-element and a hidden method in the abstract modei.

In order to use a certain module, we need to have some kind of description of the module.
There are two aspects of interest in this regard.

I'irst, the description needs to tell which data-elements and methods are visible to the outside
of the module and which are not. Second, it needs to give us a description of the possible
values of visible data-elements and behavior of visible methods. In order to use a module, we
need to know what it does and how we should use it in order to achieve a certain effect. This
manner of describing a module as outlined above, is called data-abstraction.

The above description of a module is often called an external interface. The part of the
description that tells us the behavior of the visible parts of the module is called the ezternal
specification of the module. Naturally, also an internal specification exists.

The concepts of data-hiding and data-abstraction arc important aspects of the encapsulation
technique (see [Snyder 86]):

‘Encapsulation is a technique for mininizing interdependencies among sepa-
rately written modules by defining sirict exlernal interfaces. The external interface
of a module serves as a contract between the module and its clients, and thus be-
tween the designer of the modulc and other designers. If clients depend only on the
external interface, the module can be reimplemented without affecting any clients,
as long as the new implementation supports the same {or an upward compatible)
external interface. Thus, the effects of compatible changes can be confined.”

Generally, encapsulation is considered one of the main featurcs of object-oriented program-
ming. It provides the designer of programs with an easy way of re-using previously developed
modules, and therefore offers an efficient (and clean) way of program development. However,
reuse is stimulated by equally important other mechanisms in object-oriented programming
languages, such as inheritance and gencricity. These features distinguish object-oriented lan-
guages from other languages that support modularity (e.g. Ada, Modula-2). According to
some estimations regarding the developinent of large software projects, up to 80% of the code
can be re-used ([van Ginderen 90]).

An object has data-abstraction if it has an external interface which gives a certain interpreta-
tion of the externally visible data-clements and accompanying methods {or in other words, if
it has an external specification)®. We are not interested in exactly what is inside the module,
but we only want to know what it means and how we can use it.

*The objects in our abstract model can be seen as the abstract data objects of [Snyder 86]. The external
behaviour of an object is fully defined by a set of abstract operations on the data of the object.



If an object has data-abstraction, we have the freedom to change the internal structure of
the object, as long as we do not change the external interface that forms the interpretation
of the data and methods. In [Stefik and Bobrow 86|, data-abstraction is explained as the
principle that modules should not make assumptions about implementations and internal
representations of the modules they are using.

4 Classes

We are sometimes inclined to say that certain pieces of reality are very similar (of the "same
kind™). Although the alarm-clock we have in mind may differ a lot from the one you have in
mind, we all say that it is an alarm-clock.

To formalize the intuitive notion of this type of similarity in reality, we need some classifi-
cation. Two pieces are of the same kind if and only if they have the same relevant aspects.
Using this notion, anything that ticks, that has hands indicating the current time, on which
the current time and the alarm time can be set, will be known as an alarm-clock,

Similarity is reflected in the abstract model by means of the notion of class. A class is meant
to serve as a specification for objects. Any object which matches the specification belongs to
the class. No distinction is made here between the visible and hidden leatures. A class gives
internal specifications for methods (sce below) and a pattern of data for objects of the same
kind. It is not an object itself. However, given a class, objects of this class can be created.
In figure 4 we illustrate the notion of class with our example of the alarm-clock.

A class is a set of method- and data-descriptions. The difference between classes and objects
lics in this word deseription. Qbjects have values for their data-elements, Classes have de-
scriptions for their data-elements (think of information on type, etc.). Also, objects-methods
are fully detailed, whereas classcs have possibly partial descriptions for their methods: ob-
jects belonging to the same class may have diferent implementation of their methods (see the
discussion on inheritance and polymeorphism further on).

Classes are descriptions of objects, and therefore consist of descriptions of data-elements and
methods.

A description of a data-element consists of a name and a value-domain. There may also be
restrictions on the combined values of data-elements, as expressed in so called class-invariants.
A description of a method consists of its name, pre- and post-conditions, and often a default
implementation which we will call the internal specification of the method.

To point out the difference between description and definition, we use the symbol ‘:’ for the
descriptions in classes, and ‘=’ for the definitions in objects. See figure 5 [or an example. We
give the method-description by means of a Hoare-triple ({time=T}, set_time(t),{time=t}).
Its meaning is: starting in a state in which the pre-condition time=T is satisfied, the execution
of method set_time(t),if terminating, will lead to a state in whicl the post-condition time=t
is satisfied?, Note that a description is given for the visible as well as the hidden data and
methods of the class. Although a user of the corresponding objects requires only information
on the visible aspects, the class description limits the way in which the externally observed
behavior can internally be realized.

*In this simple case — contrary to the general situation — the pre-condition has no connection with
the method or the post-condition: the original value of the time (T) has no consequences for the method
set_time{t) or the new time t.



Reality Abstract model

Object
Name
my_alarm
Class-Name
alarm
Data-elemenis
current_time
my_alarm (the real thing) wake_up_time
Hidden data-clements
tick_count
Methods
set_current time
set_wake up_time
Hidden methods
turn_hands

Class
Name
alarm

Data descriptions
current _time
wake up_time
alarm (the real kind) Hidden-data descriptions
tick_count
Method descriptions
set_current_time
set_wake up_time
Hidden-method descriptions
turn_hands

Figure 4: Classes and objects in the abstract model {for alarm-clocks.



Class
Name Object
alarm Name
Data descriptions my_alarm
time:Int*Int Class-Name
Hidden-dala descriptions alarm
ticks:Int ‘ Data-elements
Method descriplions time = 11:10
{time=T } Hidden data-elements
set_time(t:Int*Int):[time:=t] ticks= .
{time=t } Methods
Hidden-method descriptions set_time(t) = [time:=t]
{time=T } Hidden methods
turn_hands turn_hands=[..]
{time=..}

Figure 5: Classes and objects.

A class is often seen as a set of objects (sce [Halbert and O’Brien 87}), where every object
represents a different "value”. This idea of value is of course nol the same as the previous
one. Here the "value” of an object is completely characterized by its state.

5 Types

fn the previous section, we have grouped objects on the basis of the description of their data-
elements and the internal specification of their methods. This gave rise to the notion of a
class.

In this section, we will group objects in an alternative way, therchy creating types. In this
approach, objects are grouped on the basis of tleir external behaviour; i.e., what is visible
from the outside (¢f. [America and Rutten 89]).

A type is determined by the external specification of an object, i.e. the specification of the
names and types of the visible data-elements, types of method-arguments and names and
returned results of methods, and the specification of the behavior of the methods. Two
objects have the same type if their external specifications coincide.

The essence of the difference between class and type can be phrased as follows: a class groups
together objects that are built in the same way while a type is a collection of objects that
can be used in the same way.

In programming languages we do not always hiave types. Looking at pure PROLOG, there
is no typing on the domain of the terms. But looking at PASCAL, we have a very strict
notion of typing. For C things are different again. There, automatic type conversion plays
an important role.

The use of types has various advantages, like the possibility of static type checking, resulting
in a larger efficiency and a larger chance of correctness for programs, because there is less
need for run-time checks. Another advantage is that domains for functions can be given as
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types; for all function applications one then may check beforehand whether the argument of
the function has the proper type, i.e., whether it fits in the domain.

Type compatibility is one of the main issues of typing. It is based upon an ordering on types,
thus introducing nottons like sub- and supertype. An assignment z := F is allowed only if
the type of E is a subtype of the type of 2. In some languages that support types, we can
instruct the compiler to check the types, thus preventing execution of the code if the types
are not compatible.

Porting this idea of subtyping to our abstract model, we arrive at what is described in the
following.

By the very definition of class it is not possible that objects of the same class have different
types (or external specification). This fact cnables us to talk about the type of a class, instead
of about the type of an object®. With any class, exactly one type can be associated.

We say that a type A is a sublype of a type I} (and write A <,,,, B) iff adherence to the
external specification A implies adherence to the external specification B. This means, that
any visible hehavior of an ohject with type A is in accordance with the specification B.

Class
Name
STACK
Hidden data descriptions
n:integer
s:array of integer
Method descriptions
{s=W A n=N}
push(x)
{s=Wi{s[N]=x A n=N+1}

{s=W A n=N}

pop
{s=W A pop=s[N-1] A n=N-1}

Figure 6: The class STACK.

In figure 6 we can see the class STACK and the specilication of methods push, pop and the
data-elements s and n. The array s is used to contain the elements of the stack. Pushing is
done from the bottom-up in this array. An object of class STACK represents a stack with the
operations push and pop, specified as given in figure 6. We can see that all data-elements
of objects of class STACK arc hidden. Only the methods can be seen from the outside. The
external behavior as produced by the methods push and pop is completely determined by the
external specification: pop(push(stack,x)) = x, stating that a pop delivers the last element
pushed onto the stack.

In order to create a subtype of STACK, we need to look at its external specification. Important

®*We are aware of the fact that we introduce some limitations, which may restrict the usefulness.
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is that a subtype can at least "do” everything that STACK can, and possibly more. Consider
the following class XSTACK (see figure 7).

Class
Name
XSTACK
Hidden data descriptions
m:integer
t:array of integer

Method descriptions
{t=W A m=N}
push(x)
{t=WIt[N]=x A m=N-1}

ft=W A m=N}

Pop
{t=W A pop=t[N+1] A m=N+1}

{t=W A m=N}

empty
{t=W A m=0}

Figure 7: The class XSTACK.

The specification of class XSTACK dillers from the one of STACK. There is not only an additional
method empty in XSTACK, but also a different internal representation: the array is built from
the top down. This contrasts with STACK where the array is built bottom-up®. Also, the
data-clements have different names. Nevertheless, XSTACK <« ;yp. STACK since if we restrict
ourselves to the use of the operations offered by both classes the same behavior is externally
observed for objects of either class.

6 Inheritance

Typing is something extra, something to ensure correctness, to improve efliciency, which is not
necessarily present in a programming language. Inheritance is something typical for object
oriented programming and therefore is essential for any programming language which claims
to support object-oriented design.

Many authors do not distinguish between the notions of subtyping and inheritance, e.g. in
{Bruce and Wegner 86] we can find a very nice theory which describes inheritance using a
subtyping relation. However, ocur point of view is that typing should not be used for other
purposes than the ones given above. Inheritance is something typical for object-oriented
approaches and if we use typing to describe it, its power is somewhat limited ([Cook et al. 80]).

®Note that m is of type integer and therefore can be negative. The method empty permits to start with an
empty stack, initializing m to zero.
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In the following, we will describe inheritance, starting in a very simple form, and then ex-
tending it to a general form. Many other forms exist, but we will limit ourselves to the most
important ones.

Inheritance can bhe described as a mechanism through which classes obtain data- and method-
descriptions from other classes. Of course, our abstract model is supposed to be able to express
this property. Therefore, we have a linking function between two classes.

We will use D4 and M, for the set of data-element-names respectively the set of method-
names for any class A. It will be the case that D4 N M4 = @ for any class A. Moreover,
we use £4 for all entries in D4 U M 4. Hence, £4 contains all data-element-names and all
method-names of class A.

Definition 1 Linking function.
Given two classes A and B, we call 7 a linking function from B to A iff

TE(‘:BAEA

such that” (D) C D4 and 1{Mp) C Mu.
With 2 we denote a partial function.

We use a linking function to express the way we inherit a data-description or method-
description from another class (note that the linking function implicitly consists of two distinct
paris, one for data-descriptions and one for method-descriptions). The idea is that the linking
function transfers some data- or method-descriptions of class A to another data- or method-
description of class B. If 7(b) = a, then « is inherited from class A in class B under the name

b.

In the most simple form of inheritance, there are basically only two classes A and B involved,
and B inherits everything that A has. This means, that every data- and method-description
from A is also in B, The linking function will there be used in order to find the origin of the
description of a method or data-clement.

This most basic form of inheritance we will call complete inheritance.

Definition 2 Complete inheritance.
Given two classes A and B and a linking function 7 from B to A, we say that
B <7, A (B inherits complete from A) ifl

(foralla € £4 : (thereisa b € g : (7(D) = a)))
We say that the elements of £4 are inherited from A by B.

For an example, see figure 8. The linking function from ALARM to CLOCK can be expressed
as the following set of pairs: {(current_time,time),(set_current_time,set. time)}. In the
following, we will use this notation in order Lo express the linking {function.

All data- and method-descriptions from CLOCK are inherited by ALARM under a different name.
This will complicate our discussion further on and thercfore we will simplify this by giving
the inherited items their original name. This means, that instead of having current_time
and set_current_time in ALARM, we now have time and set_time, which have the same
description. The linking function now becomes trivial and our class is slightly changed (see
figure 9).

"We do not consider the option available in e.g. Eiffel {[Meyer 88]) to redefine a method as a data-element.
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Class
Name
CLOCK
Data deseriptions
time :
Method descriplions
set_time

Class
Name
ALARM
Data deseriptions
wake up_time : ...
current_time : time{from CLOCK)
Method descriptions
set_wake_up_time
set_current time : set_time (from CLOCK)

Figure 8: Complete inheritance.

Note that it is not necessary to explicitly specify in the list of data-elements and methods
of ALARM that we also have time and set_time. This information can be extracted from
the complete inheritance of the class ALARM [rem the class CLOCK. Moreover, the method
set_wake up_time described in ALARM may use both set_time and time.

Class CLOCK itself can of course inherit fromn another class. This way a chain is formed along
which complete inheritance takes place. For an example of suck an inheritance chain, see
figure 10. This possibility of chaining of inheritance is called linearity.

In order to find the description of set_time of class ALARM in the situation of figure 10, we
use functional composition of the linking functions along the chain. In this case, we have a
linking function Terock METHODS —cLOcK_DATA and a linking function ToLgRM—cLOCK METHODS, Which
are both quite trivial. Functional composition gives a linking function maparM—crock pata. We
can compute the values of these functions by starting at the end of the chain, at the point
where the data-elements and methods are actually described.

Therefore, we must require that these chains do indeed end. E.g., we must prevent to have
that A inherits from B and B inherits from C and ... inherits from A. Checking on the
presence of circular inheritance relations between classes is obviously the task of a language
compiler.

Another problem that requires attention is the following. Suppose that the class ALARM
in figure 9 has a method-description set_time in it. As class CLOCK, which is completely
inherited by ALARM, also has a method-description set_time in it, it is not clear which of the
methods (set_time) is meant when one talks of set_time in Mypapy. This problem of so
called name-clashes will be discussed later.

Some generalizations of the notion of complete inheritance have been introduced. The first
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Class
Name
CLOCK
Inheritance
none

Data-descriplions
time :

Method-descriptions
set_time :

Class
Name
ALARM
Inheritance
complete from CLOCK
Data-descriptions
wake_up_time ;:

Method-descriptions
set _wake_ up_time

Figure 9: Complete inheritance (simplified).

extension we will consider here is the one towards incomplete inheritance. The idea behind
incomplete inheritance is that not all data-clements or methods are inherited from another
class.

Definition 3 Incomplete inheritance.

Given two classes A and B and linking function 7 from I to A, we say that
B «{,., A (B inherits incomplete from A) iff

(thereisaa € £4 : (thereisa b e £p : (T(b) = a)))

We say that the elements of &4 N €Y are inherited rom A by 5.

Note that from this definition it follows that

B <7, A implies B A, if £4#0.

In the case of incomplete inheritance, the linking function is not necessarily surjective, as not
all data-element- or method-descriptions of class A need to be inherited from A by B. An
example of this can be found in figure 11, where we have retained the namne of the inherited
items from CLOCK in ALARM. The linking function is obvious from the figure.

Similarly to the previous case, in the situation of figure 11 we can make the observation that
Dprany = {wake_up.time,time} and MypLapy = {set_wake.up_time,set_time}. Of course it
is possible that class CLOCK, in its turn, inherits the description time from another class. This

8which are data-descriptions in P4 N Dp or method-descriptions in M4 N Mg



Class

Name
CLOCK_DATA
Inheritance

none

Data-descriptions
time :
Method-descriptions

Class
Name
CLOCK_METHODS
Inheritance
complete from CLOCK_DATA
Data-descriptions

Method-descriptions
set_time

Class
Name
ALARM
Inheritaunce
complete from CLOCK_METHODS
Data-descriptions
wake up time :
Method-descriptions
set_wake up_time :

Figure 10: Complete inheritance (linear).

could even be the description wake_up_time from class ALARM!. But in the last-mentioned
case, one would not allow thal wake_up_time inherits from time. Hence, also incomplete
inheritance must obey some form of linearity.

The use of incomplete inheritance as described above, is problematic. The reason is that
set_time might use the data-element dual.time. Not inheriting this data-clement renders
set_time in ALARM useless. The programmer or compiler must check on the occurence of
such inconsistent incomplete inheritance chains. Also from a more formal standpoint there
is a drawback: incomplete inheritance no longer implies subtyping, e.g. if not all visible
methods and data-elements are inherited. Therelore it will not be a surprise that incomplete
inheritance hardly ever occurs,

Another generalization of complete inheritance is multiple complete inheritance. Data-element-
descriptions and method-descriptions may be inherited from more than one class. In this case,
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Class
Name
CLOCK
Inheritance
none
Daia-deseriptions
time :
dual time :
Method-descriptions
set_time

Class
Name
ALARM
Inheritance
time, set_time from CLOCK
Dala-deseriptions
wake_up_time
Method-descriptions
set_wake_up_time

Figure 11: Incomplete inheritance (simplified).

our linking function should not only express which naine is mapped to which name, but also
from which class it stems. We create the catended linking function:

Definition 4 Extended linking function.
Given a class B and a sel 5 of classes with the property that B ¢ 5, we call 7 an extended
linking function from B to § iff

TE((‘:Bﬂ.- U[{A}*SA])

AeS
such that 7(Pp) C Uaes[{A} * D4] and r1(Mp) C U cs[{A} + M4l

The extended linking [unction gives us for each of the inherited data-elements and methods
a tuple which contains the class-name (as a label) and the data-clement- or method-name to
which it is mapped. Multiple complete inheritance can now be defined as follows:

Definition 5 Muitiple complete inheritance.

Given a class B, a set 9 of classes with I3 ¢ §, and an extended linking function 7 from B to
5, we say that

B <« 1ot ep S (B inherits multiple complete from §) iff

(forall A € §: B <4 A), where 74 is the projection of 7 on A (with the class-label A
omitted).

We say that the elements of |J .5 €4 are inherited by B from §.
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Class Class L Class ]
Name Name Name
SILVER_BELL CLOCK GOLDEN_BELL
Data descriptions Daln descriptions Data descriptions

time : ... time : ... weight
Method descriptions color : ... Method descriptions

set : ... Method descriptions set
reset @ ... set_time : ... reset

Class

Name

ALARM

Data deseriptions
time :

dual time : time (from SILVER_BELL)
wake up_time : time (from CLOCK)
background.color : color (from CLOCK)
gross weight : weight (from GOLDEN_BELL)
Method descriptions
set : set {(from SILVER_BELL)
reset : reset (from SILVER_BELL)
set_wake up_time : set_time (from CLOCK)
set_gross_weight : set (from GOLDEN_BELL)
reset _gross_weight : reset (from GOLDEN BELL)
ring :

Figure 12: Multiple complete inheritance.

In this definition, the surjective property for the extended linking function means that for
every class A € § we have that for every data-element and method of A, there is a data-
element resp. method in B that is mapped to that one. An example that illustrates multiple
complete inheritance is given in figure 12. The extended linking function belonging to this
example is:

{(dual_time,(SILVER BELL time)), (wake up_time,(CLOCK,time}),
(background_color,(CLOCK,color)), {gross_weight (GOLDEN_BELL,weight}),

(set,(SILVER BELL,set)), (reset, (SILVER BELL,reset)),
(set_wake_up_time,(CLOCK,set_time)), (set_gross weight,(GOLDEN BELL,set)),
(reset_gross_weight,(GOLDEN BELL,reset)) }.

As before one can run into the problem of name-clashes: refering to two methods or two
data-elements with the same namec. For example: in the above inheritance scheme, we cannot
inherit the description of time under this name from both class SILVER BELL and class CLOCK
without introducing an ambiguity. The solution used in the figure is to perform an appropriate
renaming ?. We will discuss some alternative solutions.

®This, however, does not solve the problem entirely. Consider, e.g., the case where dual_time and
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Class
Name
ALARM
Inheritance
multiple preferred:
SILVER BELL =<, CLOCK <., GOLDEN_BELL
Data-descriptions
time :
Method-descriptions
ring :

Figure 13: The preference relation for multiple incomplete inheritance.

The most obvious solution to name-clashes 1s to demand that all names be different:
[fOI’.‘ all Al,Az H Al ES5A “12 ES5A 441 7£ “12 : ("‘Al N é:Az = (’)]

However, this places quite a burden upon the designer of the classes and it violates the
principle of modularity. E.g., the designer of a. new class A should not be concerned about
names of possibly even hidden data-elements of another class B, just because at some later
point in time someone may decide to introduce a class that inherits form both A and B.
Therefore, this solution is inappropriate. It is remarkable, however, that this solution is
nevertheless chosen in some existing object-oriented languages.

A second alternative takes us from multiple complete inheritance to a special form of multiple
incomplete inheritance. We add a lincar ordering (a so-called preference relation) to the set
{B}US. In this manner we create a chain, from which the first class is the most preferred one,
and the last class the least prelerred. The purpose of this chain is to introduce a priority: in
case of an ambiguity for a reference of a data-clement or method, we take the most preferred
class.

This obviously requires that B is always the first class in the chain (note that if we find the
description there, it is actually not a case of inheritance, but just description-lookup). In
the class under consideration, we only list the chain from the second element onwards, as we
know that the class itself is always the first element.

In the above example, we could have the following ordering (fromn most to least preferred):
SILVER BELL <, CLOCK <+ GOLDEN BELL. Class ALARM (a more simplc one than the one in
figure 12) could look like the one in figure t3.

The inheritance relation in that example implies that Darapm = {time, color,weight} and
that MppLarm = {set,reset,set_time,ring}. The description of data-element time is obvi-
ously in class ALARM (as being the most preferred), for color in class CLOCK and for weight
it can be found in class GOLDEN_BELL. For the methods set and reset the description is in

wake up_time are derived from a single data-element of a common ancestor class. If in this so called repeated-
inheritancesituation an object is an instance of the class ALARM the ambiguity in the selection of implementation
remains if the data-element is addressed as an element of the common ancestor. We refer here to the mecha-
nism of dynamic binding which is not further discussed in this paper. A more extensive treatment of this issue
can be found in [Meyer 88].
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Class
Name
GOLDEN_BELL
Inheritance
none
Date-descriptions
time : .
Method-descriptions
set :
Cl
ass Class
Name Nome
BEFL CLOCK
Inheritance -
X Inheritance
multiple preferred: n
GOLDEN _BELL nome
— Data-descripiions
Data-deseriptions .
color : time : .
Method-descriptions AlethodjdesC?mptaons
set_time :
set :
Class
Name
ALARM
Inheritance

multiple preferred:
BELL <.+ CLOCK
Data-descriptions
weight:
L Method-descriptions

reset :

Figure 14: Lincarity in muliiple preferred inheritance.

SILVER_BELL (being preferred above GOLDEN_BELL), for set_time in class CLOCK, and ring is
described in class ALARM itself.

There are some drawbacks in this solution, however, which can be seen in the example. (1)
Suppose we wonld want to use set of class SILVER.BELL and reset of class GOLDEN_BELL.
There is no preference relation that lets ALARM inherit hoth of these methods. (2) The prefer-
ence relation has an effect which is kuown as overriding. A data-element or method o from
a class C overrides the data-element or method with the same name from another class D
only if C is more preferred than . The preference mechanisiy therelore destroys the relation
between inheritance and subtyping: if A inherits fromm B this no longer implies that A is a
subtype of B,

The multiple inheritance as described, wilh preference relation, we call multiple preferred
inheritance. We will denote it by <[, .. An exact definition we consider outside the
scope of this paper.

Of course, also in the case of multiple preferred inheritance, we desire linearity. Any class
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weight; reset (ALARM)

\

color; set (BELL) time; set_time (CLOCK)

time; set (GOLDEN_BELL)

Figure 15: The tree of the preference relation.

A; € § can inherit multiply preferred from a set of other classes. Therefore preference can
be no longer interpreted as a chain. It is more like a tree, or even a graph, in which case we
should be very careful with our inheritance. An example of this is given in figure 14. In this
example, class ALARM inherits color from BELL, set from BELL and set.time from CLOCK.
But what about time? Where does that come from? There are two basically different ways
to resolve the conflict, corresponding to a breadth-firsi resp. a depth-first search strategy in
the tree of the preference relation. Using the breadth-first approach, we get time from CLOCK,
with depth-first we get it from GOLDEN_BELL, via BELL?,

Most approaches choose this depth-first strategy, and thercfore we will also do so. The tree
for the example looks like the one in figure 15.

From this example it will be clear that it is quite hard for a programmer to keep track of the
inheritance structure. Therefore, it should be used with lots of care.

One could consider other forms of inheritance. Most of these, however, can be classified
among the above. As we mentioned belore, incomplete inleritance is not frequently used.
Complete and multiple preferred inheritance are the most popular forms.

The way we have described inheritance thusfar does not give us a flexible mechanism at
runtime. During execution of a program, objects have a fixed set of data-elements and
methods. In recent research {see [Shriver and Wegner 87]), however, there is more emphasis
on having a flexible set. Especially with methods it secins useful to be able to change, add
or subtract some definitions from this set. Following this approach, inheritance is taken
from class-level to object-level. No descriptions are inherited, but definitions (actual code).
Therefore, we call this form runtime inheritance. (See [Hailpern and Nguyen 87).)

A major problem that arises in this respect is that of consistency with class-level inheritance.
The restriction that all objects of the same class inherit data-clements and methods from
one or more classes is no longer a requirement. Objects of the same class can therefore have
different sets of data-elements and methods. Or, seen otherwise, new classes can be created
at runtime and objects can change their class!

A second problem is that inheritance is not [rom classes, but from objects. As objects of
the same class can now have different sets of data-elements and methods, it js not possible
to choose an arbitrary object of a class to inherit from. A solution often encountered is the
use of prototypes (see [Lieberman 86]). For every class, one object is designated as the object

1"With data-hiding in mind, we note the following. In the lastmentioned case, the class ALARM does not
know that it inherits time from GOLDEN BELL. it only knows that it inherits the description from BELL (which
in turn gets it from GOLDEN_BELL).
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from which inheritance takes place. A mechanism known as delegation (see further on) is then
frequently used to implement the inheritance. Prolog++ (see [Prolog++ 90]) is an example
of a language which uses this solution,

7 Inter-object communication: messages

Up to now, we have only discussed individual objects, classes and relations between them.
We have intentionally left out the discussion on programming. In this section we will show
how object-orientation is related to programuming.

Thus far, a program consisted of a set of classes, with which we were able to create objects in
the system. But this is not enough, as objects are unable to perform any action without being
triggered (remember that our objects do not have bodies, i.e. processes that get executed upon
creation of the object; cf. Section 2). A slatic set of objects merely forms a description, but
is unable of performing any action. Objects should be able to coninunicate in order to create
a dynamic structure.

Communication in object-oriented languages is performed by the aid of messages. Messages
can be sent from any object to any other object to which it holds a reference. The receipt of a
message triggers that object to perform an action, provided that the external interface of the
object "recognizes” the message. A message therefore can be seen as a package containing the
names of a sender-object and a receiver-object, plus a method to be invoked in the receiver,
with a non-negative number of arguments for the method.

Objects can be active or inactive. In a system, the only active objects at any one moment
are those that have been triggered by the receipt of a message, but have not yet finished the
execution of the method invoked. All other objects are inactive.

There are two distinct ways of communication between objects. We can have synchronous or
asynchronous message passing. The diflference is described in [America and Rutten 89, and
can be explained in short as follows.

With synchronous communication, the sender waits for a return valuc once a message has
been sent (a kind of hand-shaking mechanism). This signals the completion of the method.
During this wait the sending object is inactive. It becomes active again (it was active before
sending the message) after the receipt of the return value.

It can easily be seen that using this way of communication, we always have exactly one object
which is active (we assume that initially we have one active object).

Actually, we can speak of two different: forms of message-passing, namely implicit and explicit
message passing.

Implicit messages are messages which are sent by the communication protocol — like the
inheritance mechanism — or completion messages. No object has code for thesc messages;
there is no such thing as a send comnmand for implicit messages.

With explicit messages this is different. These are the messages that are evoked on the request
of the user of the program. Thereforc these messages must he explicitly coded.

The return value of synchronous communication is sent as a so-called completion message; this
is an example of an implicit message. It evokes a special code which handles “completion”.

With asynchronous communication, we do not require the sender to wait for the completion
of a method. Upon sending a message, the sender stays active and proceeds with the next



operation. This way, we can have multiple objects active at the same time. Obviously, we
introduce some parallelism.

Moreover, we introduce a problem known as scheduling. Suppose we have an object which at
the same moment receives two messages invoking the same method. Which message should
be given priority, or should both messages be granted access at the same time, and what is
then the effect? Or suppose that the object which receives the messages is already executing
the requested method, because it received an earlier message for it. What happens then?
This scheduling problem is not related to asynchronicity, but more to parallelism. Therefore,
we will not attempt to solve all the above-mentioned problems. On the other hand, we do feel
that objects, independent as they are, should he allowed to execute their methods in parallel
whenever possible.

In reality, it is impossible to have a mechanism which schedules messages and guarantees that
a message sent will eventually be processed unless the method invoked ahorts or ends up in
an infinite loop. Individual starvation can be prevented by guarautees on the language level,
but the prevention of deadlocks is a task for the programmer.

It is clear that an object can send a message which contains a reference to itself as an argument.
In most languages, for this purpose the reserved word SELF is used in the description of the
method. Especially when used with delegation (see below), a lot of attention should be paid
to the question which objects are supposed o receive a completion message.

Data-elements are global to all methods of the object. Therefore, if we have a message
sent to the object itself, the activated method acts upon the same data-elements as the
sending method does. In fact, we have some kind of in/out parameter passing. When we use
asynchronous communication, this leads to problems. We will demonstrate this by means of
an example; see figure 16. The sending of messages is executed there by the (built-in) method
send.

Object
Name
alpha

Class-Name
A
Data-elements
n
Methods
if n<10

— n:=n+1;

send (SELF,run};
n:=n-1;
print(n)

skip

run = {

0 n=11

Figure 16: T'he printing of some natural numbers.
I 4

The idea of the example is to print the numbers
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0...10

in decrecasing order.
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run is used for this purpose. Suppose that n has initial value 0. If we use synchronous
communication, the following is happening. Upon activation, the object increases the value
of n, creates a. new invocation of the method run and makes the old invocation inactive. This
process repeats itself for n = 0 up to 10. T'hat is to say: ‘the object keeps on sending messages
to itself until n reaches the value of 11, This is the “first round”.

In the second round, each invocation hecomes reactivated by a completion message from the
invocation it created. This (re-)activation takes place in the reverse order. In each step,
starting with n, the method does nothing but sending a completion message to the object, in
response to which the object decreases n by 1 and prints the number obtained. In a stack-like
fashion we now will get the numbers 0... 10 in decreasing order.

However, if we use asynchronous communication in this example, we can get completely
different results. After the first message {from object alpha to itsell] it is not guaranteed that
the next event in time will be the sending of another message. As the sender of the first
message does not wait for the completion ol a method, it can very well be that the first print
statement is executed before the first message is even received. In that case, the first number
printed can be 0.

An interesting application of message passing is delegation, which is a manner to simulate
inheritance. With delegation, one supposes that every object tries first to answer a message
itself. But if it fails to do so, it should forward the message to another object!! that is of
the class from which it was originally intended to inherit. Most languages allow objects to
be created dynamically (at runtime). In order to determine the set of data-elements and
methods of such a created ohject, one may use the prototype of the class to which the new
object will belong. If no prototypes are available, objects can be created as copies of others.

Some approaches even allow more flexibility in object creation, and allow the progranimer
to define (parts of) the set of data-elements and methods. This way, class-less objects can
be created. Or equivalently, new classes can be created at runtime. We feel that too much
flexibilily in object creation, jusl like too much flexibility in inheritance structure, is harmful
to a language, because it places too high a burden on the programmer to ensure that the
correct combination of data elements and methods is present.

8 Overview

In this paper, we have tried to huild a model for the object-oriented approach. Not all the
details of the model have been worked out. On the other hand, we sketched several directions
in which the model can be elahorated.

In the introduction of the model we described how to abstract from reality into an abstract
model. The basic modules in the model are called objects. A program in the model consists
of a number of objects. We added the coucepts of data-hiding and data-abstraction to our
model, thereby creating classes. These classes were meant to group objects together, based on
internal specification. An alternative way of grouping objects, based on external specification,
was Introduced in the form of the concept of type.

Next, we introduced inheritance in sceveral forms, in order to show the possibility for modular
development of programs. Inheritance is generally cousidered to be one of the main features

"The prototype mentioned before.



of object-oriented programming. Therefore we treated this notion extensively. Inheritance in
our view is a relation between classes. There arc alternatives like runtime inheritance, which
has also been discussed. We mentioned that too much flexibility in inheritance structure can
be harmful to a language, as programmers cannot easily keep the inheritance tree in mind.

Finally, we noted that a static model is not very interesting, nor representative for reality.
Therefore we provided programs in our mode! with a message-passing mechanism. Messages
can be sent from any object to any other object. Two distinct ways were discussed, namely
synchronous and asynchronous message passing. We mentioned the problem of scheduling
and how to use message-passing in implementing inheritance, a technique known as delega-
tion. The message passing mechanism itself was not treated extensively. In fact, this is an
implementation issue that we are not dealing with here.

In short, we have given a model for object-oriented programming, based on several notions
and interpretations that can be found in the literature. Part of this literature is mentioned
in our list of references. We have tried to synthesize the best parts and create a useful
reference for anyone looking for a basic and general introduction to the main concepts in
object-oriented programming. Our discussion might also be useful if one tries to establish
what object-oriented features one desires to he part of a language that is to be used in a
software project,

9 Conclusions

This paper discusses the main probiems concerning the nature of object oriented program-
ming. What does it mean if a program is called object oriented, what features should then
be present?

In the literature, several aspects of object-oriented programming arc treated in different ver-
sions. There is no complete agreement, not even with respect to the most fundamental
concepts.

We have tried to compose an overview of what are considered the imporiant aspects of object-
oriented programming. We have tried to point out the strength and weakness of cach aspect.
Existing object-oriented languages usually offer a subset of these possibilities.

We summarize the results of our investigations:

¢ Inheritance should be used with care

A complicated inheritance tree makes it very hard for a designer to determine the data-
element- and method-descriptions present in a class, and also makes it hard to re-use them,
as the insertion of a new class in the tree may change a lot. Incomplete inheritance is even
more dangerous, as the inheritance of a method does not guarantee that it can be executed
{(suppose it uses another method which is not inherited). Further, we feel that inheritance is
a compile-time issue, at description level. However, some languages promote it to runtime,
and treat classes as objects. Here it becomes very hard to reason about a program. Herewith
one introduces a kind of self modifying code, as objects can change their set of data-elements
and methods.

¢ Object-orientedness is not a programming language feature but a design feature

[z}
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We have modeled reality into an abstracl model. This abstract mode] has the ohject-oriented
features like objects and classes. A programming language can offer or enforce object-
orientedness by offering ways to implement these objects and classes. But as a program
is the solution of a problem existing in reality, the process of designing the program should
be object-oriented, not (only) the programming language.

¢ Object-oriented programming is inherently imperative

In object-oriented approaches, some of the main aspects are messages and states. Eliminating
the states abolishes classes, leaving out messages makes computation impossible. Both are
basic aspects, and the result of a message depends on the state of the object that receives it.
As states change in time, due to transformations of the object, and since the system is fully
determined by the states of all objects, object-oriented programming is imperative.
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