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Abstract 

In this paper we discuss the fundamental concepts present in the object-oriented 
methodology. 

First we concentrate on the notion of an object, the key concept in this approach. 
A (software) object is the abstract representation of a physical or conceptual object. It 
consists of a name, a specified set of data-elements and methods. Data-elements can have 
values attached to them. 

Data-hiding is the feature that certain data and methods can be kept invisible (= 
hidden) for the outside of an object, thus facilitating its description. Only knowledge on 
the nature of the visible data-elements and methods is required to make proper use of the 
object. This is called data-abstraction. A related concept is encapsulation, a technique 
for achieving both data-hiding and data-abstraction. 

A class is a template for a number of similar objects. Classes do not prescribe values 
for the data-elements nor fixed implementations for their methods. A class can be seen as 
a set of objects that satisfy the same specification for data-elements and method-behavior. 

An alternative grouping of objects may take place by means of object types, as we 
will describe. A type is a set of objects that satisfy the same ezternai specification, i.e., 
specification of the visible data-elements and methods. Thus, a classification via types 
differs from an ordering into classes, as we shall explain. The notion of type brings along 
a notion of subtyping. 

We also discuss different forms of inheritance between classes. By means of inheritance 
a class can use data- and method-descriptions from another class. We describe, among 
other things, single inheritance, multiple inheritance and overriding. We also discuss 
mUltiple preferred inheritance and runtime inheritance. 

Finally, we show how actual programming can take place in an object oriented ap­
proach. For that we need a description of inter-object communication by means of mes­
sages. Relevant aspects are: synchronous and asynchronous message passing, scheduling 
and delegation. 

The paper concludes with an overview and a number of summarizing remarks. 

"'This paper originates from Marc van der Kammen's master's thesis "The logic of objects; object oriented 
programming in a logical perspective". It is the revised version of his chapter 0, which contains an overview 
of the most important basic notions concerning object-oriented programming. 

tphilips Research, Eindhoven, The Netherlands 
"Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, the 

Netherlands 
tDepartment of Philosophy, Tilburg University, Tilburg, the Netherlands 
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1 Introduction 

Recently, there has developed a growing interest in object-oriented programming, both in 
research a.nd in t.he industry. It. is mol'c t.he name of a methodology t.han a collection of 
language features. 
Languages can support this methodology, just like PASCAL suppo1'ls structured program­
ming. But, naturally, there is no language that enforces this approach t.o such an extend that 
one is gua.ranteed to develop 'propel" object-oriented systems. 
Unfortunately, it is not easy to say what features are required in an object oriented language, 
although there is a growing consensus on the minimal set of features that must be present to 
call it object-oriented. This consensus ca.uses a convergence in the features offered by popular 
object-orient.ed languages. 

In this paper we shall discuss t.he most. import.ant. a.spect. of object-orient.at.ion. The central 
concept is, of course, that of an object. We sha.ll give an idea of what a.n object is and what 
can be it.s values (or states). By lIleans of object.s we can encapsulate data and code. Related 
concepts arc classes and t.ypes. 
When the concept. of an object. has been made sufficiently clear, we will ta.ke a look at 
inter-object relations. We will explain the idea of inheritance, as both an inter-class and an 
inter-object relat.ion. Next we will discuss ",.essage passing between objects. Together with 
inheritance we will treat subtyping, whidl ha.s been taken as a means of implementing and 
describing inheritance by some anthors. 
Finally, we will give an overview of 0111' presentation and we dra.w a Humber of conclusions. 

2 Objects and values 

In the seventies, St1"ucf.Ul'Cd progl'a1nm.iny was one of the keywords used in the prograInluing 
community ([Dahl et al. 72]). The ra.tionale behind this a.pproach was the growing conviction 
tha.t the best solut.ion for a realist.ic problem could be found in the use of a methodology that 
takes the logical structure into account. Structured programming is now genera.lIy accepted 
as a proper way of programming. 
Object-oriented programlIling is based on the idea that t.he physica.1 and conceptual objects in 
a problem domain can be used as a template to structure programs: First., reality is modelled 
a.s a set. of objects, including object-properties and relations, tha.t are relevant. to the problem 
to be solved. Thus a problem is structured into sma.ll units that turn out to be relatively 
independent, of ea.ch other. Second, the unit.s t.hus obta.ined a.re directly mapped onto the 
program. 
Na.turally the modelling of reality is not a.I1 ea.sy process. The a.ctual partitioning that one 
obtains depends on many factors, t.he most. importa.nt one being the way one perceives reality. 
Thus, on t.he one hand t.he approach offers int.uit.ive mea.ns to support. the analysis and design­
process, on the other hand it puts a higher burden on the power of abstraction and creativity 
of the softwa.re-engineer. 
The independent pieces of reality tha.t one is looking for can be found by esta.blishing the 
aspects that one considers of importance to the problem a.t ha.nd. For example, for the 
modeling of an old-fashioned ala.rlll-clock we could consider t.he following aspects a.s relevant.: 
the time it is indicating (the current t.ime); the point of time at. which it is supposed to 
sound (the wa.ke-up t.ime); the litt.le switches OIl t.he ba.ck with which t.he alarm t.ime ca.n be 
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changed; and the mechanisms it uses to operate. There are also t.hings of lesser importance 
in this exa.mple, such as the substance the clock is made of. It follows that one usually 
considers only a. small part of reality t.o be interest.ing. These interesting aspects can be 
further divided: the little wheels inside the alarm-clock are things that we do not take into 
consideration immediately, the direct cancel'll is to be awoken at t.he proper time. Thus a 
distinction is made between externally observable aspect.s and internal ones. 

Reality Abstract model 

Object 
Nrune 

my_alarm 
Daia-elcntent" 

my_alarm (the real thing) current_time 
wake_up_t ime 

Mel.hods 
set_currant_time 
set _wake_up_t ime 

Figure 1: The introduction of the abstract model. 

The step to the abstract model is now very easy. We int.roduce for this purpose the notion 
of objects, that are tuples of data-clements and methods 1. The data-elements of an object 
represent the modeled aspects, like the time the clock indicates, or the time it is set to sound. 
The methods of a.n object represent t.he j.ra.nsfOl'mations which ca.n be performed on the data­
elements. For example, we ca.n change t.he time the alarm-clock is set to sound by tUl'Iling 
the appropriate switch on the back. / 

An object can be seen ([America. a.nd Rutten 89]) as a black box which can store some data 
a.nd ad upon it .. An object can only change it.s own dat.a, and not. that of another object. 
Other objects are involved in realizing an object's behavior, e.g. the wheels of the clock that 
implement its mecha.nism. The required coopera.tion is ma.de possible through inter-object 
communication. This communicat.ion can be done in several wa.ys a.s will be explained later. 
Objects can be created and destroyed. This crea.t.es a dyna.mic structure: the part of reality 
that the model is supposed to describe can change in t.he process. 
An object-oriented program in execution will be called a system. Such a syst.em can be 
thought. of as being a va.rying set. of cOllllllunica.ting objects. 

In figure 1, we show a.n abstra.ct model of a.n ala.rm-clock in tI,e form of an object. Note that 
this object is itl(lecd an abstra.ct.ioll of fcalitYl i.e. we c<w do morc with a real ala.rm-clock 
than only setting the current t.ime a.nd t.he wake_up_t.ime (even if the clock is not intended 

lDifferent authors use different terminology. In e.g. [Madsen and M~ller-Pedersen 88J these are called 
attribute6 and action", respectively. One also often reads about variable.! and procedure". 



to be used for other purposes). It. is our persona.I choice (in accordance with our aims) to 
disregard all features of the alarm-clock that are not modeled. 

The data-elements in a.n object ha.ve, a.pa.rt from their na.me, a cert.aill value. If it is nine 
o'clock PM, the va.1ue of the data-element current_time is supposed to reflect this, e.g. as 
the number 21 :00. 

In [MacLennan 82] the va.1ues of the data-elements in an abstract model have the following 
four properties: 
- abstraction: Va.1ues are abstractions from real values. 
- changeability: Va.1ues do not change, they are constant and static. We cannot change the 
value 21: 00; the only thing that can cbange is the current. time. 
- state: Va.Iues do not have a state; because they are constant, they represent only one rea.1 
value. 
- referential transparency: If a. data-clement has a va.Iue n, and the va.Iue n equals the value 
b, then the data-element has a.Iso va.Iu€ b. 

About the last-mentioned property, we note the following. In general, a model bas referentia.1 
transparency if and only if equa.I values can be substituted for each other, without affecting 
tbe model. This is clearly the case with va.Iues: values cannot be duplicated, they are unique. 
Therefore there is referential transparency in t.he abstract model at va.1ue-level. 
This is not so trivia.I as it seems; suppose we know that "The number of inhabitants of 
Amsterdam decreases" and that "The number ofinhabitant.s of Amsterdam equals the number 
of inhabitants of Rotterdam". We do not necessarily also know t.hen tha.t "The number of 
inhabitants of Rotterdam decreases". 
Here we encount.er the difference between the in/.ension and the e,,/.ension of a notion. The 
number of inhabitants of Amsterdam is only equal to the number of inhabitants of Rotterdam 
in an extensional sense. It is in fa.ct. the extension, viz. t.he value of the number of inha.bi­
tants of Amsterdam, that equa.1s the value of the number of inhabitants of Rotterdam. Now 
the number of inhabitants (the inte1lsion) can decrease, hut. t.he value of that llmnber (the 
extension) cannot. (See [Dowty et a!. 81].) 

Values of data-elements can be used to characterize an object. The state of an object in 
the abstract model, at a particular 1ll0l1lent, consists of the values of t.he data-elements (at 
that moment). We do not t.ake met.hods a.s ent.ries in the state. The reason is that the 
set of methods of a.n object does not cha.nge in t.ime. Hence, the st.ate of an object at. any 
moment consists exclusively of values of data-elements. It changes in discrete steps, and not 
continuously. Moreover, an object. is (ill our a.bst.ra.ction) fully cha.racterized by its state. 

Of course, methods have their effect all the data.-elements of an object. In order to guarantee 
that methods do not interfere, we assume that. at any aile moment, in any object, only one 
met.hod ca.n be active. 

Suppose that an object contains other data-elements than the ones that actua.1ly occur in the 
methods of the object. Then these dat.a-elements do not. cont.ribut.e t.o the intuitive meaning of 
the object, since they will never change, nor do t.hey ha.ve an effect. on any method. Therefore, 
we lua.y consider not. to inc1ude them in the state. 
In the example depicted in figure 2, where x and yare the only dat.a-elements occurring in 
the methods rno a.nd m" t.he usefulness of z could be questioned. As there is no method which 
makes usc of or challges the value of z, it is ina.ccessible. 
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Object 
Name 

a 

Data-elements 
x 
y 
z 

Methods 

mo = ... x . .. 
ml = ... x .. . y . .. 

Figure 2: Too many data-elements. 

Slight variations on these gencra,] principles for objects can be found in the literature. For 
example, in the language POOL ([America and R.utten 89]), objccts do not only have data­
elements and methods acting on these data-clements, but also a body, which is a process that 
starts executing upon creation of the object.. In this fashion concurrency is introduccd in 
POOL. 
Another variation is proposeo by [Goguen and Meseguer 87]. Objects are there seen as de­
scriptions of rea.Jity using only equa.tions. There is no distinction between data-elements and 
methods. Every object is mea.nt t.o embody a. relation between properties. 

There is a clear distinction betwcen objects and va,]ues (which is not a.Jways ma.de in liter­
ature). Just like in real life, where t.he perception of a. certain entity will change, objects 
- which represent this entity in t.he ahstra.ct model - ca.n change too. If for example time 
changes (which continually happens), the current.time of my. alarm will get a different value. 
(We are not interested here in the question wllcthcr we ha.ve a continuum of values for the 
current_time, 01' that we only have a. discrete set of values.) 
Its original valuc, of course, does not change (as values arc unchangeable), and neither does 
its ncw value. Only the data-clcment changes (see above; recall that a data-element is a pair 
of a. name a.nd a. valne). 

It is further possible to have two a,]ann-clocks which a.re simila.r. If two a.Jarm-clocks look 
very much alike, we are very soon inclined to say that they a.re equal. In our abstract model, 
it is therefore possible that two identical objects exist apart frol1l each other: they form two 
instances of the same kind (see also section 4). We are then inclined to say that the two 
objects have thc sal1le state. 
Of course, this equality can change. When one of the ala.rm-clocks is set, to sound at a different 
time, its state changes and with that its equality to the other alarm-clock, which will still 
sound a.t the original time. 

Concluding, we list some properties of all object. as follows: 
- abstraction: Objects arc abstractions from pieces of reality. 
- changeability: Objects are subject. to change in time: they ca.n be created, change their 
state and disappear. 
- state: At anyone moment in time, objects have exactly one state; this state is composed 
of the momentary value of all data.-element.s the object contajns. 
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- referential transparency: Objects can have duplicates, which can act independently; two 
ohjects that have the same state (are "equal") at a certain moment can be different the next 
I1101nent. 

From our discussion above it is clear that. there is no referential transparency at object level. 
This causes problenls, for exalnple with aliasiIlg2. 

Objects can, as is clear from the above, be used to represent (sets of) values. The interested 
reader is encouraged to read [America a.]1(1 Rutten 89], where this is actually done. 

3 Data-hiding, data-abstraction and encapsulation 

The description of reality by mea.ns of objects gives a. uniform view. Objects are seen as 
modules which consist of data aud methods. For the object itself, it is very important how 
the methods change the data, but for a nser of the object, this is of no interest. The mere 
fact that the data. change is enough for the user, and no more. 
Let's take the alarm-clock as an example again. The fact tha.t its current time changes is 
something aJl observer sees. The observer notices that. the h"nds of the alarm-clock move. 
But what t.he observer does not need (or want!) t.o know, is which wheels inside the alarm­
clock do work. However, if the alarm-clock wouldn't know how to change the position of its 
ha.nds, it would be useless. Therefore, the method turn..hands should be known to the object 
my.alarm, but need not be visible to any other object. 

Reality Abstract model 

Object 
l"/fllne 

my.alarm 
Data-clements 
current_time 
\lake.up.time 

my.alarm (the real thing) Hidden data-elements 
tick.count 

!II et.lwds 
set_current_time 
set_wake_up_time 

TTidden methorl8 
turn..hands 

Figure 3: Hidden object. feat.ures ill t.he abstract. model. 

2We talk of alia$ing whenever we have two names for the same thing, and use one of these names to change 
it; one of the mentioned problems is that one often forgets that it has also changed when we use this thing 
with the other name. 
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As we may infer from this example, the concept of datn-hiding appears to be very important 
in object oriented approaches. Data-hiding is a way to keep irrelevant information away from 
the observer. 
This idea is closely related t.o the mod ular approach of programming. A natural conse­
quence of a modular approach is that set.s of related methods and t.he data t.hey manipulate 
are put together in one module; this facilit.ates t.he hiding of unimportant information (see 
[Stroustrup 87]). Actually, the term 'data-hiding' does not fully cover its load; we had better 
talk about data- and method-hiding (or infonnation-hiding), as from the example given above 
it is already clear tha.t methods are also in I,he same module. In figure 3 we have inserted 
examples of a hidden data-element and a hidden method in the abstract model. 

In order to use a certain module, we need to have some kind of description of the module. 
There are two aspects of interest in this rega.rd. 
First, the description needs to tell which data-clements and methods are visible to the outside 
of the module and which are not.. Second, it. needs to give us a, description of the possible 
values of visible data-elements and hehavior of visihle methods. In order to use a module, we 
need to know what it does and how we should use it in order t.o achieve a certain effect. This 
manner of describing a module as out.lined ahove, is called riata-abstmction. 

The above description of a module is often called an external intel/ace. The part of the 
description that tells us the behavior of I,he visible pa,rts of the module is called the external 
specification of the module. Naturally, also an intemal specification exists. 

The concepts of data-hiding and data-abstraction arc importa,nt aspects of the encapsulation 
technique (see [Snyder 86]): 

"Encapsulation £8 (l. technique for 111:mitn£::Ul(J inte1'flcpendenc£es among sepa­
rately writlen modules by defining strict external interfaces. The external interface 
of a module serves as a contrru:/, between the module and its clients, and thus be­
tween the dcsigne'f' of the m.odule and ot.her designel's. If clienl.s depend only on t.he 
external interface, the morlu.le can be l'C£mpie712Cnted w£tlwut affecting any clients, 
as long as the new £mplemental£on supports t.he same (01' an upward compatible) 
external interface. Thus, the effects of compatible changes can be confined." 

Generally, encapsulation is considered one of the llIa,ill featnres of object-oriented program­
ming. It provides the designer of programs with an easy way of re-using previously developed 
modules, and therefore offers an efficient (and clean) way of program development. However, 
reuse is St.illlllla.t.ed by eqllaU,V import.anl, ot.her lIlccha,llisms in object-oriented progranlIning 
languages, such as inheritance and genericity. These features distinguish object-oriented lan­
guages from other languages that support 11l0dularit.y (e.g. Ada, Modula-2). According to 
some estimations regarding the development of large software projects, up to 80% of the code 
can be re-used ([van Ginderen 90]). 

An object has data-abstraction if it has an external interface which gives a certain interpreta­
tion of the externaHy visible data-clements a,nd accolllpanying methods (or in other words, if 
it has a,n external specification)3. We are not interested in exactly what is inside the module, 
but we only want to know what it mei:tllS a.nd how we can use it. 

3The objects in our abstract model can be seen as the abstract data objects of [Snyder 86J. The external 
behaviour of an object is fully defined by a set of abstract operations on the data of the object. 
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If an object has data-abstraction, we have the freedom to change the internal structure of 
the object, as long as we do not change the external interface that forms the interpretation 
of the data and methods. In [Stefik and Bobrow 86]' data-abstraction is explained as the 
principle that modules should not make assumptions about implementations and internal 
representations of the modules t.hey are USillg. 

4 Classes 

We are sOluetilnes inclined to sa,y t.ha.t certa.iu pieces of rea.lity are very siluilar (of the "same 
kind"). Although the alarm-clock we have in mind may differ a lot from the one you have in 
mind, we all say that. it is an alann-c1ock. 

To formalize the intuit.ive notion of t.his type of similarity in realit.y, we need some classifi­
cat.ion. Two pieces are of the same kind if and only if they have the same relevant aspects. 
Using t.his not.ion, anything t.hat. ticks, that. has hands indica.t.ing t.he current. t.ime, on which 
the current time and the alarm time can he set, will be known as a.n alarm-clock. 

Similarity is reflect.ed in t.he abstract model by means of the notion of class. A class is meant 
to serve as a. specificat.ion for object.s. Any ohject which matches t.he specification belongs to 
the class. No distinction is made here bet.weell the visible and hidden feat.ures. A class gives 
intel'llal specifications for methods (sec below) and a pattern of dat.a for object.s of the same 
kind. It is not an object itself. However, given a class, objects of this class can be creat.ed. 
In figure 4 we illustrate t.he llotion of class wit.h our example of the ala.]'Jn-clock. 

A class is a set of method- and data-descriptions. The difference bet.ween classes and objects 
lies in this word description. Objects ha.ve values for t.heir da.t.a-element.s. Classes have de­
script.ions for their dat.a-elements (thiuk of information on type, etc.). Also,objects-met.hods 
a.re fully deta,iled, whereas classes have possibly pa.rtial descriptions for their methods: ob­

jects belonging t.o t.he same class may have diferent. implementation of their met.hods (see the 
discussion on illherita.nce and polymorpldslll further on). 

Cla.sses are descriptions of objects, alld therefore consist of descript.ions of data-elclnents and 
methods. 
A description of a da.t.a-element. consist.s of a name aud a value-domain. There may also be 
restrictions on the combined values of dat.a-elements, as expressed in so called class-invariants. 
A descript.ion of a method consists of its name, pre- and post-conditions, and often a default 
implement.at.ion which we will call t.he internal specification of the met.hod. 

To point out the difference between description a.nd definition, we use the symbol':' for the 
descriptions in classes, and '=' foJ' t.he definit.ions in objects. See figure .5 for an example. We 
give the method-descript.ion by Ill,,"ns of a. Hoarc-triple ({ time=T}, set_time(t),{ time=t}). 
Its mea.ning is: starting in a sta.te in which the pre-condition time=T is satisfied, the execution 
of method seLtime (t), if terlllinat.ing, wiillead to a. st.at.e in which the post-condition time=t 
is sat.isfied'. Note that a. description is given for the visible as well as the hidden dat.a and 
met.hods of the class. Although a USCI' of the corresponding objects requires only information 
on the visible aspect.s, the class descript.ion limits t.he way in which the externally observed 
behavior can int.ernally be realized. 

"In this simple case - contrary to the general situation - the pre-condition has no connection with 
the method or the post-condition: the original value of the time (T) has no consequences for the method 
set-time(t) or the new time t. 
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Reality Abstract model 

Object 
Name 

my_alarm 
Class-Name 

alarm 
Da/.a-elel1l€nt8 
current_time 

my_alarm (the real thing) wake_up_time 
Hidden data-clements 

tick_count 

Methods 
set_currant_time 
set_wake_up_time 

Hidden methods 
turn-.hands 

Class 

Name 
alarm 

Data descriptions 
current_time 
wake_up_time 

alarm (the real kind) lIidden-dala descriptions 
tick_count 

Method dese,-iptions 
set_currant_time 
seLwake_up_time 

Hidden-method dese,-iptions 
turn-.hands 

Figure 4: Classes and objects in the abstract model for alarm-clocks_ 
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Class 
Name Object 
alarm Name 

Data descriptions my _alarm 
time:Int*Int Class-Name 

Hidden-data descriptions alarm 
ticks:Int Data-elements 

Method des(Tiptions time = 11: 10 

{time=T } Hidden data-elements 
set_time(t:Int*Int):[time:=t] ticks= .. 

{time=t } Methods 
Hidden-method descriptions seLtime(t) = [time: =t] 

{time=T } Hidden methods 
turnJiands turnJiands= [ .. ] 
{time= .. } 

Figure 5: Classes and objects. 

A class is often seen as a set of objects (sec [Halbert and O'Brien 87]), where every object 
represents a different "va.lnc". This idea. of value is of course not. the same a.s the previous 
one. Here the "value" of an object is coltlpletely characterized by its state. 

5 Types 

Tn the previous section, we have grouped ohject.s on thcba,is of thc description of their data­
elements and the internal spccificatioH of their methods. This ga.ve rise to the notion of a 
class. 
In this section, we will group objects in a.n altcrlIativc way, thercby creating types. In this 
a.pproach, objects a.re grouped OIl the basis of t.heir external beha.viour; i.e., wha.t is visible 
from the outside (cf. [America a.nd Ruttcll 89]). 
A type is detcrmined by the external speciiication of a.n object., i.e. the specif,eation of the 
nilmes and types of the visiblc data-elemcnts, types of method-arguments and names and 
returned results of methods, and the specification of the behavior of the methods. Two 
objects have the same type if their externa.l specifications coincide. 
The essence of the difference betwee1l class and type ca.1I be phra.sed a.s follows: a. class groups 
together objects that are built in the sanll' way while a type is a collection of objects that 
can be used in the same wa.y. 

In programming la.nguages we do not always have types. Looking at pure PROLOG, there 
is no typing on the domain of the terms. Bill. looking at PASCAL, we ha.ve a very strict 
notion of typing. :F'o1' C thillgS arc difrercll{. aga.in. Tllere, a.utomatic t.ype conversion plays 
an important role. 
The use of types has various advantages, like the possibility of static type checking, resulting 
in a larger efficiency and a larger chance of correctness for programs, because there is less 

need for run-time checks. Another adva.ntage is that domains for functions ca.n be given as 

[0 



types; for all function applications one then may check beforehand whether the argument of 
the function has the proper type, i.e., whether it fits in the domain. 

Type compatibility is one of the main issues of typing. It. is based upon an ordering on types, 
thus introducing notions like sub- and supertype. An assignment x := E is allowed only if 
the type of E is a subtype of the t.ype of,t. In some la.lIguages that support types, we can 
instruct the compiler to check the types, thus preventing execution of the code if the types 
are not compatible. 

Porting this idea of subt.yping to our abstract model, we arrive a.t wha.t is described in the 
following. 
By the very definition of class it is not possible tha.t objects of the same class have different 
types (or external specification). This fact. enables us to talk ahout the type of a class, instead 
of a.bout the type of an object". \Vit.h allY class, exact.ly one t.ype can be associated. 
We say that a type A is a subtype of a type lJ (and write A %::typo B) iff adherence to the 
external specification A implies adherence t.o the ext.emal specification B. This means, that 
any visible beha.vior of an object wit.h type A is in a.ccordance wit.h the specification B. 

Class 
Name 
STACK 

Hiddell data descr·iptiollS 
n ~ integer 

s : array of integer 
Method descr·ipliollS 

{s=W 1\ n=N} 
push(x) 

{s=WI s [NJ=x 1\ n=N+l} 

{s=W 1\ n=N} 
pop 

{s=W 1\ pop=s [N-l] 1\ n=N-l} 

Figure G: The class STACK. 

In ftgure 6 we can see the cla.ss STACK a!ld the specification of methods push, pop and the 
data-elements sand n. The array s is llsed to contain tIle elements of the stack. Pushing is 
done from the bottom-up in this a.lTay. An object. of class STACK represents a stack with the 
operations push a.nd pop, specified a., given in fignre 6. \Ve ca.n see tha.t a.ll da.ta-elements 
of objects of class STACK are hidden. Only the method, can he seen from the outside. The 
external behavior a.s produced by t.he methods push a.nd pop is completely determined by the 
external specification: pop (push (stack. x» = x, stating that a pop delivers the last element 
pushed onto the sta.ck. 

In order to create a subtype of STACK, we need to look a.t it.s external specifica.tion. Important 

aWe are aware of the fact that we introduce some limitations, which may restrict the usefulness. 
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is that a subtype can at least "do" everything tha.t STACK ca.n, and possibly more. Consider 
the following class XSTACK (see figure 7). 

Class 
Name 

XSTACK 

Hidden data descriptions 
m: integer 

t: array of integer 
Method descriptions 

{t=W A m=N} 
push(x) 

{t=Wlt[M]=x A m=N-l} 

{t=W A m=N} 
pop 

{t=W A pop=t [N+l] A m=N+l} 

{t=W A m=M} 
empty 

{t=W A m=O} 

Figure 7: The class XSTACK. 

The specification of class XSTACK differs from the one of STACK. There is not only an additional 
method empty in XSTACK, but also a different internal representation: the array is built from 
the top down. This contrasts with STACK where the array is bllilt bottom-ups. Also, the 
data-elements have different names. Nevertheless, XSTACK <'ype STACK since if we restrict 
ourselves to the use of the operations offered by both classes the same behavior is externally 
observed for objects of either class. 

6 Inheritance 

Typing is something ext.ra., something t.o ensure correct, ness, to improve efficiency, which is not 
necessa.rily present in a progra1l1ming language. Inherit.ance is something typical for object 
oriented programming and therefore is essential for a.ny programming language which claims 
to support object-oriented design. 
Many authors do not distinguish between the notions of subtyping and inheritance, e.g. in 
[Bruce and Wegner 86] we can find a very nice theory which describes inheritance nsing a 
subtyping relation. However, our point of view is that typing should not be used for other 
purposes than the ones given above. Inheritance is something typica.! for object-oriented 
approaches and if we use typing to describe it, its power is somewhat limited ([Cook et al. 90]). 

6Note that m is of type integer and therefore can be negative. The method empty permits to start with an 
empty stack, initializing m to zero. 
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In the following, we will describe inheritance, starting in a very simple form, and then ex­
tending it to a general form. Many other forms exist, but we will limit ourselves to the most 
important ones. 

Inheritance can be described as a. mechanism through which classes obtain data- and method­
descriptions frolll other classes. Of course, our a.bstract model is supposed to be able to express 
this property. Therefore, we have a linking Ju.nction hetween two classes. 
We will use V A and MA for the set of data~elelllent-nallles respectively the set of method­
names for any class A. It will be the case that V An MA = 0 for any class A. Moreover, 
we use fA for a.ll entries in V AU MA. Hence, fA contains a.ll da.ta-element-names and all 
method-names of class A. 

Definition 1 Linking Junction. 
Given two cla.sses A and B, we call r a linking function from H to A iff 

r E fB ~ fA 

such that7 r(VB) <;; VA and r(MB) <;; MA. 
With ~ we denote a partial function. 

We use a linking function to express the way we inherit a. data-description or method­
description from another class ( note th at the Ii 1I ki lIg fu n ction i m pli ci tly con sists of two distinct 
parts, one for data-descriptions and one for met.hod-descriptions). The idea is that the linking 
function t.ransfers some dat.a~ or method-descriptions of class .4 to another data- or method­
description of class B. If reb) = a., then f/. is inherited from class A in class B under the name 
b. 

In the most simple form of inheritance, there are hasica.lly only two classes A and B involved, 
ano B inherit.s everything that A ha.s. This lIleans, tha.t every data.- a.nd met,hod-description 

from A is also in B. The linking function will there be used ill order to find the origin of the 
description of a method or data.-element. 
This 1110St. basic form of iIdlCrit.ance w(' will call complelc inho'it.ancc. 

Definition 2 Complete inhel·itancc. 
Given two classes A a.nd B and a. linking funct.ion r from n to A, we say that 

B <~pl A (B inherits complete from A) ifr 
(for all a E fA : (there is abE fB : (r(b) = a))) 
We say that the elements of fA a.re inherited from A by n. 

For an example, see figure 8. The linkiug function from ALARM to CLOCK can be expressed 
as the following set of pairs: {(current_time,time),(set_current_time,set_time)}. In the 
following, we will use this notation in order to express the linking fUHction. 
All data.- and method-descriptions from CLOCK a.re inherited by ALARM under a. different name. 
This will complicate our discussion furt.her on and therefore we will simplify this by giving 
the inherited items their original Ha.mc. This mea.ns, that instead of having current_time 
and set_current_time in ALARM, we now ha.ve time and set_time, which ha.ve the same 
description. The linking function now becomes trivial and our class is slightly changed (see 
figure 9). 

1We do not consider the option available in e.g. Eiffel ([Meyer 88]) to redefine a method as a data-element. 
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Class 
Name 
CLOCK 

Da/f/. descriptions 
time : ... 

Me/hod dese,·ipt.ions 
set_time : ... 

Class 
Name 
ALARM 

Data dcscriplion8 
wake_up_time : ... 

current_time : time(from CLOCK) 
Method description.'; 

set_"ake_up_time : ... 
set_currant_time : set_time (from CLOCK) 

Figure 8: Complete inherita.nce. 

Note that it is not necessary to explicitly specify in the list of da.ta-elements and methods 
of ALARM that we also have time a.nd set-time. This information can be extracted from 
the complete inheritance of the cla.ss ALARM from the class CLOCK. Moreover, the method 
set-"ake_up_time described in ALARM mily usc both set-time and time. 

Class CLOCK itself can of conrse inherit frolll another class. 'rhis way a chain is formed along 
which complete inherita.nce takes place. For an example of SUell "Ut inheritallce cha.in, see 
figure 10. This possibility of chaining of inheritance is ca.J1ed linea,/·ily. 

In order to find the description of set_time of class ALARM in the situation of figure 10, we 
use functional composition of the linking functions along the chain. In t.his case, we have a 
linking function TCLOCLMETHODS~CLOCLDATA and a linking function TALARM~CLOCKJ1ETHODS, which 
are both quit.e trivial. Funct.ional composition gives a linking function TALARM~CLOCK.J)ATA. We 
can compute the values of these functions by starting a.t. the end of t.he chain, at the point 
where the data-elements and ITlethods are a.ctlla.J1y described. 
Therefore, we Illust require that t.hese chains do indeed end. E.g., we must prevent to have 
that A inherits from Band B inherits from C and ... inherits from A. Checking on the 
presence of circula.r inherita.nce relations Det.wpen classes is obviously the t.a.sk of a language 
compiler. 

Another problem that requires attention io the fol1owillg. Suppose that the class ALARM 
in figure 9 has a method-description set_time in it. As class CLOCK, which is completely 
inherited by ALARM, also has a. method-descript.ion set-time in it., it is not clear which of the 
methods (set_time) is mea.nt when Olle t.alks of set_time in A-1ALARM. This problem of so 
cal1ed name-clashes will be discussed lat.er. 

SOBle generalizat.ions of t.he notion of complete illhcr1tance have been int.roduced. The first 
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Class 
Name 
CLOCK 

Inheritance 
none 

J)ata-descl'ipl£01l8 

time : ... 
M cthod-desc7"iplions 

set_time : ... 

Class 
Name 
ALARM 

lnher£tance 
complete from CLOCK 

Do la-ric8Cl'iplio11S 
wake_up_time : ... 
M ethod-dcscripl.ion8 

seLwake _up _t ime : ... 

Figure 9: COlllplet.e inheritance (silllplified). 

extension we will consider here is the one towards in.complete in.hel·itance. The idea behind 
incomplete inheritance is that not all da.ta.-elements or methods are inherited from another 
class. 

Definition 3 Incomplete inhcl·itance. 
Given two classes A and B ami linking runction T frolll B t.o A, we say tha.t 
B <;noPI A (B inherits incomplete frolll A) iff 
(there is a a E [A : (there is abE [B : (T(b) = a))) 
We say that the elements of FA n t-B 8 arc inlwrit.ed frolll A by lJ. 

Note that from this definition it follows that 

In the case of incomplete inheritance, the linking function is not necessarily surjective, as not 
all data-element- or method-descriptions of class A need to be inherited from A by B. An 
example of this can be fOllnd ill figure 11, where we have ret.ained the name of the inherited 
items from CLOCK in ALARM. The linking function is obvious from the figure. 

Similarly to t.he previous case, in the situation of figme 11 we can make t.he observation that 
DALARM = {wake_up_time,time} and MALARM = {seLwake_up_time,set_time}. Of course it 
is possible that class CLOCK, in its turn, inherits the description time from another class. This 

8w hich are data-descriptions in V An Vn or method-descriptions in MA n Mn 
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Class 
Name 

CLOCK-DATA 
Inheritance 

none 
Data-de8cription" 

time : ... 
M cthod-description" 

Class 
Name 

CLOCK..METHODS 
Inheritance 

complete from CLOCK-DATA 
Data-riesc1'iptions 

M elhod-descriplions 
set_time : ... 

Class 
Name 
ALARM 

inheritance 
complete from CLOCK...METHODS 

Data-descriptions 
wake_up_time : ... 
M eihod-descriplions 

set_wake_up_time : ... 

Figure 10: Complete inheritance (linear). 

could even he the description wake_up_time from class ALARM!. nut in the last-mentioned 
case, one would not. a.llow that. wake_up_time inherits from time. Hence, also incomplete 
inheritance must ohey some form of lineari ty. 

The use of incomplete inherita.nce as described above, is problematic. The reason is that 
set_time might lise the data-element. duaLtime. Not inheril.ing t.his data-dement renders 
set_time in ALARM useless. The programmer or compiler must check on the occurence of 
such illconsiRtent. incomplet.e illheritanc(' chains. Also from a 11I0re formal sta.ndpoint there 
is a drawhack: incomplet.e inheritance no longer implies subtyping, e.g. if not all visible 
methods and da.ta-elements arc inherited. Therefore it will not be a surprise that inCOlnplete 
inheritance ha.rdly ever occurs. 

Another gelleraJiza.t.ion of complete inheritance is mulhple complete inheritance. Data-elernent­
descriptions and method-descriptions may be inherited from more than one class. In this case, 
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Class 
Name 
CLOCK 

Inheritance 
none 

Do la-descriptions 
time : ... 

duaLtime : ... 
M ethod-descl'ipti01/.S 

set_time : ... 

Class 
j\lame 

ALARM 

Inheritance 
time, set_time from CLOCK 

Data-de sCl'iptions 
\lake_up_time : ... 
M ethad-descript.ions 

set_wake_up_time : ... 

Figure 11: Incomplet.e inheritance (simplified). 

our linking function should not. only express which name is mapped to whieh name, but also 
from which cla.ss it stems. \Ve create t.he c:t:lcndcd linkin.g function: 

Definition 4 E"lended linkin!] IUIle/.iall. 
Given a class Band a. set. S of classes with t.he propert.y t.hat B 'I S, we caU T an extended 
linking function from B to S iff 

T E ([B -", U [{A} * [A]) 

AES 

The ext.ended linking function gives us for each of the inherited dat.a-element.s and methods 
a tuple which contains the class-name (as a label) and t.he dat.a-clement- or method-name to 
which it is mapped. Mult.iple cOlllplet.e inherit.ance call 1I0W be defined as follows: 

Definition 5 Multiple complete inhel·itance. 
Given a class B, a set S of classes with 1J 'I S, and an extended linking function T from B to 
S, we say that 
E <:"p, ep' S (E inherits multiple complet.e from S) iff 
(for all A E S : B <::, A), whl'l'e TA is t.he projection of T all A (with t.he class-label A 
omitted). 
We say t.hat. t.he elelllent.s of UAES [A an' inherited by B from S. 
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Class Class Class 
Name Name Nanw 

SILVER-BELL CLOCK GOLDEN-BELL 
Data descriptions Data descriptions Data descriptions 

time : .. . time : ... weight : ... 
Method descriptions color : ... M et.hod dese'riptions 

set : ... Method descriptions set : . .. 
reset : ... set_time : ... reset : ... 

Class 

Name 
ALARM 

Data deSC1'iptions 

time : ... 
duaLtime : time (from SILVER-BELL) 

wake_up_t ime : time (from CLOCK) 
background_color : color (from CLOCK) 

gross_weight : weight (from GOLDEN-BELL) 

Method riescriphons 
set : set (from SILVER-BELL) 

reset : reset (from SILVER-BELL) 
set_wake_up_time : set_time (from CLOCK) 

set-llros s_we ight : set (from GOLDEN-BELL) 

reset-llross_weight : reset (from GOLDEN-BELL) 
ring : ... 

Figure 12: Multiple complete illlleritance. 

In this definition, the surjective property for the extcuded linking function means that for 
every class A E .') we have that for every data-element and met.hod of A, there is a data­
element resp. lllethod in B that is lllapped t.o that one. An exalllple t.hat illust.rates multiple 
complete inheritance is given in figure 12. The extended linking function belonging to this 
example is: 
{( duaLtime,(SILVER-BELL,time)), (wake_up_time,( CLOCK,time)), 
(background_color ,(CLOCK,color)), (gross_weight,( GOLDEN-BELL,weight)), 
(set,(SILVER-BELL,set)), (reset,(SILVER-BELL,reset)), 
(set_wake_up_time,( CLOCK,set_time)), (set-llross_weight,( GOLDEN-BELL,set )), 
(res et-llross _we ight ,( GOLDEN-BELL ,res et )) }. 

As before one ca.n run into the problem of na.me-clashes: l'Cfering to two methods or two 
data.-eleulents with the same namC'. For exa.mple: in t.he a.bove inheritance scheme, we cannot 
inherit the description of time under this name from both class SILVER-BELL and class CLOCK 
wit.hout introducing an ambiguity. The solut.ion uscd iu tile figure is to perform an appropriate 
renaming 9. We will discuss some alterna.tive solutions. 

9This, however, does not solve the problem entirely. Consider, e.g., the case where duaLtime and 
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Class 
Name 
ALARM 

inheritance 
multiple preferred: 

SILVERJ3ELL -<p.t CLOCK -<p.t GOLDENJ3ELL 
Data-descriptions 

time : ... 
M elhod-desc7'iptions 

ring : ... 

Figure 13: The preference relation for mult.iple incomplete inherit.ance. 

The 1Il0st obvious solution t.o na.me-cla.shes is 1.0 demand t.ha.t. all names be different: 

[for all A"A2 : A, E 5 II A2 E 5 II A, # A2 : EAl n EA, = 0J. 
However, this places quite a burden upon the designer of the classes and it violates the 
principle of modularity. E.g., t.he designer of a new cla.ss A should not be concerned about 
names of possibly even hidden data-elements of another class B, just. because at some later 
point. in time someone may decide to int.roduce a class that inherits form both A and B. 
Therefore, this solution is ina.ppropriate. It. is remarkable, however, that this solution is 
nevertheless chosen in some existing object-oriented languages. 

A second alternative ta.kes us from multiple complete inhcrita.nce t.o a special form of multiple 
incomplete inheritance. We a.dd a. linear orderi ng (a. so-called preference relation) to the set 
{B}US. In this ma.nner we crea.te a chain, frolll which t.he first. cla.ss is the most. preferred one, 
and the last class t.he least. preferred. The pnrpose of t.his cha.in is t.o introduce a. priorit.y: in 
case of all ambiguity for a. reference of a. data-clement or met,hod, we take the most preferred 
class. 
This obviously requires tha.t B is alwa.ys t.he first. class in the chain (note t.hat if we find the 
descript.ion t.here, it. is act.ually not. a case of inherit.ance, but just. description-lookup). In 
the da.ss under consideration, we only list the chain from t.he second element. onwards, as we 
know that t.he class itself is always the first clement. 

In the above example, we could have t.lle followiug ordering (from most to least preferred): 
SILVERJ3ELL -<p.c CLOCK -<p.t GOLDENJ3ELL. Class ALARM (a more simple one than the one in 
figure 12) could look like the Olle in figure l~. 

The inherit.ance relat.ion in t.hat example implies that VALARM = {time, color, weight} and 
that MALAM = {set, reset, set_time, ring}. The description of data-elernent. time is obvi­
ously in class ALARM (as being t.he most. preferred), for color ill class CLOCK and for weight 
it can be found in class GOLDENJ3ELL. 1"01' t.he met.hods set and reset the description is in 

wake_up_time are derived from a single data-element of a common ancestor class. If in this so called repeated~ 
inheritance situation an object is an instance of the class ALARM the ambiguity in the selection of implementation 
remains if the data-element is addressed as an element of the common ancestor. We refer here to the mecha­
nism of dynamic binding which is not further discussed in this paper. A more extensive treatment of this issue 
can be found in [Meyer 88]. 
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Class 
Name 

GOLDEN-BELL 

Inheritance 
none 

Data- descriptions 
time : ... 

Method-descriptions 
set : ... 

Class 
Name 
BELL 

Inheritance 
multiple preferred: 

GOLDEN -BELL 
Data-descriptions 

color : ... 
Method-descriptions 

set : ... 

Class 
Name 
ALARM 

Cl ass 
Na me 

OCK CL 
Inher itance 

ne no 
Data-des criptions 

time 
Method-d escriptions 

e : set_tim 

Inheritance 
multiple preferred: 

BELL -<pri CLOCK 
Data-descriptions 

weight: ... 
Method-descriptions 

reset : ... 

Figure 14: Linearity ill multiple preferred inheritance. 

SILVER-BELL (being preferred above GOLDEN-BELL), for set_time in class CLOCK, and ring is 
described in class ALARM itself. 
There are some drawbacks in this solution, however, which can be seen in the example. (1) 
Suppose we would want to use set of class SILVER-BELL a.nd reset of cla.ss GOLDEN-BELL. 
There is no preference relatioll that lets ALARM inherit both of these methods. (2) The prefer­
ence rela.tion has an effect which is kllOWli a.s overriding. A dat.a-element or method (J from 
a class C overrides the data-element or method with the same name from another class D 
only if C is more preferred thall D. The preference mechanism therefore destroys the relation 
between inherita.nce and suhtypillg: if A iuherits from B this no longer implies that A is a 
subtype of B. 

The multiple inheritance as described, with preference relation, we call multiple p"eferred 
inheritance. We will denote it by <;:'''pl pri' An exact definition we consider outside the 
scope of this pa.per. 

Of course, also in the ca.se of multiple preferred inherita.nce, we desire linea.rity. Any class 
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I/eight; reset (ALARM) 

-------- ----------color; set (BELL) time; set_time (CLOCK) 

I 
time; set (GOLDENJlELL) 

Figure 15: The tree of the preference relation. 

Ai E S can inherit multiply preferred from a set of other classes. Therefore preference can 
be no longer interpreted as a chain. It is more like a tree, or even a graph, in which case we 
should be very careful with our inheritance. An example of this is given in figure 14. In this 
example, class ALARM inherits color from BELL, set from BELL and set_time from CLOCK. 
But what about time'! Where cioes that come from'! There a.re two basically ciifferent ways 
to resolve the conflict, corresponding to a br-eadlh-first resp. a depth-first search strategy in 
the tree of the preference relation. Using the breadth-first a.pproa.ch, we get time from CLOCK, 
with depth-first we get it from GOLDENJlELL, via BELL I". 

Most approaches choose this depth-first strategy, and therefore we will also do so. The tree 
for the example looks like the one in figme 15. 
From this example it will be clear that it is quite hard for a programmer to keep track of the 
inheritance structure. Therefore, it should be used with lots of care. 

One could consider other forms of inheritance. Most of these, however, can be classified 
among the a.bove. As we mentioned before, incomplet.e inheritance is not frequently used. 
Complete a.nd multiple preferred inheritance are the most popular forms. 

The way we have descrihed inherit.ance thusfar does not give us a flexible mechanism at 
runtime. During execut.ion of a. progra.m, objects h<'!,vc a. fixed set of data-elements and 
methods. In recent research (sec [Shriver and Wegner 87]), however, there is more emphasis 
on having a flexible set. Especially with methods it seems llseful to be able to change, add 
or subtract some definitions from this set. Following this approach, inheritance is taken 
from class-level to object-level. No d~scriptions are inherited, but definitions (actual code). 
Therefore, we call this form runtime inheritance. (See [Hailpern and Nguyen 87].) 
A Inajar problem that a.rises in this respect is tha.t. of consistency with class-level inheritance. 
The restriction that all objects of the same class inherit data-elements and methods from 
one or more cla.sses is no longer a requirement. Objects of the same class can therefore have 
different sets of dat.a-elemclIts and methods. Or, seen otherwise, lIew classes can be created 
at runtime a.nd objects can change their class! 
A second problem is that inherit.ance is not [rom classes, but from objects. As objects of 
the same class can now have different. sets of data-elements and methods, it is not possible 
to choose an a.rbitrary object of a. cla.ss t.o inherit from. A solution often encountered is the 
use of prototypes (see [Lieberma.n 86]). For every class, aile object is designated as the object 

lOWith data-hiding in mind, we note the following. In the lastmentioned case, the class ALARM does not 
know that it inherits time from GOLDEN..BELL. It only knows that it inherits the description from BELL (which 
in turn gets it from GOLDEN...BELL). 
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from which inheritance takes place. A mechanism known as delegation (see further on) is then 
frequently used to implement the inherit.a.nce. Prolog++ (see [Prolog++ 90]) is an example 
of a language which uses this solutioll. 

7 Inter-object communication: messages 

Up to now, we have only discussed individual objects, classes and relat.ions between them. 
We have intentionally left out. the discussion on programming. In this section we will show 
how object-orientation is related to programming. 
Thus fa.r, a. progl'anl consisted of a set or dasses, with which we were a.ble t.o crea.te objects in 
the system. But this is not enough, as object.s are unable to perform any action without being 
triggered (remember that our object.s do not have bodies, i.e. processes that get executed upon 
creation of the object; cf. Section 2). A st.at.ic set of objects merely forms a description, but 
is unable of performing a.ny a.ction. Objects should be able to comHlllllicate in order to create 
a dynamic structure. 

ComlIlUllication in object-orient.ed languages is performed by the aid of messages. Messages 
can be sent from any object to a.ny other ohject. to which it holds a reference. The receipt of a 
message triggers that object. t.o perform an action, provided that the external interface of the 
object "recognizes" the message. A message therefore can be seen as a. package containing the 
names of a sender-object and a receiver-ohject, plus a. met.hod to be invoked in the receiver, 
with a. nOll-negative Humber of arguments for the method. 

Objects can be active or inactive. In a system, the only active objects at anyone moment 
are those that have been triggered by t.he receipt. of a message, but have not yet finished the 
execution of the method invoked. All ot.her object.s are inact.ive. 

There a.re two distinct ways of cOllllllllnicatioIl between objects. vV(' can have synchronous or 
asynchronous message passing. The diI1{'rcllce is described in [America and RutJ,en 89], and 
ca.n be explained in short a.s follows. 
';Yith synchronous communicatioll, the SPilde)' wait.s for a. ret.urn value once a message has 
been sent (a kind of hand-shaking mecha.llism). This signals the completion of the method. 
During this wait the sending object is inactive. It becollles active again (it was active before 
sending the message) after the receipt. of the return value. 
It can easily be seen t.hat. using t.his way of wllllllunica.t.ion, we always have exactly one object 
which is active (we assume that initially we have one active object). 
Actually, we can spea.k of two different fOl'1I1s of messa.ge-passing, namely implicit. and explicit 
messa.ge passing. 
IInplicit Inessa.ges are messa.ges which are sent by t.he communica.tion protocol - like the 
inheritance lllCcha,nislll ~- 01' c01llpletion lllessa.ges. No object has code for these messa.ges; 
there is no such thing as a send cOllulla.nd fo1' implicit messages. 
\iVith explicit messages t.his is different. These arc t.he messages t.hat a.re evoked on t.he request 
of the user of the progra.m. Therefore tlwse messages must be explicitly coded. 
The return value of synchronous cOllllllunica.tion is sent as a. so-called completion message; this 
is a.n example of an implicit messa.ge. It evokes a. special code which handles "completion". 

With a.synchronous cOlllll111nicatioll, we do not require the sender 1.0 waH for the completion 
of a. method. Upon sending a messa.,ge, the sender stays act.ive and proceeds with the next 
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operation. This way, we can have multiple objects active at the same time. Obviously, we 
introduce some parallelism. 
Moreover, we introduce a problem known as scheduling. Suppose we ha.ve an object which at 
the same moment receives two messages invoking the same method. Which message should 
be given priority, or should both Illessages be granted access a.\ the same time, and what is 
then the effect? Or suppose that the object which receives the messages is already executing 
the requested method, because it received an ea.rlier message for it. What happens then? 
This scheduling problem is not related to a.synchronicity, but more to parallelism. Therefore, 
we will not attempt to solve all the above-ment.ioned problems. On t.he ot.her hand, we do feel 
that objects, independent as they are, should he allowed to execute their methods in parallel 
whenever possible. 

In reality, it is impossible to ha.ve a. 1llccha,nislll which schedules messa.ges and guara.ntees that 
a message sent will eventually be processed unless the method invoked aborts or ends up in 
an infinite loop. Individual starvation can be prevented by guarantees on the language level, 
hut the prevention of deadlocks is a task for the programmer. 

II is clear that an object can send a message which conta.ins a reference to itself as an argument. 
In most languages, for this purpose the reserved word SELF is used in the description of the 
method. Especially when used with delegation (see helow), a. lot of attention should be paid 
to the question which objects arc supposed to receive a completion message. 
Data-elements are global to all Illethods of t.he object,. Therefore, if we ha.ve a message 
sent to the object itself, the activated method acts upon the same data-elements as the 
sending method does. In fact, we have some kind of ill/01lt pamm,ctc,. passing. When we use 
asynchronous communication, this leads t.o problems. We will demonstrate this by means of 
an example; sec figure 16. The sCll(ling of messages is execut.ed there by the (built-in) method 
send. 

Object 
Name 
alpha 

Class-Name 
A 

Da/.a-elements 
n 

Me/hod" 
run = { if n:::;l0 ...., n:=n+l ; 

send(SELF,run); 
n:=n-l j 
print(n) 

0 n=ll ...., skip 
fi 

} 

Figure Hi: The printillg of some lIat.uralnulllbers. 

The idea. of the example is to prillt. t.he Humbers () ... 10 ill decreasing order. Method 
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run is used for this purpose. Suppose that n has initial value O. If we use synchronous 
communication, the following is happening. Upon activation, the object increases the value 
of n, creates a new invocation of t.he method run and makes t.he old invocat.ion inactive. This 
process repeats it.self for n = 0 up to 10. That is to say: the object keeps on sending messages 
to itself until n reaches the value of 11. This is the "first round". 
In the second round, each invocation becomes reactivated by a completion message from the 
invocation it crea.ted. This (re- )a.ct.ivatioH t.a.kes pla.ce ill the reverse order. In each step, 
starting with n, the method does nothing but. sending a completion message to the object, in 
response t.o which the object. decreases n by 1 ami prints the number obt.ained. In a stack-like 
fashion we now will get the numbers O ... 10 in decreasing order. 

However, if we use asynchronous communication in this example, we can get completely 
different results. After the ftrst message from object alpha to itself, it is not gua.ranteed that 
the next. event. in time will be the sending of another message. As the sender of the first 
message does not. wait. for the completion of a met.hod, it. ca.1I very well be t.hat the first print 
statement is execut.ed before the first message is even received. In that case, the first number 
printed can be O. 

An interesting application of nlessage pa.ssing is delegation, which is a manner to simulate 
inheritance. With delegation, one supposes that. every object. tries first. to answer a message 
itself. But if it fails to do so, it should forward the message to another object.ll that is of 
the class from which it was originally intended to inherit. Most languages allow objects to 
be created dynamicaUy (at runtime). In order to determine the set of data-elements and 
methods of such a created object, one may lise the prototype of t.he class to which the new 
object will belong. If no prototypes are available, objects ca.n be created as copies of others. 

Some approaches even allow morc flexibility in object creation, and allow the programmer 
to define (parts of) the set. of dat.a-elcmcllt.s and methods. This way, cla.ss-less objects can 
be created. Or equivalently, neW classes can be created at runtime. We feel that too much 
flexibiHt.y in object. crea.tion, just like 1.00 1IIuch f1exibilit.y iJl inherit.a.nec st.ruct.ure, is harmful 
to a language, because it places too high a burden on the programmer to ensure that the 
correct comhination of data. elements a,nd methods is present. 

8 Overview 

In this paper, we ha.ve tried to build a model for the object-oriented approach. Not all the 
details of the model have been worked out.. Ou t.he other hand, we sketched several directions 
in which the model can be elahorated. 

In the introduction of the model we described how to a.bstract from reality into an abstract 
model. The basic modules in the model are called objects. A program in the model consists 
of a number of objects. We added the concepts of data-hiding and data-abstraction to our 
model, thereby creat.ing classes. These classes were meant to group objects together, based on 
internal specification. An alternative way of grouping objects, based on external specification, 
was introduced in the form of the concept of type. 

Next, we introduced inheritance in several forms, in order to show the possibility for modular 
dcveloplllent. of progrmlls. Inheritance is genera.lly cOllsidered to be one of t.he main features 

llThe prototype mentioned before. 
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of object-oriented programming. Therefore we treated this notion extensively. Inheritance in 
our view is a relation between classes. There arc alternatives 1ike runtime inheritance, which 
has also been discussed. We mentioned t.lla.t. too milch flexibility in inheritance structure can 
be harmful to a language, as programmers cannot easily keep the inheritance tree in mind. 

Finally, we noted that a static model is not very interesting, nor representative for reality. 
Therefore we provided programs in our model with a message-passing mechanism. Messages 
can be sent from any object to any ot.her object. Two distinct ways were discussed, namely 
synchronous and asynchronous message passing. We mentioned the problem of scheduling 
and how to use message-passing in implellleuting inherita.ncc, a. technique known as delega­
tion. The lnessage passing mechanism itself was not treated extensively. In fact, this is an 
implementation issue that we are not dealing with here. 

In short, we have given a lllOdel for object-oriented programming, based on several notions 
and interpretations that can be found in t.he literature. Part of this literature is mentioned 
in our list of references. W'e have tried t.o synthesize the best parts and create a useful 
reference for anyone looking for ii. basic and genera.l introduction to the majn concepts in 
object-oriented programming. Our discussion might. a.lso be useful if one tries to establish 
what object-oriented feat.ures one desires to he part of a language that is to be used in a 
soft.ware project. 

9 Conclusions 

This paper discusses the main problems concerning the nature of object oriented program­
ming. What does it mean if a program is called object. oriented, what features should then 
be present? 

In the litera.tnre, several aspects of object.-oriclIted progralllming arc treated in different ver­
sions. There is no complete a.greelllent, not. even with respect to the lIIost fundamental 
concepts. 
We have tried to compose an overview of \vlt<-l.t are considered the import.ant aspects of object.­
oriented programming. We have t.ried to point. Ollt. the st.rengt.h and weakness of each aspect. 
Exist.ing object-orient.ed languages usua.lly olfer a subset, of t.hese possibilities. 

We sumlnarize the results of our investigations: 

• Inheritance should be used with care 

A complicated inherita.nce tree makes it. very hard for a designer to determine the data­
element- and method-descriptions present. iu a class, and a.lso ma.kes it hard to re-use them, 
as the insertion of a new class in the tree may change a lot. Incomplete inheritance is even 
lIlorc dangerous, as the inheritance of <}, 111<-'t.hod docs not. guarantee that it can be executed 
(suppose it uses a.nother method which is not. initerited). Furt.her, we feel tha.t inheritance is 
a compile-t.ime issue, at descript.ion level. However, some la.nguagcs promote it. to runtime, 
and t.reat classes as objects. Here it becomes very hard t.o reason about. a program. Herewith 
one introduces a. kind of self modifying code, a.s objects ca.n change their set of data.-elements 
and methods . 

• Object-orientedness is not a programming language feature but a design feature 
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We have modeled reality into an abstract Illodei. This abstract model has the object-oriented 
features like objects and classes. A programming language can offer or enforce object­
orielltedness by offering ways to illlplcmellt. these objects and classes. But a.s a program 
is the solution of a problem existing in reality, the process .of designing the program should 
be object-oriented, not (only) the programllling language . 

• Object-oriented programming is inherently imperative 

In object-oriented approaches, some of the main aspects are messages a.nd states. Eliminating 
the states abolishes classes, lea.ving out messages makes computation impossible. Both are 
basic a.spects, and the result of a Itlessage depends on the st.ate of t.he object that receives it. 
As states change in time, due to transformations of the object, and since the system is fully 
determined by the states of all objects, object-oriented programming is imperative. 
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