Effect of As flux on InAs submonolayer quantum dot formation for infrared photodetectors

Citation for published version (APA):

DOI:
10.1016/j.sna.2021.113357

Document status and date:
Published: 01/02/2022

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Jun. 2022
Effect of As flux on InAs submonolayer quantum dot formation for infrared photodetectors

A. Alzeidan a,* T.F. Cantalice a, K.D. Vallejo b, R.S.R. Gajjela c, A.L. Hendriks c, P.J. Simmonds b,d, P.M. Koenraad c and A.A. Quivy a

a Institute of Physics, University of Sao Paulo, Sao Paulo 05508-090, SP, Brazil.

b Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA.

c Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands.

d Department of Physics, Boise State University, Boise, ID, USA.

The performance of infrared photodetectors based on submonolayer quantum dots was investigated as a function of the arsenic flux. All the devices showed similar figures of merit and a very high specific detectivity above \(1 \times 10^{11}\) cm Hz\(^{1/2}\)/W at 12 K, despite the fact that cross-sectional scanning tunneling microscopy images pointed out a strong reduction in the density of such nanostructures with decreasing arsenic flux. This contrast is a consequence of the small size and low In content of the submonolayer quantum dots that lead to a strong delocalization of the electrons wave function and, therefore, reduce the advantage of samples having a very high density of quantum dots. A simple strain model showed that the properties of these nanostructures are limited by the lack of vertical alignment of the small two-dimensional InAs islands resulting from the strong segregation of In atoms. We have proposed some ways to improve the growth of submonolayer quantum dots and believe that, after further optimization, such nanostructures might provide devices with superior performance.

Keywords: Submonolayer quantum dots, Infrared photodetector, Segregation, InAs, Scanning tunneling microscopy, Molecular beam epitaxy.

1. Introduction

In the last two decades, quantum-dot infrared photodetectors (QDIPs) have been the subject of active research. They utilize intersubband transitions between different electronic states of low-dimensional nanostructures, as is also the case in the more famous quantum-well infrared photodetectors (QWIPs). However, the three-dimensional (3D) carrier confinement provided by quantum dots (QDs) offers several advantages over QWIPs, including a lower dark current, normal-incidence detection, higher operating temperature, and higher detectivity [1-6]. In general, QDIPs are based on self-assembled InAs QDs deposited on a GaAs(001) substrate using the Stranski-Krastanov (SK) growth mode. Above a critical thickness of 1.7 monolayers (MLs), the thin InAs layer—that is
under compressive strain due to the smaller lattice parameter of the GaAs material—spontaneously forms an ensemble of small and homogeneous 3D InAs islands that can confine the carriers in all three spatial dimensions, behaving thus as quantum dots. Such Stranski-Krastanov quantum dots (SK-QDs) are surrounded by a thin InGaAs wetting layer and usually have a lens or truncated-pyramid shape, a density in the low-to-mid 10^{10} cm$^{-2}$ range, and a base and height on the order of 10-20 nm and 3-7 nm, respectively [7-11]. However, SK-QDs suffer from poor QD size control, a relatively low density and the presence of a wetting layer that introduces extra stress in the samples and reduces the 3D confinement of the carriers.

Submonolayer quantum dots (SML-QDs) have emerged as a possible solution to these problems with SK-QDs [12]. InAs/GaAs SML-QDs can be obtained by depositing a fraction of a monolayer of InAs material—generally between 0.3 and 0.5 ML to nucleate a very high density of small two-dimensional (2D) islands on the GaAs substrate—and then a few monolayers of GaAs. By repeating this sequence several times, one expects the small 2D islands in each InAs submonolayer to nucleate above those of the previous InAs submonolayer, as a consequence of the elastic strain present in the InAs/GaAs system. Therefore, vertical stacks of 2D InAs islands will be formed and will thus behave as individual quantum dots, leading to a very high density (up to 10^{12} cm$^{-2}$) of nanostructures with a particular height that can be obtained in a controllable way [13].

Until now, all the infrared photodetectors based on submonolayer quantum dots (SML-QDIPs) have been obtained using growth parameters similar to those employed for SK-QDs. After growing the GaAs buffer, the substrate temperature is reduced while maintaining a high As flux, which results in the formation of a c(4×4) reconstruction of the GaAs(001) surface prior to InAs deposition. Although QDIPs fabricated with SML-QDs deposited in such conditions clearly show improved performance when compared to the same devices containing SK-QDs [14-17], it seems that SML-QDs grown in these conditions are probably not resulting from the vertical alignment of small 2D InAs islands. Indeed, scanning tunneling microscopy measurements showed that, when the InAs material is deposited on top of a c(4×4)-reconstructed GaAs(001) surface, the In atoms are actually randomly incorporated into the deep As trenches, yielding an InGaAs alloying of the surface [18], while true 2D InAs islands can only be nucleated in the presence of a (2×4) reconstruction of the GaAs(001) surface [19].

Since, for a fixed sample temperature, the surface reconstruction is a function of the As flux, in this paper we investigated the influence of the As flux on the properties of SML-QDs and analyzed the results on the basis of cross-sectional scanning tunneling microscopy (X-STM) and device-performance data.

2. Experimental details

All the QDIPs analyzed here had exactly the same structure—they only differed by the As flux during formation of the SML-QDs—and were grown by molecular beam epitaxy (MBE) on top of an epi-ready undoped GaAs(001) substrate. They consisted of two 1 µm-thick Si-doped GaAs layers (doping concentration $n=1\times10^{18}$ cm$^{-3}$) grown at 570 °C acting as bottom and top contacts. In between them, the active region was formed by ten GaAs quantum wells (QWs), each surrounded by 45 nm wide Al$_{0.1}$Ga$_{0.9}$As barriers deposited at 580 °C. The inner part of each well was grown at 490 °C and started with
1.3 nm of GaAs followed by the SML-QDs, composed of six repetitions of a basic cycle formed by 0.5 ML of InAs and 2.5 MLs of GaAs, which were covered by 2.1 nm of GaAs (Fig. 1). Each 2.5 ML thick GaAs spacer was Si doped at 2×10^{18} cm$^{-3}$ to provide the doping of the SML-QDs.

![Diagram of SML-QDIPs]

Fig. 1: a) Structure of SML-QDIPs A, B, and C. The black rectangle shows a single SML-QD formed by repeating six times the deposition of 0.5 ML of InAs followed by 2.5 MLs of GaAs:Si. The only difference between the 3 samples was the arsenic flux used to grow the SML-QDs of each device. b) RHEED pattern of the 2×4 GaAs(001) surface using an As flux of 0.15 ML/s. c) RHEED pattern of the $c(4 \times 4)$ GaAs(001) surface obtained with an As flux of 0.25 ML/s and 1.90 ML/s. Both patterns were obtained along the [010] azimuth.

To minimize In desorption from the surface, deposition of InAs has to occur at low temperature, generally below 515 °C. These typical growth conditions employed to obtain SK-QDs systematically lead to a $c(4 \times 4)$ reconstruction of the GaAs(001) surface due to the high As flux (equivalent to 1-2 ML/s). To maintain a 2×4 reconstruction as the sample is cooled after growing the AlGaAs barriers, the As flux has to be considerably reduced [20]. For the sample temperature used in the present work (490 °C), the transition...
between both reconstructions was observed for an As flux around 0.2 ML/s on the fluorescent screen of the reflection high-energy electron diffraction (RHEED) system [21]. Therefore, three SML-QDIPs having exactly the same structure were grown, the only difference among them being the As flux—coming from a valved cracker—that was set to 0.15 ML/s, 0.25 ML/s, and 1.90 ML/s for SML-QDIP A, B, and C, respectively. Sample A was grown with a (2x4) surface reconstruction prior to InAs deposition, sample B was grown with a slightly higher As flux and a c(4x4) reconstruction (just above the (2x4) to c(4x4) transition), and sample C was also grown with a c(4x4) reconstruction but with the much higher As flux generally used for SK-QDs. Since the As flux necessary to reach the (2x4) reconstruction was extremely low, the growth rates of the GaAs and InAs materials used for the SML-QDs also had to be considerably reduced and were set to 0.1 ML/s and 0.015 ML/s, respectively. These three samples allowed us to simultaneously check the importance of the surface reconstruction (comparing sample A and B which have a similar As flux) and to investigate the possible influence of a large variation of the As flux (comparing samples B and C which have the same surface reconstruction). Additionally, sample C served as a reference as it was grown under conditions close to unity (this effect is different from In segregation that will be discussed below) and were desorbed later when the substrate temperature was

A last sample, that will be called sample D, was specifically grown on a Si-doped GaAs(001) substrate (n=1x10^18 cm^-3) to allow X-STM measurements and contained SML-QDs layers A1, B1, and C1 that were deposited with the same growth parameters as the SML-QDs of samples A, B, and C, respectively. The only differences are that, in sample D, the SML-QDs layers were separated from each other by 200 nm of GaAs, and the 2.5 ML-thick GaAs spacers were undoped to avoid any influence of the Si dopant on the topographic measurements. The sample was cleaved under ultra-high vacuum and measured by STM at 77K on a freshly obtained {110} surface. More information about this sample and previous X-STM measurements can be found in [22].

3. Results

Figure 2 shows atomically resolved topographic filled-state X-STM images of the SML-QDs layers A1, B1, and C1 from sample D. Although the structures of the three layers were nominally identical and all of them received exactly the same quantity of InAs material, one can see at least four striking differences in the X-STM measurements. First, since this kind of image provides real topographic information related to the local corrugation height above the cleaved surface due to the strain introduced by the In atoms (see color scale), it is clear that layer A1 contains much less In than the other layers, and that layer B1 contains slightly less In than layer C1. This is due to the fact that, under usual growth conditions, In incorporation is independent of the As flux (it is always unity), but, at lower As fluxes, it can be reduced below unity [23]. Since the As flux had to be considerably decreased to achieve a (2x4) reconstruction of the GaAs(001) surface, many In atoms deposited in layer A1 were not incorporated. Instead, they remained “floating” on the surface as adsorbed species (this effect is different from In segregation that will be discussed below) and were desorbed later when the substrate temperature was
increased. Second, none of layers A1 to C1 show any vertical stacking of small 2D InAs islands. Rather, clusters of InGaAs material can be detected, mainly at higher As pressure (in layers B1 and C1), but there is clearly no periodicity inside them. This is most probably a consequence of the strong segregation effect of In atoms which is known to be present in the InAs/GaAs system where segregation coefficients R around 0.8 are often reported [23-27]. This very high value of R means that 80% of the In atoms that impinge on the surface will migrate to the next layer and will not be directly incorporated. This of course makes difficult to keep a high density of small 2D InAs islands, as most of them will be partially or even totally dissolved and their material will scatter around and form a background InGaAs layer, as can be seen in Fig. 2. Third, the density of these In-rich clusters increases with the As flux, reaching $1-2 \times 10^{10}$ cm$^{-2}$, $5-6 \times 10^{10}$ cm$^{-2}$, and $2-3 \times 10^{11}$ cm$^{-2}$ in layers A1, B1, and C1, respectively. Fourth, a careful counting of the In atoms in empty-states X-STM images showed that In segregation decreases from layers A1 to C1, yielding values of R equal to 0.83\pm0.02, 0.79\pm0.01 and 0.72\pm0.02, respectively, that are in excellent agreement with experimental data from in-situ RHEED measurements [28]. Considering that all the other parameters were kept fixed during the growth of these three layers of SML-QDs, this can only be a direct consequence of the variation of the As flux, as already previously observed [27].

![Fig. 2: Filled-state X-STM images (80×25 nm2) of the SML-QDs layers A1 ((2×4), very low As flux), B1 (c(4×4), low As flux), and C1 (c(4×4), high As flux) from sample D with a bias voltage $V_b = -2.1$V and a tunneling current $I_t = 50$ pA. The arrow indicates the growth direction [001].](image)

We then studied how infrared photodetectors based on such SML-QDs behave as a function of the As flux. The spectral response of the SML-QDIP devices was measured at 12 K by Fourier transform infrared (FTIR) spectroscopy in normal incidence (with the radiation reaching the mesas from the top). Figure 3 shows that the three spectra were very similar but systematically blue-shifted from QDIP A to C. Since $\Delta \lambda / \lambda$ is around 0.13 for all of them, it means that they involve a bound-to-bound transition. As the SML-
QDs have a smaller size than conventional SK-QDs, they have a single confined state [29], and the peaks observed in Fig. 3 are due to an electronic transition from the ground state of the SML-QDs to the first (and only) excited state of the GaAs quantum well. The X-STM images show that increasing the As flux produces larger InGaAs nanostructures with higher In content. The combined effect is to reduce the energy of the SML-QD electron ground state relative to the excited state of the GaAs quantum well, producing the blueshift we observe in Fig. 3 as the As flux increases from sample A to C.

![Normalized spectral response of the SML-QDIPs obtained by FTIR in normal incidence at 12 K with a bias of +1.1 V.](image)

Fig. 3: Normalized spectral response of the SML-QDIPs obtained by FTIR in normal incidence at 12 K with a bias of +1.1 V.

Responsivity measurements were used to determine the efficiency of the devices by taking the ratio of their electrical output (photocurrent generated in the mesas) to their optical input (power of the radiation falling on their optically active area). First, the spectral irradiance of a calibrated black body and total incident power were estimated. Then, the total photocurrent of the devices facing the calibrated black body (setup at 800 °C) was measured with lock-in techniques and allowed the calculation of the black-body responsivity reported in Fig. 4. One can see that the curves are very similar, showing a responsivity which monotonically increases up to a value around 0.6-0.8 A/W at a bias voltage of +2V.

![Black-body responsivity of the three SML-QDIPs under normal incidence as a function of bias at 12K.](image)

Fig. 4: Black-body responsivity of the three SML-QDIPs under normal incidence as a function of bias at 12K.
The dark current of a photodetector is the electrical signal that can be measured between its two electrical contacts even without the presence of any external infrared radiation. Depending on its amplitude and temperature dependence, several properties of the devices can be inferred. These measurements were performed with a dark shield around the QDIPs that was also in thermal equilibrium with the sample holder. Figure 5 shows the dark current of the three devices as a function of bias voltage. Once again, it can be observed that they have basically the same trends. Temperature dependent measurements revealed that the dark current was insensitive to temperature below 30K and therefore was attributed to electronic tunneling through the Al$_{0.1}$Ga$_{0.9}$As barriers [21]. Above 30 K, the dark current was thermally activated, as could be seen by its exponential temperature dependence that yielded an activation energy between 62 meV and 71 meV for SML-QDIPs A to C.

The intrinsic noise of the devices was also measured in the dark to minimize the absorption of any external radiation. Figure 6 shows the noise current spectral density as a function of bias voltage. It was calculated by dividing the root-mean-square (RMS) noise current coming from the devices by the square root of the bandwidth of the noise spectrum used by the spectrum analyzer in order to get a noise value that is independent of the experimental parameters. In photoconductive photodetectors, the main source of intrinsic noise usually comes from the generation-recombination (g-r) processes associated with the dark current which is often several orders of magnitude larger than the photocurrent itself. One therefore expects the noise curves to show the same features as the dark current. This is the case in Fig. 6 where the plateau observed at low bias voltage is due to the limitation of the experimental setup to measure a signal below its intrinsic background-noise level of 7×10^{-14} A Hz$^{-1/2}$.

The specific detectivity D^* (signal to noise ratio) of all three SML-QDIPs was calculated as a function of bias voltage at 12K and is reported in Fig. 7. The objective of D^* as a figure of merit is to provide a way to compare devices of different nature and size measured in different experimental conditions. Its value is defined as $D^* = R\sqrt{A}/i_n$, where R is the black-body responsivity, A is the optically active area of the mesas, and i_n is the noise-current spectral density. Although the responsivity increases monotonically up to ±2 V, the specific detectivity has a maximum around ±1.1 V as a consequence of
the strong increase of the noise beyond this bias voltage. The maximum specific detectivities of \(1.13 \times 10^{11} \text{ cm Hz}^{1/2} \text{ W}^{-1}\), \(1.03 \times 10^{11} \text{ cm Hz}^{1/2} \text{ W}^{-1}\), and \(1.03 \times 10^{11} \text{ cm Hz}^{1/2} \text{ W}^{-1}\) were achieved in SML-QDIPs A, B, and C, respectively.

Fig. 6: Noise-current spectral density of SML-QDIPs A, B, and C as a function of bias voltage at 12K with a dark+cold shield.

![Noise-current spectral density](image)

Fig. 7: Specific detectivity of SML-QDIPs A, B, and C as a function of bias voltage at 12 K.

![Specific detectivity](image)

4. Discussion

When the main figures of merit of the three SML-QDIPs are compared, the only significant difference is the blueshift of the spectral response when the As flux rises from SML-QDIP A—grown with a very low As flux to achieve the \((2\times4)\) surface reconstruction—to SML-QDIP C that has the highest As flux generally used for the growth of conventional InAs SK-QDs. The similarities between the other properties, though, contrast with the striking differences revealed in the X-STM images of Fig. 2. Therefore, the first thing that one might wonder is whether the absorption signal reported in Fig. 3 really comes from the In-rich clusters that are observed in the X-STM images. Could this signal instead come from the diluted InGaAs quantum well that forms around the SML-QDs as a consequence of the strong segregation of the In atoms present in all three samples? This argument is supported by the fact that the photoluminescence (PL)
spectrum of SML-QDs is generally much narrower than that of SK-QDs and is similar to that of an InGaAs QW with the same thickness and average In content [29]. However, the answer is very simple: there is no way that such a strong detectivity in the 10^{11} cm Hz$^{1/2}$/W range can be attributed to InGaAs QWs. All the measurements reported in Figs. 3-7 were performed in normal incidence, and it is well known that, in such conditions, intersubband transitions are prohibited in 2D systems due to polarization rules [30]. This is why QWIPs always need an extra diffraction grating (or any other equivalent mechanism) on top of the devices to operate properly in normal incidence. As a result, the strong signal measured in our SML-QDIPs—these devices have among the highest detectivity values reported to date [17,31]—can only be due to the 3D confinement of carriers inside the In-rich clusters observed in the X-STM images, and the blueshift of the spectral response must be related to the size variation of these clusters that behave as quantum dots [32].

One might therefore question why the performance of these three devices is so similar if the density of SML-QDs increases roughly by a factor of ten from device A to device C. The answer seems to be related to the fact that SML-QDs are smaller than usual SK-QDs, have a much lower In concentration and, consequently, contain only a single confined electronic state (their ground state). The energy of this state is so close to the top of the potential barrier that the wave function of the confined electrons is only weakly localized. Since SML-QDs can reach extremely high areal densities (up to 10^{12} cm2 [13]), their lateral separation can be very small (just a few nm), allowing their ground-state wave function to overlap the closest nanostructures [29]. As a result, due to the Pauli Exclusion Principle, when an electron is confined in a specific SML-QD, the closest nanostructures will have a low probability to be populated, limiting thus the optical activity (and device performance) of samples having the highest densities of SML-QDs.

Although the holes (that have a heavier effective mass) are confined in individual SML-QDs, the optical properties of the system are governed by the lighter electrons, and the Bohr radius of the exciton is therefore much larger than the size of a single SML-QD, promoting an averaging of the local composition fluctuations inside the dilute InGaAs quantum well. This, in turn, results in a narrower PL spectrum, compared with SK-QDs [13], despite the fact that SML-QDs are clearly more inhomogeneous in size, in contrast to what is often claimed in the literature [29].

Since the experimental results of the three SML-QDIPs look so similar, one might wonder as well if it is worth the effort to grow SML-QDs on the (2x4) surface reconstruction, as in SML-QDIP A. These growth conditions are more difficult to adjust and the growth time for this device is also much longer, resulting from the lower deposition rates that must be used as a consequence of the low As flux required to achieve that surface reconstruction. If both types of SML-QDs were already fully optimized, the obvious answer would be no, as the easier growth conditions used for SK-QDs might also be used to grow SML-QDs with excellent results (superior to the ones of SK-QDs [15,17]), as shown by SML-QDIP C. However, it is very clear from Fig. 2 that the current growth conditions are probably far from being optimized. Indeed, as can be seen in the X-STM images, none of the clusters detected in the layers have the full 18 MLs height expected from the nominal structure. In addition, none of them showed any vertical stacking of small 2D InAs islands pictured in Fig. 1. Although such features are not expected for layers grown with a c(4x4) reconstruction, which favors a random incorporation of the In atoms [18], there is hope that, after further optimization of the
growth conditions, taller nanostructures showing vertical stacking might occur in the presence of a (2×4) surface reconstruction [19], leading to better SML-QDs and QDIPs.

Both the smaller height of the QDs and the absence of stacked 2D islands are clearly a consequence of the strong In segregation that promotes the migration of most In atoms toward the surface [23]. These In atoms will incorporate later but not necessarily into the stacks of 2D islands (if any), leading to the formation of the 18 ML-thick dilute InGaAs layer surrounding the SML-QDs. This decreases the In content of the SML-QDs and reduces the internal strain field that was supposed to align the small 2D InAs islands of the next SML cycles. As a matter of fact, one expects the 2D InAs islands of a SML-QD to vertically align in the same way SK-QDs do in consecutive InAs layers when their separation is small. Xie et al. [33] provided a semi-empirical model able to explain this effect based on mechanochemical properties of the diffusion of In adatoms on a GaAs surface. They introduced a parameter \(z_0 \) defining the thickness of the GaAs spacer below which the alignment of SK-QDs belonging to two consecutive InAs layers always occurs:

\[
z_0 = r_0 \left(\frac{8 L_D X}{l k_B T} \right)^{\frac{1}{3}} \tag{Eq. 1} \]

where \(r_0 \) is the radius of a sphere having the same volume as the SK-QDs, \(L_D \) is the diffusion length of the In adatoms, \(l \) is the average lateral distance between SK-QDs within the same InAs layer, \(k_B \) is the Boltzmann constant, and \(T \) is the absolute temperature of the growth process. \(X \) is a factor that takes account of the elastic properties of both materials and of the strain present in the InAs/GaAs system, being defined as

\[
X = \frac{3 B_{InAs}}{3 B_{InAs} + 2 Y_{GaAs} / (1 + \gamma_{GaAs})} \frac{V_{InAs}}{2 Y_{InAs}} \left(C^{InAs}_{11} \varepsilon_0 \right)^2 \tag{Eq. 2} \]

where \(B_{InAs} \) and \(Y_{InAs} \) are the bulk modulus and Young’s modulus of InAs, \(Y_{GaAs} \) and \(\gamma_{GaAs} \) are Young’s modulus and Poisson’s ratio of GaAs, \(V_{InAs} \) and \(C^{InAs}_{11} \) are the unstrained atomic volume and elastic constant of InAs, and \(\varepsilon_0 \) is the elastic strain of the InAs/GaAs system due to the lattice mismatch.

For InAs SK-QDs having a pyramidal shape (base = 170 Å and height = 35 Å) and an areal density of 3.5×10^{10} cm^{-2}, Xie et al. estimated that all QDs from consecutive InAs layers could be fully aligned whenever the GaAs spacer was thinner than 35.6 MLs (~100 Å), and were totally uncorrelated for spacers thicker than 200 MLs (~565 Å). These results were in excellent agreement with their experimental data, and Eqs. 1 and 2 were successfully used to provide the first value (\(z_0 = 35.6\) MLs) taking \(r_0 = 37\) Å, \(L_D = 0.28\) μm, \(l = 535\) Å, and adopting typical values from the literature for the elastic properties and lattice constants of InAs and GaAs.

Due to the very thin GaAs spacer used between consecutive InAs submonolayers, literature usually assumes that such a vertical alignment also happens inside SML-QDs, and this is why they are always sketched as stacks of narrow 2D InAs islands separated by thin layers of GaAs material. However, one should be aware of several relevant differences with respect to the case of SK-QDs. 1) The SML deposition technique provides (when successful) only small 2D InAs islands that are around 5 nm wide, yielding a much smaller value of \(r_0 \) (~11 Å) than for usual InAs SK-QDs that are much wider and higher. 2) The density of SML-QDs may be around 10 times higher than that
of SK-QDs, leading to a lateral distance between SML-QDs three times smaller. 3) The In diffusion length \(L_D \) is much smaller for SML-QDs due to the presence of strong In segregation. Indeed, for very thin GaAs spacers, the quantity of In atoms adsorbed at the surface can be very high, and this large population of adatoms considerably reduces their mobility. For instance, considering a typical segregation coefficient of 0.8 and the case of our SML-QDs consisting of 6 repetitions of 0.5 ML of InAs followed by 2.5 MLs of GaAs, the population of In adatoms at the GaAs surface after the first cycle is equivalent to a coverage of 0.26 ML, and it keeps increasing after each cycle up to a coverage of 0.52 ML after the sixth cycle [28]. This excess of In adatoms at the GaAs surface just before InAs deposition doesn’t happen during the growth of consecutive layers of SK-QDs, where the GaAs spacers are much thicker, because, for such values of \(R \), the manifestations of In segregation are no longer relevant after 20 MLs of GaAs [34]. 4) Another important consequence of segregation is that the original 2D InAs islands that were eventually nucleated at the surface will lose most of their In atoms during capping and will no longer be made of pure InAs material. The In atoms that escaped and segregated with the growth front will be randomly incorporated later, forming the wide and dilute InGaAs QW around the SML-QDs. Thus, the surrounding matrix and thin spacer layer between each InAs submonolayer no longer consist of GaAs material neither. Since the original InAs/GaAs system sketched in Fig. 1 is replaced by In rich islands scattered in a dilute InGaAs QW, the local strain \(\varepsilon_0 \) becomes much lower, all the elastic constants of both materials are now more alike, and the final value of \(\varepsilon_0 \) can drop below 2 MLs, confirming that an effective stacking of the 2D islands no longer occurs. Although this semi empirical model might not be fully suited to simulate the strain field around 2D InAs islands, it clearly points out that the strain in such a system is much lower than for SK-QDs, as can be clearly observed in the X-STM images that don’t show any evidence of stacked 2D islands.

Since the literature invariably reports SML-QDs studies involving growth conditions similar to the ones of SK-QDs, and our present results strongly suggest that further optimization is required to take advantage of the full potential of such nanostructures, one should definitely seek alternative ways to improve their growth. Considering that segregation is a thermally activated process, an easy way to reduce its strength and prevent In atoms from escaping from the 2D InAs islands would be to lower the sample temperature during deposition of the InAs/GaAs cycles. As the activation energy of this phenomenon is quite small (0.11-0.12 eV) [24,35], reducing the sample temperature to 350 °C would only decrease the segregation coefficient down to around 0.5. Although previous studies have shown that such a low temperature is enough to cancel the influence of segregation on some optical and structural properties [23,34], it is clearly not enough to eliminate the phenomenon itself. Nevertheless, the SML-QDs would likely have a higher In content and a stronger internal strain field. That would lead to better alignment of the 2D InAs islands and to taller InGaAs nanostructures (hopefully with their full expected height) showing a stronger carrier confinement. Of course, a reduction of the sample temperature would also be accompanied by an increase of the density of structural defects. Yet, such point defects–mainly antisites [36]–would be restricted to the 18 MLs of the SML-QDs and most of them would probably disappear later during deposition of the next layers at higher growth temperature that would provide a thermal annealing.

The other problem highlighted by the X-STM image of layer A1 (Fig. 2) was the strong reduction of In incorporation related to the low As flux used to achieve the (2×4)
surface reconstruction. To deal with this issue, one actually should go in the opposite direction. Indeed, InAs QDs are often deposited at 515-490 °C to minimize In desorption from the surface. When the sample temperature is lowered from 570 °C—necessary to grow good-quality GaAs material—to 515-490 °C, the surface morphology undergoes a change around 520 °C, switching from a (2×4) reconstruction at high temperature to a c(4×4) reconstruction at low temperature. To recover the (2×4) reconstruction needed to allow the nucleation of true 2D InAs island on the surface [19], the As flux has to be considerably decreased [20] (around a factor of 10), and it is this strong reduction of the flux that limits In incorporation observed in layer A1 of Fig. 2. One way to avoid this problem would be to keep the sample temperature slightly above 520 °C in order to maintain the original (2×4) reconstruction in the presence of a high As flux. The In-desorption rate will not be significantly higher than usual but, in any case, small increases can easily be taken into account by calibrating the exact InAs growth rate at that temperature. Segregation will also be slightly higher, thus increasing the escape rate of the In atoms from the InAs islands, but this approach would provide an effective way to confirm which of both strategies—segregation control or use of a (2×4) surface reconstruction—has a larger impact on the formation of SML-QDs and on the performance of their infrared photodetectors.

5. Conclusion

The electro-optical properties of three infrared photodetectors based on InAs/GaAs submonolayer quantum dots grown with a different arsenic flux revealed very similar figures of merit and an excellent specific detectivity in the 10^{11} cm Hz^{1/2} W^{-1} range. This is in contrast with the results of cross-sectional scanning tunneling microscopy which showed that SML-QDs growth is highly sensitive to the As flux. For the lowest arsenic flux that yielded a (2×4) reconstruction of the GaAs(001) surface, the density of InGaAs nanostructures was considerably reduced, and a lower incorporation and enhanced segregation of In atoms were detected. Higher values of the As flux always led to a c(4×4) reconstruction with higher In incorporation and density of quantum dots. These nanostructures did not not develop to their full expected height and did not consist of stacks of small two-dimensional InAs islands. In fact, the X-STM data revealed that the submonolayer quantum dots were actually In-rich clusters embedded in a wider dilute InGaAs quantum well. Such features result from the strong segregation of In atoms that is typical in the strained InAs/GaAs system. It leads to the migration of around 80% of the In atoms from one atomic layer to the next one, inhibiting the formation of true 2D InAs islands and their vertical stacking that would be necessary to obtain typical submonolayer quantum dots. The lack of In in the nanostructures reduces their internal strain and size, and increases the bandgap of their material, leading to shallower energy levels and electronic wave functions that extend over the closest clusters, weakening thus their overall 3D confinement and the advantage of samples having a high density of nanostructures. As a consequence, one way to deal with these problems is to reduce In segregation, which can usually be done by simply decreasing the growth temperature. However, if one wants to keep the (2×4) surface reconstruction needed to provide true 2D InAs islands, lower temperatures imply an even lower As flux which in turn results in a weaker In incorporation. Therefore, an alternative way to improve the growth quality and performance of SML-QDs devices might be to grow the nanostructures at slightly
Higher temperature and with a much higher As flux in order to keep the surface reconstruction of the GaAs(001) surface just above the (2×4) to c(4×4) transition.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, by CNPq (grant 311687/2017-2), and by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie project 4PHOTON grant agreement No 721394.

References

[33]. Qianghua Xie, Anupam Madhukar, Ping Chen, Nobuhiko P. Kobayashi, Vertically Self-Organized InAs Quantum Box Islands on GaAs(100), Phys. Rev. Lett. 75 (1995) 2542-2545. https://doi.org/10.1103/PhysRevLett.75.2542

