A Si3N4 optical ring resonator true time delay for optically-assisted satellite radio beamforming

Citation for published version (APA):

Document status and date:
Published: 01/01/2015

Publisher Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A Si$_3$N$_4$ Optical Ring Resonator True time delay for Optically-assisted Satellite Radio Beamforming

N. Tessema1, Z. Cao1, J.H.C Zantvoort1, E. Tangdiongga1, and A.M.J Koonen1

1COBRA Research Institute, Dept. of Elec. Eng, Eindhoven Univ. of Technology, Eindhoven, The Netherlands

We present the design, fabrication and characterization of a Si$_3$N$_4$ optical ring resonator true time delay to be used in optically-assisted radio beamforming. A race track shaped ring resonator with a free spectral range of 0.21 nm was designed, fabricated and tested. Experimental characterization verified continuous thermal tunability of resonance wavelength of 0.1 nm/10 V. The continuous tunability of the ORR for under-coupling, critical-coupling and over-coupling conditions was measured. This full tunability allows dynamic configurability of the delay for applications in satellite radio beamforming.

Introduction

Radio beamforming is an essential in meeting the ever growing bandwidth demand of wireless communication users. Traditional implementation of wide band beamformer faces challenges due to bandwidth and size limitations of electrical phase shifters [1]. True Time Delay (TTD) devices solve this problem, by providing a broadband phase shift for wideband signals via a time delay. However, TTD devices based on bulky optics have their own limitations due to large size and optical losses; making it impractical for deployment in a beamforming system. Photonic integrated TTD is the ultimate solution in meeting the challenges of a wide band radio beamformer [1-3]. In this regard optical ring resonators (ORR) are popularly implemented as TTD devices since it is possible to fine tune the generated time delay, allowing continuous beam-steering. This feature is very important in radar and satellite communication, where continuous beam-steering is required to trace a far field transceiver [3].

In this paper, we report the design, fabrication and characterization of an ORR with Free Spectral Range (FSR) of 0.21 nm designed for application in radio-satellite beamforming. The measured power spectral profiles verified the full tunability of the ORR with an over-coupling, under-coupling and critical-coupling conditions. Wavelength tunability was verified; resulting in 0.1 nm shift in the resonance wavelength per 10 V of applied voltage.

Operational Principles of ORR

Here we describe the operational principle of a 2-port ORR which typically consists of a feedback path (the ring) and a 2×2 coupler. A light injected into the input waveguide couples to the ring; all wavelengths fulfilling resonance condition propagate multiple round trips before coupling out into the output waveguide. Fig. 1 shows the schematic representation of an ORR. For an ORR, with power transmission coefficient of γ, coupling coefficient κ and frequency normalized with respect to FSR, Ω, applied additional phase shift ϕ, the power spectral response in dB of an ORR is given by:
When the coupler is designed to be thermo-optically tunable, continuous delay can be generated. A tunable optical coupler is implemented by using a Mach-Zehnder interferometer (MZI) with thermo-optic phase shifters (heaters) on the upper arm. A control voltage applied on one arm of the MZI changes the refractive index of the waveguide, thus changing the phase difference between the arms; thereby continuously tuning the power coupling coefficient κ. As a result, the group delay profile of the ORR is tuned. The group delay profile is given by eqn (II).

$$T(\Omega) = \frac{\gamma \sqrt{1 - \kappa \cos(\Omega + \phi)} - \gamma^2 \sqrt{1 - \kappa}}{1 - 2\gamma^2 \sqrt{1 - \kappa \cos(\Omega + \phi)} + \gamma^2 \sqrt{1 - \kappa}} + \frac{\gamma^2 - \gamma \sqrt{1 - \kappa \cos(\Omega + \phi)}}{1 - \kappa - 2\gamma \sqrt{1 - \kappa \cos(\Omega + \phi)} + \gamma^2}$$

... (II)
\(\kappa_c \), is given by:

\[
\kappa_c = 1 - \gamma^2
\]

... (III)

From Fig. 2(b) critical coupling condition happens at the coupling coefficient of 0.3. A positive delay profile is generated during over-coupling condition. The highest positive group delay is measured during critical coupling condition. A negative group delay profile is generated for under-coupling conditions.

Design and Fabrication of the ORR

The microscopic representation of the designed ORR is shown in Fig. 3 (a). It consists of a tunable coupler realized by a Mach-Zehnder Interferometer (MZI). The MZI is made of two 3dB directional couplers, with a thermo-optic phase shifter in the middle. The phase shifter is 2000 \(\mu m \), and is used to provide full tunability of the coupling coefficient from 0 to 1. A bending radius limitation of 125 \(\mu m \) was followed to avoid optical losses related with bending. A double stripe waveguide technology Triplex\(^{TM}\) is used in the fabrication process. In this technology, a SiO\(_2\) sandwiched between two Si\(_3\)N\(_4\) passes through a CMOS-compatible low-pressure chemical vapour disposition process (LPCVD) generating a typical surface roughness less than 0.04 nm. The platform has moderate index contrast and low waveguide loss less than 0.5dB/cm. The detailed fabrication process of a double stripe Si\(_3\)N\(_4\) waveguide is found in [4]. The phase shifters are fabricated by depositing a layer of chromium on the top of the optical waveguides. The heaters can be tuned with a temperature resolution of 0.01\(^\circ\)C enabling fine tuning of the generated optical delays. By keeping a space of 250\(\mu m \) between any two thermo-optic phase shifters, any thermal cross talk is avoided. DC contact pads are connected to the heaters via electrical leads made of chromium and gold. Spot-size converters are used at the two ends of the chip to efficiently couple TE mode with a single mode fiber (SMF 28) for target coupling losses of less than 1dB per facet.

Measurement Results

Fig. 3(a) shows the fiber-to-chip coupling setup used to characterize the ORR. The thermo-optic tuning is facilitated by DC probes which supply DC voltages to the heaters. A fiber-to-fiber coupling loss of 9dB (including 2 dB polarization controller loss) was measured. Fig. 3(b) shows the microscopic photograph of the ORR. By tuning the voltage Heater-1, it is possible to shift the resonance wavelength. A 0.1 nm shift in the spectral response of the ORR was obtained per 10 V variation of voltage applied on Heater-1 as can be seen in Fig. 3(c). Fig. 3 (d) and Fig. 3(e) show the tuning of the ORR response by changing the applied voltage on Heater-2, where the coupling coefficient change produces the change in the spectral shape of the ORR response. It is possible to observe the over-coupling, the critical-coupling and under-coupling conditions. When the applied voltage is tuned from 9.6 V to 13.2 V (over-coupling condition), the loss at the resonance wavelength changes from 1dB to 6 dB. The critical-coupling condition is measured at voltage value of 14 V applied on Heater-2, with resonant loss reaching up to 8.5 dB. By further increasing the applied voltage, under-coupling condition is observed for 15-16 Volts as shown in Fig. 4(e). At applied voltage of 17.5 V, no light is coupled to the ring, rather is transmitted to the output waveguide. In this situation the ORR serves as an optical waveguide. From experimental results, it
is verified that the fabricated ORR is fully tunable, which indicates its capability to be deployed as a TTD in radio beamformer link.

Conclusions

We designed, fabricated and tested an optical ring resonator for application as true time delay device for radio beamforming. Dynamic configuration of the device was characterized via thermo-optic tuning.

Acknowledgement

The authors would like to acknowledge the funding by Dutch STW in FREEbeam and by the European FP7 in BROWSE projects.

References

