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Abstract

Process mining is an emerging field which focuses on applying data mining techniques over busi-
ness process data. Recently, with the improvements in sensoring, collection, and storing of data
technologies, a big demand for both shorter mining time and adaptive models of streaming process
events arose. This initiated the field of stream process mining. Decision makers have placed great
interest in drifts of the underlying concepts of the business processes. Stream process mining
techniques have the ability to detect such drifts in real-time, compared to static approaches. This
thesis contributes an unsupervised-learning novel approach for online concept drift detection over
event streams. The intention is for it to address the limitations of the current state-of-the-art
techniques, outperform the existing unsupervised-learning techniques, and provide useful insights
on the drifts detected to understand the cause of such. The framework relies on data structures
previously defined by a nobel process discovery algorithm [1] called prefix-trees. With the events
from the stream stored in these trees, the data is converted from discrete to continuous using
a principal component analysis technique [2] over trees. Finally, an adaptive window is used to
process the data and perform a well-known concept drift detection technique [3]. The framework
was extensively tested over six artificial logs and three real-world logs with different parameters
to identify the best performing for each type of log. Later, such results were compared to those of
three nobel concept drift detection techniques. The results showed a significant advantage of the
proposed framework in terms of quality and delay of detection over the artificial logs. The three
chosen techniques were not able to process the real-world datasets, while the proposed algorithm
demonstrated positive results. Also, the framework provided meaningful insights on the cause for
drifts identified in one of the real-world datasets, and produce sub-logs from these drifts to allow
users to perform further process analysis.
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Chapter 1

Introduction

Business processes are a set of tasks performed by resources of an organization in order to achieve
a defined business outcome. These processes need to continuously change in response to external
factors. Example of such can be variations in demand or supply, customer expectations and
governmental regulations, and seasonal factors. These are reflected in the underlining process
by variations in the workload, replacement of resources, modifications on the sequence of tasks
performed, etc. Furthermore, in some scenarios these changes are planned and documented, but
others occur unexpectedly and remain unnoticed by the process owners. Unexpected changes are
of importance to the organization due to the unknown impact they can have over their objectives.
To cope with these, business process managers require tools and methods that allow them to detect
and pinpoint them as early and accurately as possible. Here is where process mining comes into
place. Process mining is an emerging data mining task of gathering valuable knowledge out of the
huge amount of business operation data. It implements methods from fields like data mining and
analyzes logs of process information to derive insights about the business process.

One field of process mining, which is focused on identifying points in time when the behavior
of recent executions of the process differs significantly from that of an older one, is called concept
drift detection (CDD). Techniques developed on this context use an event log or stream as an input
and attempt to detect the points in time where the process deviated from its normal behavior.
A group of techniques focuses on extracting a set of features from the stream and compare their
distribution over a defined period of time [11] [9] [10] [12], while others focus on discovering business
process models and applying conformance checking or a distance function over the event stream
[8] [13]. Moreover, some techniques focus on the control-flow of the sequence of activities [14]
[15], whereas others look at the performance or resources used by the process [16] [17]. Another
aspect is whether the techniques can detect the drifts in a real-time scenario [18] [19] or if they
require the processing of the whole event log before signaling the drifts [20]. All of these achieve
the objective of identifying points in time where the process changed significantly, but present the
following limitations:

(i) Require some a-priori knowledge of the nature of the drifts.

(ii) Data structures used limit the characteristics of the drifts they can identify.

(iii) Perform poorly with real-world datasets.

(iv) Rely on process discovery techniques, which delays the speed of detection and adds extra
weight over the system requirements.

To address these limitations, this thesis proposes a new unsupervised-learning online concept
drift detection framework. The goal is to provide a tool which is accurate in detecting drifts
from both artificial and real-world datasets, while also being efficient from a time and memory
perspective. The framework relies on the previous work [8] which uses a unique data structure to
store and process an event stream. We attempt to improve such work by applying well-known drift
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detection techniques over this data structure rather than relying on a process model discovered. To
prove this, several experiments were done with a set of artificial logs used in the literature [10] and
a set of real-world logs from a well-known business process challenge. Each of them containing
a variety of drifts from different characteristics. They were all tested in an online fashion by
generating an event stream out of the event logs, or using an external tool which generates an
artificial event stream out of a process model [21]. A data exploration procedure was performed
to define the best parameters to use in different scenarios. Furthermore, the framework provides
characterization of the drifts in order to answer the question of ”What caused the change?”. The
outcome obtained was compared against three state-of-the-art techniques. This showed promising
results of improvement in all aspects. To conclude, this thesis addresses three main research
questions:

1. What concept drift detection framework would be able to address the limitations aforemen-
tioned?

2. Can the proposed framework outperform existing unsupervised-learning online concept drift
detection techniques over event streams?

3. Can the proposed framework provide insights regarding the process besides the time at which
the drifts happened for real-world scenarios?

2 Log-Based Concept Drift Detection over Event Streams



Chapter 2

Background

This chapter will introduce the theoretical background and literature required to understand the
framework proposed in this thesis. Section 2.1 will give an overview of process mining and related
areas of such field. Later, Section 2.2 will focus on describing two stream generation tools used for
the development and experimental phase of the project. Finally, Section 2.3 describes the related
and reference work.

2.1 Preliminaries

2.1.1 Process Mining

Process mining serves as a bridge between data mining and business process modeling and analysis.
The idea of process mining is to discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs readily available in today’s information sys-
tems. As stated in the Process Mining Manifesto [4], process mining techniques offer means to a
more rigorously check compliance and ascertain the validity and reliability of information about
an organization’s core processes. The three main types of process mining are:

• Process Discovery : Extracts a process model from the event log without using a-priori
information.

• Conformance Checking : Monitoring deviations between a model and the event log.

• Process Enhancement : Extend or improve an existing process model with information re-
corded in the event log.

Event data is basis for all process mining analysis. Most process mining techniques assume that
their input is in the form of an event log. Following are the formal definitions of all components
of an event log as taught in [22].

Definition 2.1.1 (Event) An event e ∈ ε describes that a specific discrete observation has been
made (by a sensor, a system, a human observer, etc.). The observation itself is described by
attribute-value pairs through the partial function π : ε × AN 7→ V al. For each event e ∈ ε and
each attribute name a ∈ AN, π(e, a) = v defines the value v of attribute a. We write π(e, a) = ⊥ if
attribute a is undefined for e (has no value). We also write πa(e) = v or e.a = v for π(e, a) = v.
In the literature, you also find the notation #a(e) = v. For each event e, the attribute time is
defined, i.e., πtime(e) 6= ⊥. Further, each event e carries a value πa(e) 6= ⊥ for some other
attribute a ∈ AN .

We use the term Case to refer to an entity or object that we are ”tracking” over time in terms
of the events in which this entity is involved. To obtain a structured event log from an event
table, we have to recognize from all attribute names the entity types, and then select one of these
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CHAPTER 2. BACKGROUND

Figure 2.1: Overview of the three main types of process mining [4].

attribute names as the case identifier attribute. The attribute values are the different cases under
this case identifier.

Definition 2.1.2 (Case) Let ET = 〈e1, ..., en〉 be an event table. The set of attribute names in
ET is

AN(ET ) = {a ∈ AN | ∃ei ∈ ET, πa(ei) 6=⊥} (2.1)

If we select an attribute id ∈ AN(ET ) as case identifier, then

Cases(ET, id) = {πid(ei) | ei ∈ ET} (2.2)

Note that Definition 2.1.2 allows to pick any attribute as case identifier, not just those that
refer to entity types. It is implicitly required that each event e has three mandatory attributes
that are different from each other:

1. the timestamp πtime(e)

2. a recorded action or activity πa(e)

3. a case identifier πc(e)

If an attribute id is selected as case identifier, then it is said that an event e is correlated to a
case c if its id -attribute refers to c, i.e., πid(e) = c. A trace is the sequence of events correlated to
a case and ordered by time.

Definition 2.1.3 (Trace) Let ET = 〈e1, ..., en〉 be an event table. Let id ∈ AN(ET ) be the
selected case identifier.

A sequence 〈e1, ..., en〉 of events is a trace of a case c ∈ Cases(ET, id) iff

1. {e1, ..., ek} = corr(ET,id,c), i.e., it consists of all events of ET correlated to c, and

2. for each i = 1,...,k-1 holds πtime(ei+1) = πtime(ei+1), i.e., events are ordered by time.

A structured event log is a set of cases where each case is associated with exactly one trace for
this case as a case attribute.

Definition 2.1.4 (Event Log) Let ET = 〈e1, ..., en〉 be an event table. Let id ∈ AN(ET ) be the
selected case identifier.

The structured event log L is the set L = Cases(ET,id) of cases for case identifier id so that
additionally each case c ∈ L gets assigned a trace 〈e1, ..., en〉 of c as trace attribute πtrace(c) =
〈e1, ..., en〉.
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Timestamp Case Identifier Activity Resource
20/12/2018 11:02 23 Receive Order System
20/12/2018 12:09 23 Pack Order Alice
20/12/2018 12:10 23 Add Item Bob
20/12/2018 12:15 23 Ship Parcel Charles
20/12/2018 11:03 41 Receive Order System
23/12/2018 23:11 41 Pack Order Bob
23/12/2018 23:49 41 Ship Parcel Charles
20/12/2018 12:13 36 Receive Order System

Table 2.1: Sample structured event log.

A structured event log has a simple hierarchical structure. At the top-level are the cases
L = {c1, .., cl} = Cases(ET, id). Each case has case attributes as ”children”, one of them is the
trace πtrace(c). Each event e in a trace has event attributes as children, including πtime(e) (time-
stamp), πa(e) (the observed activity), and πc(e) (the case identifier). This hierarchical structure
is formalized in the XES-standard1

2.1.2 Stream Process Mining

Advances in information technology have lead to the generation of large flows of data. These large
volumes can be mined for interesting and relevant information in a variety of applications. This
same volume component leads to a number of computational and mining challenges according to
[23]: with increasing volume of data, it is no longer possible to process the data efficiently by using
multiple passes. Rather, one can process a data item at most once. This leads to constraints on the
implementation of the underlying algorithms. Moreover, there is an inherent temporal component
to the stream mining process. This is because the data may evolve over time. This behavior of
data streams is referred to as temporal locality. An adaption of one-pass mining algorithms may
not be an effective solution to the task. The stream mining algorithms need to be designed with
a focus on the evolution of the underlying data.

In [24] a data stream is defined as an unbounded sequence of data items with very high
throughput. In addition, the following assumptions are typically made regarding the data stream:

• Data is assumed to have a small and fixed number of attributes

• Mining algorithms should be able to process an infinite amount of data, without exceeding
memory limits or otherwise fail, no matter how many items are processed

• For classification tasks, data has a limited number of possible class labels

• The amount of memory available to a learning/mining algorithm is considered finite, and
typically much smaller than the data observed in a reasonable span of time

• There is a small upper bound on the time allowed to process an item (one pass of the data)

• Stream ”concepts” are assumed to be stationary or evolving.

An event stream then would be a specific type of data stream, where each data point refers to
an event generated by an underlying process or system.

[25] argues that due to these requirements, algorithms for data stream mining are divided
into two categories: data and task-based. Data-based techniques refer to summarizing the whole
(Sampling, load shedding and sketching) or a subset (Synopsis data structures and aggregation)
of the dataset from the incoming stream to be analyzed. Task-based techniques are those meth-
ods which modify existing techniques or invent new ones in order to address the computational

1XES Standard can be found at http://www.xes-standard.org/
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Figure 2.2: Schematic overview of the challenges of handling streaming data in the context of
process mining. A O-symbol indicates an unobserved event, i.e. executed prior to observing the
stream, a O-symbol indicates a stored event, a ×-symbol indicates a dropped event, i.e. it is not
stored, and, a 4-symbol indicates a future event [5]

.

challenges of data stream processing. Approximation algorithms, sliding window and algorithm
output granularity represent this category. In the context of this thesis, we are working with
task-based techniques which utilize a sliding window to process the event stream. More details on
how the technique works will be given in Chapter 4

2.1.3 Event Stream Characteristics

In Subsection 2.1.2 several details on how a data stream is defined were described. Knowing that
we are working with a specific type of data stream called event stream, it is important to define
what are the components of the streams this framework focuses on. The characteristics which the
framework presented in this thesis project can handle are:

• Multidimensional stream of events: Each event arrives with three components of in-
formation as described earlier (c, a, t). Therefore, the algorithm need to handle a multivari-
ate data stream.

• Parallel running cases: Systems often generate a stream of events while running multiple
cases at the same time (think of a purchase-to-pay scenario where each order is in a different
step of the process, e.g. Create Order, Send Order, Receive Goods, Receive Invoice, etc.).
We should not assume then that each event received will be corresponding to the same case.
There may be multiple cases executing at the same time and finishing at different intervals
as well.

• Small alphabet of activities: In a real-life scenario, a process would not contain an
infinite set of activities. Though new activities may be introduced at any point in time, the
alphabet of these is finite and usually known by the process owner and parties involved.

An algorithm which could cope with these set of requirements had to be designed, while also
considering an efficient memory usage and processing time.
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2.2 Event Stream Generation Tools

Burratin, A. [21] argues that researchers and practitioners frequently have to face the general data
availability problem which could be decomposed into several research challenges:

1. Build large repositories of randomly created process models with control-flow and data per-
spectives.

2. Obtain realistic (e.g. noisy) multi-perspective event logs, which are referring to a model
already known (i.e. the gold standard), to test process mining algorithms.

3. Generate potentially infinite multi-perspective streams of events starting from process mod-
els. These streams have to simulate realistic scenarios, e.g. they could contain noise, fluctu-
ating event emission rates, and concept drifts.

While some of there are required in the testing phase to avoid over-fitting (tailored approaches
that perform well on particular data, but lack in abstraction), others are key due to the emerging
importance of big data analysis.

This section will present two tools available which allowed the generation of an event stream
out of an event log itself, or business process model in certain formats. These were utilized during
the complete development and testing phase, as well as through the experimental evaluation.

2.2.1 PM4PY

PM4PY2 is a software product, developed by the process mining group of Fraunhofer Institute for
Applied Information Technology (FIT). It includes a set of open-source Python libraries focused
on different aspects of the three main types of process mining (2.1.1) and more.

One of the packages available, which supports streaming process mining, includes a module
for importing an event log in both XES and CSV and generating an event stream. The importer
allows to import the log in a trace-by-trace or an event-by-event format. A trace-by-trace would
allow an analysis focused on cases, where each case would be processed completely before the
next case arrives. This works well with algorithms that are focused on handling only close-ended
traces, meaning that the whole sequences of events for that case has been seen already. Though
it may be useful in some scenarios, our approach focuses on handling event streams with parallel
running cases. This means that it is unknown at which point in time a case will finish and there
is no certainty that it will ever do during the time of observation. An event-by-event importing,
on the other hand, would create an iterator which extracts a single event within a trace based
on the timestamp (time of arrival) in a chronological order. The iteration then would disregard
if the next event seen is from the same or a different trace. This mimics in a better way how a
real-world system generates a stream of events.

While iterating over the stream events, the importer extracts a set of attributes from the event
log and makes them available in a dictionary per event. An example list of default attributes
provided per event are:

• id (unique identifier)

• concept:name (activity label)

• time:timestamp (time-stamp)

• case:id (case unique identifier)

• case:concept:name (case label)

• org:resource (event resource)

Besides these, if any, the importer will provide the set of all case and event attributes. The
iterator will go through all events within the event log and stop once the whole log has been
processed. In a real-life scenario, this stoppage is assumed never to happen. This tool allowed the
conversion of multiple real-life and artificial event logs into event streams.

2Details about PM4PY and full documentation available at https://pm4py.fit.fraunhofer.de/documentation
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2.2.2 PLG2

PLG23 [21] is a standalone open-source Java application which utilizes a set of Application Pro-
gramming Interfaces (APIs) which is able to:

• Generate random process models with additional data perspective (or import existing ones).

• Have detailed control over the data attributes (e.g. control values via scripts).

• Have detailed control over the time perspective (controlled via scripts).

• Evolve a process model, by randomly changing some of its features (e.g. adding/remov-
ing/replacing subrpocesses).

• Generate a realistic multi-perspective event log, with executions of a process model and noise
addition (with probabilities for different noise behaviors).

• Generate a stream of multi-perspective events referring to process models that could change
over time with customizable output ratio.

The last point is of special interest in the context of this thesis, as it allows the execution of an
event stream generated out of a process model (either randomly generated or provided). Not only
that, but such model can be updated during the stream execution to mimic a ”change” in the
process, and therefore introducing a concept drift. This thesis will not cover aspects related to the
data-objects components of the events mentioned in [21]. Such are a dimension of process mining
and concept drift detection that this framework is not focused on. We will cover two functionalities
of the tools which were of use during this thesis project.

Random Generation of Business Processes

The generation of business process models is a useful tool for testing and describing different
scenarios of interest in process behavior. PLG2 incorporates different well known workflow control-
flow patterns that help to better describe a process. Such patterns are:

• sequence: direct succession of two activities (a > b).

• parallel split : parallel execution of activities (both a and b are forked into parallel branches,
each executing concurrently).

• synchronization: synchronization of parallel branches (only after both a and b have both
been executed may the process flow continue).

• exclusive choice: mutual exclusion of activities (either a or b executes, but not both).

• simple merge: convergence of branches (after a split by an exclusive choice, the branches
merge to continue the flow).

• structured loop: execute sub-processes repeatedly (after executing a, there’s another process
branch that requires the re-execution of that same a).

Important to note that these patterns do not describe all possible behaviors that could be modeled
in reality. These all are used in a combination to build a complete process. [21] describes the set
of rules used to combine such patterns. After creating the desired random process model, users
are able to use it for generating an event log or simulating an event stream.

3Application and documentation available at https://github.com/delas/plg
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Noise Addition

For the data to be more realistic, noise can be introduced into the event log or event stream. This
would simulate real-life scenarios where some deviations from the ”expected” flow of the process
occur. PLG2 provides a module to add noise both to a generated event log or a simulated event
stream. It is able of applying noise at three different ”levels”: trace-level (noise related to the
execution of the trace), event-level (noise that involves events on the control-flow perspective), and
data-object-level (noise associated to the attributes stored within the event). The noise generation
is driven by a set of parameters where the probability of applying a particular type of noise is
defined. If all values are set to zero, it implies that traces have no noise. Examples of such noise
phenomena are:

• Trace missing head. This means that the first events of the trace are not present. User must
also define the size of the head.

• Trace missing tail. This means that the last events of the trace are not present. Again, the
user must define the size of the tail.

• Trace missing episode. This means the trace misses a sequence of contiguous events. Again,
user must specify the size of the episode.

• Alien event introduced in a random position with random attributes.

• Doubled event on the trace.

• Change of an activity name of an event. This means that an event which normally would
have a label ’X’ now receives a random label ’Y’ instead.

• Change in the order between two events of a trace. This involves changing the time-stamps
two events to represent an incorrect order of execution.

As explained previously, the data-object-level noise will be excluded from this thesis. All these noise
introduction capabilities provide a very complete setup to generate testing scenarios of process
behavior. When working with real-life systems, issues may arise which produce loss or incorrect
data. This would result on deviations from the ”gold-standard” model. Therefore, such need to
be introduced within the experimental evaluation to make sure the algorithm is able to handle
them properly, without resulting in inaccurate outcomes.

Stream Simulation

The stream simulation component of the tool creates a socket, which runs in your local envir-
onment, that accepts connections from external clients. PLG2 then ”emits” (i.e. writes on the
socket) events which are generated from the process selected. This would continuously send events
for a potentially infinite amount of time (until the script is stopped). The tool asks for two para-
meters in order to run the simulation: maximum number of parallel instances running at the same
time, and the ”time scale”. First one populates the data structures required for the generation
of the stream so that multiple cases can be ”running” in parallel. Second one allows the users
to scale the emission time to simulate a real-time system emission. Values expected for the time
scaling are defined in (0,∞]. While the simulation is running, the user can change the process for
the simulation without stopping the current stream emission. This would generate the concept
drift mentioned previously.

Figure 2.3 shows the ”Stream Process” window which has the process selected, network port
for emission, number of parallel instances, the time-scale adjustment selected (which changes the
emission rate for the events), and a process model diagram from the process selected. Once the
user starts the stream, a connection must be made to the defined port to ”receive” the event
stream data. Listing 2.2.2 shows an example XML generated by PLG2 and received through a
Telnet connection. The XML shows details of a single event emitted by the tool, which includes:
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Figure 2.3: Stream Process window in PLG2 showing details for starting the stream emission of a
process model.

two ”concept:name” attributes (higher-level for the case label and lower-level for the activity label)
and a ”time:timestamp” attribute (event time-stamp) with their corresponding values.

1 <org.deckfour.xes.model.impl.XTraceImpl >

2 <log openxes.version="1.0RC7" xes.features="nested -attributes" xes.version="1.0"

3 xmlns="http://www.xes -standard.org/">

4 <trace>

5 <string key="concept:name" value="case_9"/>

6 <event>

7 <string key="concept:name" value="Activity Q"/>

8 <date key="time:timestamp" value="2021 -07 -20 T12:32:30 .433+02 :00"/>

9 </event>

10 </trace>

11 </log>

12 </org.deckfour.xes.model.impl.XTraceImpl >

Listing 2.1: XML example generated from PLG2 stream simulator

2.2.3 Concept Drift Detection (CDD)

Previously mentioned algorithms for data stream mining have different applications within process
mining. One important application over event streams which has been recently introduced is
related to change/drift detection. As stated in [26], processes can change with respect to three
main process perspectives: control-flow, data, and resource. Such changes introduce a drift in the
concept (process behavior). This for example can be related to the way in which activities are
executed (when, how, and by whom). The basic premise in handling concept drifts is that the
characteristics of the traces before the change point differ from the characteristics of the traces
after the change point. The problem is then to identify the points in time when the process has
changed (if any). [26] argues that it involves two primary steps:

1. Capturing the characteristics of the traces.

2. Identifying when these characteristics change.

This thesis will only focus on those process changes related to the control-flow perspective.
This perspective of a process characterizes the relationships between activities. Such relationships
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or dependencies are captured and expressed using causal footprints, which implies that an activity
follows or precedes another one. Change detection is done then by analyzing a series of successive
populations, which can be generated by splitting your event stream with a sliding window approach
for example. A comparison is then done between two successive populations to investigate if there
is a ”significant” difference between them. Significant becomes then an important word, as each
change detection technique defines itself what becomes relevant for them to detect a change.

According to [6] we can classify changes into momentary and permanent. While the momentary
changes are short lived and affect only a very few cases, permanent changes are persistent and stay
for a while. In the context of this thesis we focused solely on permanent changes, as momentary
changes often cannot be discovered because of insufficient data. This leads us to four different
classes of drifts:

1. Sudden drift : correspond to a substitution of an existing process with a new process. In
other words, all cases from the new process emanate on an instant.

2. Gradual drift : refer to the scenario where a current process is replaced by a new process.
Unlike sudden drift, here both processes coexist for some time, where the first one is gradually
discontinued.

3. Recurring drift : correspond to a scenario where a set of processes reappear after some time
(substituted back and forth). They show somewhat a seasonal influence or behavior, where
this recurrence may be periodic or not periodic.

4. Incremental drift : refer to the substitution between two processes done via smaller incre-
mental changes. They normally happen within processes that are undergoing sequences of
quality improvement initiatives.

Figure 2.4: Different types of drifts. x-axis: time. y-axis: process variants. Shaded rectangles:
process instances. (a) Sudden drift. (b) Gradual drift. (c) Recurring drift. (d) Incremental drift
[6]

.

While it would be beneficial that all change detection techniques were able to identify the
four types of drifts, most techniques are adapted to work for one or two of these. This due to
the characteristics of the log which each technique is designed to track. While some focus on the
distribution of the population’s features (mean, variance, etc.), others use principal components
or so to track some other relevant features. The technique presented within this thesis focuses on
identifying sudden drifts.

The most well-known change detection techniques are the Page-Hinckley Test [27], which com-
putes the observed values and their mean up to the current moment and will detect a concept
drift if the observed mean at some instant is greater than a threshold value lambda; Cumulative
Sum (CUSUM) [27], which uses the cumulative sum of a parameter of the probability distribution
(e.g. the mean) to investigate whether a sequence of these can be modeled as random; and Ad-
aptive Windowing (ADWIN)[3], which is an adaptive sliding window of variable size that keeps
updated statistics about the data stream. The algorithm will decide the size of the window by
cutting the statistic’s window at different points and analyzing the average of some statistic over
these two windows. If the value of the difference between the two averages surpasses a pre-defined
threshold, a change is detected. There are far more methods developed which utilize multivariate
data streams. These will be covered further in 2.3
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2.2.4 Supervised vs Unsupervised Stream Learning

Similar to data mining, stream learning techniques can also be split into supervised and unsuper-
vised learning. While supervised algorithms require some apriori knowledge of the event log to
define a class label (e.g. prediction of the next activity), unsupervised algorithms are used without
any external knowledge and rely solely on characteristics of the stream as it is being processed.

Figure 2.5: Stream learning according to labels arrival time [7]
.

The problem with supervised learning approaches according to [28], is that they assume that
the true labels are readily available after the prediction. In reality, this is rarely the case. In most
real-world scenarios where a process generates these labels, they can take too long to be available,
if ever. A predictive model is built using an initial batch of training data, whose labels are
available. This model is then deployed with a test set and CDD is carried out in an unsupervised
or supervised manner. In contrast, unsupervised learning does not require labels to build a model.
Drift detection is carried out using different strategies than monitoring the prediction loss. They
track, for example, the output probability of models or the unconditional probability distribution.
The next section will provide an overview of novel CDD techniques from both supervised and
unsupervised learning approaches.

2.3 Related Work

2.3.1 Supervised-Learning CDD Techniques over Data Streams

As mentioned previously, supervised learning approaches require a true label to be provided by
the event log or an external knowledge entity just after data arrives. There is extensive work done
in the data stream field focused on developing supervised learning techniques. Most methods are
focused on tracking the performance of the classifier over time. When there is a significant drop
or increase in the loss of the prediction, a drift is signaled.

The Drift Detection Method (DDM)[29] monitors the error rate of the base learner. The
method assumes that the error rate will decrease while the number of instances increases if the
data distribution is stationary. The algorithm relearns a new model using only the stored instances
since the warning state was reached. The Early Drift Detection Method (EDDM)[30] estimates
the average distance between two adjacent errors and its standard deviation at a specific. Again,
if a drift is detected the algorithm relearns a new model from the stored instances. The Fast
Hoeffding Drift Detection Method (FHDDM)[31] uses a constant sized sliding window to estimate
the accuracy of the predictive model and keeps the maximum accuracy until current time. A drift
is isgnaled when the difference between current accuracy and maximum accuracy is greater than
a threshold determined by using Hoeffding’s inequality. The Accurate Concept Drift Detection
Method (ACDDM)[32] detects concept drifts by analyzing the status of prequential error rates
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using the Hoeffding’s inequality to observe inconsistency of error rates. It will signal possible
concept drifts based on the current error rate of the base learner. The Hoeffding Adaptive Tree
(HAT)[33] method places instances of estimators of frequency statistics at every node of a Hoeffding
Tree. Each of these detectors will raise a flag if the statistics within the node changes. It uses
a similar sliding window approach as ADWIN. In [34] drift is measured by continuously tracking
Total Variation Distance (TVD) metric between probability distributions estimated from two
sample windows preceding a time point. High values for the difference metric indicates that
concept drift has occurred, and the model must be adapted. Adaptation is done by training a
new model for the drifted process, and adding it to an ensemble of models. Previously trained
models are retained, and their weights in the ensemble are adjusted to reflect similarity with the
current probability distribution of the process. The Adaptive Random Forest (ARF)[35] algorithm
is an adaptation of the well-known Random Forest algorithm. It combines the batch algorithm
traits with dynamic update methods to deal with evolving data streams. It applies a theoretically
sound re-sampling method based on online bagging and an updated adaptive strategy based on
using drift monitors per tree to track the drifts and also train new trees in the background before
replacing them. The Self-Adjusting Memory Ensemble (SAM-E)[36] combines the advantages
of the Bagging-ensembles with the SAM algorithm to boost performance further. These SAMs
ensemble deal with concept drift by means of the local adaptation of its base models. The drift
detection replaces unsuitable base learners, which does not increase the adaptation speed of the
overall model. It is implemented in parallel to optimize performance and facilitate comparison.

2.3.2 Unsupervised-Learning Process Mining Algorithms for Concept
Drift Detection

The focus of this thesis is over unsupervised learning techniques for data streams. Unsupervised
window-based change detection, according to [18], is based on comparing the distribution in a
current stream window with a reference distribution, where density estimation techniques and
divergence metrics are essential to model and compare the distributions. Modeling the data
distribution becomes a challenging when working with multidimensional data. Also, as data
dimensionality increases, techniques become more inaccurate and the computational costs increase
as well.Unsupervised-learning algorithms used for concept drift detection in Process Mining can
further be classified into two classes depending on how they handle the event log: online and offline
[11].

Offline Analysis

Offline analysis refer to those scenarios where the presence of changes need not to be uncovered
in real time. Therefore, the detection of changes is mostly used postmortem. These results are
normally used when designing or improving processes for a later deployment. Many techniques of
this branch process the complete event stream or event log before signaling a drift or change.

The approach in [11] extracts a set of relation-based features from the event stream, over which
the J measure of dissimilarity between the a priori and a posteriori frequencies is performed and
transformed into a continuous dataset. This is then split into multiple populations to perform
statistical hypothesis test over two adjacent ones. They propose to use the Kolmogorov-Smirnov
and Mann-Whitney U test of independence for univariate data, and the two sample Hotelling T 2

test for multivariate data. The work from [11] was later extended in [9] to analyze gradual drifts
and multi-order dynamics. The logic remains the same, but now applying a sliding window that
would compare not only adjacent populations, but also non-continuous populations provided a
proper choice of a gap. Furthermore, they would increase the sizes of the windows so that they’re
able to identify macro-level changes which a smaller window size would not be able to identify.
The Tsinghua Process Concept Drift Detection (TPCDD)[20] approach represents each trace into
multiple relation features. The variation trend and partition of each relation is inspected to then
combine all change points revealed and get a final result. It utilizes a relation matrix over which
a minimum relation invariance distance (MRID) threshold is applied, which helps identify the

Log-Based Concept Drift Detection over Event Streams 13



CHAPTER 2. BACKGROUND

candidate change points. DBSCAN is later used to create the clusters of candidate change points
and identify the actual drifts. The Visual Drift Detection (VDD)[12] technique applies a set of
behavioral constraints called ”DECLARE” constraints. Such produce a continuous dataset of
values that are clustered based on their trends of changes over time. A kernel cost function is
applied over the matrix of each cluster, which throws he set of drifts identified per cluster. These
drifts are compared and visually analyzed to define the global and local concept drifts. The Robust
and Accurate Approach[37] extracts the frequencies of the directly-follows relations from the log.
It will then build a contingency matrix with such information from a reference and test window
of a fixed window size and perform a G-test of independence over it. After a certain number of
consecutive rejected tests, it will signal a drift. The algorithm also processes the log forwards and
backwards. Such procedure, authors argue, helps identify the deletion of events as drifts as well.

Online Analysis

Online analysis refer to the scenario where changes are discovered in near real time. It is appropri-
ate for situations where organizations are interested in detecting a change at the moment when it
happens. Such algorithms trigger alarms and enable organizations to take quick remedial actions
and avoid repercussions over the process. These are best adequate for event streams, as the drifts
are signaled while the system is generating data. The approach from [13] combines conformance
checking from Process Mining with Local Outlier Factoring (LOF) from Data Mining. It first
requires either a reference process model or an initially discovered one out of the event log. It
identifies deviating traces in the stream, which are classified within different microclusters based
on their LOF score. Drifts are then identified over each of these independent microclusters and
aggregated. In [14] a statistical G-test of independence is performed over distributions of special
behavioral relations between events, as observed in two adjacent windows of adaptive size. The
frequency of this relations is stored in a contingency matrix. Eventually, after a certain amount
of consecutive rejected tests, a concept drift is signaled. Similarly, [10] performs a Chi-squared
test of independence over a contingency matrix which stores the frequencies of a special type of
feature extracted called runs. These allow to store more details over the relations, like concur-
rency or loops. Again, a filter is applied so that a concept drift is detected only after a certain
given number of successive rejected statistical tests. In [18] a framework is proposed which applies
Principal Component Analysis (PCA) to project the original multidimensional data stream into a
lower dimensional space. Different types of changes in the data variables, such as changes in mean
and variance or the correlations between variables, can be observed over one or several Principal
Components (PCs). They then apply a change-score to each of these PCs and determine a final
change-score by aggregating all selected components.

2.3.3 StrProM

As stated in Subsection 2.3.2, this thesis is focused on developing a new unsupervised data stream
learning technique for concept drift detection. While several techniques were briefly explained
previously, the biggest contributor to this master thesis was a technique developed by Dr. Ing.
Marwan Hassani et.al. called StrProM [1]. This novel approach builds prefix-trees to extract
sequential patterns (directly-follows) of events from the stream. Such trees are later used as a
process discovery tool to generate process models using the Heuristics Miner algorithm[38]. The
approach steps will be explained next, as it’s the basis of a concept drift technique which this master
thesis attempted to extend and improve. More details on each component of the algorithm, data
structures, and processing steps will be given in 4.

Authors of this paper argue that several approaches collect counts of events and case-related
directly-follows relations by observing the event stream and use this data as input for the Heuristics
Miner algorithm. These approaches require different data structures to store information regarding
the activities, relations and cases. After a new event is seen, all of these data structures must be
updated, which becomes a costly operation on an infinite-stream scenario. Their approach aims
to reduce this process time by decreasing the effort of updating three structures and utilize one
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Figure 2.6: An overview of our StrProM algorithm using an example stream of events from a Traffic
Fine Management System. The streaming process models (Right) present a drift in the models
(causal nets) over the time with the activities: Traffic Offense, Penalty, Payment, Administration,
Judge [1]

.

data structure instead, the prefix-trees. This would allow a much faster process time, but demand
a more extensive processing of the structure to yield the frequencies of the tree entities. Because
this information is not required as often while the stream progresses with new events, such step is
delayed to decrease the average event processing time significantly.

After a certain period of time, the algorithm applies a pruning step to the tree’s branches
by eliminating branches with a support below a particular minimum support threshold. The
purpose of this step is to store redundant information into a more compressed structure. Next,
two frequency maps are used to store the information within the tree: one for the activities and
another for the relations. For each node n with label a and its child m with label b, the value
store in m is retrieved. This value is added to the relation frequency map for a > b and to the
activity a frequency map as well. Subsequently, once all the information from the tree has been
extracted, this tree can be replaced to include only open cases. Each open case stores the last
activity seen for that case. Once the tree is reset, a new node is attached for each open case to
the root node with the last activity seen and a value of 0. This means that after the pruning step
finishes, a tree of height 1 will be available to continue processing the event stream.

The algorithm also applies a decaying mechanism, where the information within a stream of
events gets less importance as the data becomes older. In order to grant more importance to newer
processes instances or cases, they ”forget” older relations and activities. When the tree pruning
happens and the new frequencies are added to both the activities and relations frequency maps,
the old counts are modified using a decaying factor λ ∈ [0, 1] with the follwing formula:

FnewA = (1− λ)F oldA + F extractedA FnewR = (1− λ)F oldR + F extractedR (2.3)

Where FA refers to the frequency map of the activities and FR refers to the frequency maps of
the relations.

Another pruning step is performed whenever the amount of active cases being tracked exceeds
the maximum number allowed Cmax. When working with real-world datasets, the number of
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simultaneously open cases tends to grow very large, while the number of activities and relations
remains smaller. Monitoring open cases they argue is the dominant factor considering memory
consumption. Each open case stores the timestamp of the last event seen as well, which allows
them to prune those open cases with the oldest timestamp ones Cmax has been exceeded.

Eventually, once a certain amount of events have been processed, the frequency maps are
sent as an input to the Heuristics Miner algorithm. Details on how this algorithm works can
be found in Appendix A Algorithm 2. With this, a process model is continuously discovered
and updated as the event stream continues. Experiments showed that StrProM achieved better
results in the processing time per event and memory storage compared to its competitors, while
still achieving similar results in fitness and precision of their models with respect to the event
log. These continuous set of process models will serve as the basis for a concept drift detection
technique described next.

2.3.4 StrProMCDD

After defining a novel process discovery algorithm, Dr. Ing. Marwan Hassani extended StrProM
to the field of concept drift detection. The result was a new algorithm StrProMCDD [8], which
utilizes the process models generated to perform a set of distance metrics over them and with this
identify drifts within the event stream. Furthermore, it utilizes an adaptive window concept based
on ADWIN[3], where the window keeps increasing as long as no change is detected and decreases
once a new drift appears. Appendix A Algorithm 3 shows the detailed algorithm.

The algorithm works very similarly to StrProM, with the main difference being that the fre-
quency maps generated after every pruning step are stored in a temporal ordered list. The old
ones with be found at the beginning while the most recent ones are located at the end of the list.
Once the maximum size of the ordered list (window) has been reached (WMax), the algorithm
follows the logic behind ADWIN and will perform multiplle cuts over the list of frequency maps.
For each cut, the algorithm will create a mean aggregation of the lists of each sub-population and
generate a process model out of these aggregated frequency maps. Figure 2.7 shows the adapt-
ive window logic behind StrProMCDD. The idea behind is, as no change within the models has
been identified, the window can continue to grow to process more events while the underlying
distribution is stable. Once a drift has been identified the algorithm wants to be more susceptible
to changes, therefore decreasing the size of the window to perform the detection procedure more
frequently. More details on how ADWIN is implemented are explained in 4.

Figure 2.7: The applied adaptive window concept: the window keeps increasing as long as the
underlying distribution does not change. Once it reaches its maximum allowed size, it starts
sliding to catch new items by forgetting older ones. When StrProMCDD detects a concept drift,
it shrinks its size to focus on the new trend [8]

.
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Once the process models are built through every partition of the window, different distance
functions are applied over both models and a threshold is defined to compare against. A drift is
signaled if this threshold is exceeded. Such distances functions are: dependency distance, edge
distance, activity frequency, relation frequency, routing distance, and relative importance. Results
showed that certain distance functions performed better than others based on the dataset set that
was selected. This work lead to different ideas over how to use StrProM for concept drift detection
without the need of generating a process model. This set the ground for the work and problem
definition of this master thesis.

2.3.5 Tree-Distance Metric

In order to apply a concept drift detection algorithm over a set of prefix-trees (with nodal attrib-
utes), a transformation of a discrete dataset into a continuous set is required. Such transformation
has not only to use information stored within the nodes of the trees, but take advantage of the
topology of the tree as well. The structure of the tree, in the context of a event stream, stores
valuable information regarding the traces which becomes significant when working on detecting
control-flow drifts.

In [2] a novel mathematical framework for statistical analysis of populations of tree-structured
objects. Under the context of object oriented data analysis (OODA), finding a center point (e.g.,
mean or median) allows the use of Euclidean approaches, similar to the scenario we are presented
with. They argue then that trees or graphs are seen important in medical image analysis, but
because the data is strongly non-Euclidean, fundamental tools of standard vector space statistical
analysis are not available. Motivation behind their framework was the recent developments in
medical image analysis, in particular, analysis of a sample of blood vessel trees in a human brain.
In this scenario, the data objects become curved and standard Euclidean approaches are very
successful. This allows the use of methods like PCA, to analyze the variation regarding a reference
point.

The theoretical contribution of the authors is the introduction of a new metric δ on tree space.
Such metric consists of two parts: the integer part dI, which captures the topological aspects of the
tree structure, and the fractional part fδ, which captures characteristics of the nodal attributes.
For any two topological binary trees s and t with nodal attributes, the Euclidean distance is
defined as:

δ(s, t) = dI(s, t) + f2δ (s, t), (2.4)

where

dI(s, t) =

∞∑
k=1

1{k ∈ IND(s)4IND(t)} (2.5)

and

f2δ (s, t) =

∞∑
k=1

αk((xsk − xtk)2 + (ysk − ytk)2)

× 1{k ∈ IND(s) ∩ IND(t)}

+

∞∑
k=1

αk(x2sk + y2tk)1{k ∈ IND(s) \ IND(t)}

+

∞∑
k=1

αk(x2sk + y2tk)1{k ∈ IND(t) \ IND(s)}

(2.6)

Equation 2.5, as previously mentioned, captures the topological aspects of the tree structures.
The symbol 4 is used to denote the symmetric set difference (A4B = (A ∩B) ∪ (A ∩B), where
A is the complement of A). dI(s, t) counts the total number of nodes which show up only in either
s or t, but not both of them. It can also be seen as the smallest number of addition and deletion
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of nodes required to change tree s into t. Since dI is always an integer, they referred to it as the
integer tree metric.

Second part of the Eucledian distance is reflected in Equation 2.6. This captures, as mentioned
before, the characteristics of the nodal attributes within the trees. Here, αk is a non-negative
weight series which allow intervention on the importance of various nodes. For the prefix-trees
developed in this thesis project, all nodes have the same importance. Therefore, such weight
is not utilized. The attributes contained in the node k of tree t are denoted by (xtk, ytk) (two
node attributes). Therefore the first part of the equation takes the sum of square differences
(
∑∞
k=1(xsk−xtk)2+(ysk−ytk)2) between attributes of the node intersection in both trees (×1{k ∈

IND(s)∩IND(t)}). The last two summations in Equation 2.6 are used to avoid loss of information
from those nodal attributes that are present in one tree and not the other. If performs the sum
of the square of both attribute values in the nodes which are present in tree s and not in t and
viceversa.

2.3.6 ADWIN

The unsupervised drift detection technique for multivariate data streams chosen for this thesis was
ADWIN [3]. This nobel technique has been strongly used over concept drift detection for event
streams in the literature due to its efficiency in time and memory requirements. Such algorithm
has a simple idea: whenever two ”large enough” subwindows of W exhibit ”distinct enough”
averages, once can conclude that the corresponding expected values are different, and the older
portion of the window should be dropped. We touched on this point in Chapter 2 Section 2.2.3.
ADWIN generates a threshold for a cut denoted as ∈cut. Such value is computed as follows: Let
n0 and n1 be the length of W0 and W1 respectively. Let µW0

and µW1
be the averages of the

values in W0 and W1, and µW0 and µW1 their expected values. The algorithm then defines:

m =
1

1/n0 + 1/n1
(2.7)

as the harmonic mean of n0 and n1 and

δ′ =
δ

n
, and ∈cut=

√
1

2m
× ln

4

δ′
(2.8)

The statistical test will then look at different distributions in W0 and W1 and check whether the
observed average in both sub-populations differs my more than the threshold ∈cut. The distance
metric computed previously then can be continuously fed to this technique which will signal if a
drift is detected. Fortunately, authors of the technique also developed a set of libraries in Python
as open-source and available to use under Scikit-Multiflow4. The package allows the creation of
an ADWIN class object, which has a function add element that takes as parameter the value to
be analyzed. Later, another function called detect change is used to detect concept drifts over this
continuous set of values.

4Details about Scikit-Multiflow and full documentation available at https://scikit-multiflow.readthedocs.

io/
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Chapter 3

Problem Formulation

This chapter focuses on identifying areas of opportunity from the literature presented in Chapter
2. This will allow the definition of our research questions and justify the need of a new framework.
In order to land these questions, a couple of preliminary knowledge is required.

We refer to the following string representation for event streams:

S = 〈e1, e2, e3, ...〉 (3.1)

Let us note that an event stream is a potentially infinite sequence of events, where events are
ordered by time and indexed. Furthermore, events of the same trace do not need to be consecutive
in the event stream, i.e. traces can be ”overlapping”. We would then process each event with the
following representation:

e = (c, a, t) (3.2)

where c represents the case identifier, a refers to the activity label, and t to the time-stamp. Each
event is unique, as the combination of the three attributes can never repeat. Though most stream
generation tools provide a unique identifier for each event, such information is not needed for the
purpose of this framework.

The prefix-trees, which will be covered in Chapter 4 are composed of nodes. Each node stores
a set of attributes which will be represented as follows:

n = (i, a, p, pL, ch, f) (3.3)

where i represents a random universal unique identifier for the node, a refers to the activity label,
p represents the parent node or predecessor (referencing the directly-follows relation from 2.3.3,
this would be equivalent to storing node a inside node b on the relation (a > b)), pL refers to the
list of all parent nodes for this node (starting from the root node and up until the parent node.
This same list could be represented as pL = 〈p0, p1, p1, ..., pn〉 where p0 represents the root node
and pn the last parent node), ch represents a dictionary storing all the children nodes of this node
(this dictionary can be represented as ch = {a : n} where a refers to the activity of the children
node and n to the node itself; each children node would be an entry in the dictionary), and f
represents the frequency of this node (amount of times this sequence of events has been seen).

Cases are represented with the following notation:

c = (ci, n, fl) (3.4)

where ci refers to the case identifier, n represents the last node seen for that case and fl a Boolean
flag to note if the case is still active (open) or inactive (closed).

An extensive analysis was conducted to understand the capabilities and limitations of current
concept drift detection techniques. Though there are several supervised-learning algorithms, such
have a significant limitation in realistic settings: true label arrival. In order to train the model, a
true label for event ei at time t is required after predictions are made and before the next instance
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StrProMCDD [8] X X X X X X
PCA-CD [18] X ∼ X X X X
DOA [13] X X X X X X X
ProM [11] X X X X X X X
MOD [9] X X X X X X X X
UDD [14] X X X X X X
ProDrift [10] X X X X X X X
TPCDD [20] X X ∼ # X X
VDD [12] X X X # X X X X X
D3 [19] X ∼ X X X X
TC [15] X X X ∼ X X X
TBC [16] X X ∼ X X X
EMD [17] X X X ∼ X X X
Robust [37] X X X X X X X

Table 3.1: State-of-the-art unsupervised concept drift detection techniques characteristics (# =
not applicable, ∼ = Other).

ei+1 arrives. In most real-world scenarios, labels may arrive to late or not at all. Furthermore, in
an online setting, the algorithms must identify the drifts in near real-time, i.e. the need for a label
may then hinder the performance of the algorithms. Because of these reasons, an unsupervised-
learning technique for detection changes seems a more adequate approach over event streams.

Table 3.1 shows a comparison of state-of-the-art unsupervised-learning concept drift detection
techniques. Based on the previously mentioned reasons, it was decided to exclude supervised-
learning techniques from the comparative analysis. Five main components were chosen to classify
each of these techniques:

(i) Disc→ Cont: Type of transformation technique used to convert the a discrete dataset into
continuous. Some techniques use a a probability function or probability density function.
Most of them focus on extracting the frequency of a set of features from the event log. A
few others use a defined distance function over components of the event log (e.g., traces).

(ii) Perspectives: Aspects of the event log that the technique is designed to analyze. While most
techniques focus on the control-flow because it allows to discover a process model out of the
stream of events, others focus on data components stored in the events, the resources which
execute the activities of the events, or the performance of the process itself.

(iii) Analysis: Type of statistical analysis done over the continuous dataset. Most techniques
focus on comparing the distribution of two adjacent populations. Others rely on predictions
and analyzing the error of their predictions to signal a drift. There are a few which apply
other statistical techniques (e.g., clustering).

(iv) Window : Window approach used to observe the event stream. A fixed window size relies on
some external knowledge of the log to define the correct size. Adaptive window approaches
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continuously update the size of the window based on the changes detected. Other approaches
will process the event log completely in one run, i.e. using a single window of observation.

(v) Stream: Class of stream analysis approach. While offline techniques will provide the drift
results after processing the whole log, online approaches signal drifts in near real-time while
the log is being processed.

(vi) Drift Type: Type of drifts that the technique is focused on detecting. Algorithms may work
with one ore more of these types, though very few argue that they’re able to detect all types
of drifts. Note that those techniques which did not specify the types of drifts that they could
detect were assigned to ”Sudden” drifts only.

These set of characteristics help us classify the algorithms to understand over which scenarios
would each perform better. Though all of these techniques achieve the objective of identifying
concept drifts over an event stream, they also show a list of limitations:

• Defining a set of feature vectors imply some a-priori knowledge of the possible nature of the
drift. Therefore, these methods are not fully automated.

• Depending on the data structure utilized, many techniques dismiss of important information
from the traces that can help identify drifts from the control-flow perspective.

• Many techniques perform efficiently with the logs used within their experimental evaluation,
but performance decreases significantly with real-life event logs; even scenarios where they
cannot process them at all.

• Some techniques rely on the creation of a process model before performing the drift detection.
This step creates both a loss of information by transforming the data, as well as an extra
time and memory requirement.

With this in mind, the need for a new unsupervised-learning concept drift detection framework
appears. While developing the framework, a couple of questions aroused that guided the design
of it:

1. What concept drift detection framework would be able to address the limitations aforemen-
tioned?

(i) Which is the most optimal data structure for storing and processing a multivariate
stream of events S?

(ii) Which approach can transform the discrete data stored in prefix-trees into continuous?

(iii) Which unsupervised drift detection technique, which utilizes an adaptive window, is
the most efficient (time and memory) on identifying sudden and gradual drifts?

2. Can the proposed framework perform to the same level, if not outperform, the unsupervised
state-of-the-art concept drift detection over event streams techniques?

3. Can the proposed framework provide insights regarding the process besides the known drifts
(gold-standard) for real-world scenarios?

Chapter 4 will describe in detail the components of the framework which attempts to answer
these questions.
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Chapter 4

Method

This chapter presents a new framework for unsupervised-learning concept drift detection over an
event stream. First, the procedure for initializing an event stream is shown 4.1. Then, the data
processing and storage technique based on StrProM will be explained in detail in Section 4.2.
Then, Section 4.3 introduces the method for converting the discrete data to continuous. Later,
the concept drift detection technique implemented is described in Section 4.4. Finally, Section 4.5
presents the drift characterization component of the framework.

Figure 4.1: Prefix-Tree StrProMCDD framework.

Figure 4.1 shows a high-level representation of the framework which will be described in this
chapter. Following are the steps which the framework takes in order to identify concept drifts out
of an event stream:

1. An event log (or BPMN process model) is imported and metadata related to the end of each
case is extracted,

2. An event stream is generated using one of the approaches presented in Chapter 2 Section
2.2,

3. The event stream will send continuously events into a listener until the complete log has
been processed,

4. The algorithm will process each event and store it in a prefix-tree relative to the current
window of observation,
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5. Once the window is big enough, the data will be transformed into a continuous data set
using a distance metric described in 2 Section 2.3.5,

6. A concept drift detection technique will process such continuous dataset and signal a drift
if the distribution of the data has significantly changed within the window,

7. The process will continue repeat until the event stream stops the transmission of events.

The complete implementation of this framework can be found in the following Github repos-
itory.

Algorithm 1: Log-Based Concept Drift Detection Algorithm over Event Streams

Input: log/model : input to generate event stream, W : adaptive window for drift
detection, ADWIN : Concept drift detection technique

1 log ← PM4PY.readEventLog(XESfile);
2 eventStream = log.convertToStream();
3 OR /* Depending if an XES log or BPMN model is used as input */;
4 parameters = PLG2.streamParameters;
5 model← PLG2.importModel();
6 PLG2.startStream(model, parameters);
7 foreach event in eventStream do
8 insertByEvent(event);
9 if W.cddFlag = True then /* Concept Drift Detection activated */

10 if len(W.PrefixTreeList) = W.WinSize then /* Max window size reached */

11 W.ConceptDriftDetection(ADWIN);
12 W.WinSize = MIN(W.WinSize+ 1,W.MaxWindowSize);
13 if len(W.PrefixTreeList) = W.WinSize then /* No drift detected */

14 W.PrefixTreeList = W.PrefixTreeList.dropLast();

15 end

Algorithm 1 shows the pseudo-code for the execution of the framework. Note that several
functions used within the algorithm are shown in Appendix A.

4.1 Creating and Initializing an Event Stream

First step of the framework is the generation of an event stream out of a log. Important to note
that this framework assumes that the input data is either: a process model, which can be used to
randomly generate an event stream with PLG2 2.2.2, or an XES file, which PM4PY 2.2.1 would
tranform into an event stream. Both scenarios will be explained in this section.

Figure 4.2: Log to stream conversion example.
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4.1.1 PLG2 to Event Stream

In Subsection 2.2.2 a detailed description of PLG2 and its capabilities was given. One capability
not previously mentioned was the ability to import business process models into the tool. This
allows the users to generate an artificial log or event stream out of an existing process model. The
tool allows two types of process model formats: BPMN1 model and PLG file. Figure 4.2 shows an
example end result of this step, were the log from Table 2.1 is converted into a stream of events
ordered by time of arrival.

BPMN is an acronym for Business Process Model and Notation. It is a well-known graphical
representation of a business process, which has been maintained by a set of organizations over the
years. Very similar to a flowchart diagram, it provides a user-friendly notation which is also able
to represent complex business semantics. There are several tools in the market which provide an
interface to create BPMN models or import existing models in other formats, like Signavio2. An
example BPMN model for an accounts receivable process can be seen in Figure 4.3.

Figure 4.3: Example BPMN model representing a car rental accounts receivable process.

PLG files is a file format generated by the PLG2 tool itself. It is a specific format which is
not available in any other platform. Very similar to a basic BPMN model, it allows to add some
semantics to describe the process. All the workflow control-flow patterns mentioned in Subsection
2.2.2 are present in the model.

Once a model is imported or generated within the tool, the next step is the stream generation.
Such step was described already in Subsection 2.2.2. The most important parameters to take in
consideration are the noise configuration, the network port defined, maximum number of parallel
instances, and the time multiplier. Once all these are correctly set and the stream is started,
the algorithm needs to connect to the local port number to ”receive” the events which are being
transmitted by the tool. In the case of this framework, a Telnet session was created locally to
connect to the port defined (tests and experiments were done with port 8888 successfully). Need
to make sure the chosen port is available and the application has the required permissions to
”transmit” to it. We suggest looking at the example stream generated in the PLG documentation
site: https://plg.processmining.it/.

4.1.2 XES to Event Stream

The other alternative available through this framework is to provide an event log in an XES
format. Though there exists many other formats for representing and event log, PM4PY spe-
cifically deals with only XES and CSV formats. Furthermore, for the purpose of this thesis we

1More information regarding BPMN available at https://www.bpmn.org/
2More information regarding Signavio available at https://www.signavio.com/
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decided to use only XES, as it is the most widely-used format in the literature reviewed. Using the
streaming.importer.xes, objects.log.importer.xes, and objects.conversion.log libraries from PM4PY,
the event log is first imported. Then, converted into an event stream using a sorting based on the
timestamp key (’time:timestamp’). This results on an iterable object where the events are ordered
by timestamp from oldest to newest. By iterating over such object one replicates an ”online”
stream.

4.1.3 Initializing the framework

Besides initializing the stream, from any of the two alternatives described, there are a set of objects
which need to be initialized in order for the framework to proceed and processing the stream. Next
are the steps followed to complete the setup:

1. Create End-Events lookup dataset. In a real-world scenario, an external entity would provide
information regarding when a case is finished. Process owner and entities involved should
be familiarized enough signal the possible paths a case can take and what are the end events
of each. These are key for the algorithm to understand if a case is still active, and therefore,
needs to store which was the last event seen to continue its variant. In the context of this
framework, such events are extracted by pre-processing the event log (in the case of an XES
log provided as input), or defined by looking at the process model (in the case of a process
model provided as input).

2. Initialize context variables. A set of variables, which are used during the whole execution
of the framework, are created and initialized. These include: frequency lists for activities
and relations (these are the global lists which are continues), end events dictionary (created
in the previous step), list of cases seen, ordered dictionary to store tracking cases, counters
for number of events per model and number of events overall, tree (instance of PrefixTree
class), current node (root node to start the first tree), and a window (described in 4.3).

3. Initialize model building variables (optional). The framework provides an option for building
a petri net representation of the process for every window of observation done. Such brings
high computational cost and time over the algorithms, so it is not used for the context of
these experiments.

4.2 Prefix-Trees as a Data Processing and Storage Tech-
nique

As previously mentioned in 2.3.3, this framework relies on a data storage structure called ”prefix-
tree” or ”trie”. Tries are a well-established data structure for compactly storing ordered diction-
aries. These data objects are mathematically represented as simple graphs. These have a unique
path between every pair of nodes, where one node is designated as the root node and all other
are children or parent nodes. Each single data value on the sequence is represented by a single
node in a tree structure with arcs connecting the set of nodes. These structures offer advantages
over other indexing structures (e.g., binary search trees or hash tables) according to [39]: they are
more compact because overlapping prefixes are stored only once, and unless the set of keys are
extremely small, lookup is faster. In fact, lookup in a trie in the worst-case is O(m) time (where
m is the length of the search sequence), whereas for the other indexing structures worst-case could
reach O(N), where N is the number of records. Furthermore, tries cannot have collisions of key
storage, as each node in the tree will always have a single pointer (compared to a hash table where
multiple keys can point to the same position in the table). Based on the work in [40], StrProM
implemented a prefix-tree structure for storing and processing an event stream. Figure 4.4 shows
an example prefix-tree generated after processing thirteen traces of an event stream. Each node
shows its corresponding activity label and frequency. We’ll explain in detail the logic behind such
implementation and how it was adjusted to achieve the goals proposed.
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Figure 4.4: Example prefix-tree from event stream of Figure 4.2

4.2.1 Prefix-Tree Components

As mentioned previously, a prefix-tree is composed of nodes and edges (arcs). In the context of
this thesis, each node n corresponds to an event and stores information arriving from the event
stream. Refer to Equation 3.3 for details on such attributes stored per node. The edges of our
prefix tree are represented by the children nodes ch of each node. Though some type of trees may
store information within the edges, in this context they act as the relation between two nodes
(a > b). A Python class was created to store all data related to the prefix-tree for a specific period
of observation. A new tree instance is created once the number of events for the pruning step has
been processed from the stream. The different components of our trees will be explained further
in this section.

Trie Node

A trie node is a node from the prefix-tree which is not the root node. Every event process from
the event stream must create a new node in the tree or increase the frequency of an existing node.
A new node is created if the last event seen does not have this new event as a children node.
Every node is unique, while there may be other nodes which have the same values for different
attributes. Nevertheless, two nodes may never share the same activity label a and parent node
list pL. Therefore, each node can only have a single parent node p. A Python class was created
to store all node data. Every new event node creates a new instance of the object TrieNode.
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Root Node

All prefix-trees start from a root node which we will denote as ε. A root node is a node itself
where its activity label a is the string ’root’ and an empty (⊥) parent node p. Furthermore, the
list of parent nodes pL will always remain empty and the frequency f of such node remain as 0.
Children nodes ch of the root nodes are identified as the first events of a trace. The root nodes
are a representation of the starting point of the traces and connects all traces which have been
seen during the observation period of that prefix tree. There are two scenarios where a root node
gets a children assigned:

• An event from a new case (never seen before) is received and such event is not already a
children event of the root node.

• A case remains open after a pruning step and therefore the last event seen of that case will
now be a children event of the root node (incomplete cases).

Tree Branches

Tree branches are a key component for this framework. They are the representation of a trace
variant within the process (a unique sequence of events for a case). The number of branches of a
tree will act as the number of different trace variations which the prefix-tree has observed during
the current period. A tree can have [1,∞] branches. The end node of a branch represents the end
of a trace, while the start node will always be the root node. Sub-branches can also be created
from intermediary nodes, which means that there are traces that have equal ”prefixes” (two traces
had the same sequence of events up to certain point). Two branches may never merge into a single
branch. Because each branch relates to a different trace variation, each event seen in that trace
variant is unique. This means that no node can have more than a single parent node p (i.e., a
unique sequence of events prior to it).

4.2.2 Prefix-Tree Attributes

In 4.2.1 it is mentioned that a Python class was created to store the information regarding a
prefix-tree. Each instance of the PrefixTree class has a set of attributes which reference important
components of the tree. This section describes each of these attributes and what are they used for
in the context of the framework. Initialization function for the class can be found in Appendix B
Listing B.

User-defined parameters

Following are the set of parameters required to initialize a prefix-tree.

• PruningSteps (Integer): Number of events that must be processed before pruning has
to be performed over the tree. Fixed number that should be set based on some knowledge
regarding the stream. (Default value: 1000)

• TreePruneSteps (Integer): Number of events that must be processed before an interme-
diary pruning has to be performed over the tree. It is a fraction of the PruningSteps value.
(Default value: PruningSteps / 4)

• LambdaDecay (Double): Decaying factor that decreases the relevance of older counts of
events and relation when pruning the tree. If value is 0, older events become as relevant
as new ones (no decay); if set to 1, older events are not relevant at all (complete decay).
λ ∈ [0, 1]. (Default value: 0.25)

• Cmax (Integer): Maximum number of cases that the algorithm is able to track concur-
rently as open cases. Memory requirements increase the higher the value. (Default value:
6)
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• TPO (Double): Threshold used to filter nodes which have a support (frequency) lower
than the defined value. Parameter is equivalent to the TPO threshold from the Heuristics
Miner [38] algorithm. (Default value: 1)

Not user-defined attributes

Next are the set of attributes which are generated automatically when a new prefix-tree is created:

• NodeFrequencies (Dictionary): Dictionary which stores the frequency per node. Up-
dated after every TreePruneSteps and PruningStep with the decaying old values and newly
seen values.

• RelationFrequencies (Dictionary): Dictionary which stores the frequency per relation
(a > b). Updated after every TreePruneStep and PruningStep with the decaying old values
and newly seen values.

• StartActFrequencies (Dictionary): Dictionary which stores the frequency of those nodes
which are the start of a trace (children of the root node). Updated during the TreePruneStep.

• EndActFrequencies (Dictionary): Dictionary which stores the frequency of those nodes
which are the end of a trace (last node of a branch). Updated during the TreePruneStep.

• TreeNodes (List): List which stores all nodes seen by the prefix-tree. Used to reset the
frequencies of all nodes during TreePruneStep and PruningStep.

• EventsSeen (Integer): Counter for the number of events the algorithm has process since
the beginning (t = 0). Used to identify point in time when a concept drift was detected.

Node Attributes

Based on the notation described in Chapter 3, this subsection will describe the attributes the Node
class stores for every instance of the object. Initialization function for the class can be found in
Appendix B Listing B. Following is the list of attributes for the class:

• NodeId (UUID): Randomly generated unique identifier for the node.

• Activity (String): String with the activity name of the event. Multiple nodes can have
the same activity name.

• Parent (Node): Nested node instance which stores the parent node (previously seen node
for this case). A node can only have one parent node.

• ParentList (List): List of all previous parent nodes. Used to identify if this same node
exists on another tree.

• Children (Dictionary): Dictionary which stores all the children nodes of this node. Each
key stores the Activity and the node itself in the value.

• Frequency (Integer): Stores the frequency of this node. It is reset after every TreeP-
runeStep and PruningStep.

• BranchId (String): String which is composed of the ParentList of nodes and the Activity
of this node. Used for aggregating the frequencies of nodes between trees.
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Case Attributes

This subsection will describe the attributes the Case class stores for every instance of the object.
Initialization function for the class can be found in Appendix B Listing B. Following is the list of
attributes for the class:

• CaseId (String): String storing the case identifier. Value is used to compare against the
active cases in the queue or identify if the case of a new event has been seen before.

• CaseNode (Node): Node object instance of the last event seen for that case. Used to
continue growing the branch of that case if a new event is seen.

• Active (Bool): Bool flag to signal if this is an active case (have not seen the end event for
this case yet) or if is inactive.

4.2.3 Processing Events from the Event Stream

Once the stream is ”sending” events in an online fashion and all variables are initialized, the
framework is ready to process such events. A set of methods from both the TrieNode and PrefixTree
classes are used to achieve this. The required result is the generation of a discrete dataset over
which a transformation algorithm will be applied to convert it to a continuous dataset (described
in 4.3). This section will explain how each of these methods work together to generate a discrete
dataset representing the event stream. All pseudo codes and listings can be found in Appendix A
and B respectively.

Insert-By-Event

This is the main method used for processing the events from the stream. Once a new event
arrives, this method is called so a node is either created or updated within the current prefix-
tree. Because of the size of this method, each component will be split into parts and described
individually. First part focuses on the handling of the cases and actions related to each scenario.
A complete algorithm breakdown can be seen in Appendix A Algorithm 4. Once the new event is
received all its attributes are stored in a set of variables (caseID, eventID, eventTimestamp)(lines
1-3). Then, depending on if the case is a new case that has never been seen, or if it is an existing
case that is not currently being tracked, or a tracked case, a set of tasks will be triggered.

For completely new cases, the currentNode of the tree becomes the root node and a new Case
has to be created with the caseID and currentNode as the pointing node (lines 5 and 6). This
newly crated case c must be added to the Dcase ordered dictionary so that it becomes one of the
tracking cases (line 7). Afterwards, the algorithm must check if Dcase has reached its maximum
number by comparing it with Cmax (line 8). If so, the last element (oldest) must be dropped (line
9). Later, if the eventID is not within the list of start activities for this tree (StartActFrequencies),
a new record needs to be created in the dictionary and the frequency set to 1 (lines 10 and 11). If
it has been registered before, then we just increase the frequency of that record in the dictionary
(line 19). Finally, if the eventID is not one of the currentNode.ch, then a new node n is created
with the corresponding eventID as activity (a) and the currentNode as the parent node (p) and
assigned as a children of the currentNode (lines 12-14). If already a children, let the currentNode
become that children (line 16).

For existing cases that are not currently tracked, we first run the lookForNode method to find
a node (if there exists one) within the tree to be the ”potential” node (line 22). This logic was
chosen so that the algorithm does not create a new branch for existing cases that are not being
tracked. Instead, it tries to find the first node that has the same eventID on the tree and takes
the parent of it as the findNode. A complete algorithm breakdown can be seen in Appendix A
Algorithm 5. If no node is found with such activity name, we create a new branch and assign
the root node to the currentNode (lines 23 and 24). If there was a n found, then this parentNode
is assigned as the currentNode (line 26). Then, a new case c is created with the existing caseID
and the currentNode as pointer (line 28). This same must be added to the ordered dictionary
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Dcase. Same as before, it needs to review if the maximum number of cases for tracking has been
exceeded. Finally, as in the previous scenario, it checks if this eventID exists as a children of the
currentNode so that it can create a new node or just increase the frequency of the existing one.

The last scenario assumes the case from the event received exists and it is being tracked (exist
in the Dcase dicitonary). Therefore, the only step steps are to move this case to the from of the
list (newest case) and repeat the steps for checking if the activity already exists as a children of
the currentNode or not (lines 40-47). Figure 4.5 shows an example using the tree defined in 4.4.
The red-highlighted figures represent the actions taken for each scenario. First scenario creates a
new node and branch for a new case never seen before; second scenario creates a new node under
an existing one from where an active case was pointing to; third scenario looks for an existing
node that had that eventId on the tree. After not finding one it generates a new node and branch,
adds this case to the tracked list and points it to the new node.

Figure 4.5: Example of the three different scenarios for handling an event depending on the case
status

After handling the cases scenarios, the algorithm needs to verify if the case has ended or if it
is still an active case. A complete algorithm breakdown can be seen in Appendix A Algorithm 6.
First we add the currentNode to the list of treeNodes, assign the currentNode as the last node n
seen for this case c and increase the pruningCounter (lines 1-3). Then, we need to verify if the
eventID and eventTimestamp received are the same as the ones stored in the EndEventsDic for
this caseID (line 4). If it is, set the flag fl of the case c as False (inactive) (line 5). Furthermore,
if the eventID is not already registered as an end event in for the tree (EndActFrequencies), then
create a new entry and assign frequency of 1. If existing, increase the frequency (lines 6-10).

The last step of the method reviews if enough events have been seen to trigger either a Tree-
PruneStep or a PruningStep. Recall from Subsection 4.2.2 that one condition is dependent from
the other and there will be a point in time were both of them are triggered. A complete algorithm
breakdown can be seen in Appendix A Algorithm 7. It first checks if the remainder of the division
between the pruningCounter and the prefix-tree TreePruneSteps is 0 (line 1). If such condition
fulfills, then three functions are executed:

• T.PruneTree() (Algorithm 8)

• T.DecayTree() (Algorithm 10)

• T.ResetFrequencies() (Algorithm 11)
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To ilustrate an example, lets define a stream S from the event log Table 2.1:

S =
〈

(23, RO, t0)(41, TO, t1)(23, PO, t3)(23, AI, t4)(36, RO, t5)(23, SP, t6)
〉

Knowing that case 23 ends with the activity ”Ship Parcel” at a corresponding timestamp, that
case would set its c.active flag to False. Therefore cases 41 and 36 would remain active and
pointing to the last activity seen c.caseNode, which would be ”Receive Order” for both of them.
If a pruning step is performed at this point in time, the tree would prune the branches and save
the frequencies of the activities, while leaving only a single node for each of the remaining active
cases that are being tracked with a frequency of zero. Figure 4.6 shows the result of the prefix-tree
after performing the pruning. The next events which are seen for cases 41 and 36 would create
nodes under this new tree, until the next pruning step is performed.

Figure 4.6: Example of a pruning step from log 2.1

After pruning the tree, decaying the global frequency lists and resetting the frequencies of the
nodes within the tree, the traceCounter is increased and the currentNode will point back to the
root of the tree (lines 2-6). The last part of the InsertByEvent method corresponds to Section 4.3.

The result of executing these steps as more events arrive from the event stream is the gen-
eration of multiple prefix-trees. Each tree will store the discrete information of the population
(PruningSteps number of events) they were observing. Now that multiple trees are generated,
such data must be converted into a continuous dataset, which will be used as an input for an
concept drift detection technique.

4.3 Discrete-to-Continuous Conversion

The series of trees generated by the algorithm are a discrete representation of our data. A discrete
value, as explained in [41], is a numeric representation of a categorical attribute. It is the counting
of something which got a value assigned. On the other hand, continuous values are a measurement
of the size or proportion of a specific attribute. Such value can be higher or lower depending on
its characteristics. As explained in Section 2.2.3, concept drift detection techniques are applied
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over a series of successive chronological populations. This means that there is a need to transform
our discrete dataset into a continuous one before applying any drift detection technique.

In order to do so, we have to look at what features of our dataset are we interested in and believe
will provide meaningful data for a drift detection algorithm. In Sections 2.3.1 and 2.3.2 a set of
supervised and unsupervised learning techniques used for concept drift detection were described.
Each technique applies its own approach for extracting a set of features from the data stream and
converting them into a continuous chronological dataset representing the populations’ evolution.
While techniques like [34] [18] use the probability distribution of the dataset, other techniques
like [13] [11] [12] extract a set of features and then apply some measurement algorithm (LOF, J
measure of disimilarity, and DECLARE constraints respectively) over them to create a continuous
dataset. In our approach we believe that the Prefix-Trees store relevant information, besides the
frequency of activities and relations, that can be useful for applying a drift detection technique.
The structure of the tree is a representation of the variation of traces and can be significant
when focusing on detecting drifts from the control-flow perspective. Therefore, a transformation
technique which can take advantage of such characteristics of this data structure, has to be used.

The tree distance metric described in Subsection 2.3.5, based on PCA over trees, appears to
be a good approach to generate a continuous value for a series of trees. Listing B show the script
used to compute such metric. Important to note that in our context, we’re using this approach
with both nodes and relations. This means that we look at not only those nodes which are present
or not in both trees, but also the relations between a pair of nodes. As the equations have been
already explained, the algorithm has been excluded from the Appendix A. A Python class was
created to store relevant information from this metric: TreeDistance class. The attributes of such
class are the following:

• win0NodesNotInWin1 (Dictionary): Stores the key : value2 pairs of those nodes and
relations present in W0 but not in W1.

• win1NodesNotInWin0 (Dictionary): Stores the key : value2 pairs of those nodes and
relations present in W1 but not in W0.

• interDict (Dictionary): Stores the key : (v0 − v1)2 pairs of those nodes and relations
present in both W0 and W1.

• interSumOfFreq (Double): Sum of all values from interDict.

• notInterDict (Dictionary): Stores the combination of both win0NodesNotInWin1 and
win1NodesNotInWin0.

• notInterSumOfFreq (Double): Sum of all values from notInterDict.

• treeDistanceMetric (Double): Euclidean distance between two trees metric. Equation
2.4

Figure 4.7 shows an example of two trees created from a set of sub-population of the stream.
Nodes with the same coloring are identical nodes from topology perspective. These set of nodes
would be part of the interDict. Those nodes which have different coloring between the trees,
though some of them have the same activity name, are unique from a topology perspective.
Therefore, they would be part of the notInterDict. These distinct nodes are the ones which
influence the most over the metric. The formula would then also look at the frequencies stored on
these nodes for the Equation 2.6.

Initialization function for the class can be found in Appendix B. Now that a method for
converting our discrete dataset into a continuous series of datapoints was presented, a technique
for iterating over such list of trees and analyzing these values has to be chosen.
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Figure 4.7: Example of two aggregated trees generated(W0 and W1) from sub-populations of
window W

4.4 Concept Drift Detection Technique

As explained in previous sections, the algorithm will generate a series of Prefix-Trees out of the
event stream and store them in a chronological way (increasing number of events seen) within
the PrefixTreeList list from the Window class. Algorithm 13 in Appendix A shows a complete
breakdown of the steps taken to store each during the pruning step. If the list has reached its
maximum size MaxWindowSize, then the last item of the least (oldest) has to be deleted so that
new trees, with more recent information, can be stored.

To store the data of each window, a Python class Window was created. The class has the
following attributes:

• maxWindowSize (Integer): Maximum number of prefix-trees that the window W is able
to store. Such number is fixed and a parameter provided by the user.

• winSize (Integer): Number of prefix-trees that should be stored in order to activate the
drift detection procedure. It is used as a threshold to know when should the drift detection
start. This value starts with same value as maxWindowSize, but decreases depending if a
drift was detected recently or grows back up to maxWindowSize if no drift has been detected.
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• prefixTreeList (List): Stores the prefix-trees generated from the event stream. It has a
maximum length dependent on the size of maxWindowSize.

• driftsIdentified (List): Stores the T.eventsSeen value for of the last tree from W0 for each
of the drifts identified.

• cddFlag (Bool): Flag used to trigger CDD once a new tree has been completely processed.
Set to True after every new tree or drift identified; set to False if no drift was detected after
CDD or the prefix-tree is has not achieved the PruningSteps.

Figure 4.8: Adaptive Window approach storing Prefix-Trees

Figure 4.8 shows a diagram of the evolution of the window. These approach was adapted from
[8] to now store Prefix-Trees rather than the frequency lists. It uses an adaptive window W, which
focuses on short intervals for highly deviating periods or increase its width in case of uniform
observations (no drift detected). Algorithm 14 in Appendix A shows a complete breakdown of the
steps. The idea behind the adaptive window approach is to store your data structures up until the
maximum size of the window is reached (line 1-2). At that point the concept drift detection process
is triggered (line 3). For all partitions of the window into two sub-populations, an aggregation
of the data structures will be done and a concept drift detection technique applied over those
sub-populations data structures (Algorithm 15). Basically, the set of trees within each of the
partitions are aggregated by the mean of frequency values of the nodes and relations, resulting in
a single aggregated prefix-tree for population W0 and W1 (lines 11 - 14 from Algorithm 17. For
this step, a sub-class of the Window class was created. The class has the following attributes:

• winNodeFreq (List): Stores the node frequencies of each tree within the sub-population.

• winRelFreq (List): Stores the relation frequencies of each tree within the sub-population.

Now that the data has been transformed into a continuous dataset by using a distance metric
between the sub-populations of trees, such values need to be used as input for a drift detection
technique.

Algorithm 16 shows a breakdown of how such packages were used in this implementation. First
the distance metric computed between W0 and W1 is added to the ADWIN object (line 1). Then,
the detect change is used to verify if such element caused a drift (line 2). If a drift was detected,
the elements from sub-population W0 (older elements) are removed from the prefixTreeList (line
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3). Afterwards, the WinSize is adjusted to include reduce the required number of trees to perform
drift detection (line 4). Recalling how the adaptive window approach works, once a drift is detected
we want to focus on shorter intervals where we assume there are highly deviating periods. This
adjustment on WinSize allows the algorithm to perform drift detection more frequently. The new
size will leave space so that one more tree can be added to the list before performing CDD again.
The indexSlider is then reset to 1 so that drift detection can be done over all partitions of W and
the cddFlag is activated (lines 5-6). If a drift was not detected the procedure continues and the
indexSlider is increased and the flag remains inactivated (lines 8-9). The updated indexSlider is
return so that the drift detection can continue if more partitions are available (line 11).

The cddFlag has a secondary use once a drift is detected. Within the 18, once the driftDetec-
tionADWIN function executes, a condition is set to check if a drift was detected (line 1). If a drift
was detected, information regarding the drift (number of events of both sub-populations, critical
nodes which caused the drift, point in time when drift was located) is stored (line 2). In order to
store the drift information, a class Drift was created. Once an object with the drift information
is created, it is then stored in driftsIdentified list of W.

4.5 Drift Characterization

The last component from this framework provides further information regarding the drifts. This
is, according to [42], understanding what has changed in the process behavior. They argue that
detection and localization of a process drift does not provide enough insight to undertake a process
improvement initiative. Some techniques focus on identifying behavior differences between two
process models, but the accuracy of these highly rely on the quality of the discovered process
models.

4.5.1 Critical Nodes

Our proposed framework attempts to provide such information using the prefix-trees which are
related to the drift’s sub-populations. Algorithm 19 shows the logic behind choosing which are
the critical nodes that produced a drift. From the treeDistance object generated in 15, if a drift
is detected, the framework retrieves all nodes and relations from treeDistance.notInterDict which
have a value2 bigger than a criticalThreshold defined. Knowing that the nodes and relations which
differ between the two aggregated prefix-trees have the higher weight over the distance metric, we
focus on identifying those with the highest value from such list. This threshold should have some
context knowledge behind its value. If the value is too high, no node or relation will be considered
critical. On the other hand, if it is too low, most of the them will be selected as critical. If no
context known regarding the expected frequency of events, it is suggested to leave the default
value.

The critical nodes represent each unique node from one aggregated tree which does not exist
on the other. Remember from 4.2.2 that each node has a branchId attribute, which helps uniquely
identify each node. The critical nodes store only the activity name of the last node of the branch.
Therefore, there could be several critical nodes with the same name. This does not mean they
are the same node, it but that they have the same activity as the last activity of that sequence.
Similarly, there could be relations that have the same activity sequence, but that does not mean
they are the same two nodes connected.

4.5.2 Drift Logs

To analyze further information about the drifts, the proposed framework provides the sub-logs of
each drift identified. The objective here is to allow the users to perform their own drift analysis
with the logs from the drifts that the framework has signaled. Algorithm 20 shows the logic behind
the log splitting component. Important to note that this is built as a configuration of the tool.
It is not necessary to execute drift detection, but it is available if the users wants to receive such
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sub-logs after the framework completes its execution. To achieve this, a configuration parameter
should be set using the command line interface (CLI), or corresponding configuration file from the
IDE used. An example CLI script to execute this configuration is as follows:

1 C:\Users\XXX > BPIC2015_CDD.py -c True

Listing 4.1: Config script execution for drift logs.

This will generate a new folder named ’results’, which will contain two logs per drift, for
Window 0 and Window 1 respectively. With these, users can do further analysis using external
tools (like ProM or Disco) to understand in more detail what caused these drifts identified. We
believe it is a very important functionality which has not been seen in the literature reviewed for
this thesis project.
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Experimental Setup

This chapter aims to describe the experimental setup done during the evaluation of this framework
over both synthetic and real-world datasets. First, a brief description of how the framework is
evaluated in terms of drifts detected and performance is described 5.1. Then, an overview of the
artificial datasets used in the experiments will be given 5.2 as well as for a real-world dataset 5.3.
Finally, a few details are given about the hardware used for running the experiments 5.4. The
complete implementation of this framework can be found in the following Github repository.

5.1 Objective Evaluation

The online detection of concept drifts provides an objective evaluation mechanism. Classical
metrics used in data mining can be adopted to evaluate the effectiveness of the approach presented.
Such metrics will be number of true positives (TP), false positives (FP), false negatives (FN), and
the derived metrics from these (precision, recall, and F-1 score). To accurately define these metrics,
a lag period l surrounding a detected or actual concept drift will be used. The interpretation is
as follows [9]:

• TP : a concept drift is detected at time t and there is an actual change within t± l.

• FP : a concept drift is detected at time t but there is no actual change within t± l.

• FN : a concept drift is happened at time t but no change has been detected within t± l.
Precision measures the fraction of detected changes that are correct (TP/(TP +FP )), while recall
measures the fraction of actual changes that have been detected (TP/(TP + FN)). F1-score is
defined as the harmonic mean between precision and recall (2 ∗ precision ∗ recall/(precision +
recall)). Techniques that are able to detected changes with high precision and recall (close to 1)
are preferred.

Figure 5.1: Evaluation of change detection techniques. Solid circle and dashed circle indicate a
change detected and an actual change respectively [9].

Furthermore, a metric for assessing the ability of the algorithm to find drifts as early as possible
in an event stream called mean delay will be used. It is measured as the number of events between
the actual position of the drift and the end of the detection window. Finally, both execution times
of the algorithm and the total memory consumption (without considering the setup steps) will be
captured to evaluate the performance from a system’s perspective.
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5.2 Artificial Dataset

Artificial datasets provide a good environment for testing concept drift detection algorithms. They
allow the manual introduction of drifts in relatively smaller event logs. This helps authors define
the ”gold-standard” for the drifts intended to be identified. Two different artificial datasets are
used within the experiments.

5.2.1 Loan Application Dataset

One of the nobel methods described previously [10] generated a benchmark of 72 event logs1

by taking an example of a business process for assessing loan applications. The base model is
shown in Figure 5.2. It is composed of 15 activities, one start event and three end events. It
also exhibits different control-flow structures including loops, parallel and alternative branches. In
order to assess the ability of the algorithm to detect sudden drifts, authors systematically altered
the base model by applying one out of twelve simple change patterns described in [43]. A more
detailed description of the patterns and what change operations they capture is presented in [10].
Combinations of these patterns were used in a nested approach to result in a composite pattern.
These were inserted in logs of different sizes (number of traces). The experiments performed in
Chapter 6 will only consider the nested patterns (IOR, IRO, OIR, ORI, RIO, ROI) of 2,500 traces
each. We believe this gives a better view on how the framework performs over drifts which have
a combination of changes, which relates more to reality, than a single change in the model. The
intention was to identify the 9 drifts located in each event log with an inter-drift (distance between
two drifts) distance of approximately 12,000 events. Though this number is not exact, it was the
result of the amount of events in average over 300 traces. Such analysis was done using Disco2.
We defined a lag l of 2 × PruningSteps events to use in the logic of identifying true positives,
false positives, and false negatives. This number would represent two more trees to the right or
to the left of the drift. We believe that’s an accurate estimation, based on the relative position of
the drifts.

Figure 5.2: Base BPMN model of a loan application process [10].

5.2.2 PLG2 Artificial Stream

The second artificial log was generated through the PLG2 tool described in Chapter 2. A random
process model was created with 21 activities and 12 gateways. Because of the size of the image,
such is located in Appendix C Figure C.1. This process will serve as an input for the Event Stream
Generator 2.2 to create an artificial event stream that will send to a local port. An evolution of
this process model was generated to create an artificial drift. Such evolution contains 25 activities
and 14 gateways. This introduction of new activities and decision points should be identified by
the framework as a drift. At a certain point in time, within the stream generator parameters the
new model will be selected. The tool will then send events from the new process model into the

1Base model and event logs available at Apromore ProDrift Logs Repository
2More information about Disco at https://fluxicon.com/disco/
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local port. Depending on the amount of events set to be sent per second, the drift may take a
bit of time to be detected. Such parameter, as well as the number of parallel processes instances
running will be defined in the experiment results.

5.3 Real-World Dataset

5.3.1 BPI Challenge 2015

A useful real-life dataset used thoroughly in the literature ([8], [13], [15]) is the ”Business Process
Intelligence Challenge 2015” (BPIC2015)3. The data was provided by five Dutch municipalities
containing all building permit applications over a period of approximately four years. It is a
compilation of five log files, each one with a different number of cases c and events e.

Though the process should be relatively similar, each municipality performs variations to it.
This generates a perfect scenario for concept drift detection, where the algorithms should identify
a drift once they start processing the events from a new municipality, with a total of four drifts.
Figures C.6 and C.5 show the process maps of the first two municipalities, where there is a clear
distinction between both process flow. Therefore, the five logs must be merged to generate a
single event stream for online concept drift detection. Such will be used in experiments shown on
Chapter 6. Following are the details of each log:

1. Log 1: 1199 cases, 52217 events.

2. Log 2: 832 cases, 44354 events.

3. Log 3: 1409 cases, 59681 events.

4. Log 4: 1053 cases, 47293 events.

5. Log 5: 1156 cases, 59083 events.

5.3.2 BPI Challenge 2020

Another real-life dataset available for research is related to the ”Business Process Intelligence
Challenge 2020” (BPIC2020)4. The challenge is related to the reimbursement process at TU/e
from the staff travels to conferences, customers, and project meetings. Such are are distinguished
by the type of trip: domestic or international.

The data contains information from 2017 and 2018. In 2017, the process was implemented as
a pilot over only two departments at TU/e. By 2018 the process was extended to all departments
from TU/e. Furthermore, the process changed drastically from one year to the other. Some
activities were not required anymore, while others were introduced. This change from the pilot
process to the new one is a ”gold-standard” drift which the algorithm should be able to detect.
Though the amount of cases also highly increased during this transition, our model is not designed
to identify this type of drift.

The event log contains 6,449 cases with a total of 72,151 events. Each event has further data
stored related to the process (creation date, created by, effective date, organization id, etc.). This
are not relevant for the purpose of this thesis, but may be useful for other concept drift detection
approaches focused on the data perspective. Figures C.3 and C.4 from Appendix C shows process
maps before and after the drift was present. Though the set of activities are not clearly seen, the
main focus of these images is identifying a clear process change at a certain point in time. The
process maps show a distinctive difference on the sequence of activities which each international
declaration may follow.

3More information related to the BPIC2015, the process, and event logs can be found at https://www.win.tue.
nl/bpi/doku.php?id=2015:challenge

4More information related to the BPIC2020, the process, and event logs can be found at https://

icpmconference.org/2020/bpi-challenge/
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5.3.3 Hospital & BPI Challenge 2012

The last real-world dataset used during the experimental phase of this thesis was the ’Hospital &
BPI Challenge 2012’. It is composed of two distinct datasets and merged to create artificial drifts
from real data.

The ’Hospital’ dataset is composed of 1,143 cases and 150,291 events. The first event arrival
date is on 03/January/2005 and goes until 20/March/2008. This dataset is shared by the ”Business
Process Intelligence Challenge 2011”5 edition. Log was provided by a Dutch Academic Hospital
and relates to activities that a patient from the Gynaecology department would go through.
In some scenarios, the patients may go through different phases (overlapping), therefore some
attributes are repeated. On the other hand, the ”Business Process Intelligence Challenge 2012”6

contains 13,807 cases and 262,00 events. These go from 01/October/2011 to 14/March/2012. The
log represents an application process for a personal loan or overdraft within a global financial
organization, provided by a Dutch Financial Institute. Furthermore, the challenge description
states that the event log is a merger of three intertwined sub-processes itself. This would make a
case for more intra-drifts, but because we don’t have details of points in time where these merges
happened, or if they are present since the beginning, we cannot include them over the ”known-
drifts”. The dates of the cases and events from the BPI Challenge 2012 log were adjusted to be
included within the time-frame of the 2011 dataset. With the merge of both logs, two artificial
drifts were created. The first drift appears on the 01/October/2005, after around 16,000 events
seen; the second appears on the 14/March/2006, after around 275,000 events seen. These two are
a perfect scenario for drift detection, as both processes are distinct and should represent changes
in the data distribution.

5.4 Hardware Details

Following are the details of the system used for performing the experiments on the context of this
thesis project:

• CPU → Intel(R) Core(TM) i7-8750H @2.20GHz 2.21 GHz

• RAM → 16GB (64bit)

• OS → Windows 10

• Python → version 3.8 (64bit)

5More information related to the BPIC2011, the process, and event logs can be found at https://www.win.tue.
nl/bpi/doku.php?id=2011:challenge

6More information related to the BPIC2012, the process, and event logs can be found at https://www.win.tue.
nl/bpi/doku.php?id=2012:challenge
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Chapter 6

Results

This chapter illustrates the results of the experiments performed to address the research questions
mentioned in 3, using the framework presented in Chapter 4. The experiments will focus firstly
on discovering the best set of parameters to use in Section 6.1. Then, a comparison will be shown
against other state-of-the-art techniques from a quality of detection perspective in Section 6.2.
After, a further analysis will be done now focusing on the speed of detection (mean delay) in
Section 6.3. A final contrast regarding the running time of the algorithms will be demonstrated
in Section 6.4. Another experiment was performed to show the effectiveness of the algorithm in a
completely online scenario in Section 6.5. Lastly, Section 6.6 will analyze the results of the drifts
characterization provided by the proposed framework.

6.1 What are the best parameter settings for the proposed
framework?

In Chapter 4 several user and non-user defined attributes were covered, which are critical on
defining the structure of the framework and how it will work. The two main parameters which
will affect the drift detection process are maxWindowSize and PruningSteps. These two are com-
ponents from the reference method StrProM CDD, covered in Subsection 2.3.4. They determine
both the maximum amount of trees that the window of observation can hold and the size of the
trees which will be generated from the event stream respectively. One could set them with the
values the authors from the reference algorithm [8], or perform some data exploration tasks to find
the best values for your specific dataset. The following experiments therefore attempt to explore
the dataset and suggest the best values for both artificial and real-world datasets based on an
experimental evaluation.

6.1.1 Which would be a good window size for storing Prefix-Trees?

The parameter maxWindowSize restricts how many pruning steps and trees should be done before
the concept drift detection procedure starts. If a small number is defined, concept drift detection
will be triggered very frequently over a small number of sub-populations, while if the number is
very big, the drift detection will be delayed until several pruning steps have happened and bigger
number of sub-populations are stored inside the window (W ). This also means that if the number
is small, drifts which take longer to be represented in the stream will not be discovered. On the
other hand, if the window is too big, smaller drifts will probably be missed. The PruningStep used
for this experiment was of 500 events based on its performance during the development phase.

Figure 6.1 shows a comparison of the experiments done to detect the best size for maxWin-
dowSize. For each of the event logs, the framework attempted to discover the 9 drifts artificially
set every 10% of the log (∼12,000 events per drift). It is clear that the framework performed better
depending on the type of nested pattern. It appears that the framework has trouble identifying
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Figure 6.1: F1-score for the different maxWindowSize sizes over the nested pattern logs from [10].

those drifts where the change to the process is focused creating loops over existing activities. Most
probably this is related to the structure of the trees, because the loops are represented as a branch
which repeats its node sequence several times. Therefore, when comparing it against other trees,
these nodes are unique unless the same amount of loops for the same sequence of events exist on
another tree. Nevertheless, it performed seemingly well with the other patterns, which focused on
introducing new activities or changing the sequence by adding parallelization or choices first.

Regarding the size of the window, it seems that the best performing size for all the event logs
was 12 Prefix-Trees. One would think that because the trees are storing more data (information
regarding 12,000 events), it is the best fit to identify drifts that are within 12,000 events each.
Surprisingly, this size is able to identify almost all drift in most of the logs, while preserving a
small amount of false positives. Smaller window sizes were not able to identify the 9 drifts, while
also detecting a high amount of false positives. We believe that even if the several sub-populations
of smaller sizes are combined to generate an aggregated tree, this aggregation causes the structure
of the trees from both W0 and W1 be relatively similar. Thus, the distance metric is not affected
greatly by the topology of the tree and the determining factor would be the nodal attributes. With
smaller window sizes the frequency of the activities will be equally small. Therefore, the nodal
attributes become less relevant in the process of calculating the distance between two trees. On
the other hand, a bigger window of 16 trees shows how the performance starts to degrade, by not
being able to identify most of the drifts. As the window can now cover two different drifts within
the same observation period, the framework is not able to detect both of them accurately. This
gives more support to selecting 12 Prefix-Trees as the best maxWindowSize to proceed for these
set of logs.
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Though 12 Prefix-Trees seems to be the best size with respect to the F1-score, this was not the
same result when looking at the delay for detecting such drifts. Figure 6.2 shows a comparison of
the mean delay taken by each maxWindowSize on identifying the drifts over the different nested
pattern logs. Though it seems most of the algorithms perform equally in terms of mean delay over
the logs, the highest values are seen with a higher number of prefix-trees in the window. This
was expected, as literature [10] has shown that as the window size increases, some of the drifts
are missed or require a longer period to be identified. Our hypothesis is that as more events are
required to be seen to fill W and perform the drift detection procedure, the drifts which happened
in the middle of this window require more events to be identified. One important finding is that the
type of drifts does not seem to produce a high impact over the delay over which they are identified.
We cannot see a clear pattern in the graph which suggests that the framework performs better
over certain types of drifts than others, with respect to the mean delay. There is though an evident
trade-off between the reliability of the framework and the time it takes to identify the drifts. It
will be important to look at competitors and identify if they show a similar behavior with these
event logs or if it is caused specifically by the data structure and technique used by this framework.

Figure 6.2: Mean delay for the different maxWindowSize sizes over the nested pattern logs from
[10].

Besides evaluating such parameters over a synthetic log, we wanted verify if this value would
also work over real-world datasets. To achieve this, the BPIC2015 dataset from 5.3.1 was used.
For each of the six different maxwindowSize, the five logs, from each dutch district, were run with
the variation of the window W sizes to analyze performance over the F1 score, recall, and the
mean delay of detection. Window size of 4 trees was discarded from the analysis, as the results
showed a very poor performance against the other sizes. This caused by the inability of detecting
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the known-drifts, while also detecting several false positives. The size of the trees selected was
1,000 events (PruningSteps). Because the logs have a higher inter-drift distance, we believe this
was a better parameter to run than the one for the artificial dataset (500 events). Figure 6.3
shows the result of such experiment. The best performing parameter in terms of F1 score and
recall was 10 prefix-trees for the maximum window size. We decided to include the recall to show
the performance in terms of the known-drift detection, as the F1 score was strongly affected by the
high amount of false positives detected. As the size of the window increased, so did the amount
of false positives detected by the framework. The mean delay mimics that behavior, though a
decrease is observed from 12 trees to 14.

Figure 6.3: F1 score, recall, and mean delay for different maxWindowSize values with the BPIC
2015 dataset.

maxWindowSize (trees) Time of execution (minutes)
6 4.158
8 6.64
10 9.4
12 13.88
14 14.89
16 14.41

Table 6.1: Times of execution in minutes for BPI 2015 event log using proposed framework.

Furthermore, there is a significant difference on the time of execution depending on the sizes
of the window. Table 6.2 shows the execution times in minutes for the different maxWindowSize
evaluated over the BPI 2015 event log. There is an evident increase in time as the window increases.
We would then suggest to use a size which performs well in terms of quality of detection, but does
not increase significantly the time of execution. The best result which fulfills these conditions
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would be 10 prefix-trees. We suggest the use of such value as the default for real-world datasets,
as it shows a trade-off in performance over quality of detection and speed.

6.1.2 What should be the Prefix-Trees size?

The second parameter of importance is the amount of events each tree is allowed to hold (Prun-
ingSteps). This has the same effect as the maxWindowSize. The smaller/bigger the trees, the
more/less susceptible it can become to different drifts. It is important to note that the framework
is dealing with parallel running cases c. This means that the trees should be big enough so they can
store the most amount of complete traces as possible, without disrupting the drift detection pro-
cedure. Not only that, but the size of the trees will also affect the frequency of the TreePruneSteps
and PruningSteps. This will impact the topology of the tree, i.e. the way the log is represented
within the data structure, as well as the importance of each trace after applying the decaying
mechanism. Remember we want to capture as much behavior as possible in order for the trees to
be an accurate representation of the window W of observation, and therefore, of the sub-log seen
within that time period. In order to answer this question, we performed tests over the same set of
logs, but now adjusting the size of PruningSteps attribute. Considering the inter-drift distance of
12,000 events, the sizes chosen were 200, 500, 800, and 1000 events per tree. We believe these are
relevant sizes which are able to capture a significant amount of complete cases c. Furthermore, the
reference algorithm used [1] used 800 event within their experimental evaluation. Thus, we want
to confirm if such value would be the best fit for this framework over artificial datasets. For each
of these sizes, we used the same value for the maximum size of the window based on the previous
experiment for artificial datasets: 12 Prefix-Trees for maxWindowSize.

Figure 6.4: F1-score for the different PruningSteps sizes over the nested pattern logs from [10].

Figure 6.4 shows the results of such experiment. It shows the comparison of the F1-score from
the three different tree sizes over each event log. Except for one of the logs, the results seem to
behave similarly. It is clear that the prefix-trees with 500 events outperform those with smaller
or bigger sizes. We believe this is correlated to the statement mentioned earlier, where a bigger
size of the tree is not able to identify intra-tree drifts, while smaller sizes are very susceptible to
false positives and do not take advantage of the topology when computing the distance metric. In

Log-Based Concept Drift Detection over Event Streams 47



CHAPTER 6. RESULTS

fact, we see that trees of 200 events identify more false positives than known drifts, while trees
of 1000 events are not able to identify even half of the known drifts in most cases. We believe
though that the size of the cases c has a high weight over how big or small the trees should be. If
a trace is very short (less than 10 events), a big tree will capture capture the process both before
and after the drift. Therefore, some prior knowledge, though it is not required, can be considered
when defining an accurate size for the trees. We would suggest regardless to use a PruningSteps
of 500 events if there is no certainty on the size of the traces and their impact over the drifts over
artificial datasets.

Similarly to the maxWindowSize, an evaluation over real-world dataset was performed to de-
termine if such choice would also work for this type of dataset. Now because of the bigger size of
the log and inter-drift distance, 200 events were excluded from the experiment and 2000 events
was added to analyze the results with bigger trees. Again, the BPIC2015 dataset from 5.3.1 was
chosen for the evaluation. Figure 6.5 shows the results of such experiment. We identify a similar
behavior than with the previous parameters and experiment. There is an incremental trend in
performance as the size of the trees increases, peaking at 1000 events per tree. Eventually, if a
bigger size is used the performance in terms of mean delay of detection starts to decrease. Again,
user has to analyze the trade-off between quality and speed of detection. From our perspective,
we believe the default value for the tree size for real-world datasets should be 1000 events, if no
data exploration tasks like these are performed. We believe these results prove that the selected
parameters, in the context of this framework, perform better than the ones used by the referenced
authors.

With these parameters clearly defined and proper values selected based on a data exploration
procedure, the floor is set to perform a comparative analysis against unsupervised-learning online
concept drift detection techniques. Same dataset used for the data exploration will be used in
further experiments.

Figure 6.5: F1 score, recall, and mean delay for different PrunigSteps values with the BPIC 2015
dataset.
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6.2 How does the proposed framework compare to compet-
itors from a quality of detection perspective?

As stated previously, there is no relevance on introducing a new framework if it will not be able
to perform, at least, to the level of the existing CDD techniques. To verify such statement, we
selected three techniques reviewed in the literature from Subsection 2.3.2: ProDrift [10], DOA
[13], and Robust drift detection [37].

ProDrift is a technique previously implemented as a plug-in within a well-known process mining
tool Apromore1. A command line tool called ProDrift 2.5 was downloaded with its corresponding
documentation for performing the experiments. As explained previously, this technique relies on
defining a set of features (called runs), which are extracted from the event stream and built into
a contingency matrix. Later, a Chi-squared test of independence is applied over such matrix
and depending on the amount of consecutive rejected tests, it will signal a drift. For these set
of experiments, the ”events” drift detection method will be used, together with ADWIN as the
adaptive window approach, sensitivity selected was medium, high and veryhigh, and the noise filter
used was 0.
DOA relies on a different approach. It first generates (or if provided as an input) a process
model using the Heuristics Miner [38] algorithm. While processing the event stream, it performs
conformance checking over each trace against the base process model. It will then apply a local
outlier factor (LOF) score over the non-conforming traces and create micro-clusters of models
with these. Eventually, these models are evaluated over the non-conforming traces and therefore,
signaling a drift whenever the traces are conforming with such. The tool was cloned from a github
repository2 and adjusted to perform the corresponding tests. All parameters were set as default.
Robust and Accurate drift detection [37] is an offline algorithm which works similarly to ProDrift.
It performs a statistical test over a contingency matrix storing the frequency of a set of features. In
contrast, the statistical test is a G-test of independence, similarly to [14], rather than a Chi-squared
test. The algorithm extracts the directly-follows relations from the log and builds a contingency
matrix with the corresponding data over a window of observation. This window size is fixed, and
requires a Windowsize÷ 2 number of consecutive rejected tests to signal a drift. The framework
will also process the log backwards to detect, as argued by the authors, those deletion of relations
that a forwards pass would not be able to. The implementation is available at their Github3

repository. The tool uses a set of packages from ProDrift to run. The default parameters were
used during all experiments, as well as a window size of 1000 events and 500 for the number of
rejected tests.
Our framework ”Prefix-Tree CDD”, for this experiment, will use the best performing parameters
for artificial datasets from previous tests: maxWindowSize of 12 prefix-trees and PruningSteps
of 500 events. F1-score and recall will be used to evaluate the performance of the algorithms in
terms of how well can they detect the 9 different drifts in each log.

Figure 6.6 shows the results of executing each of the four algorithms over the six different
nested pattern logs. Our framework outperforms the other three algorithms in all logs. ProDrift
and Robust drift detection were not able to identify the nine drifts within the logs, contrary to
what they state in their corresponding experimental evaluations. The algorithms, for an unknown
reason, detect drifts only up to around half of the log, while also detecting several false positives.
For ProDrift, the sensitivity adjustment made no significant change over the detected drifts. The
tool did detected nine drifts, but some of them were not the defined ones in the experimental
setup (false positives). Though in their paper they argued an F1-score of almost 1 in all scenarios,
we were unable of replicating such results. We believe that the ”event” configuration of the
tool does not work as expected. Tests showed that the ”run” configuration did processed the
complete log, though it signaled drifts after certain number of traces seen, which would not allow
a comparison analysis with our approach which uses number of events. DOA showed the exact

1More information about Apromore at https://apromore.org/
2DOA project available at Github repository
3Robust and Accurate Drift Detection project available at Github repository
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Figure 6.6: F1-score for the different techniques over the nested pattern logs from [10].

same results for each of the event logs (1500 conforming traces and 1500 non-conforming traces).
One would expect that the logs, though ingesting the drifts around the same locations, would
generate different models which affect the conformance checking of the event stream. Throwing
the same results for six distinct logs do not give meaningful insights on how the tool is able
to process different drifts. It appears that it depends completely on the location of such drifts
rather than the types of drifts. Robust drift detection was able to detect some of the drifts, but
struggled with all the different patterns similarly to ProDrift. We believe that the directly-follows,
though it is a strong component to analyze the log structure, struggles identifying drifts related
to changes in the sequence of activities (parallelization or choice) and also the introduction of
loops. Furthermore, it appears that the backwards processing does not assist in identifying drifts
which the forwards did not. In many cases the two passes identified the same exact drifts (true
positives and false positives). Our framework, on the contrary, showed different results based on
the pattern. It showed very promising results over all logs, with an F1-score equal to or above 0.8.
We believe the reason behind the lower performance over the ’OIR’ log is associated with the type
of nested pattern that was ingested, which first adjusts the sequence of activities by creating loops.
Regardless, we see a clear dominance in terms of drift detection by Prefix-Tree CDD compared to
the other three nobel algorithms.

To give a complete analysis over different drift scenarios, we performed the same experiment
over real-world datasets. The three datasets described in 5.3 were run over the proposed frame-
work, ProDrift, Robust drift detection, and DOA. Figure 6.3 shows the results for the BPI Chal-
lenge 2015 dataset. The propsed framework best performed with 10 prefix-trees for the maxWin-
dowSize and 1000 events for the PruningSteps based on the results from the previous analysis.
ProDrift was not able to identify the four drifts, it identified one false positive at 19,999 events. Be-
sides an initial window size of 10,000 events (as requested by the tool in order to run), all other para-
meters were set as default, with the ”event” configuration and noise filter as 0. DOA on the other
hand was not able to process the log completely. At around 2900 cases, while performing the con-
formance checking, the script failed with the error message ”list index out of range” at the following
script line: global colors[len(global colors)− 1] = palette[found index]. Finally, Robust drift de-
tection threw a memory exception during the execution after around 6 hours of total run time.
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Exception encountered was Exceptioninthread”Thread − 4”java.lang.OutOfMemoryError :
Javaheapspace. Even after assigning the maximum amount of heap memory (16GB), it was not
able to process the log. The command used to execute the script was: java − Xmx16G −
cp ”.; ./lib/ ∗ ” Test.Main apply ../challenge2015 complete.xes 1000 2000. Therefore, no results
were given that allow further interpretation against other nobel techniques.

The BPI Challenge 2020 dataset was also utilized to perform drift detection. Figure 6.7 shows
the results of this experiment using the proposed framework. Different results are shown compared
to those of the BPI Challenge 2015. Here, the best performing size for the window in terms of the
F1 score was of 10 prefix-trees as the maxWindowSize. As with the BPI 2015 dataset, a window
size of 10 trees appears to detect the known-drift, while also not a high amount of false positives.
Though sizes 8 and 12 were also able to detect the known-drift, each had a higher amount of
false positives. Furthermore, size 6 and 8 were not able to identify the drift. We believe that for
size 6, the smaller size of the window did not allow it to store a high amount of events between
December 2017 and January 2018 to create trees which were significantly different. For the size
14, it appears that the high amount of events in a single window made a generalization of the
process when building the aggregated trees for comparison of the distance metric.

Figure 6.7: F1 score and mean delay for different maxWindowSize values with the BPIC 2020
dataset.

With respect to ProDrift, the tool was unable to run the script with the provided log. It
threw a NullPointerException error from JAVA while trying to initialize the stream with the
driftdetector.ControlF lowDriftDetector EventStream. < init > function. Again, with excep-
tion of the initial window size, all parameters used were default ones. DOA once again was unable
to process the complete event log, throwing the same error message as in the previous experiment,
now at around 6,400 cases during the conformance checking. Robust drift detection was now not
able to start processing the log. An exception thrown by the use of one of the ProDrift packages
while attempting to convert the log into a stream cancelled the execution. Example of the error
encountered is shown in Listing 6.2. The results seen in Figure 6.7 are based on the documentation
provided by the authors of [37] within experimental results. They argue detecting two drifts, one
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at 12,603 events and the other at 12,426 events. Their justification for the second drift (Christ-
mas holidays) would not be accurate against the description of the challenge. Furthermore, while
analyzing the event log with Disco it was found that the drift should occur around 11,700 events,
therefore signaling that this second drift should be located at the beginning of 2018 and not in
2017, as presented in their paper. Though they actually detect the single drift and just one false
positive, it is important to remember that this is an offline algorithm. Therefore, the mean delay
of detection corresponds to the size of the complete event log. With that in mind, we would still
argue that our online detection algorithm would outperform it in terms of delay on detection,
while achieving the same recall.

1 java -Xmx16G -cp ".;.\ lib\*" Test.Main apply C:\\ Users\\a0081 \\ Documents \\BDMA\\

Thesis \\ dataset \\ BPI_Challenge_2020 \\ InternationalDeclarations.xes 1000 2000

2 Number of available CPU cores: 12

3 ...\\ InternationalDeclarations.xes

4 1000, ws: 2000

5 Exception in thread "main" java.lang.NullPointerException

6 at org.apromore.prodrift.util.XLogManager.getEventType(XLogManager.java

:687)

7 at org.apromore.prodrift.util.XLogManager.isCompleteEvent(XLogManager.java

:805)

8 at org.apromore.prodrift.util.LogStreamer.logStreamer(LogStreamer.java :53)

9 at Test.Main.main(Main.java :119)

Listing 6.1: Exception thrown by Robust drift detection when attempting to process the
InternationalDeclarations.xes file from the BPI Challenge 2020

Finally, the merged log from the Hospital and BPI Challenge 2012 datasets was used for an
experiment. The results of running such over the proposed framework are shown in Figure 6.8.
Here, all max window sizes except 6 and 16 trees were able to identify the two known-drifts. Sizes 8,
10, and 12 show a slightly higher performance due to the lower amount of false positives identified.
Though it is important to note that the ”known-drifts” are those explained in Subsection 5.3.3,
but the logs may contain several other drifts that are not previously known. A more in-depth
analysis would needed to be done in order to confirm if these drifts found should be considered
false positives, or if they are in fact concept drifts in the process. This task is out of the scope of
this master thesis. Regarding ProDrift, the tool was able to identify only one of the two drifts, at
21,075 events. This resulted in a higher F1 score due to it not signaling any other false positives.
Though this result seems better, we believe the probability of more drifts within the merged logs
is quite high. It would seem very odd that a process remains constant for three years. Knowing
that ProDrift couldn’t identify the second known-drift, which should be very clear looking at
the distribution of the runs or events, we would argue that the proposed framework performs
better in terms of drift detection quality. DOA once again was unable to complete its execution
with the same exception thrown at around 6000 traces. Robust drift detection again threw a
Exception in thread ”Thread−4” java.lang.OutOfMemoryError : Java heap space exception
after 4 hours of running time.

With these results, one could argue that the proposed framework outperforms ProDrift, DOA,
and Robust drift detection in terms of quality of detection, in both artificial as well as in real-world
datasets. It would be meaningful to perform further analysis on the real-world logs to identify
other existing drifts outside of the already known. This would encourage and improve the results
shown by the proposed framework.
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Figure 6.8: F1 score, recall, and mean delay for different maxWindowSize values with the Hospital
& BPIC 2012 merged dataset.

6.3 How fast can the proposed framework detect drifts com-
pared to other techniques?

With respect to the mean delay of detection the results are different. Figure 6.6 shows the results of
the mean delay test performed between Prefix-Tree CDD and ProDrift over the six different event
logs. It appears that ProDrift is able to detect the drifts faster in all logs. What is important
to note is that the mean delay is calculated only over those drifts that were identified by the
algorithms. This means that for ProDrift, the mean delay is calculated only over four or five
drifts per log, as explained earlier, as seen with the F1-score results. This gives it an advantage
over our framework because the average delay is compute over less drifts than with the proposed
framework. With this in mind, we would still argue that Prefix-Tree CDD performs well in terms
of mean delay, considering that the maxWindowSize used for this experiment was 12 prefix-trees.
The PruningSteps size was also maintained at 500 events. We were not able to include DOA,
nor Robust drift detection in this experiment. DOA does not output any metrics related to the
delay of detection, though it requires to build a process model out of the whole event log, which
could be considered as a complete log delay. Robust drift detection is an offline algorithm, i.e.,
the mean delay is defined as the complete event log. Therefore, any drifts identified would have
the maximum mean delay of detection.

Over the real-world dataset, interesting findings regarding the mean delay of detection arose.
BPI Challenge 2015 Figure 6.3 showed very similar results to the artificial datasets, where as the
size of the maxWindowSize increase, so did the mean delay of detection. Same behavior could be
seen in the BPI Challenge 2020 6.7, where the best performing sizes showed the same amount of
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delay. Surprisingly this was not the case for the Hospital & BPI Challenge 2012 dataset 6.8. Here,
the best performing window size was 10 trees, which showed less delay than 8 and 12 trees, while
detecting the two known-drifts and a similar amount of false positives. The only comparison that
could be done with competitors was with ProDrift. The algorithm showed a very high delay for the
single drift it was able to detect. This is another point which encourages the use of the proposed
framework over competitors. Neither DOA nor Robust drift detection were able to process the
complete log, with the exceptions explained in previous experiments thrown after several hours of
execution.

6.4 Is the proposed framework more efficient in time of ex-
ecution than other techniques?

The next spectrum to evaluate the performance of the framework against competitors was over
the time of execution. Figure 6.9 shows the execution time in seconds of each technique over the
six different artificial event logs. As expected, DOA has the highest times in all six logs. This
probably related to the time invested in generating the base model by analyzing the whole log, and
then applying a conformance check over each trace to identify the clusters and drifts. ProDrift and
Robust drift detection outperform our proposed framework in time of execution over the artificial
datasets. What’s important to note is that our framework appears to take considerable longer times
over logs where more drifts (regardless if true positives or false positives) are expected. This means
that the part of the framework which appears to be more costly is the drift detection procedure,
rather than the storage of the information on the prefix-trees. This supports our hypothesis of
selecting the prefix-trees as a data storage because of its good performance in terms of time of
execution. We believe therefore that our algorithm is able to compete with, and even outperform,
most state-of-the-art techniques which rely similarly in extracting features and building some type
of data structure. Furthermore, it will probably outperform those algorithms which require the
discovery of a process model in order to perform the drift detection.

Figure 6.9: Execution time in seconds for the different techniques over the nested pattern logs
from [10].

In terms of memory requirements neither ProDrift, DOA, or Robust drift detection provide
information of the amount of memory used by such tools, this both in their corresponding papers
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as during the experiments performed. In fact, none of the techniques reviewed in Section 2.3
documented the amount of memory which their algorithms required to execute. Prefix-Tree CDD
used around 387MB of memory over each of the artificial logs used. We believe though the number
may be high, most concept drift detection techniques which generate data structures would require
a similar amount. Furthermore, those techniques like DOA, which discover a process model and
perform continues evaluations of the stream over such model, would require even more memory
than the proposed framework.

With respect to the real-world datasets, due to the poor performance from the competitors in
executing the code, a comparison regarding execution time and memory was not available. The
proposed algorithm took around 11-20 seconds, 5-20 minutes, and 5-20 minutes, to execute for
BPI Challenge 2020, 2015, and Hospital & BPI Challenge 2012 respectively, depending on the size
of the maxWindowSize selected.

maxWindowSize (trees) BPIC 2015 BPIC 2011+2012 BPIC 2020
6 4.158 4.65 0.183
8 6.64 6.41 0.216
10 9.4 8.63 0.233
12 13.88 11.43 0.225
14 14.89 13.06 0.283
16 14.41 19.35 0.25
ProDrift ∼60

Table 6.2: Times of execution in minutes for BPI 2015, 2020, and 2011+2012 event logs using
proposed framework.

In contrast, ProDrift took over 1 hour to process the BPI Challenge 2015 and the Hospital &
BPI Challenge 2012 datasets each. DOA took more than 2 hours to process these same datasets
before the script failed. Robust drift detection failed to process any of the logs after several hours
of execution before signaling an error. Regarding memory no comparison could be done with the
competitors. The proposed framework required ∼519MB of memory for the BPI Challenge 2020
logs. Due to the low performance when using the memory profiler, we excluded the experiment for
the other two real-world datasets. We would still argue that due to the time of execution for both
ProDrift and DOA, the would probably require more memory in order to execute. Robust drift
detection threw errors in two different logs related to heap space assigned for the JAVA machine to
run. This signals a high requirement of memory consumption for the algorithm to work, compare
to the proposed framework.

6.5 Can the proposed framework work in a completely on-
line scenario?

Another relevant experiment, in our opinion, is the performance of such algorithm over an actual
completely online event stream. PLG2, as explained in Chapter 2 provides an adequate environ-
ment to perform such test. While executing the event stream from the process model shown in
C.1, at a certain point in time the stream will be adjusted to start emitting events the evolution
process model C.2. The algorithm should be able to capture a drift from this change in the process
events. There is no actual way to know exactly when is the drift happening, as the stream does
not provide such information. What it is known is the rate at which the tool is sending events
to the port. In this case, such rate is 4500 events every 30 seconds. The idea is that around
1.5 - 2 minutes, the stream will be adjusted and hopefully a concept drift will be detected by the
framework. Figure 2.3 shows the stream setup used at the start of this experiment.
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Listing B shows the output of the proposed framework over the stream of events generated by
PLG2.

1 ADWIN change detected at: 16000 events

2 Reference window size: 2000 events

3 Test window size: 8000 events

4 Tree distance metric: 573.2507667562994

Listing 6.2: Prefix-Tree CDD results for PLG2 experiment

It appears that the framework took a couple of seconds after the process change was done to
detect it. Nevertheless, it was able to detect successfully the drift in a complete online setup by
processing events received through a local port with a telnet connection. Such experiment is not
replicable over the competitors, as many code adjustments would have to be done in order for
them to process events from a telnet connection. Still, we think this is a strong point to support
the use of this algorithm further in completely online scenarios.

6.6 What further information of the drifts can we obtain
from the proposed framework?

As explained in Chapter 4, one component of the framework is intended to characterize the drifts
detected. Basically, focusing on understanding what caused a drift in the underline process. To
prove the usefulness of the tool in that context, the BPI Challenge 2020 dataset described in Section
5.3 was used for this experiment. The parameters used for this experiment were 10 prefix-trees
and 1000 events for maxWindowSize and PruningSteps respectively.

The total execution time for processing the entire event log was 9.92 seconds. It required
519MB of memory for the whole script to run. Interestingly, the execution time and memory
required to run the framework did not change regardless of the sizes of the window or the trees
selected. It appears that the main factor to determine the time and memory requirements is
focused solely on the size of the stream. The framework was able to detect the gold-standard
drift. In total, three drifts were detected.

6.6.1 Critical Activities & Relations

The algorithm prints the most ”critical activities and relations” in regards to each drift. This
allows to get more details on which activities and relations had a higher impact over the drift
identified. For the gold standard drift, the most critical activities and relations were (in order of
importance, being 1 the most important):

1. Activity: Permit APPROVED by ADMINISTRATION

2. Relation: Permit SUBMITTED by EMPLOYEE → Permit APPROVED by ADMINIS-
TRATION

3. Activity: Declaration SUBMITTED by EMPLOYEE

4. Relation: End trip → Declaration SUBMITTED by EMPLOYEE

5. Activity: Declaration FINAL APPROVED by SUPERVISOR

6. Relation: Declaration SUBMITTED by EMPLOYEE → Declaration FINAL APPROVED
by SUPERVISOR

7. Activity: Request Payment

8. Relation: Declaration FINAL APPROVED by SUPERVISOR → Request Payment

9. Activity: Request Payment
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10. Relation: Declaration FINAL APPROVED by SUPERVISOR → Request Payment

11. Activity: Declaration APPROVED by PRE APPROVER

12. Relation: Declaration SUBMITTED by EMPLOYEE →
Declaration APPROVED by PRE APPROVER

Figure C.3 and C.4 in Appendix C shows an enlarged version of the process map before and
after the drift discovered by the framework. These critical activities and relations make sense when
looking more in detail on how the process changed after 2018. The activity ”Permit APPROVED
by ADMINISTRATION” was not being performed during the pilot. It was introduced after 2018 as
a mandatory activity after the submission of the permit by the employee. This leads to the second
most relevant node or relation: Permit SUBMITTED by EMPLOYEE → Permit APPROVED
by ADMINISTRATION. Again, because such activity didn’t exist before, this relation would
also be newly seen in the business process. The third activity with high weight over the drift is
”Declaration SUBMITTED by EMPLOYEE”. This activity by itself is not very relevant in terms
of the drift because it has existed since before and after the pilot. The reason why it is listed as
the third most relevant is because there was a significant amount of cases c which had the trace
”Start trip → End trip → Declaration SUBMITTED by EMPLOYEE”. For simplicity purposes
the framework will just print the last activity of the trace, but in reality the complete trace was
seen several times in W1 and none in W0, which means that there are several declarations after
the drift which start with the trip and once the trip ends, it is immediately submitted by the
employee. During the pilot there were no traces which followed such execution sequence. Similar
scenarios are present with the other critical activities and relations.

For the remaining two drifts identified, further analysis of the results has to be done to de-
termine if any of them can be considered real drifts or not. For the third drift identified for
example, the sequence of ”Declaration APPROVED by ADMINISTRATION → Declaration FI-
NAL APPROVED by SUPERVISOR → Request Payment” was seen several times W1, but not
at all in W0. This means that during the observation period of W1 there were several declara-
tions that probably because of being incomplete, while processing them in parallel, followed that
sequence of activities. Further investigation would be needed to understand if this hypothesis is
correct or if there are actual declarations which follow this pattern. If the declaration approval
by the administration is done in batches for example and takes a high amount of time between
the submission from the employee and the approval to happen, sub-windows may consider them
as new traces. Therefore, causing this drift when in reality the process has not changed, but the
time invested between activities may have. This could be an area of opportunity for future work.

6.6.2 Drift Logs

The second part of the characterization exercise is to provide the logs for each drift, so that
further drift analysis can be done by the users. As explained in Chapter4, the framework requires
a configuration parameter to be set to perform this task. Such was done with the BPI Challenge
2020 dataset and generated 10 logs in total, two for each drift detected. A set of these logs were
used to generate the process maps C.3 and C.4 with Disco. This is an example of the process
discovery tasks that can be performed with the sub-logs provided, which allows a more visual
analysis over the process before and after the drift.
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Chapter 7

Conclusions

This master thesis introduced a new framework for unsupervised-learning onlin concept drift
detection over event streams. Before describing the problem and methodology, an overview of
how process mining is used on the field of stream processing was given. In particular, after
presenting what concept drift detection is and the two approaches for stream learning, an in-
depth description of current supervised and unsupervised learning techniques for concept drift
detection was shown. These techniques display a list of limitations based on the data structure
utilized, features extracted from the event log, and drift detection technique performed. Here,
we introduced the main component of the framework, referring to the prefix-tree data structure
introduced in a process discovery technique paper [1]. More specifically, we showed how this data
structure can be used as within concept drift detection framework. First, we explained how an
event stream can be stored and represented by a set of prefix-trees. Then, by applying a PCA
technique over prefix-trees [2], we were able to convert our discrete information to continuous.
This would then be fed to a well-known concept drift detection technique [3], which focuses on
most up-to-date information and discards outdated items. The algorithm eventually signals a
drift once there is a significant deviation in the distribution of the continuous data. Furthermore,
the framework produces a set of drift characterizing components to give more context on what
caused a drift. It also allows the users to perform their own process analysis with the sub-logs
generated from the drifts identified. To demonstrate the relevance of the framework, we tested
it over a set of artificial and real-world event logs, as well as an online event stream generator
[21]. Results showed promising results on the use of such framework for both artificial and real-
world scenarios over multivariate online event streams. Based on an data exploration exercise,
the best parameters for identifying known-drifts in these set of logs were defined. The framework
was able to detect all known-drifts for each of the datasets chosen. Moreover, we performed a
comparison with three other nobel concept drift detection techniques applied over event streams.
Analysis showed that the proposed framework outperforms the three approaches on artificial and
real-world datasets in terms of quality and delay of detection, as well as execution times and
memory requirements over real-world scenarios. Unfortunately, the competitors we were not able
to replicate the exact results described by the authors of each technique in their corresponding
papers. Nevertheless, the results obtained showed a clear support on the use of the proposed
framework over such tools. In addition, the tool was able to identify drifts in a complete online
scenario, while also providing detailed information about each of the drifts identified in one of the
real-world event logs. In conclusion, the results of this work can be considered sufficient to (i)
address the limitations presented by nobel concept drift detection techniques (ii) prove that the
proposed framework outperforms a set of these nobel technqiues and (iii) provide insights on what
is the cause behind the drifts detected in the process for real-world scenarios.
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7.1 Future Directions

This work has raised some interesting questions which can lead to future research. The prefix-tree
data structure is an specific type of graph, composed of a root node and unidirectional edges.
Though the framework stored such data structure under dictionaries, this could be extended to
graph databases, where graph algorithms could be potentially used as drift detection techniques.
Examples of such could be centrality algorithms, community detection, similarity algorithms or
path finding algorithms. Another important aspect would be to perform more comparative analysis
with other drift detection techniques. Unfortunately, the selected set were not able to run the real-
world datasets under reasonable memory and time constraints. A more in-depth comparison with
a bigger array of techniques and additional logs would provide stronger evidence on the use of the
framework. Finally, results shown over real-world scenarios were heavily affected by the amount of
false positives identified on the logs. Supplementary process mining tasks, like process discovery
and comparing, over the sub-logs of the identified drifts could aid on determining if such are in
fact non-existing drifts or could they be considered actual drifts.
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all M. Adams, Céline Robardet, Arno Siebes, and Jean-François Boulicaut, editors, Advances
in Intelligent Data Analysis VIII, pages 249–260, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. 13

[34] Sunanda Gamage and Upeka Premaratne. Detecting and adapting to concept drift in continu-
ally evolving stochastic processes. In Proceedings of the International Conference on Big Data
and Internet of Thing, BDIOT2017, page 109–114, New York, NY, USA, 2017. Association
for Computing Machinery. 13, 33

[35] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabŕıcio Enembreck, Bernhard
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Appendix A

Algorithms

Algorithm 3: StrProM CD Detector [8]

Input: S: event stream, W : adaptive window, εcut: cutting threshold
1 Initialize StrProM[T:indexed prefix-tree];
2 while T ← observeStream() do
3 if pruning step then
4 FrequencyList← collectTreeData(T );
5 pruneTree();
6 W ←W + FrequencyList;
7 if W.size > maxWindowSize then
8 w = W −W.first;
9 while W shrinks do

10 foreach W0W1 ←W do
11 if δ(W0,W1) > εcut then
12 W = W −W.first;
13 end

14 end
15 if size of W decreased significantly then
16 triggerCDAlarm();

17 end
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Algorithm 2: The StrProM Algorithm[1]

Input: S: event stream, λ ∈ [0, 1]: decay factor, p: pruning period, cmax: case
observation limit

1 Initialize the data structure Ttraces, Dcases;
2 Initialize frequency maps FA and FR;
3 while pruning period p do
4 for 0, . . . , p do
5 (c, a, t)← observe(S);
6 Update Ttraces with observed event;
7 if ∃c ∈ Dcases then
8 (n, t)← Dcases(c);
9 if ∃Ttraces(n.a) then

10 Ttraces(n.a)← Ttraces(n.a) + 1;
11 else
12 Ttraces(n.a)← 1;

13 Dcases(c)← (n.a, t);

14 else
15 if ∃Ttraces(a) then
16 Ttraces(a)← Ttraces(a) + 1;
17 else
18 Ttraces(a)← 1;

19 Dcases(c)← (a, t);

/* remove least recent cases from observation */ if Dcases reach size of
cmax then

20 delete oldest cases from observation;

/* after pruning period, collect data and prune tree */ forall
n.a, n.a.b ∈ Ttraces do

21 ( /* collect pairs of nodes and their children first */) ( /* consider

decay factor d here */) FA(b)← (1− λ)FA(b) + Ttraces(n.a.b);
22 FR(a, b)← (1− λ)FR(a, b) + Ttraces(n.a.b);

23 forall a ∈ Ttraces do
24 ( /* children of root are still missing */)

FA(a)← (1− λ)FA(a) + Ttraces(a);

/* create new tree for next period */ initialize Tnewtraces;
25 forall c ∈ Dcases do
26 ( /* update open case pointers */) (n.a, t)← Dcases(c);
27 Tnewtraces(a)← 0;
28 Dcases(c) = (a, t);

/* next period’s tree has height 1 */ Ttraces ← Tnewtraces;
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Algorithm 4: Method insertByEvent Part 1 (Handling of cases) from PrefixTree class

Input: e: event from the stream, T : prefix-tree, EndDict : end events dictionary, W :
adaptive window, cL: case list, Dcase: ordered case dictionary

1 caseID ← e[”case : concept : name”];
2 eventID ← e[”concept : name”];
3 eventT imestamp← e[”time : timestamp”];
4 if caseID not in cL then /* new case that has not been seen before */

5 currentNode← T.root;
6 c← Case(caseID, currentNode);
7 Dcase[caseID]← c;
8 if len(Dcase) > T.Cmax then /* queue of tracking cases is full */

9 Dcase.pop(last = True);
10 if eventID not in T.StartActFrequencies then /* not already stored as a start

activity */

11 T.StartActFrequencies[eventID] = 1;
12 if eventID not in currentNode.children then /* activity not a children */

13 n← TrieNode(eventID, currentNode);
14 currentNode.ch← n;

15 else
16 currentNode← currentNode.ch[eventID];
17 end

18 else
19 T.StartActFrequencies[eventID]+ = 1;
20 end

21 else if caseID not in Dcase then /* case seen before, but not tracked */

22 findNode← T.root.loogForNode(eventID);
23 if findNode = None then /* did not find a node with that activity */

24 currentNode← T.root;
25 else
26 currentNode← findNode;
27 end
28 c← Case(caseID, currentNode);
29 Dcase[caseID]← c;
30 if len(Dcase) > T.Cmax then /* queue of tracking cases is full */

31 Dcase.pop(last = True);
32 if eventID not in currentNode.children then /* activity not a children */

33 n← TrieNode(eventID, currentNode);
34 currentNode.ch← n;

35 else
36 currentNode← currentNode.ch[eventID];
37 currentNode.f+ = 1

38 end

39 else /* case is being tracked */

40 Dcase.move to end(caseID);
41 if eventID not in currentNode.children then /* activity not a children */

42 n← TrieNode(eventID, currentNode);
43 currentNode.ch← n;

44 else
45 currentNode← currentNode.ch[eventID];
46 currentNode.f+ = 1

47 end

48 end
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Algorithm 5: Method lookForNode from the TrieNode class

Input: eventID : activity to find, findNode: object where parent node will be stored
1 foreach event, node in node.children do
2 if eventID = event then /* the event is a children of this node */

3 findNode← node;
4 return findNode;

5 else /* recursively call the same function */

6 return node.lookForNode(eventID, findNode);
7 end

8 end

Algorithm 6: Method insertByEvent Part 2 (Ending Traces) from PrefixTree class

Input: currentNode: current node either created or existing, EndEventsDic: dictionary
storing each case, its end activity, and timestamp

1 T.treeNodes.append(current);
2 Dcase[caseID].node← currentNode;
3 pruningCounter+ = 1;
4 if eventID and eventTimestamp for this case in the EndEventsDic are the same then

/* this is the end event of the case */

5 Dcase[caseID].f l = False;
6 if eventID not in T.EndActFrequencies then /* the activity is not registered

as an end activity of the tree */

7 T.EndActFrequencies[eventID] = 1;
8 else /* increase frequency of existing */

9 T.EndActFrequencies[eventID]+ = 1;
10 end

11 traceCounter+ = 1;
12 currentNode← T.root;

Algorithm 7: Method insertByEvent Part 3 (Tree Prune Step) from PrefixTree class

Input: pruningCounter : number of events seen for this tree, FAold, FBold : global
dictionaries defined in StrProm which store frequencies of activities and relations

1 if pruningCounter % T.TreePruneSteps = 0 then /* tree pruning step achieved */

2 T.pruneTree();
3 FAold, FBold = T.decayTree(FAold, FBold);
4 T.resetFrequencies();

5 traceCounter+ = 1;
6 currentNode← T.root;

Algorithm 8: Method PruneTree from PrefixTree class

Input: n: start from root node of the tree to prune
1 foreach event, node in n.children do
2 currentNode = node;
3 current.pruneRoots(T );

4 end
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Algorithm 9: Method PruneRoots from TrieNode class

Input: n: node of the tree to prune, T : prefix-tree structure to prune
1 T.nodeFrequencies[n.branchId]+ = n.f ;
2 foreach event, node in n.children do
3 if node exists then /* there are children nodes */

4 T.RelationFrequencies[n.branchId, node.branchId]+ = node.f ;
5 node.pruneRoots(T );

6 end

Algorithm 10: Method DecayTree from PrefixTree class

Input: FAold, FBold : global dictionaries defined in StrProm which store frequencies of
activities and relations, T : prefix-tree structure to decay

1 FAnew = DecayingFunction Equation 2.3;
2 FBnew = DecayingFunction Equation 2.3;
3 foreach key, value in T.NodeFrequencies do
4 FAnew[key]+ = value;
5 end
6 foreach key, value in T.RelationFrequencies do
7 FBnew[key]+ = value;
8 end
9 return FAnew, FBnew;

Algorithm 11: Method ResetFrequencies from PrefixTree class

Input: T : prefix-tree structure to reset the frequencies
1 Initialize T.NodeFrequencies;
2 Initialize T.RelationFrequencies;
3 Initialize T.StartActFrequencies;
4 Initialize T.EndActFrequencies;
5 foreach n in T.TreeNodes do
6 n.f = 0;
7 end

Algorithm 12: Method insertByEvent Part 4 (Pruning Step) from PrefixTree class

Input: pruningCounter : number of events seen for this tree, FAold, FBold : global
dictionaries defined in StrProm which store frequencies of activities and relations,
T : prefix-tree structure to prune, Dcase: ordered dictionary of tracking cases

1 T.EventsSeen← pruningCounter;
2 T.NodeFrequencies← FAold.copy();
3 T.RelationFrequencies← FBold.copy();
4 Dcase = T.cleanCases(Dcase,W );
5 if Dcase empty then /* all cases are closed */

6 currentNode = T.root;
7 else /* active cases remaining */

8 lastEventSeen = T.F irstCaseElement(Dcase);
9 currentNode = T.root.ch[lastEventSeen];

10 end
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Algorithm 13: Method insertByEvent Part 5 (Prefix-Tree added to Window) from Pre-
fixTree class

Input: T : prefix-tree structure to store, W : adaptive window to store the prefix-tree
(continuation of Algorithm 12)

1 if len(W.PrefixTreeList = W.MaxWindowSize) then /* Max window size reached */

2 Delete last prefix-tree in W.PrefixTreeList ;
3 W.PrefixTreeList.append(T );
4 W.cddF lag = True;
5 Reset global variables;
6 T.reset();

Algorithm 14: Function to perform CDD.

Input: W : adaptive window to storing the prefix-trees
1 if W.cddFlag = True) then /* Change detection flag is active */

2 if len(W.prefixTreeList = W.WinSize) then /* Size of list reached maximum */

3 W.conceptDriftDetection();
4 W.WinSize = MIN(W.WinSize+ 1,W.maxWindowSize);
5 if len(W.prefixTreeList = W.WinSize) then /* No drift was detected */

6 Delete last prefix-tree in W.PrefixTreeList ;

Algorithm 15: Method conceptDriftDetection from Window class (Part 1)

Input: W : adaptive window to storing the prefix-trees
1 indexSlider = 1 while indexSlider ¡ len(W.prefixTreeList) do /* Through every

partition of W */

2 W0 ←W.prefixTreeList[START : indexSlider];
3 W1 ←W.prefixTreeList[indexSlider : END];
4 Window0,Window1 = W.buildContinMatrix(W0,W1);

5 end
6 treeDistance = prefixTreeDistances(Window0,Window1);
7 indexSlider = driftDetection(treeDistance,W, indexSlider);

Algorithm 16: Function driftDetectionADWIN

Input: W : adaptive window to storing the prefix-trees, a: ADWIN object, m: metric
value (distance between two trees), indexSlider : slider to adjust the
sub-population of W

1 a.add element(m);
2 if a.detected change() then /* ADWIN detected a concept drift */

3 Remove prefix-trees of W.prefixTreeList from sub-population W0;
4 W.WinSize = len(W.prefixTreeList) + 1;
5 indexSlider ← 1;
6 W.cddF lag ← True;

7 else /* active cases remaining */

8 indexSlider+ = 1;
9 W.cddF lag ← False;

10 end
11 return indexSlider;
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Algorithm 17: Method buildContinMatrix from Window class

Input: W0: list with set of prefix-trees from sub-population W0, W1: list with set of
prefix-trees from sub-population W1

1 W0PT,W1PT = PrefixTree();
2 W0TreeLists,W1TreeLists = W.subWindowTree();
3 foreach tree in W0 do /* For each tree in the W0 */

4 W0TreeLists.winNodeFreq.append(tree.nodeFrequencies);
5 W0TreeLists.winRelFreq.append(tree.relationFrequencies);

6 end
7 foreach tree in W1 do /* For each tree in the W1 */

8 W1TreeLists.winNodeFreq.append(tree.nodeFrequencies);
9 W1TreeLists.winRelFreq.append(tree.relationFrequencies);

10 end
11 W0PT.nodeFrequencies = W0TreeLists.Freq.mean();
12 W0PT.relationFrequencies = W0TreeLists.winRelFreq.mean();
13 W1PT.nodeFrequencies = W1TreeLists.winNodeFreq.mean();
14 W1PT.relationFrequencies = W1TreeLists.winRelFreq.mean();
15 Window0 ←W0PT.nodeFrequencies ∪W0PT.relationFrequencies;
16 Window1 ←W1PT.nodeFrequencies ∪W1PT.relationFrequencies;
17 return Window0,Window1

Algorithm 18: Method conceptDriftDetection from Window class (Part 2)

Input: W : adaptive window storing the prefix-trees
1 if W.cddFlag = True then /* If a drift was detected */

2 Save information of the drift;
3 drift = Drift(Drift information);
4 W.driftsIdentified.append(drift);

Algorithm 19: Method conceptDriftDetection from Window class (Part 3)

Input: criticalThreshold : threshold set to define if a node is critical or not.
1 treeDistance = prefixTreeDistances(Window0,Window1);
2 if W.cddFlag = True then /* If a drift was detected */

3 criticalNodes = node from treeDistance.notInterDict if value2 >
criticalThreshold;

4 print(criticalNodes);

Algorithm 20: Function logProvider

Input: log : complete log processed as stream, W : adaptive window storing the
prefix-trees

1 foreach drift in W.driftsIdentified do
2 W0Start = drift.eventsSeen− drift.refWinSize;
3 W0End,W1Start = drift.eventsSeen;
4 W1End = drift.eventsSeen+ drift.testWinSize;
5 W0Sublog = log[W0Start : W0End];
6 W1Sublog = log[W1Start : W1End];
7 save(W0Sublog,W1Sublog);

8 end
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Python Scripts

1 def __init__(self):

2 self.reset()

3 self.lambdaDecay = 0.25

4 self.pruningSteps = 1000

5 self.treePruneSteps = self.pruningSteps / 4

6 self.Cmax = 6 # Max number of cases to track concurrently

7 self.TPO = 1

Listing B.1: INIT method for PrefixTree class

1 def reset(self):

2 self.root = TrieNode ()

3 self.nodeFrequencies = dict()

4 self.relationFrequencies = dict()

5 self.startActFrequencies = dict()

6 self.endActFrequencies = dict()

7 self.treeNodes = [] # List which holds all the nodes of the trees

Listing B.2: ”Reset” method for PrefixTree class

1 def resetFrequencies(self):

2 self.root = TrieNode ()

3 self.nodeFrequencies = dict()

4 self.relationFrequencies = dict()

5 self.startActFrequencies = dict()

6 self.endActFrequencies = dict()

7 for node in self.treeNodes:

8 node.frequency = 0

Listing B.3: ”ResetFrequencies” method for PrefixTree class

1 def pruneTree(self):

2 for event , node in self.root.children.items ():

3 current = node # Current becomes the children

4 current.pruneRoots(self) # Prune the roots of the tree

Listing B.4: ”PruneTree” method for PrefixTree class
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1 def decayTree(self , FAold , FBold): # Decay the frequencies of the old nodes and add

the new frequencies

2 FAold2 = {k: v * (1 - self.lambdaDecay) for k, v in FAold.items()} # Decay for

node list

3 FBold2 = {k: v * (1 - self.lambdaDecay) for k, v in FBold.items()} # Decay for

relations list

4 for k, v in self.nodeFrequencies.items ():

5 FAold2.setdefault(k, 0)

6 FAold2[k] += v # Add new frequencies for nodes

7 for k, v in self.relationFrequencies.items():

8 FBold2.setdefault(k, 0)

9 FBold2[k] += v # Add new frequencies for relations

10 return FAold2 , FBold2 #, startActiv2 , endActiv2

Listing B.5: ”DecayTree” method for PrefixTree class

1 def cleanCases(self , Dcase , window):

2 current = self.root

3 activeCases = OrderedDict ({ caseID: caseObject for caseID , caseObject in Dcase.

items() if caseObject.active == True}) # If it is an active case add it to the

new case list

4 for case , casObject in activeCases.items():

5 eventID = casObject.node.activity

6 if eventID not in current.children.keys(): # If the last activity is not

already a children of the root

7 # current = current.createOrCheckNode(window , eventID)

8 current.children[eventID] = TrieNode(eventID , current) # Leave the last

activity as nodes in the tree

9 else:

10 current = current.children[eventID]

11 casObject.node = current # Point the case to the existing node of the

tree

12

13 return activeCases

Listing B.6: ”CleanCases” method for PrefixTree class

1 def firstCaseElement(self , Dcase):

2 ’’’Return the first element from an ordered collection

3 or an arbitrary element from an unordered collection.

4 Raise StopIteration if the collection is empty.

5 ’’’

6 return next(iter(Dcase.values ()))

Listing B.7: ”FirstCaseElement” method for PrefixTree class

1 def __init__(self , activity=’root’, parentNode=None):

2 self.nodeId = uuid.uuid1 () # Random identifier for the node

3 self.activity = activity # Activity name for the event stored in the node

4 self.parent = parentNode # Parent node/events

5 self.parentList = [] # Create list of all parent nodes for this node

6 self.fillParentList () # Fill the list with the previous parents and the new

parent

7 self.children = dict() # Children nodes/events are stored in a dictionary

8 self.frequency = int() # Frequency of the event

9 if self.parent:

10 self.branchId = ’,’.join(self.parentList) + "," + activity

Listing B.8: INIT method for TrieNode class

1 if self.parent: # If the node has a parent node

2 self.parentList = self.parent.parentList.copy()

3 self.parentList.append(self.parent.activity)

Listing B.9: ”FillParentList” method for TrieNode class
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1 tree.nodeFrequencies.setdefault(self.branchId , 0)

2 tree.nodeFrequencies[self.branchId] += self.frequency # Add frequency to FA (nodes

)

3 for event , node in self.children.items ():

4 if node: # If there ’s children nodes and it’s not the root node

5 tree.relationFrequencies.setdefault ((self.branchId , node.branchId), 0)

6 tree.relationFrequencies[

7 (self.branchId , node.branchId)] += node.frequency # Add frequency to

FB (relations)

8 node.pruneRoots(tree) # Repeat the pruning for the children

Listing B.10: ”PruneRoots” method for TrieNode class

1 def lookForNode(self , eventID , findNode):

2 for event , node in self.children.items ():

3 # if node: # If there ’s children nodes and it’s not the root node

4 if eventID == event: # If the event of the node is the same as the one we’

re searching for

5 findNode = self

6 return findNode

7 else:

8 return node.lookForNode(eventID , findNode)

9

10 return None

Listing B.11: ”LookForNode” method for TrieNode class

1 def __init__(self , caseIdentifier , caseNode):

2 self.caseId = caseIdentifier # Case name

3 self.node = caseNode # Node/Event to which the case is pointing to

4 self.active = True # Case active/inactive flag

Listing B.12: INIT method for Case class

1 def prefixTreeDistances(Window0 , Window1):

2 win0NotInWin1 = {k: v ** 2 for k, v in Window0.items() if k not in Window1.keys

()}

3 win1NotInWin0 = {k: v ** 2 for k, v in Window1.items() if k not in Window0.keys

()}

4

5 lenW0NotW1 = len(win0NotInWin1)

6 lenW1NotW0 = len(win1NotInWin0)

7

8 dI = lenW0NotW1 + lenW1NotW0

9

10 interDict = {k: (( Window0[k] - Window1[k]) ** 2) for k in set(Window0) & set(

Window1)}

11 interSum = sum(interDict.values ())

12

13 notInterSum = sum(win0NotInWin1.values ()) + sum(win1NotInWin0.values ())

14

15 notInterDict = {** win0NotInWin1 , ** win1NotInWin0}

16 sortedNotInterDict = sorted(notInterDict.items (), key=lambda x: x[1], reverse=

True)

17

18 totalTreeDistance = dI + (( interSum + notInterSum) ** (1/2))

Listing B.13: Euclidean distance between two trees [2]
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1 def __init__(self , win0NotInWin1 , win1NotInWin0 , interDict , interSum , notInterDict ,

notInterSum , treeDistance):

2 self.win0NodesNotInWin1 = win0NotInWin1

3 self.win1NodesNotInWin0 = win1NotInWin0

4 self.interDict = interDict

5 self.interSumOfFreq = interSum

6 self.notInterDict = notInterDict

7 self.notInterSumOfFreq = notInterSum

8 self.treeDistanceMetric = treeDistance

Listing B.14: INIT method for TreeDistance class

1 def __init__(self):

2 self.winNodeFreq = []

3 self.winRelFreq = []

Listing B.15: INIT method for subWindowTree class

1 def __init__(self , refWinSize , testWinSize , refTree , testTree , treeDistance ,

eventsSeen , criticalNodes):

2 self.refWinSize = refWinSize

3 self.testWinSize = testWinSize

4 self.refTree = refTree

5 self.testTree = testTree

6 self.treeDistance = treeDistance

7 self.eventsSeen = eventsSeen

8 self.criticalNodes = criticalNodes

Listing B.16: INIT method for Drift class
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Figure C.6: Process map for the first Dutch municipality of the building permit application process
(BPIC2015).
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