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Abstract. Admission control in queueing networks is often based on
partial information on the network state. This paper studies how the
lack of state information affects performance by considering a simple
model for admission control. The model is analyzed by studying a related
censored process that has a matrix-geometric steady-state distribution.
Numerical results show how partial information may cause some per-
formance characteristics in queueing networks to be nonmonotone with
respect to service rates.

1 Introduction

Admisson control can be used to avoid congestion in heavily loaded queueing
networks. In many queueing networks of practical interest, the admission con-
troller may not be able to fully monitor the state of all queues in the network.
This might happen for example in models of Internet-based services that rely on
the infrastructure of several network operators. As a consequence, the admission
decisions must be based on partial information on the network state. The goal of
this paper is to study how the lack of state information affects the performance
in this type of queueing models.

To deal with the question mathematically, we will restrict our attention to
simple two-station tandem queues with unlimited buffers. Probably the simplest
admission control mechanism based on partial information is the one where the
admission decisions are based on the number of customers at the first server
only, so that arriving customers are rejected whenever the length of the first
queue exceeds a certain threshold. The steady-state decay rate of the number
of customers in the second queue in this model was recently studied by Kroese,
Scheinhardt, and Taylor [6]. Another well-studied class of tandem queues where
the control is based on partial state information are the models where the first
server stops processing when the second queue becomes too long [3,4,5,7].

In this paper we look at a different type of system where the control is based on
the state of the second queue, but in such a way that only the admissions to the
network, not the operation of the first server, can be controlled. More precisely,
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130 L. Leskelä and J. Resing

we consider a two-station tandem queueing network, where the interarrival times
at station 1 and the service times in stations 1 and 2 are independent and
exponentially distributed with parameters λ, μ1, and μ2, respectively. We denote
the number of customers in station i by Xi, and assume that the admission
controller accepts new customers to the system if and only if X2 ≤ K, see
Figure 1. The stability of this system was recently studied by Leskelä [8], who
showed that the queue length process X = (X1, X2) is positive recurrent if and
only if the triple (λ, μ1, μ2) satisfies the relation

λ
(
1 − (μ1/μ2)K+1

)
< μ1. (1)

Here, we will focus on determining the steady-state distribution of X . Observe
that, in contrast with the other aforementioned control models, in this system
both queues can grow arbitrarily big.

1(X2 ≤ K)

X1 X2

K

AC

Fig. 1. The admission control mechanism

The rest of the paper is organized as follows. In Section 2, the problem of
finding the steady-state distribution of the system is reduced using censoring
to a simpler problem with a matrix-geometric structure. Section 3 presents an
efficient numerical approach for performance evaluation of the model, with exam-
ples that illustrate how partial information affects the system. Finally, Section 4
concludes the paper.

2 Queue Length Analysis

We will assume from now on that (1) holds, so that the continuous-time Markov
process X = (X1, X2) is positive recurrent. In the sequel we will first study
a modification of X restricted to periods of time during which X2 ≤ K. This
censored process has a generator with a special block structure of the so-called
G/M/1 type [9], which will be exploited to evaluate its steady-state distribution.
Afterwards, we will find the steady-state probabilities of the process X itself.

2.1 Censoring

The behavior of the process X = (X1, X2) during periods of time when X2 ≤ K
can be studied by censoring the parts of the sample path where X does not belong



A Tandem Queueing Network with Feedback Admission Control 131

to the set S− = {(n, k) ∈ Z
2
+ : k ≤ K}. The censored process Y = (Y1, Y2) is

defined by
Yi(t) = Xi(γ(t)), t ≥ 0,

where
γ(t) = inf{τ ≥ 0 :

∫ τ

0

1{X2(s)≤K} ds > t}.

It follows from the strong Markov property [10, Section III.21] that Y is a Markov
process on S−.

To conveniently describe the infinitesimal generator of Y , we will employ the
following notation for (K + 1)-dimensional square matrices. Denote by I the
identity matrix, while TL and TR will stand for the left and right shift matrices
given by (TL)i,j = δi−1,j and (TR)i,j = δi+1,j for 0 ≤ i, j ≤ K where δi,j denotes
the Kronecker delta. Further, denote the projection matrices onto 0-th and K-
th coordinate by U0 and UK , that is, (U0)i,j = δi,0δj,0 and (UK)i,j = δi,Kδj,K .
Ordering the states in S− lexicographically, the generator of Y can be written
in the form

Q =

⎛

⎜⎜
⎜
⎜
⎜
⎝

B0 A0 0 0 · · ·
B1 A1 A0 0 · · ·
B2 A2 A1 A0 · · ·
B3 A3 A2 A1 · · ·
...

...
...

...

⎞

⎟⎟
⎟
⎟
⎟
⎠

,

where the matrices An and Bn are given by

A0 = λI,

A1 = μ2TL − (λ + μ1 + μ2)I + μ2U0,

A2 = μ1(TR + q1UK),
An+1 = μ1qnUK , n ≥ 2,

and

B0 = μ2TL − (λ + μ2)I + μ2U0,

B1 = μ1(TR + UK),
Bn+1 = μ1(1 − q1 − · · · − qn)UK , n ≥ 1.

The numbers qn represent the probabilities that, if the process X leaves the set
S− in some state (m+n, K), it enters S− again in state (m, K), where m ≥ 1. It
is not hard to check that qn is equal to the probability that a random walk on the
integers starting at state 0 and with probabilities μ1/(μ1 +μ2) and μ2/(μ1 +μ2)
of going to the right and left, respectively, reaches state -1 for the first time in
exactly 2n − 1 steps. It is well-known [2] that this quantity equals

qn = Cn−1

(
μ1

μ1 + μ2

)n−1 (
μ2

μ1 + μ2

)n

,

where Cn = 1
n+1

(
2n
n

)
are the Catalan numbers.



132 L. Leskelä and J. Resing

For k = 0, . . . , K, denote by ek the k-th basis vector of the (K+1)-dimensional
euclidean space, and let e =

∑K
k=0 ek. By convention, all vectors are treated as

row vectors. One can check that Neuts’ mean drift condition [9, Formula (1.7.11)]
for the stability of Y is equivalent to (1). Furthermore, the steady-state proba-
bilities of the censored process are given [9] in the matrix-geometric form

P(Y = (n, k)) = x0R
neT

k , (n, k) ∈ S−, (2)

where the matrix R is the unique minimal non-negative solution of

∞∑

n=0

RnAn = 0, (3)

and x0 is the unique positive row vector satisfying

x0

∞∑

n=0

RnBn = 0, and x0(I − R)−1eT = 1. (4)

2.2 Steady-State Queue Lengths

Once the steady-state distribution of the censored process Y is found, we will
next show how this distribution can be used to obtain the steady-state proba-
bilities for the queue length process X . First, note that

P(X = (n, k)) = P(X2 ≤ K) P(Y = (n, k)), (n, k) ∈ S−. (5)

Second, because the steady-state rate at which customers are accepted into the
system must be equal to the rate of customers coming out of the system, it
follows that

λP(X2 ≤ K) = μ2(1 − P(X2 = 0)). (6)

Note that (5) implies P(X2 = 0) = P(X2 ≤ K) P(Y2 = 0). Substituting this
into (6) we get

P(X2 ≤ K) =
μ2

λ + μ2 P(Y2 = 0)
. (7)

Thus, (5) and (7) yield the steady-state probabilities of X for all states (n, k) ∈
S−, and what remains is to find the corresponding quantities on S+ = Z

2
+ \S−.

For the states in S+, we will first find out the probabilities P(X = (n, K +k))
for n, k > 0 by inspecting the excursions X makes in S+. Note that if X visits the
state (n, K + k), the time it spends there has mean 1/(μ1 + μ2). Furthermore,
note that the steady-state rate of transitions from (n + m, K) to S+ equals
μ1 P(X = (n + m, K)). Now we see by conditioning on the state in S− from
where X enters S+ that for all n, k > 0,

P(X = (n, K + k)) =
μ1

μ1 + μ2

∞∑

m=k

qk,m P(X = (n + m, K)), (8)



A Tandem Queueing Network with Feedback Admission Control 133

where qk,m is the probability that X will visit state (n, K+k) during an excursion
in S+ which was initiated from state (n + m, K). It is not hard to see that qk,m

does not depend on the values of n and K, and is equal to the probability
that a random walk on the integers starting from state 1 at time 0 and with
probabilities μ1/(μ1 +μ2) and μ2/(μ1 +μ2) of going to the right and to the left,
respectively, will visit state k at time 2m− k − 1 without visiting state 0 in any
time inbetween. Using the ballot theorem (see Takács [11]) one can verify that
this quantity equals

qk,m =
k

m

(
2m − k − 1

m − 1

) (
μ1

μ1 + μ2

)m−1 (
μ2

μ1 + μ2

)m−k

. (9)

Finally, the probabilities P(X = (0, k)) with k > K can be found by observing
that the steady-state rate of transitions out of the set {(n, k′) : n = 0, k′ ≥ k}
equals the corresponding rate into that set, so that

μ2 P(X = (0, k)) = μ1

∞∑

m=k−1

P(X1 = 1, X2 = m), k > K. (10)

Alternatively, the probabilities on the left-hand side of equations (8) and (10)
can be recursively determined from the balance equations, starting from the ones
for X2 = K. In this way one avoids the infinite sums appearing on the right-hand
side of equations (8) and (10).

Remark 1. In the special case where K = 0, (3) degenerates into a scalar equa-
tion. In this case one can explicitly solve the balance equations to conclude that
the steady-state distribution of the system equals

P(X1 = n, X2 = k) =

⎧
⎪⎪⎨

⎪⎪⎩

λ

λ + μ2
(1 − R)

(
1 − μ1

λ
R

)k−1

, n = 0, k ≥ 1,

μ2

λ + μ2
(1 − R)Rn

(
1 − μ1

λ
R

)k

, otherwise,

where
R =

λ

2μ1μ2

(√
(λ + μ1 − μ2)2 + 4μ1μ2 − (λ + μ1 − μ2)

)
.

This result has also been independently derived by Adan and Weiss [1], who
studied a two-machine 3-step re-entrant line with an infinite supply of work.

3 Performance Analysis

3.1 Throughput and Sojourn Time

We will analyse the steady-state performance of the system in terms of the
throughput θ, measured as the number of customers served per unit time, and
the mean sojourn time E(D) of accepted customers. To evaluate θ and E(D),
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one could use formulas (5) – (10) derived in Section 2.2. However, this approach
is computationally not very appealing, because it involves multiple infinite sum-
mations over the state space. As an alternative, the following theorem shows how
θ and E(D) can be calculated directly in terms of the steady-state distribution
of the censored process Y .

Theorem 1. Assume that (1) holds. Then the steady-state throughput θ and
mean sojourn time E(D) are given in terms of the steady-state distribution of
the censored process Y by

θ =
(

1
λ

P(Y2 = 0) +
1
μ2

)−1

, (11)

and
E(D) =

1
λ

E(Y11{Y2=0}) +
1
μ2

E(Y1 + Y2 + 1). (12)

Proof. Because θ = λP(X2 ≤ K), the validity of (11) follows immediately
from (7). To prove the second claim, let us consider the level transitions for
the total amount of customers X1 +X2. Under stability, the rate of events where
the value of X1 + X2 changes from n to n + 1 is given by λP(X1 + X2 =
n, X2 ≤ K), while the corresponding rate backwards from n + 1 to n equals
μ2 P(X1 + X2 = n + 1, X2 > 0). Thus,

λP(X1 +X2 = n, X2 ≤ K) = μ2 P(X1 +X2 = n+1)−μ2 P(X1 = n+1, X2 = 0)
(13)

for all n ≥ 0. Multiplying both sides of (13) by n + 1 and then summing over n
we see that

λE( (X1 + X2 + 1)1{X2≤K} ) = μ2 E(X1 + X2) − μ2 E(X11{X2=0}). (14)

Because E(D) = θ−1 E(X1 +X2) by Little’s law, the validity of (12) now follows
from solving (14) for E(X1 + X2) and using θ = λP(X2 ≤ K).

3.2 Long-Term Behavior of the Unstable System

To better understand how the choice of parameters affects the performance of
the system, it is also interesting to see what happens in the unstable parameter
region. Recall from (1) that instability of the system implies μ1 < μ2, so that the
rate at which work is fed into the second server is strictly less than its service
capacity. Thus, intuition suggests that only the first queue will grow to infinity.
The next theorem verifies the validity of these heuristics.

Theorem 2. Assume λ(1−(μ1/μ2)K+1) > μ1. Then the process X started from
an arbitrary initial state satisfies as t → ∞,

X1(t) → ∞ almost surely,
X2(t) → Z in distribution,

where Z is a geometrically distributed random variable with parameter μ1/μ2.
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Proof. Let Nλ, Nμ1 , Nμ2 be independent Poisson processes with rates λ, μ1 and
μ2, respectively. Then X can be represented as the unique solution of

X1(t) = X1(0) +
∫

(0,t]

1{X2(s)≤K} Nλ(ds) −
∫

(0,t]

1{X1(s)>0} Nμ1(ds),

X2(t) = X2(0) +
∫

(0,t]

1{X1(s)>0} Nμ1(ds) −
∫

(0,t]

1{X2(s)>0} Nμ2(ds). (15)

Let X̃2(t) be the solution of

X̃2(t) = X2(0) + Nμ1(t) −
∫

(0,t]

1{X̃2(s)>0} Nμ2(ds). (16)

Then a pathwise comparison of (15) and (16) shows that X̃2(t) ≥ X2(t) for all
t almost surely. This implies that X1(t) ≥ U(t) for all t a.s., where

U(t) = X1(0) +
∫

(0,t]

1{X̃2(s)≤K} Nλ(ds) − Nμ1(t).

Note that X̃2 equals the number of customers in a stable M/M/1 queue with
arrival rate μ1 and mean service time 1/μ2. Thus, X̃2(t) → Z in distribution,
where Z is geometric with parameter μ1/μ2. Since Nλ is independent of X̃2, it is
not hard to see that limt→∞ 1

t

∫
(0,t] 1{X̃2(s)≤K} Nλ(ds) = λP(Z ≤ K) a.s. Now

using limt→∞ 1
t Nμ1(t) = μ1 a.s., we see that with probability one,

lim
t→∞U(t)/t = λ(1 − (μ1/μ2)K+1) − μ1.

Since the above limit is strictly positive, U(t) → ∞ and thus X1(t) → ∞ almost
surely.

To verify that X2(t) → Z in distribution, it is enough to show that X2 and
X̃2 will couple in finite time. Let T0 = sup{t : X1(t) = 0}. Since X1(t) → ∞, T0

is a.s. finite. Define T1 = inf{t ≥ T0 : X̃2(t) = 0}. Since X̃2 represents the state
of a stable M/M/1 queue, T1 is finite a.s. Further, since X2 is dominated by X̃2,
we see that X2(T1) = X̃2(T1) = 0. Since the pathwise dynamics of X2 and X̃2

coincide for t ≥ T1, we conclude that X2(t) = X̃2(t) for all t ≥ T1.

3.3 Numerical Results

The steady-state distribution of the censored process Y = (Y1, Y2) can be nu-
merically calculated by first solving the matrix R from equation (3) using the
method of successive substitutions [9], and then solving the vector x0 from (4).
The steady-state throughput θ and mean sojourn time E(D) are then found by
combining the expressions of Theorem 1 with formula (2).

Figure 2 illustrates numerically computed contours of the throughput θ for
varying μ1 and μ2, where λ = 1 and K = 5. The thick curve in the middle
indicates the boundary of the stability region, so that the queue length process
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Fig. 2. Contours of θ as a function of μ1 and μ2 with λ = 1 and K = 5
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Fig. 3. Contours of E(D) as a function of μ1 and μ2 with λ = 1 and K = 5

X = (X1, X2) is not positive recurrent for values of μ1 and μ2 located to the
left of the thick curve. In the unstable region, the value of throughput does not
dependent on μ2, and is in fact equal to μ1. This reflects the fact that X1(t) → ∞
almost surely when the system is unstable (Theorem 2), so in the long run the
system serves customers at the bottleneck rate μ1.

In Figure 3, where the corresponding contours for the mean sojourn time
E(D) are plotted, we see that increasing the service rate for queue 2 may either
increase or decrease E(D). In particular, if μ1 < 1, then making μ2 large enough
will eventually drive the system unstable and E(D) becomes infinite.

4 Conclusion

We analyzed a tandem queue with admission control based on partial informa-
tion on the network state. We showed that, although the two-dimensional state
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space of the system is infinite in both coordinate directions, the steady-state
distribution can still be analyzed using matrix-analytic methods. The approach
used in Section 2 extends to a wider class of models. For example, by mak-
ing suitable modifications to the matrices An and Bn in Section 2.1, we can
model situations where during congestion the input traffic is gradually thinned
by randomly rejecting a certain proportion of the newly arriving customers. The
approach of the paper can still be used as long as there exists a certain maxi-
mum threshold so that all newly arriving customers are rejected whenever the
length of queue 2 exceeds this maximum threshold. A different modification to
An and Bn allows to replace the second queue in the network by a delay node of
the M/M/∞ type. An interesting direction for future research is to extend this
approach to networks with more than two queues.

Acknowledgments. The work presented in this article was done while both
authors were visiting the Mittag–Leffler Institute.
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