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Abstract: A sustainable computing scenario demands more energy-efficient processors. Neuro-
morphic systems mimic biological functions by employing spiking neural networks for achieving
brain-like efficiency, speed, adaptability, and intelligence. Current trends in neuromorphic technolo-
gies address the challenges of investigating novel materials, systems, and architectures for enabling
high-integration and extreme low-power brain-inspired computing. This review collects the most re-
cent trends in exploiting the physical properties of nonvolatile memory technologies for implementing
efficient in-memory and in-device computing with spike-based neuromorphic architectures.

Keywords: nonvolatile memory; spiking neural network (SNN); neuromorphic computing

1. Introduction

Neuromorphic computing has become an attractive candidate for emerging computing
platforms for both large-scale systems and edge nodes. Neuromorphic computing provides
design principles and ideas borrowed by natural neural systems, and it has the potential to
drive the development of a more distributed, scalable, and efficient computing paradigm.
Historically, the term neuromorphic computing was coined in the late 1980s to describe
analog computing systems (hardware) that mimic the brain’s architecture [1]. Initially,
the primary goal of neuromorphic computing was to emulate the physical properties of neu-
rons and synapses with the physics of analog complementary-metal-oxide-semiconductor
(CMOS) electronics to build computing architectures while understanding and reproducing
the efficiency of neural computing systems. Today, neuromorphic computing addresses a
broader range of computing systems based on digital, mixed-signal (analog/digital) CMOS
electronics, photonics, and novel emerging technologies elements. Yet, in all neuromor-
phic systems, the aim is to build architectures that can support the execution of Spiking
Neural Networks (SNNs) for achieving efficient neural information processing. SNNs
today represent the third and more bio-inspired generation of neural networks [2]. Over
the past decades, there has been a significant amount of progress made in neuromorphic
computing, both on the software (e.g., application and algorithm [3–12]) and hardware
(e.g., architecture and technology [13–17]) fronts. These architectures and algorithms differ
from conventional computing paradigms in their memory and communication structures
and computational properties. While traditional von Neumann architectures have one or
more central processing units physically separated from the main memory, neuromorphic
architectures exploit the co-localization of memory and compute, near and in-memory com-
putation [18]. Simultaneously to the tremendous progress in devising novel neuromorphic
computing architectures, there has been many recent works that address how to map and
compile (trained) SNNs models for efficient execution in neuromorphic hardware [19–31].

This work focuses on the hardware and architectures that support efficient spiking
neural networks with nonvolative memory (NVM) devices. Examples of architecture
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that support spiking neural networks with traditional CMOS hardware alone are SpiN-
Naker [32], TrueNorth [33], Loihi [34], µBrain [35], ODIN [36], NeuroGrid [37], Brain-
ScaleS [38], Tianji [39], PRIME [40], and DYNAPs [41], among others. Although these
computing architectures provide significant scalability and energy efficiency when execut-
ing SNNs, they all use CMOS technologies for neuron circuits and Static Random-Access
Memories (SRAMs) for synapses. The use of SRAM synapses greatly impacts the device
area. It is responsible for a considerable portion of the power consumption, mainly caused
by data movement, and static leakage power. For this reason, recently, there has been
an increased interest in nonvolatile memory (NVM) technologies for neuromorphic com-
puting [16,42–49], beyond their potential as DRAM replacement or as hybrid memory in
shared memory systems [50–54]. Nonvolatile devices provide a broad range of excellent
properties for neuromorphic architectures, including memory retention, analog behavior,
high integration density, increased read/program speed, high energy efficiency, and pro-
gramming voltages compatible with CMOS electronics. In particular, the scaling of dense
NVMs crossbars arrays to few nanometers is crucial for building large-scale systems that
can mimic the high degree of connectivity present in brains, in which each neuron is con-
nected, on average, to 10,000 other neurons. In addition, NVMs have physical properties
that can be used to mimic the physical properties of neurons and synapses, offering a
path towards the emulation of natural neural information in highly dense and low-power
neural processing architectures. However, several challenges need to be addressed to
achieve robust neural computation with these elements. These challenges include the need
for peripheral circuitry for operating the NVMs, calibration procedures, and the need for
novel models of computations implemented in massively parallel networks of low-power
neurons and synapses. In addition, there is a need to understand how to overcome the
inherent limitations of NVMs devices as their limited reliability, limited dynamic range,
significant programming energy, and nonidealities such as nonlinear operations, and drift
over time. However, since biology manages to self-adapt and construct highly functional
neural networks from stochastic and inhomogenous neurons and synapses, there is the
ambition to understand how to best exploit online learning, homeostatic, and self-healing
mechanisms to adapt and compensate for internal and external deviations. Such mecha-
nisms could potentially enforce robust computations despite the presence of defective and
variable devices [55–58]. Our contributions in this paper are as follows:

• A complete overview of device physics, working, and drawbacks of the NVM devices.
• We discuss nonvolatile memory integration in hybrid CMOS and NVMs neuromorphic

architectures with in-memory computing abilities, including large-scale and edge
computing systems.

• We discuss relevant and up-to-date publications on SNN computing architectures
with NVM devices.

• We provide a roadmap for the coming years, providing outlooks on the new applica-
tions in which NVMs are critical enablers.

In Section 2, we provide explanations for the basic operations of several NVM de-
vices and their operational properties, and we describe how they can be integrated into
neuromorphic architectures. This is followed by Section 3, where we look at some of
the emerging materials that can be used in composition with existing prototype NVMs
for better performance. In Section 4, we provide examples of the most recent large-scale
spike-based neuromorphic architectures in which NVMs have been integrated. In Section 5,
we provide examples of spike-based neuromorphic edge architectures in which NVMs play
a crucial role in enabling emerging application scenarios as biomedical signal processing.
Finally, in the conclusions and discussion, Section 6, we compare several properties of the
NVMs, and we provide a short outlook highlighting the challenges that still need to be
solved and the opportunities that lie ahead in the quest for a more efficient, bio-inspired
way for artificial systems to perform computation in emerging applications.
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2. Trends in Nonvolatile Memory-Based SNN Architectures

Nonvolatile memories can be divided into prototype and emerging classes. The poto-
type class is made up of all the established device structures that have been making their
way from academia to industry. Figure 1 shows the state-of-the-art operation parameters of
different NVMs devices, which we discuss in Sections 2.1–2.5. In Section 3, we discuss the
emerging materials for NVM devices.

Figure 1. Device-level operation parameters of different NVMs where operation voltage, speed and
current are reported for the ON state of the device while dynamic range is the (OFF–ON) voltage
range [59–67].
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2.1. Phase-Change Memory

Phase-Change Memories (PCM) are the most advanced and front runners in the field
of nonvolatile memories. They are part of a Chalcogenide family (primarily Group VI
elements) based two-dimensional material sandwiched between two metal electrodes, and a
resistive electrode referred to as heater [68,69] (Figure 1). Most commonly studied ones are
the Ge-Sb-Te (GST) class of materials [70–72]. The presence of two distinct solid-state phases,
i.e., crystalline and amorphous, with contrasting electrical and optical properties, makes
them an attractive choice. The dynamic switching between amorphous-to-crystalline phases
of the material in the presence of electrical pulses is used to model neuron’s integration and
firing behavior. When the PCM material is in the amorphous phase, it has high resistance
(i.e., the high-resistance state HRS). The PCM crystallizes by applying medium voltage
electric pulses. This represents the device’s SET operation, which incrementally increases
the amorphous layer thickness and is used to model the temporal integration of membrane
potential in a neuron implementation. When the PCM reaches a full crystallization state,
the device presents a low resistance (i.e., low-resistance state LRS). The LRS is used to
model the neuron’s threshold. Upon reaching it, the neuron fires (i.e., the device is in the
LRS). Under high voltage short electric pulse, there is a generation of high current densities
at the interface of the heater and the PCM material creating a Joule heating effect. This is
used to perform the RESET operation after the emission of an action potential (i.e., a spike).
The Joule heating is responsible for switching the crystalline phase back to the amorphous
phase. The RESET is an abrupt process of melting and quenching followed by rapid cooling
of the material. Figure 2a illustrates a chalcogenide semiconductor alloy that was used
to build a PCM cell. Figure 2b shows the different current values needed to program
and read a PCM device. Therefore, depending on whether a PCM device in a crossbar is
programmed to SET state, RESET state, or one of the intermediate states, different amount
of current will be required to program and read.

(a) (b)
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Read pulse
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Figure 2. (a) A phase change memory (PCM) cell and (b) temperature needed to SET, RESET, and read.

To read the PCM state, we applied a low voltage in the OFF region of the device, which,
in turn, produces a readout current, as shown in Figure 3. The switching speed determines
the write speed from the amorphous to the crystalline phase, and the SET operation
determines the operating step speed of this device. Recent studies show that PCM devices
have a write speed to the order of 100 ns, performing better than Flash memory at lower
voltages [73]. One of the unique advantages of PCM, unlike Flash memory, is the possibility
to overwrite memory without the need of erasing. Nevertheless, the RESET of PCM requires
high write power due to the heat-dependent switching mechanism. Since programming in
the SET state is incremental with repetitive pulses slowly increasing the mushroom type
switching volume, PCM can also be used to represent multiple intermediate states between
fully-crystalline and fully-amorphous [74]. This gives the capability to store multiple bits
in a cell encoded in intermediate states. In [75], a triple-level PCM array of 64 k cells is
demonstrated by Milos et al. on a 90 nm CMOS baseline chip with permutation encoding
to shift the threshold of each level considering the shift in drift resistance. These devices
are popularly known as PCRAM, Lance-type, or Ovonic unified memory.
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Figure 3. Spiking neuron with PCM. The physical properties of PCM can be used to emulate the
dynamics of biological neurons. In this example, a PCM device is used to model current integration
and the nonlinear neuron spiking behavior [76].

Considering their high ON/OFF ratio, PCMs can also be employed as synapses with
inexpensive and high-speed information transfer. In [77], Kuzum et al. use repetitive
pulses to achieve a PCM-based synapse. Here, each of the top and bottom electrodes
are sent presynaptic and postsynaptic pulses, respectively. The difference in the pulse
potential is applied to the memristor whose resistance stores the synaptic weight. When the
presynaptic electrode spikes later than the postsynaptic electrode, the potential difference
leads to the amorphization of the device. This mechanism has a perfect resemblance with
the spike-timing dependent plasticity (STDP) learning rule [78].

A two-PCM approach is proposed to implement both long-term potentiate (LTP)
and long-term depression (LTD) modes of STDP [79]. However, controlling the abrupt
transition in the RESET process on multiple devices simultaneously is difficult to achieve
as it requires extra circuitry. Kuzum et al., in [80], use pulses of varying amplitudes
to program SET and RESET using a single PCM cell. In this work, both potentiate and
depression branches of the STDP learning are implemented per synapse. In [81], Yi et al.
show that configuring pulses at different time windows can be utilized to break down
STDP into its four different variants.

The integration of PCRAM in a crossbar array facilitates large-scale storage and
in-memory computing. However, writing to PCM cells in a crossbar array can incur pro-
gramming current sneaking to nearby cells producing undesirable results [82,83]. Selector
devices can avoid sneak path currents. The resulting crossbar can be in 1T-1R, i.e., one
transistor one memristor, or 1S-1R, i.e., one selector diode and one memristor arrangement.
In [84], Eryilmaz et al. demonstrate STDP for simple patterns with a 10 × 10 crossbar
with 1T-1R PCM cells. However, in-situ training on NVM hardware has lower accuracy
than software. In [85], Ambrogio et al. demonstrate a hardware-software approach of
neural network implementation for complex image recognition. The 3T-1C cell array of
hardware with supervised learning schemes implemented in software has similar accuracy
as software-based schemes while being more energy efficient and fast.

At the system level, the high current requirement of PCM devices leads to thermal [83]
and reliability concerns [86,87]. In [88], Balaji et al. show that in order to generate currents
in a PCM crossbar, the charge pumps need to be operated at an elevated voltage, which
accelerates the aging in its transistors. In [89], Song et al. show that high aging in the CMOS
device of a neuron in a PCM crossbar can lead to a lower lifetime. This is due to the high
voltage operations needed to generate the SET and RESET currents in the PCM crossbar.
Finally, in [90], Song et al. show that prolonged execution of machine learning workloads
on a PCM crossbar can lead to timing failures due to circuit degradation.
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Even though a crossbar architecture is more compatible for implementing spiking
neural networks, every PCM device in a crossbar is in series with a selector device that
generates the RESET current. Thus, downscaling of PCRAM and the selector device must
ensure that the selector can produce enough current to RESET the PCRAM cell. This scaling
limitation of PCRAM can be solved by shrinking the heater-PCM interface region [91] or
cell structures with advanced device engineering [92]. Several alternative selector devices
such as BJT, diodes, and Schottky diodes are used to alleviate the potential problem of
producing adequate heating resistance that instigates the Joule heating. One such device is
mixed ionic-electronic conduction (MIEC), which is used for 3D integration [93].

Another challenge with PCM devices is the change in drift resistance overtime when
the device is in the high-resistance state (HRS). PCM drifts occur due to structural relax-
ation [94] or mechanical relaxation [95] after programming the resistance of the memristor.
Downscaling of PCM also leads to a challenge in programming a PCM in one of the
intermediate levels. Finally, the endurance of PCM is around 109 cycles, which is not com-
patible with many learning and inference applications [82,96]. Clearly, there is a need for
more device-oriented research to overcome the technological limitations and evaluate their
system-level impact in order to make PCM-based neuromorphic computing successful.

2.2. Resistive Ram

Much like PCM, Resistive Random-Access Memories (RRAM) have been explored in
depth by many since the discovery of variable resistance anodic oxide materials [97,98].
The dynamic of RRAM is governed by the switching of a metal–insulator–metal (MIM)
structure where the insulator can be an oxide or an electrolyte. The switching could be
caused by thermo-chemical effects, which induce unipolar structures, or nano-ionic redox
effect induced bipolar structures. Bipolar devices show conducting and insulating behavior
for opposite bias applied on the two metal electrodes. Usually, both electrodes are active.
However, in the case of an electrolyte insulator, one of the electrodes remains inert. Figure 4
shows an RRAM cell, where the insulating film (HfO2) is placed between two conducting
electrodes forming the MIM structure. The left subfigure shows the formation of LRS states
using the conducting filament. The right subfigure shows the depletion of the filament on
application of a negative voltage to the top metal. This represents the HRS state.

Figure 4. Operation of an RRAM cell.

Consider an RRAM cell that is initially in the high-resistance state (HRS). Then,
with the application of high forming voltage, the RRAM cell switches from HRS to the
low-resistance State (LRS). This is the SET operation of RRAM. Unlike PCM, RRAM works
as an integrated unit when connected in parallel with a capacitor in an RC circuit. This
forms the basis for the implementation of a leaky-integrate-and-fire (LIF) neuron [99]. For
a leaky-integrate-and-fire (LIF) neuron, the membrane potential can be modeled as the con-
centration of oxygen vacancies. During the voltage sweep measurement of MIM structures,
the dielectric breakdown leads to a jump in the current, which could be converted into an
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analog spike output. Several switching mechanisms have been discovered in recent years,
some of which are discussed below.

Filamentary RRAMs are composed of those oxides that form a chain of defects that
can act as a filament. These defects are formed due to thermal redox reactions between
the metal and oxide interface. Forming the conductive oxide path in the presence of a
high electric field displaces the oxygen atoms from its lattice, creating vacancies. This is
called the SET operation. The RESET phenomenon occurs when ions diffuse from the
anode to balance the oxygen concentration and rupture the filament. In [100], Preziso et al.
experimentally demonstrate STDP implementation on Al2O3/TiO2-x memristors which are
self-tuned to the presynaptic and postsynaptic pulses independent of their initial synaptic
weights. In addition, it is possible to obtain multilevel resistance states by varying the
programming voltage amplitudes during the pulse cycling, thus increasing or decreasing
the conductance in a cycle-to-cycle manner [101]. Interestingly, in [102], Valentian et al.
show that filament devices are compatible with CMOS integration.

Nonfilamentary RRAM, on the other hand, are devices in which defects migrate to
the Schottky barrier of the metal/oxide interface. Defects change the functionality of the
material with additional defect energy bands in the energy diagram of the device, resulting
in resistance change. In [103], Hansen et al. demonstrate a double barrier memristive
device with oxide tunnel barrier and Schottky barrier. They show that nonfilamentary-
based switching has improved retention compared to filamentary devices. In [104], Yang
et al. alter the frequency to transition from Short-Term Plasticity (STP) to Long-Term
Plasticity (LTP) in the inorganic WO3 based synapse. When the pulse width is reduced to
achieve a higher frequency, the memorization strength of the nonvolatile memory increases.
Implementation of STP and LTP with a single device indicates the resemblance of the
artificial nanodevice to a biological synapse.

Conductive-Bridge RRAM (CBRAM) is similar to filamentary RRAM [105]. The
filament formation occurs in an electrolyte medium due to electrochemical reactions. With
one active and one inert metal electrode, the bias of the anode determines the movement
of metal ions (like Cu+2 or Ag+2). When a positive bias is applied to the anode, metal
ions start drifting to the cathode, leading to a reduction (oxidation) at the anode (cathode).
Accumulation of metal ions at the cathode forms a filament incrementally. An opposite
bias breaks the growth of the material. In [106], Fackenthal et al. demonstrate a three-layer
Cu-based chip with a 16 GB array of memory cells divided into an architecture composed
of eight tiles for commercial use. In [107], Wijesinghe et al. implement the functionality
of a deep stochastic spiking neural network (SNN) on a 32 × 32 crossbar with CBRAM
memristors. The proposed design is compatible with any ANN network producing similar
accuracy for less energy consumption.

RRAM’s read disturbance issues create system-level challenges for the successful
deployment of RRAM in neuromorphic architectures [108]. The authors show that if the
read disturbances are not incorporated during the mapping of deep learning models,
the correct operations of the device over its lifetime can significantly be reduced [109,110].
To address this, model parameters need to be reprogrammed periodically, which leads to
high system overhead [111]. Like PCM, RRAM also suffers from resistance drift, which is
also recently studied [112]. Recently, authors reported the latency overhead of RRAM’s
multilevel cell operation and its system-level implications [112].

Another technological challenge of RRAM is represented by the interactions at the
metal-electrolyte interface, which reduce the reliability of CBRAM [113]. There also exists
a tradeoff between programming speed and retention in nonfilamentary RRAM. Higher
switching speed is achieved with a low energy barrier, but this might limit the operating
range to a certain time domain [114]. Material engineering to use thinner insulator layers
can address this issue. However, filamentary RRAM shows significant variability due to
considerably short switching time [115]. Furthermore, device and material engineering
that provides better control over the conductance update of the device is required.
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2.3. Magnetoresistive Ram

Resistive and phase change memory cells suffer from degradation over time and lim-
ited endurance cycles. Magnetoresistive RAM (MRAM) alleviates this issue by providing
almost unlimited endurance with a fast switching mechanism [116]. Instead of exploiting
device physics as in PCM and RRAM, MRAMs are the class of memristors that exploits
memristive properties, e.g., via a change in the magnetic state of the device, also known
as magnetoresistance. The magnetoresistance property is very similar to the operation
of a hard disk drive. Since magnetic polarization is independent of the power supply, it
behaves as nonvolatile memory. Switching in MRAM is governed by the spin dynamics
of electrons, and it does not involve any movement of subatomic particles making it less
subjected to wear-out.

Magnetic Tunnel Junction (MTJ) is the first device to utilize electron spin as a memory
storage variable [117]. MTJ comprises two ferromagnetic nanomagnets with a dielectric
layer in the middle. This composition is the same for all other devices discussed below.
However, in MTJ, one nanomagnet has fixed magnetic polarization, and the other is free.
Current induced switching between parallel and anti-parallel states transfers the spin to
nanomagnets [43].

In Spin Transfer Torque (STT) MRAM [118,119], the magnetization changes due to
torque transfer from incoming electrons. Continuous application of input spikes is inte-
grated to switch the polarization of magnetizing material. In [120], Rezeszut et al. usea
multi-bit STT-MRAM cell as a synapse to recognize the MNIST database. The I-V curve
was tuned to simulate seven serially connected MTJs to represent 8-bit data. The proposed
design requires no additional hardware with programmable MTJ multi-cells comparing
the input to enable positive or negative weights. A select transistor could also be used for
the same. The neuron circuit combines MTJ synapse, differential amplifiers, and a sigmoid
function generator.

Recently, Spin-Orbit Torque (SOT) MRAM has gained interest due to its high spin
injection efficiency [121]. SOT-MRAM switches due to domain wall movement by an
orthogonal current through underlying heavy-metal layer [122]. In a proposed 4T synaptic
device, the spin-orbit torque generated in the heterostructure mimics STDP behaviors. The
programming current is linearly related to the domain wall position, and it is responsible for
inducing a conductance change. However, a low programming current could better modu-
late conductance because of higher spin injection with ultra-low energy consumption. In
Spin-Transfer Torque MRAM (STT-MRAM), read and write have the same path, with read-
ing resistance affecting the write path. SOT-MRAM, on the other hand, has separate read
and write paths. This improves the speed of operation. In [123], Ostwal et al. implement a
deep belief network with SOT-MRAM synapses. Here, 2n nanomagnets are connected in
series/parallel combinations to realize a n-bit synapse with probabilistic switching.

Apart from STT- and SOT-MRAM, Domain Wall Magnets (DWM) are promising
MRAM devices that could be used both as neurons and synapses [124]. Committed to the
elastic coupling phenomenon, it has a similar composition of opposite magnetic domains
separated by a domain wall. The input current generates torque that communicates with
the magnetic moment of the ferromagnet to move the domain wall in the direction of
the current flow. The attempt to align the magnetic moment of the ferromagnet shits the
position of the domain wall. Controlled shifting can lead to multiple resistance states. A
DWM-MTJ device can replicate synaptic behavior where MTJ at the extreme end of DWM
is used as a polarity sensor. In [125], Sengupta et al. implement an all-spin neuromorphic
architecture with spintronic devices made of an MTJ whose free layer is a DWM. This
ferromagnetic-heavy metal configuration is known to show deterministic domain wall
shifting. The authors also demonstrate a crossbar with synaptic device domain wall position
storing the weight information.

The challenge with large-scale spintronic neuromorphic hardware is the low-resistance
ON/OFF ratio. Although these devices provide unlimited endurance, high-speed oper-
ation at low power consumption in a single MRAM cannot show competitive resistance



Electronics 2022, 11, 1610 9 of 24

ratios. This implies that the read resistance can significantly affect the write paths. The
development of efficient sense amplifiers to sense such low-resistance differences will be
required. However, it is more compatible with dense networks with its CMOS integration,
long-range communication, and multi-layer nature [126].

2.4. Ferroelectric Fet

Ferroelectric materials are a family of crystalline materials that exhibits the formation
of electrical dipoles that can switch polarization with an applied electric field. Moreover,
a sub-family of these materials presents a nonvolatile hysteric window of operation that,
when coupled in series with a gate of a MOSFET or FinFET, can be used to reproduce
nonvolatility behaviors [127]. Thus, a sufficient thick Fe layer is required to establish a
hysteric I-V characteristic [128]. When a positive bias induces an electric field greater than
the coercive field, Fe can be downward polarized (in certain scenarios), turning the FET
ON with the channel in inversion mode of low resistance [129]. A negative bias on the top
electrode turns the FET OFF with the channel in depletion mode of high resistance. One
unique advantage of FeFET devices is the read and write operations are voltage based,
unlike PCM or MRAM current-controlled memristors. However, the FeFET memory cell
has a destructive read cycle, where data are read by altering a bit in each cell. Even a small
current can sometimes indicate the cell is in the OFF state.

In [130], Mulaosmanovic et al. demonstrate ferroelectric HfO2 in a FeFET device to
function as a neuron. Application of identical pulses below the electric field’s threshold
value accumulates its nano-domains until the threshold is reached. At this point, the device
manifests an abrupt switching behavior to the opposite polarity domain. This switch-
ing behavior is the result of the accumulative nucleation of nano-domains acting as a
perfect integrator. Arrangement of FeFET as a memory array could turn ON cells that
are not supposed to be active due to the accumulative excitations on the shared bit line.
In [131], Mulaosmanovic et al. implement STDP using a single two-terminal FeFET in series
with a resistor as a synapse. The resistor connected between the gate and drain ensures
the development of an electric field for ferroelectric switching. Pulse amplitude and width
modulation facilitate threshold tuning of the device. The time difference between presy-
naptic and postsynaptic spikes controls the potential drop. Authors show that Increased
drop generates inclement charge flow between neurons modeled as asymmetric STDP.

A three-terminal FeFET provides better control with separate read and writes paths
facilitating simultaneous updates [132]. Here, a neural network of nine neurons and twelve
synapses is fabricated to recognize a 3 × 3 matrix pattern. The temporal offset between the
presynaptic and postsynaptic spikes is passed through a CMOS selector as the gate voltage.
The 3T-FeFET exhibits STDP behavior on a Hopfield neural network. Although FeFET is
more compatible for integration with CMOS technology, not all ferroelectric materials have
a stable growth on CMOS. Recently, crossbar structures have been simulated on HSPICE
models [128]. In [133], Chen et al. demonstrate a FeFET-based crossbar array in 2T-2R
design. Here, each cell performs an XNOR operation.

Ultra-low-power operation and easy integration of ferroelectric materials need more
optimized circuit architectures to build large-scale neuromorphic systems.

2.5. Nanowires

In addition to memristors that work based on the individual device switching,
nanowires similar to CNTs attain storage capability due to intercommunication. Although
intercommunication in PCMs and RRAMs is disregarded as sneak path current. Nanowires
are evaporation deposition on the desired substrate material with metal electrodes. Electri-
cal excitation causes the movement of metal ions in a one-dimensional structure to fill the
nano-gap. These nanometer thickness wires from group-IV and group III-V show semi-
conducting behavior due to physiosorbed redox molecules [129]. Apart from these, there
are several inorganic and organic molecular-based nanowires reported in the literature.
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Nanowires, when used in conjunction with other nonvolatile memory elements, have great
potential to emulate biologically plausible topology and connectivity [126].

A single nanowire in its simplest form shows nonvolatile memristive nature due to
the formation of metallic filaments across an insulating shell layer. The electrochemical
interaction between nanowires exhibits storage functionality. In a recent work [134], au-
thors demonstrate Ag-SiO2 nanowire networks in a bottom-up approach that can reweight
and rewrite. At a nanowire cross point, the application of electrochemical potential dif-
fuses Ag+ ions in the insulating shell layer to form a conductive bridge. This process
of formation/rupture is utilized as reweighting. Further, the nanogap developed due to
the breakdown of electromigration effects can potentially act as sub memristive elements
rewiring to implement plasticity. In [135], Li et al. demonstrate the biological phenomenon
of winner-take-all conductivity pathway creation based on memristive interactions. Ag
nanowires with TiO2 coating were studied for pathway formation using the lock-in ther-
mography (LIT) technique [136]. Triangular pulses at one of the metal electrodes produced
current hysteresis, with a switching accordant LRS and HRS states where LRS is the for-
mation of at least one pathway of a nanowire-nanowire junction. However, the power
dissipation observed in LIT is due to Joule heating or internal heating of the device. These
architectures have also proven to be effective in unconventional computing paradigms like
Reservoir computing.

3. Emerging Materials for NVM Devices
3.1. Polymer

Polymers are long-chain molecules with repetitive units. They can be classified
as one-dimensional materials with mechanical flexibility, chemical sensitivity, and bio-
compatibility properties. A polymer could be made of inorganic or organic materials.
In [137] by Zhao et al., a flexible wearable memristor is designed with ammonium polyphos-
phate (APP) in a stack of Au/APP/ITO. The I-V characteristics indicated ion migration
in the APP responsible for the memristive behavior for bidirectional voltage sweeps. The
proposed structure has shown stable function even in harsh humid, thermal, or radia-
tion environments.

However, there has been a lot of work conducted in the field of organic semicon-
ductors (OSC) for neuromorphic application. The two-terminal OSCs can utilize filament
formation, charge trapping, and ion migration to facilitate the integration into ReRAM,
PCM, or FeRAM. In [138], Fuller et al. demonstrate a polymer-based redox transistor inte-
grated with CBRAM synaptic device whose conductance change is initiated by reversible
electrochemical reactions. Furthermore, the authors demonstrate an array of 1024 × 1024
organic polymer memristors arranged for simulation of performance characteristics.

Speed and density are the fundamental challenges for OSCs. Speed of OSC is affected
due to low mobilities of carriers and defects [126]. Incompatibility of OSCs with many
solvents limit the patterning of these devices through photolithography, restricting the
fabrication of dense networks.

3.2. 2D Materials

Over the past decade, fundamental research in 2D materials has been extensively
investigated. The 2D materials, known for their inter-layer weak van der Waals forces,
maintain a stable mono-layer structure with unique chemical and physical properties useful
for synaptic simulation. In [139], Haigh et al. show that 2D synapses can exhibit high
switching speed at low operating voltages due to their ability to achieve high mobility.
Another distinctive feature of 2D material synaptic devices is the change in electrical,
photonic, and electrochemical properties [140]. In [141], Shi et al. demonstrate STP and
LTP characteristics using CBRAM-based h-BN memristor. Weight update is controlled by
the formation and deformation of the conductive filament by the migration of ions between
Cu or Ag electrodes. The h-BN shows boron vacancies that stimulate resistance changes.
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In [142], Wang et al. show that intrinsic defects that can be modified as MoS2 sul-
fur vacancies are occupied by externally introduced Oxygen atoms leading to resistance
variations. In [143], authors demonstrate STDP characteristics at 0.1–0.2 V voltage using
bilayer MoS2 vertical memristors. Apart from CBRAM, 2D materials have been integrated
as PCM 2-terminal synaptic elements, which have the advantage of better reliability. In
TMD materials, MoTe2 presents amorphous to crystalline phase transition stimulated by
electric field [144]. Further device engineering to the device stack could facilitate multilevel
programming resistance. However, a 3-terminal device with gate and channel as presynap-
tic and postsynaptic input shows better stability and efficient channel conductance control.
In [145], Chen et al. show that a synapse made of graphene and a ferroelectric insulator
(polyvinylidene fluoride, i.e., PVDF) can mimic the synaptic behavior as a FeFET device.
Carrier concentration in graphene is manipulated by the changing polarization state of
the ferroelectric material. Increasing the gate voltage more than the threshold voltage
instigates the polarization shift. Also, Li+ ion gated synaptic transistors [146] and other
heterosynaptic plasticity implementations can be investigated in the future [146–148].

3.3. Quantum Dot

Quantum dots (QD) are zero-dimensional memristors. Semiconducting quantum
dots are small particles with well-defined energy levels that show electrical and optical
properties based on quantum mechanics. The operation of QD as a memristor is based
on Josephson junctions. The phase difference between quasi-particles is used as a state
variable [149]. Here, a memristor is implemented as a hybrid structure with QDs. In [150],
Lv et al. show that RRAM devices with their insulator replaced by QD-film can be switched
when an external stimulus. QD-RRAMs exhibit ion migration, charge trapping, or redox
reaction, which catalysis its memristive nature. In [151], Qi et al. demonstrate fabricating
RRAM using Carbon QD for use as a LED. In [152], Roychowdhury et al. demonstrate
quantum neuromorphic computing with QD arrays. There are a lot of potential opportuni-
ties that are yet to be explored. Some of the macro-scale implementations are discussed
in Section 4.

3.4. Carbon Nanotube

A Carbon Nanotube (CNT) is a cylindrical rolled up, often single-walled carbon in
a tube shape of nanometer diameter. Due to their achiral bonds, they exhibit metallic or
semiconducting nature. These belong to the class of one-dimensional materials that have
structural resemblance to axons. Semiconducting CNTs with their high charge mobility can
be used as conducting channels in FET. CNTFET is a CNT replacing semiconductor channel
between the source and drain. However, a Schottky barrier formed at the metal-CNT
interface is alleviated with voltage application. The contact between CNTs defines the
ON/OFF state of memory cells.

In [153] by Feldmann et al., the gate and source of the single-walled CNT matrix
network are connected to presynaptic and integrate-and-fire (IF) postsynaptic neurons,
respectively. Varying voltage pulses at pre and post-neuron control the channel conductance
to store synaptic weights. If the output reaches a threshold value, all the postsynaptic
neuron spikes are accumulated to fire back the CNT. Correlated gate and source voltage
could change the channel conductance to determine the sign and magnitude of weight
update for an STDP implementation. In [154], Kim et al. report excitatory and inhibitory
neuron models using p-type CNTFET, where the neurons display STP accumulative current.
Nevertheless, the highly lateral geometry of CNTFETs is not viable for larger integration.
Thus, CNT TFTs have been a popular alternative for the same.

4. Large-Scale SNN Architectures with NVMs

The human brain is made up of billions of neurons, and tens of billions of synaptic con-
nections [155] contained in two liters of volume. The problem of scaling to a large number
of synapses and neurons requires fundamentally new architectures, and this has already
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been attempted with traditional digital technologies [30,32,33,156]. On the other hand,
NVMs devices are nanoscale and ultra-low-power devices performing in-memory comput-
ing. They are a viable solution for creating highly-integrated 3D structures with a small
chip footprint and low energy. Thus, they are a perfect candidate for building brain-like
computing systems. Nevertheless, the potential challenges in making 3D architectures pos-
sible are (i) the need for novel interface logic, (ii) fabrication techniques capable of reliably
integrating a large nanoscales NVM arrays, (iii) the realization of high-resistive materials
capable of operating at low-voltage, and (iv) new selector devices that can automatically
adjust according to the endurance, temperature, or drift of the device properties.

Recently, in [157], Wang et al. demonstrate a high density 3D synaptic architecture
with Ta/TaOx/TiO2/Ti RRAM synaptic devices with ultra-low energy. The devices emu-
late potentiate and depression characteristics for a double layer V-RRAM stacked in a 3D
orientation. The scaled conductance and hence current are much lower than the 2D equiva-
lent. The energy consumption reported is lower than a biological synapse (<10 fJ/spike).
In [158], the authors demonstrate a fully integrated chip with RRAM storage, CNFET-based
integrated circuit, and monolithic 3D integration of vertical layers of CNFET and RRAM.
The architecture supports on-chip data capture, storage, and processing. In Figure 5A–C,
we illustrate how a biological neuron is modeled with NVMs and integrated into a crossbar
architecture (see, for example, [159]). Finally, in Figure 5D, we illustrate a 3D integration
of NVMs in a chip. In Figure 5E,F, workings of a crossbar architecture and top level 2D
neuromorphic chip are represented.

Figure 5. NVM architectures. (A) Biological neuron. (B) Spiking neural network with spike-based
learning implemented through NVMs. (C) Crossbar array for spiking neural network. Neuron and
dynamic synapse circuits can be integrated into CMOS as in [160]. (D) Three-dimensional spiking
neural network obtained stacking 2D synaptic arrays. (E) Multiplication matrix G is mapped onto
NVM crossbar array. Input multiplication vector is defined in the analog domain by voltage vector.
The output is the current vector, which represents the vector-matrix product. (F) SNN implemented
with NVM crossbars that are connected through a time multiplexed interconnect network in a
neuromorphic hardware architecture.

Although a lot of work has been carried out to integrate RRAM in 3D architectures, its
challenge to avoid sneak path currents persists, which can be addressed by adding selector
circuits with a highly nonlinear I-V capable of generating low leakage current [126]. In
addition, researchers have been proposing devices Superlinear Threshold selector devices
that include Mixed-Ionic-Electronic-Conduction (MIEC) based selector and Cu BEOL, com-
patible selector [161]. In Cu doped HfO2 material, the tunneling layer helps in reducing
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the leakage current. The design has also shown high endurance capability. In [162], Es-
manhotto et al. use multi-level programming on 3D integrated 1T-1R RRAM, exploring the
opportunity of conductance relaxation to represent multiple bits. Commercial products of
PCM have been proposed to facilitate large-scale integration [163]. Inherently, low power
consuming STT-MRAM is an attractive choice for dense networks. In [164] by Yang et al.,
a pMTJ in 1S-1R configuration is proposed to achieve a 3D cross-point architecture of
STT-MRAM architecture. The suggested selector with bidirectional threshold switching
capability suppresses leakage current while providing sufficient ON current to turn on the
synaptic elements.

Just like the work of [157], utilizing the benefit of hybrid architectures has made large-
scale integration feasible. In [165] by Choi et al., a vertical organic synapse was proposed
to feature a remote weight update implemented on a 3D crossbar array. However, many
polymer OECT FETs have shown the behavior of a biological spiking synapse. In [166], Al-
ibart et al. demonstrate the use of nanoparticle-organic hybrid device NOMFET to exhibit
charge storage capability. In [167] by Kim et al., a semiconducting CNT channel along
with an embedded floating gate is availed as a synaptic element. The channel conductance
modulation in the floating gate is controlled with the additional CNT storage. Further,
the design is more suitable to be integrated into flexible electronics because of CNT’s high
flexibility. PCMs with their strong optical properties can be used as nonlinear photonic
elements, but the speed of operation might have to increase to photonics modulation
speeds [126].

5. SNN Edge Computing Architectures with NVMs

Emerging memory technologies and spiking neural networks are key enabling tech-
nologies in edge and extreme edge scenarios. These scenarios include tiny robotics, mobile
devices, brain–machine interfaces, and biomedical signal processing with insertable and
wearable devices that require ultra-low-power, high-density, and high throughput mi-
crochips. In this direction, the very recent work presented in [168] demonstrates a brain
interface for spike sorting applications based on a high-density CuOx resistive crossbar that
can perform in-memory spike sorting with ultra-low-power performances. The authors
propose a template matching-based spike sorting algorithm that can be directly mapped
onto an RRAM crossbar followed by a single layer of spiking neurons. This work shows
the possibility of 3-D back-end-of-line (BEOL) integration with CMOS circuits to achieve
extremely high throughput and efficient systems in scenarios that provide significant area,
power, latency, and energy benefits.

In another recent work [160], a novel hardware calibrated learning rule for compensat-
ing heterogeneity in analog RRAM-based SSN crossbar has been presented. The authors
demonstrate that by taking into account the measured heterogeneity characteristics during
the off-chip learning phase, the hardware calibration SNN self-corrects its hardware non-
idealities and solves benchmark temporal tasks such as ElectroCardioGram (ECG) audio
classification with high accuracy and low energy.

In [169], Songdtco et al. propose a design technology co-optimization for RRAM-based
neuromorphic computing for embedded and edge computing scenarios. Here, the authors
show that the latency variation within crossbar hardware increases with technology scaling.
This is due to the increase in the bitline and wordline parasitics. Latency variations lead to
accuracy loss due to an increase in the inter-spike interval. However, technology scaling
also offers benefits such as high integration density and lower power consumption. Authors
show that by efficiently mapping neurons and synapses to the hardware while incorporat-
ing latency variations and by power-gating unused resources of a crossbar, the negative
impacts of technology scaling could be mitigated. The authors show a significant increase
in the classification accuracy using such neuron and synapse mapping strategies.

Similarly, in [82] Titirsha et al. propose a technique to improve the endurance of
large PCM-based crossbar hardware. As the bit line and worldliness become longer, para-
sitic voltage drop increases the endurance. In the proposed technique, machine learning
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workloads map to memristors considering the endurance of the cell and the activation of
neurons. In the work [170], the impact of resistance drifts during unsupervised learning on
a PCM synapse. As discussed in Section 2, there has been a lot of research on mitigating
the drift effect. However, these parameters were extracted from experiments and incorpo-
rated into the training model for solving the classification problem of handwritten digit
recognition MNIST.

In another work [171] by Nomura et al., the authors conduct a simulation analysis to
determine the effect of the number of conductance steps and process parameters on the
PCM-based Restricted Boltzmann machine (RBM). Although PCM devices can achieve
gradual SET operation, the RESET operation is difficult to control. Thus, the authors
propose PCM-refresh, a method to update weight variation. Each synaptic weight is repre-
sented with two PCM devices corresponding to positive and negative conductance states.
The resultant weight is the difference between both devices. It is observed that at least
one-tenth of the conductance update must be accounted for to achieve comparable accuracy.

Apart from the most established PCM and RRAM architectures, in a recent work [172],
Wang et al. implement two-layer fully connected spiking neural networks on binary MRAM
synapses. Considering a sparse network, a simple peripheral interface is designed. Further,
the weights are quantized to 8-bit width with a leaky integrate-and-fire neuron model.
The design is learning compatible with low-cost hardware implementation. However, its
performance metrics for MNIST dataset are not the best.

In [173], Jang et al. propose a stochastic multi-bit spin-orbit torque (SOT) MRAM-
based crossbar array. The crossbar is further developed to form a complete Spiking neural
network (SNN) hardware processor. One of the unique features of this implementation
is the use of the Accumulative Spike technique. Compared to the conventional operation
of accumulation of sparse presynaptic spikes at one instance, several presynaptic spikes
from consecutive time steps are accumulated and processed in the crossbar array in the
Accumulative Spike technique. Thus, improving the ADC utilization and reduced neuron
updates. This architecture is compatible with both training and inference.

Further in Fang et al.’s work [174], a generalized Swarm Intelligence model on a
spiking neural network is demonstrated in a 1T-1R FeFET-based neuron array. The network
represents the agents in the swarm that is encoded as spiking inputs with a FeFET oscillator
circuit. The oscillators are both inhibitory and excitatory. The inhibitory input is a winner-
takes-all network that can mimic the path planning of ants more naturally. The neuron
circuit design is compact and energy-efficient, showing promising potential for Swarm
Intelligence on SNN.

6. Discussion and Conclusions

NVMs and SNNs can impact many application domains, given their assets and at-
tributes (see Figure 6). The primitives’ attributes are compatible with biological computa-
tion. Still, they are not entirely found in modern hardware systems and with the same level
of maturity as in the brain. NVMs and SNN can potentially bridge this gap by providing
bio-inspired attributes to artificial intelligent systems.

Table 1 summarizes the read latency, write latency, and write endurance of different
NVMs. PCM has come a long way, with enhancements in the high-volume memory
domain, but there are delays in progress towards a higher endurance. One of the ways to
address this is to engineer a PCM photonic device that employs its easy CMOS integration
and builds on limited endurance PCM memristors. Although the inexpensive nature of
PCM devices has brought them close to commercialization, their nonlinear accumulative
behavior persists. CBRAM is the only emerging NVM that manifests the write speed as
low as photonic devices of 1us with ultra-low power consumption. Suppose the cross-talk
interference between adjacent memory cells in a crossbar is managed. In this case, CBRAM
will be compatible with high-density silicon technologies.
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Figure 6. Nonvolatile memories attributes, assets and application potentials.

Table 1. Read latency, write latency, and write endurance of different NVMs.

Read Latency Write Latency Write Endurance

PCM ≈12 ns [129] ≈100 ns [129] ≈109 [129]
RRAM ≈10 ns [175] ≈10 ns [175] ≈1012 [129]

CBRAM ≈30 ns [176] ≈15 ns–1 µs [176] ≈108 [176]
MRAM ≈2.5 ns [177] ≈7.1 ns [177] ≈1012 [177]
FeFET ≈40 ns [129] ≈65 ns [129] ≈1014 [129]

CNTFET ≈100 ns [126] ≈100 ns [126] ≈107 [126]

Write speed close to what CBRAM can achieve is provided by FeFET devices with long
endurance cycles. However, as discussed earlier, its destructive read cycle could potentially
provide loss of information. Thus, ferroelectric-based circuits still have to be investigated.
Spintronic-based MRAM technology has the ability to have almost infinite endurance at
the proportional speed of an SRAM. The energy consumed per bit is much lower in MRAM
NVM. A profuse amount of work has been conducted over the last decade on RRAM,
but one of its drawbacks is its low reliability. This is evident from its finite data retention
after repeated program/erase cycles. Although sneak path problems for RRAM crossbars
have been extensively worked on, the need for architecture design enabling learning in
biologically plausible function lasts. Nanowire-based 2 or 3 terminal RRAM could alleviate
these issues with the addendum requirement of complex multiple interconnected network
dynamics. Similarly, polymer technology has to be evolved in terms of its speed and density.
But polymer merged PCM or RRAM devices have better scalability at a low cost. Currently,
2D materials seem attractive for in-sensor and in-memory computing with advancements
in wafer-scale processing.

In general, NVMs can be used to enable massively parallel and distributed neuromor-
phic computing systems. However, there is still the need to design scalable, global learning
architectures that can harness local spike-time-dependent plasticity rules for interesting
computational tasks. Another critical aspect of neural-inspired computing systems is the
sparsity of the activity, and NVMs architectures should harness such sparsity to reduce
power consumption.

Today, compute-in-memory and near-memory computing that supports STDP learn-
ing still have to demonstrate competitive performance against state-of-the-art approaches
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in deep learning, and a better understanding of bio-inspired models of computation is still
needed to unlock the potential of neuromorphic computing systems fully. Although some
interesting preliminary demonstrations on image recognition [178] and biomedical tempo-
ral signal analysis [168] have been performed in NVMs spike-based neuromorphic systems.
We are still missing fundamental understanding in creating a general architecture that
can support learning. Such architecture should demonstrate accurate performance, ex-
ceeding traditional deep learning methods, but with a fraction of the energy, on nontrivial
large-scale problems, such as natural language processing or vision-based benchmarks.
Without such an understanding at both the algorithmic and architectural level, many neu-
romorphic systems are being benchmarked with the measure of power per spike (e.g.,
pJ per synaptic operation), even if it is unclear how many spikes are needed to perform
a specific task. Additionally, it is unlikely that mean-rate models of spiking neural net-
works will bring substantial benefits in terms of energy, as they require a high number of
spikes to achieve high-numerical value precision. Nevertheless, spike sparsity and a single
spike encoding strategies, such as inter-spike-interval coding [179], time-to-first-spike [180],
or time-delay coding [181], hold great potential in reducing the communication and the
energy of neural-inspired information processing systems. Today, the state-of-the-art SNN
models demonstrate competitive performance on small-scale benchmarks with recurrent
spiking neural networks and spiking convolutional models, approaching or exceeding
traditional deep learning networks with a similar number of parameters but with a fraction
of required operations [8]. These recent achievements open opportunities for designing
novel architectures that can best exploit sparsity as one of the crucial ingredients necessary
in achieving low-power performances.

On the other hand, traditional deep learning neural networks with supervised, self-
supervised error backpropagation are already being applied in real-world applications in
the context of speech recognition, recommendation systems, self-driving cars, autonomous
drones, and other emerging applications. These algorithms require the execution of large
multiply-accumulate operations in the form of vector-matrix multiplication, and because of
the limitation of traditional compute architectures, their power performance doesn’t scale
well with the complexity of the models. Fortunately, NVMs can potentially impact tradi-
tional deep learning accelerators by providing in-memory computing abilities. In fact, their
conductance pairs can be used to represent the weight values, and multiply-accumulate
operations can be carried out in the analog domain. Analog implementation of matrix-
vector-multiplications is an interesting direction currently being explored with traditional
CMOS processes for enabling power-efficient deep learning accelerators [182,183]. These
accelerators can also potentially benefit from NVMs as well. However, there is still the
need to demonstrate these advantages in actual hardware systems at the scale at which
they are useful, demonstrating clear advantages over traditional deep learning models.
Additionally, integrating NVMs in traditional hardware will require the creation of novel
self-calibrating and self-learning mechanisms capable of compensating for internal and
external disturbances, such as drifts over time, endurance problems, noise, and variability.

Currenly, much research is devoted to fabricating ideal NVMs. In contrast to conven-
tional data storage systems, device history is a fundamental property exploited for learning
and programmability. And even if neuromorphic systems have shown to support and em-
brace device variability and nonidealities, they still fail to fully benefit from asymmetry and
nonlinearities of conductance responses. For these reasons, an ideal NVM device should
provide an almost linear response over most of its conductance, and each programming
pulse should only marginally change its conductance response of only a small portion of
the linear regime. Still, we miss a basic algorithmic understanding of exploiting variability
and inhomogeneity in the computing substrate. Such properties seem to be present in any
neural system suggesting that nature has solved these problems. Nevertheless, today, much
research is devoted to trying to solve the issues of of linearity and programmability without
suffering from some kind of side effect, while little is being done to try to cope with these
nonidealities at the algorithmic level. For example, CBRAM devices offer a large dynamic
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range. However, the filament process is abrupt and discontinuous. The filament RRAM
also suffers from a lower dynamic range and abrupt programming. As binary devices
or stochastic elements can indeed be integrated with neuromorphic systems, it is still
unclear what models of computation compensate for these stochasticities. Concerning the
symmetry of responses, RRAM offers bidirectional changes. Still, these are often nonlinear
and hardly scale to low voltages for extreme low-power operations.

Finally, the implementation of the physical properties of synapses and neurons with
NVM devices seems to be beneficial not only for neuromorphic devices but also for in-
memory and near-memory applications. In such scenarios, what is really required from
the research community is a compelling demonstration that can showcase the energy,
speed, cost, density, or other advantages for such systems that justify the costly process of
developing new semiconductor processes at a scale compatible with CMOS technology.

Even if many problems related to the device, circuit, system, architecture, and compu-
tational modeling remain to be solved with new knowledge, the application and research
of NVMs for neuromorphic computing devices continue to produce attractive solutions
for bio-inspired models of computations. These models require massive parallelism, in-
memory, close to memory computing abilities, and distributed information processing
strategies such as online learning and adaptation while processing enormous data. NVM
devices are expected to contribute to the emerging field of modern computing and will
remain an active research direction for decades.
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