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Cover description

We built a dataset out of 1333 publicly available technical documents, amongst which 128 PhD theses from diferent
universities. From each of these PDFs, 17 features were extracted (e.g., number of words and images, average
numbers of words per paragraph and paragraphs per page). Based on this data, we trained a large Random Forest
classifer to predict whether a PDF document is a PhD thesis, or another type of document.

We then asked this complex model to predict whether the dissertation you are currently reading is, in fact, a PhD
thesis. It turns out it is! But why does the model expect it to be a thesis? To fnd out, we used our own LEMON
explanation technique to generate an explanation of this model. T e three mostimportant features for the prediction
are displayed on the front of the cover.
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4 Machine Learning

11 Machine Learning

achine learning is the study and practice of using “algorithms that improve their per-

formance at some task through experience” [142]. More specifcally, it enables algo-
rithms to learn from data and to generalize this knowledge to unseen cases to make pre-
dictions and infer actions. It is a subcategory of Artifcial Intelligence (Al), which more
generally refers to any intelligent behavior demonstrated by machines.

Machine learning has frmly established itself as a valuable and ubiquitous technique in com-
mercial applications. It enables businesses to make sense of their data and make predictions
about future events. As the collection of data continues to expand, the market demand for
machine learning solutions increases as well.

In the process of making models perform better, the complexity and size of approaches keeps
increasing. T ese models are usually applied in a black-box manner: only the input (data)
and output (predictions) are considered, and the inner workings are deemed too complex
to understand (illustrated in Figure 1.1). Tis is not necessarily a problem: for certain use
cases such as voice recognition, knowing just the predictions is sufcient as there are usually
no signifcant consequences when we make incorrect predictions. However, for cases like
fraud detection [13, 49], medical diagnosis [28, 113] or bankruptcy prediction [195], this
lack of transparency of a model can be a major drawback, as those predictions have a critical
impact on real people. Even Lthe model scores well on a test set, it could be based on biases,
spurious correlations, and false generalizations [88].

Figure 1.1: Modern machine learning models are used as black-boxes: only the input and output are
considered. We provide explanations (marked in blue) to enable the expert to understand these models.

1.2 Explainable Al

Te feld of eXplainable Artifcial Intelligence (Explainable Al or XAl) aims to support un-
derstanding complex machine learning models [80]. Such understanding can enable data
scientists to G L D J @ydRlehkd with their model and U H &® imodel to improve its per-
formance. In addition, it helps domain experts to support GHF LV L R @dPtD MIXQ/IV L I\
decisions to subjects and regulators. In recent years, various techniques have been proposed

to open up the black box of machine learning. While these are presented as simple of-
the-shelf techniques, there are many decisions involved in creating explanations. Because
interpretability is an inherently subjective concept (i.e., it depends on the knowledge and
preference of the explainee, and context of the problem), it remains challenging to defne

what a good explanation is and thus to make the right choices for generating explanations.
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T ere are two main approaches to explainable Al. Te frstisto J O R Expl@rCa\machine
learning model and how it works in its entirety. T is is very challenging since explanations
are typically only required when models are so complex that they cannot be interpreted di-
rectly. Hence, for an efective global explanation, we either need to signifcantly reduce the
complexity (which may oversimplify the explanation and be misleading); or we have to pick
one specifc aspect to explain, and omit all other aspects for the sake of brevity. T e second
approach is to consider only a small part of the reference model, and explain only that part.
Typically such O Rdx@a@ations are concerned with individual predictions, and hence also
referred to as instance-level explanations. Since only the decisions related to a single predic-
tion need to be considered, a large part of the model can efectively be ignored. T is enables
explanations that are both simple, and accurately describe the behavior of the original model.

While these two perspectives cover the majority of existing approaches, we argue that in
between local and global explanation lies a continuous scale. We can provide local expla-
nations, but provide context with details about the global behavior, or explain the model
behavior for clusters in the dataset instead of for single cases. Hence, in this dissertation we
explore machine learning explanation from all these diferent (and ofen complementary)
perspectives.

1.3 Motivation

As discussed, it is crucial that we are able to keep machine learning models up to scrutiny.
Tisis particularly important in high-impact domains such as fraud detection, medical diag-
nosis and bankruptcy prediction, where the decisions made using machine learning impact
the lives of real people. To address this, XAl techniques aim to support understanding com-
plex machine learning models, but they ofen focus on a single perspective (i.e., local or
global). Furthermore, it remains challenging to defne what a good explanation is, because
interpretability is an inherently subjective concept. T is makes it difFcult to make the right
choices for generating explanations. Prior work has shown explanations can be misleading
if not properly confgured and applied [71, 83, 115].

Tere are many stakeholders involved in interpreting machine learning models, but in our
work we chose to focus specifcally on data scientists (i.e., model developers) who collab-
orate closely with domain experts. T ese stakeholders are uniquely equipped to assert the
relevancy and suitability of explanations in the application domain, and also to determine
whether the explanation is technically sound. Although the domain expert is ofen the f-
nal decision maker who needs to beneft from machine learning explanations, current tech-
niques are not reliable enough to apply without verifcation, which requires a technical un-
derstanding of the model and explanation technique (typically exclusive to data scientists).

Interactive visualization provides an excellent opportunity to involve data scientists in the
process of explanation; to empower them to understand machine learning models to diag-
nose and refne models; and to ensure explanations are sound such that they can be used
for decision making and justifcation. To develop new methods that work in practice, close
collaboration with representatives of the envisioned target audience is very important. To
this end, we collaborated with Achmea: a large insurance company in the Netherlands. Dis-
cussions with six data science teams at the company guided our choice of projects, and each
of those projects was evaluated in practice through use cases at the company.
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1.4 Objective
T e main research question addressed in this dissertation is as follows:

+RZFDQZHVXSSRUWGDWD VFLHQWLVWV WRLOQWHUSUHW I
FRPELQDWLRQRIQHZLQWHUDFWLYH YLVXDOL]DWLR

To answer the research question, we use an experimental approach where we design visual
analytics solutions based on hypotheses and observations we made from both the data and
discussions with data scientists at Achmea.

Tis dissertation focuses on interactive visualization as the main approach to explain ma-
chine learning models from various perspectives. In addition to visualization, there are other
aspects of explanations that need to be considered carefully: getting machine learning ex-
planation right requires an interdisciplinary approach. Hence, this thesis includes several
contributions to other felds: human-computer interaction to characterize the mental model
of explanations by experts, an algorithmic contribution to increase faithfulness and stabil-
ity of explanation techniques, and a sofware engineering contribution to make our results
available to as many data scientists as possible.

1.5 Outline & Contributions

In this dissertation, we approach the research question from diferent perspectives, rang-
ing from O R é&plaDation of single predictions to J O Refpl@tion of the entire model.
Figure 1.2 provides an overview of how each perspective is addressed by the chapters.

Chapter 2 provides an overview of interactive visualization techniques for interpretable ma-
chine learning. We emphasize the need for explanations, discuss relevant stakeholders, ap-
plication areas, and available techniques. Next, we introduce the felds of visualization and
visual analytics, and discuss previous work in these areas to enable interpreting machine
learning models.

Chapters 3 to 8 contain the main contributions of this dissertation. Chapter 3 presents Ex-
plainExplore: an interactive explanation system to explore explanations of individual pre-
dictions (i.e., local). For each explanation, it provides context by presenting similar predic-
tions, and showing the impact of small input perturbations. We recognize many diferent
explanations may exist that are all equally valid and useful using traditional evaluation meth-
ods. Hence, we leverage the domain knowledge of the data scientist to determine which of
these Tt their preference. In a use case with data scientists from the debtor management de-
partment at Achmea, we show the participants could efectively use explanations to diagnose
a model and fnd problems, identify areas where the model can be improved, and support
their everyday decision-making process. To ensure these contributions can be broadly ap-
plied, we introduce a sofware library in Chapter 4 that enables interoperability with a wide
range of diferent languages, toolkits, and enterprise sofware using PMML.

Next, in Chapter 5 we propose the Contribution-Value plot as a new elementary building
block for interpretability visualization, showing how feature contribution changes for dif-
ferent feature values. It provides a perspective in between local and global, as the model
behavior is shown for all instances, but visualized on a per-feature basis. In a quantitative
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online survey with 22 machine learning professionals and visualization experts, we show our
visualization increases correctness and confdence and reduces the time needed to obtain an
insight compared to previous techniques. T is work highlighted that a small diference in
feature importance techniques can result in a large diference in interpretation, and war-
ranted a follow-up human-computer interaction (HCI) contribution described in Chapter 6
to characterize the data scientists’ mental model of explanations, and explore the diferences
between existing techniques.

Finally, in Chapter 7 we introduce StrategyAtlas: a visual analytics approach to enable a
global understanding of complex machine learning models through the identifcation and
interpretation of diferent model strategies. T ese model strategies are identifed in our
projection-based StrategyMap visualization. Data scientists are enabled to ascertain the va-
lidity of these strategies through analyzing feature values and contributions using heat maps,
density plots, and decision tree abstractions. In collaboration with Achmea, we applied the
system in a real-world project for automatic insurance acceptance. T is showed that profes-
sional data scientists were able to understand a complex model and improve the production
model based on these insights. As computing the local feature importance values for an
entire dataset is computationally expensive, we complement this work with an algorithmic
contribution in Chapter 8 called LEMON to improve the faithfulness of explanation results,
which enables us to signifcantly speed up computations of StrategyMap projections.

Figure 1.2: Outline of the chapter contributions to the research question. While each chapter mainly
focuses on one perspective, some works contain elements related to multiple perspectives. Each of the
three main works is accompanied by a complementary contribution outside the field of visualization.
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1.6 Publications

All chapters in this dissertation are self-contained and are based on the following research
publications (ordered by chapter):

« $SPMMBSJT % B O EXM&nexBIdrk Visual exploration of machine learning expla-
nations. In 3BURFHHGLQJV RI WKH ,((( 3BDFL&F 9LV X2, DWLRQ
IEEE, pp. 26-35 [45].
Tis publication serves as core material for Chapter 3.

e $P M M B Ssklgarriomml-model: Machine learning portability and interoperability using
PMML. 6 XEPLWWH G | RA023) X Bi@ry &vidabéaR#y /+.“CC"$/#0 * *(C$ ( * C
L&' -)8+(('8(* '[43].

T is publication serves as core material for Chapter 4.

e $SPMMBSJT % B O BVALEM I&dring interptetability through contribution-value

plots. In S3URFHHGLQJV RIWKH WK, QWHUQDWLRQDO 6\PSRVLXP |
DQG ,QW K020 YL R®FTU 4IPSU 1B)afdS "XBSE

$PMMBSJT % B O EowRratigedwluation ef contribution-value plots for machine

learning understanding. -RXU QD O R 9L VX(B02p), #B-5Y [4R.Q
T ese two publications serve as core material for Chapter 5.

e $PMMBSJT % 8FFSUT ) .JFEFNB % WBO 8Chéfacteriziig BOE 1F
data scientists’ mental models of local feature importance. 6 XEPLWWHG | R2023)§5B]O L FD W L
Tis publication serves as core material for Chapter 6.

e $SPMMBSJT % B O E MWak@yARIdKStrategy #nalysis for machine learning inter-
pretability. ,((( 7UDQVDFWLRQV RQ 9LVXDOL]DO20X)HMB].DQG &RPSXWH
T is publication serves as core material for Chapter 7.

e $SPMMBSJT % (BKBOF 1 +PSSJUTNB + WBBVONKAIter + BOI
native sampling for more faithful explanation through local surrogate models. 6 XEPLWWHG IR

S X E O LR@MER Q

T is publication serves as core material for Chapter 8.

On the website #//+.“CC 3+' $)$)" more information can be found about our vi-
sualization contributions, including showcase videos, conference presentations and online
interactive demos.


https://github.com/iamDecode/sklearn-pmml-model
https://github.com/iamDecode/sklearn-pmml-model
https://explaining.ml
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2.1 Why: the need for explanation in machine learning

W ith the availability of large amounts of data, machine learning is getting more and more
relevant. It enables us to make sense of our data and to make predictions about new
unseen data for applications in for instance healthcare, business and government. However,
it is ofen hard to trust and understand the predictions made, as modern machine learning
techniques are usually applied in a black-box manner: only the input (data) and output (pre-
dictions) are considered; the inner workings of these models are considered too complex to
understand (as shown in Figure 1.1).

Without understanding a model properly, there are several problems that can occur in the
data science pipeline that may go unnoticed (summarized in Figure 2.1).

® ML may be trained on unrepresentative data. For instance, it could be based on bi-
ases, spurious correlations, and false generalizations [88]. As an example, recent work
has shown that the accuracy of commercial gender classifcation on dark-skinned fe-
males is signifcantly worse than on any other group. T is discrepancy was found to
be largely due to unrepresentative training datasets and imbalanced test benchmarks
[23].

ML may be using inadequate features. T ere may be sufcient and representative
data available, but the model could use this data in unexpected ways. Machine learning
is only able to ascertain correlation amongst features, and is not able to nd causal
relationships. T is is demonstrated in the wolf-husky problem introduced by Ribeiro
etal. [160]. T e authors show an example of a husky and wolf classifer, that turns out
to detect the type of animal based on snow in the background of an image, instead of
looking at the animal itself.

® ML may have the wrong objective. Even if the model scores well on a test set with
any of the many performance metrics available (e.g., accuracy, precision, recall, K),
it may still be trained to optimize the wrong objective, like trying to match doubtful
labels. Consider a fraud detection model in insurance. Since no ground truth infor-
mation is available about which insurance policies are fraudulent, models are typically
trained with labels from human fraud experts. In such a scenario, the machine may
adopt any biases the fraud experts may have, explicit or implicit. In addition, this
model can only be expected to match the human performance, not exceed it.

ML may not be robust against concept drift. T e test set generalization during
development may not match with future unseen data. T is problem was the reason for
the failure of the Google Flu Trends model [24], which showed promising results, but
failed to predict fu trends in practice. T is problem is very predominant in adversarial
domains (e.g., spam detection, fraud detection).

® ML may be subject to adversarial attacks. T ere isasurge of recent works showing
that models may be vulnerable to adversarial attacks. For instance, authors have shown
that a small perturbation in the input (e.g., a single pixel in an image or imperceptible
noise) can lead to unexpected, extreme changes in the output, ofen leading to absurd
or incorrect predictions [16, 147].
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Figure 2.1: There are several problems that can occur in the data science pipeline that may go unnoticed
without a proper understanding of the behavior of a machine learning model.

2.2 When: historical context

Te feld of Explainable Al aims to address previously mentioned problems by supporting
the understanding of complex machine learning models.

Lentetal. [187] are ofen attributed as the Frst to use the term XAl in 2004. In their work, it

describes the ability of the system to explain the behavior of Al entities acting in a simulation

game. However, there has been occasional interest in explanations of intelligent systems

since the mid-1970s [29], beginning with a focus on expert systems [143, 183, 188]. A decade

later, Andrews et al. [6] proposed an explanation technique for neural networks using rule

extraction, and Domingos [57] showed a technique to create a global surrogate model as

a comprehensible alternative to complex multiple model approaches, and argued f,1 LW LV WR
TXDOLI\DVNQRZOHGJH D OHDUQHUdV RXWSXW VKRXOG EHDF

XAl was popularized by the surge of new and complex machine learning models (e.g., deep
learning). In pursuit of ever more accurate predictions, these models became ever more
complex, large, and opaque. At the same time, more experts started raising questions about
the trustworthiness of models, especially in high-stakes decision-making [67, 107].

In 2017, DARPA (the Defence Advanced Research Project Agency) launched its XAl pro-
gram [79, 80] to develop new explanation techniques to make artifcial intelligence systems
explainable. T e project funded 11 research projects from various academic institutions, and
further promoted the popularity of the feld.
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Furthermore, in 2018 the European Parliament enacted the General Data Protection Regu-
lation (GDPR). Article 13 and 22 of that law describe the “right to explanation” [74], which
entitles any subject to request a “meaningful explanations of the logic involved” when auto-
mated decision-making without human supervision takes place. T e scope of these clauses is
still actively debated, but experts agree that the need for XAl is urgent and that it represents
a huge open scientifc challenge [78].

2.3 Who: stakeholders

Diferent stakeholders are involved in the development and application of explanations of
machine learning models (see Figure 2.2).

'DW D V F deve@@mhadhiveNearning models, and select the explanation technigque and
related parameters to use. Based on this setup, predictions about a V X E d4rt-bE dstompa-
nied by explanations. 'H F L V L R QcaR Isd\thtdd ®kplanations to judge and understand
predictions and communicate these to subjects. Explanations and predictions can also be
directly forwarded to subjects, or serve a role in the communication between data scien-
tists and decision-makers. For a more in-depth discussion of XAl stakeholders, we refer to
Tomsett et al. [184], who separate some of the stakeholders we defned into more specifc
categories.

T e work in the machine learning community mostly targets decision-makers, as decision
support is a clear use case for explanations [160]. However, as this feld revolves around
technical and algorithmic advancements, the visual representation of the explanation has
not received as much attention. For instance, feature importance values are ofen visualized
as asimple bar chart, which does not convey the uncertainty of the technique, nor any multi-
modality that may be hidden due to aggregation. In contrast, the visualization community
usually aims to create systems that expose a level of detail more suitable for data scientists.
Te scope of most work in this feld is limited to the model development stage, as ground
truth (which is not available afer deployment) is ofen an integral part of the visualization.

In this dissertation, we target data scientists who work closely with decision-makers. T eir
familiarity with machine learning is vital for choosing the right parameters for the expla-
nation technique, and their domain knowledge and close cooperation with domain experts
help to assert the suitability of the explanation.

Figure 2.2: Data flow diagram of stakeholders in Explainable Al. Figure taken from Collaris et al. [45].
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Stakeholders can use explanations for a wide variety of applications. We identifed four main
categories based on discussions with data scientists at Achmea, and in accordance with prior

work [137, 177]:

Diagnostics

Te model may not perform adequately,
even though the model scores well on a test
set. It could be based on biases and spurious
correlations [88]. Explanations can high-
light these issues such that experts can ad-
dress these during model development.

Decision support

In high-stakes decision-making, where
models make decisions that have a critical
impact on real people, it is not sufcient to
base decisions on the prediction score of the
model alone [49]. To qualitatively ascertain
whether desiderata such as fairness, privacy,
and trust are met, explanations can help to
verify the behavior of models [58].

Refinement

Apart from identifying issues with the
model, explanations can also help to im-
prove the model. Analyzing explanations
for incorrect predictions can yield insights
into how to increase predictive accuracy [8,
182] or remove irrelevant features.

Justification

Various stakeholders may have questions
about predictions by the model. For in-
stance, customers subject to predictions may
request justifcation, or authorities may re-
quest information to check compliance. Te
latter got very relevant since the recently in-
troduced GDPR enforces the “right to expla-
nation” in Article 13 and 22 [74].

T ework in this dissertation aims to support data scientists in all these applications through
providing a better understanding of machine learning models.

2.5 What: explanation techniques
T ere are various dimensions along which we can compare existing explanation techniques.

Inherently interpretable models vs. post-hoc explanation

T ere are two main approaches to provide stakeholders with explanations that can be un-
derstood, justifed and verifed [78, 194]. First, an inherently interpretable model (e.g., a
limited set of rules or a linear classifer) can be used. While it may not be the most accurate
model, it will be easy to understand. Second, a model can be explained D T Htlas trained
(e.g., post-hoc). For instance, by using sensitivity analysis we can show which changes to the
input lead to signifcant changes in the predictions of the model.



16 What: explanation techniques

Inherently interpretable models (sometimes also referred to as ‘white-box‘ or ‘glass-box’
models) traditionally include linear models, decision trees, and rules [67]. But in addition,
recent advancements have enabled more accurate predictions with simple models, such as
linear GA "M models that deal with pairwise interactions [127], algorithms to induce a con-
cise set of decision rules [7, 63, 119], and image neural networks that explain their reasoning
in terms of (a hierarchy of) visual concepts [35, 146]. For some domains, these types of
models can yield predictions with an accuracy close to their complex counterparts, while
remaining simple enough to interpret [164].

Tis is not always the case though, as inherently interpretable models have to compromise
on expressive power. If the best possible accuracy is desired, post-hoc explanations may be
a better option. In addition, post-hoc techniques are applicable to models in production,
while inherently interpretable models require completely replacing models.

One post-hoc approach is to mimic the reference model with a simpler explanatory or V X U
U R Jriodél-hnd explain the reference model in terms of that surrogate (e.g., LIME [160]).
Tis allows using the full potential of the reference model: rather than compromising its
accuracy, the faithfulness of the surrogate is reduced. Surrogate models can be any inter-
pretable model, such as linear models [160] or decision rules [116]. However, as such a
simple surrogate cannot perfectly match the reference model, the explanation yielded from

it is only an approximation of the real behavior.

Other popular post-hoc explanation techniques are Shapley-value based [109, 129, 181] and
pose the distribution of feature importance as a cooperative game, where each feature value
is a player. In order to capture the infuence of interactions between features, Shapley-value
based approaches consider how the model prediction changes for each subset, or ‘coalition,
in the power set of features. Next, Shapley-value based approaches compute the ‘value’ (i.e.,
change in prediction) of each subset by averaging across all possible feature values of the
features that are not part of the subset under consideration.

Model-specific vs. model-agnostic approaches

Post-hoc explanations are ofen computed based solely on the input and output of the model.
Hence, these are referred to as model-agnostic (e.g., applicable to any model). However, ex-
planation techniques specifc to a particular model can leverage direct access to the model
structure to achieve better results. For instance, explanation techniques specifcally for tree-
based models can leverage the local increments between nodes [151] for more faithful ex-
planations, or the decision paths for feature perturbation [128] for much faster computation
of Shapley-based feature importance.

Neural networks for image data have received much attention. For instance, saliency maps
(e.g., LRP [11], Grad-CAM [169], and SmoothGrad [175]) show which pixels in the input
image are most relevant for the prediction, by computing the gradient of the neural network
using backpropagation. Other approaches [62, 118, 149, 199] show what input images would
yield a particularly high activation of a specifc neuron. T is enables seeing what details from
the image the neural network picks up on, and verifying whether that makes sense. Finally,
some recent work can extract visual concepts from models [105].
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Local vs. global perspective

Tere are two predominant perspectives: either an explanation enables experts to under-
stand the whole logic of a model and follow the entire reasoning leading to all the diferent
possible outcomes (e.g., global), or an explanation enables understanding the reasons for
specifc model predictions (e.g., local or instance-level) [78].

T e majority of techniques available today adopt a local perspective [120]. Because only a
single prediction is considered, it is possible to focus on a specifc part of the model, discard-
ing much of the complexity of the original reference model. Techniques such as LIME [160]
and SHAP [129] have seen widespread popularity and adoption over the past few years.

However, authors have argued global and local perspectives are complementary and should
be combined [88]. To this end, some work [112, 128] proposes to aggregate and combine
many local explanations (e.g., of all training data) as a means to explain a model globally.

Since there are so many diferent techniques, each with its own parameters, it is challenging
to choose the best option. Because interpretability is an inherently subjective concept, it
remains challenging to defne what a good explanation is and hence to make the right choices.
In addition, even though many of these techniques are presented as simple and generally
applicable, they can yield misleading results if settings are not chosen carefully. We argue we
should actively involve data scientists in the process of generating explanations, and leverage
their expertise in the application domain and machine learning. Visualization provides an
excellent opportunity to involve and empower these experts.
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2.6 Visualization

Data visualization concerns the graphical representation of information and data. T e use of
visualization can assist people in communicating results. Next, experts can use visualization

to understand their data and obtain new insights. Especially in an explorative setting without

a strict defnition of the goal, interactive visualization enables experts to discover patterns

and trends. Tis is refected in the defnition of visualization by Card et al. [26]: fWKH XV H RI
FRPSXWHU VXSSRUWHG LQWHUDFWLYH YLVXDO UHSUHVE

Compared to other data analysis techniques, such as descriptive statistics, much more in-
formation can be visually encoded than just an aggregated number. Visualization works by
exploiting our innate ability to detect patterns in visual constructs. We can quickly identify
diferences in position, length, angle, area and color [42], which makes obtaining data in-
sights efortless and intuitive. Furthermore, Gestalt psychology [108] can be used to steer
viewers towards salient features, for instance by using the principles of proximity, similarity,
and enclosure.

T e power of visualization is exemplifed in Anscombe’s quartet [9] in Figure 2.3 that shows
four clearly distinct datasets, while sharing the same descriptive statistics (e.g., mean, stan-
dard deviation, correlation between features). A more recent work is able to generate this
type of datasets with any desired appearance while preserving the same statistics [132].

Number of observations ( g) 11

Mean of the x’s ( A 9.0

Mean of the y's (r)A 75

Regression coefcient ([s)of ron g 05

Equation of the regression line rE¥%BA° ¢q
Sum of squares of q AgA 110.0

Regression sum of squares 27.50(1d.f)
Residual sum of squares of r 1375(9d.f.)
Estimated standard error of [s 0.118

Multiple Q 0.667

Figure 2.3: Anscombe’s illustration of four different datasets. While all datasets share the same de-
scriptive statistics (e.g., mean, standard deviation, correlation between features and regression line),
visualizations of these datasets reveals non-trivial patterns that would otherwise remain hidden.
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Identifying patterns in a visualization ofen sparks subsequent hypotheses. Does the pattern
apply to all data, or just a subset? What causes these features to be related? Is this point
typical, or an outlier? Interaction in visualization is essential to support this kind of iter-
ative what-if analysis. Interaction encompasses various operations to P D Q L S eiGtibgw H
elements in a visualization, or L Q W UrRRv@ekeiméiits. Brehmer and Munzner [20] intro-
duce a typology of interaction tasks, partially based on earlier work by Yi et al. [198], to
distinguish between various operations:

Manipulate
e 6 H OrhhFk\dhe or more elements, diferentiating them from unselected elements;
1D Y L:hEEk\Hd user’s viewpoint (e.g., zooming, panning, rotating);
$ U U Dapgartize visual elements spatially (e.g., sort);
& K D QlieHthe visual encoding, such as size or transparency of points;
) L Q ¥djbstthe exclusion or inclusion criteria for elements in a visualization;
* $JJ U Hchengé the granularity of visual elements (e.g., summarize).

Introduce
* $Q Q R WdseW atlditional information associated with a certain element;
e , P S Radddmew elements to the visualization;
e 'H U Lcwrhpute new data elements given existing data elements;
« 5 H F:Rdve®r capture visualization elements as persistent artifacts.

Furthermore, typical approaches from interactive visualization include OLQNLQJ DQG EUXVK
L @103] to synchronize selections between diferent visual representations; )RF XV FRQWH[W
[26] to have the information of interest in the foreground and all the remaining information

in the background simultaneously visible, and conversely 2 Y HU Y L H 226(; HdwiBgla®

overview of the information space and complement it with a detailed view; VHPDQWLF JRRP

L @ 163], presenting more details on demand when zooming in on an object;and PDJLF

O H Q[¥/]@odoverlay multiple diferent perspectives of the elements with the same spatial

layout for easy comparison.

T ese interaction tasks and techniques form the basis for all our visualizations in this thesis.

2.7 Visual Analytics

Visual analytics is the science of analytical reasoning facilitated by interactive visual inter-
faces [51]. It is typically concerned with datasets that are so large, dynamic, or ambiguous
that traditional visualization techniques fall short. Keim's model [102] in Figure 2.4 shows
the data fow of a typical visual analytics system. Data typically frst need preprocessing be-
fore they can be interpreted. Next, this data is used to create an analytical model and data
visualizations. Insights from either one can be used to tweak the parameters of the other.
Alternating between visual and automatic methods is characteristic for the visual analytics
process and leads to continuous refnement and verifcation of preliminary results [104].

Since experts are involved in the entire process (e.g,a KXPDQ LQ #&ypfdach] tRdy S
can use prior domain knowledge to steer the visualization and model. T is poses a great
beneft over automated techniques, which typically can only use the domain knowledge of
experts indirectly, through the provided input data.
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Figure 2.4: Visual analytics process as described by Keim et al. [102] (figure taken from Keim et al.
[104]). It is characterized through interaction between data, visualizations, models about the data, and
the users in order to discover knowledge.

2.8 Visual explanations

Both visualization and visual analytics can be benefcial in understanding machine learning
models, by actively involving data scientists in the process. In this section, we frst introduce
common visualizations that are used as building blocks for visual analytics systems. Next, we
introduce the current state of the art of visual analytics for interpretable machine learning.

2.8.1 Visualization techniques

Trivial prediction problems can be understood by inspecting the predictions of a model di-
rectly. Scatter plots can be used to show the relationship between prediction probability Aw
and feature value Y(Figure 2.5). However, for any non-trivial prediction problems, there
are likely many interactions between features that make it impossible to identify meaningful
patterns and trends by looking at the relations between single features and predictions only.

(a) Synthetic data set (b) Diabetes data set [176]

Figure 2.5: Class probability plotted against feature value. Simple machine learning may show patterns
(a), but models trained for more complex problems do not (b).
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Local Partial Dependence Plot (PDP)

To help to gain insight into models, Friedman [68] introduced the Partial Dependence Plot
(PDP). Tis is a sensitivity analysis technique that shows how the prediction Ahanges as
the features of interest [.{i.e., target features) are varied over their marginal distributions.

To defne partial dependence for a data point Ylet [,/ *Y, Y, be asetof target features,
and [, the complement of [,such that

[ x[m Y [ Olm 2 (21)
Te prediction eAY in principle depends on both subsets:
Avely e (2.2)

However, if we fx the specifc values of features in [, then eAY can be considered as a
function only dependent on [,, T is function representsthe ORFD O S D U W Lofxi@
featuresin [,

e [m eAm_l\ (23)

If [consists of a single feature, a line graph of this function shows how changing [, impacts
the prediction of a single data point. T is conveys much more about the model than just
showing the prediction for single points, and has been used in prior visualization work to
explain machine learning [111, 113]. For example, a linear regression model would show
a straight line, a Gaussian Naive Bayes model a cumulative normal curve, and tree-based
models a stair-like line. An example of a local PDP is shown in Figure 2.6a.

Generative Additive Models (GAMs) are a specifc type of model comprised of shape func-
tions, which exactly defne the partial dependence curve. Hence, they are ofen used in visual
explanations [88, 90, 192].

(a) Local PDP by Krause et al. [111], encoded as  (b) Global PDP used in iForest by Zhao et al. [205] for a nu-
both line plot (top) and 1D heat map (bottom). merical (blue) and categorical feature (red).

Figure 2.6: Examples of partial dependence plots used in visual explanations.

GHSHQGH
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Global PDP and Individual Conditional Expectation (ICE) plot

Local PDPs provide a great insight into a single prediction. However, for many applica-
tions such a local explanation is not sufcient. For example, the explanation of a single
prediction is not helpful for diagnosing problems with a model, or for model refnement by
experts. Even if there is a single prediction of interest, instance-level explanations do not
show whether they are specifc to that instance, or generalize to a larger set of instances. For
these cases we need J O Rekplar@ations. To get a global insight into the entire model, Fried-
man [68] proposes averaging local partial dependence lines of all Straining data points as
follows:
M
eMm YA eAnlL Rc[ o 3 $ eAn[d 24
b &°

where R, is the marginal probability density of [,. T is global PDP is used in visualization
work to explain and compare machine learning models [196, 205]. An example is shown in
Figure 2.6b. However, Friedman notes that Equation 2.4 does not hold when there is a strong
interdependence amongst features, which is ofen the case for complex black box models.

To deal with interdependence, Goldstein et al. [73] proposed an alternative called Individual
Conditional Expectation (ICE) plot by superimposing all individual local partial dependence
lines. T is reveals patterns that would otherwise be hidden by averaging. For example, the
plot in Figure 2.7 shows two clusters of partial dependence lines that are not salient in a
global PDP due to the averaging over all data points.

Figure 2.7: Example taken from Goldstein et al. [73]. Predictions of an entire dataset visualized with a
scatter plot (left), a global PDP which fails to highlight the bimodal effect in the data (middle), and an
ICE plot which more faithfully represents the behavior of the model (right).

Feature Importance Visualization

An alternative approach to gain insight into machine learning models is the feature impor-
tance technique. Such methods yield feature importance vectors that indicate how much
every feature contributes to a prediction.
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Initially, Baehrens et al. [12] showed that machine learning models can be explained using
the derivative of the class probability function. T e reasoning is that if a small change in
feature value leads to a large change in the prediction probability (or regression output), that
feature is relevant for the prediction. T ey note, however, that an exact derivative for the
majority of models does not exist. To this end, LIME was proposed by Ribeiro et al. [160].
It solves this issue by ftting a linear regression surrogate model to the class probability gra-
dient with a local sampling region around an instance. T e coeFcients of the linear model
efectively approximate the derivative of the probability function, regardless of whether a
formal derivative exists. Next, the approximation can be used to show which features have
the most impact on a prediction. Another prominent approach for feature importance are
Shapley values [109, 129, 181]. T is method estimates the contribution of a feature by com-
paring the class probability of a prediction including and not including this feature [136].
T e absence of a feature is estimated by averaging the predictions for diferent values for
that feature sampled from the training data distribution.

T etraditional way to visualize feature importance is as a bar chart [38, 49]. But, since feature
importance is ofen aggregated across multiple instances, box-plot, violin-plot or beeswarm-
plot visualizations can more accurately describe the distribution of feature importance over
multiple instances [128] (see Figure 2.8a).

Shapley values are an example of an additive feature importance technique: the sum of fea-
ture importance values amounts to the predicted score by the model. Feature importance
values with this property can alternatively be represented as a waterfall plot, as shown in
Figure 2.8b, which clearly hightlights this additivity by starting from the base rate (default
prediction) and iteratively moving the prediction and fnally end up at the fnal predicted
score of the model.

(a) Feature importance bar chart encoding (left) and beeswarm (b) Feature importance waterfall encoding in
plot encoding (right) by Lundberg et al. [128]. Gamut by Hohman et al. [88].

Figure 2.8: Examples of feature importance encodings used in visual explanations.

Finally, saliency maps are a feature importance techniques specifcally targeted to neural
networks trained on image data. T ese techniques aim to show which pixels in the input
image were most relevant for the prediction, by computing the gradient of the neural network
directly using back propagation (e.g., Grad-CAM [169]). T ese pixels are indicated using a
heat map overlaid on top of an image.
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Decision rules

A decision rule is a simple IF-THEN statement that can be helpful to briefy summarize
the relationship between feature values and a potential predicted outcome. An example for
diabetes prediction is shown in Figure 2.9. If the number of predicates and rules are small, a
set of such rules can be used as an interpretable model.

Figure 2.9: Example of decision rules, annotated with appropriate terminology. Figure taken from [200].

While decision rules can be very useful, they were promptly outperformed by more modern
and complex machine learning models and approaches in terms of predictive accuracy. More
recently they regained interest due to their simple and interpretable nature. Recent work has
aimed to improve the accuracy of decision rules [93, 119], or use decision rules as a proxy
to understand how a complex machine learning model makes predictions [141].

Tere are a few diferent representations of decision rules [94]. Rules are generally shown as
logical statements expressed in textual form (as illustrated in Figure 2.9). However, graphical
representations can be used to reduce the number of visually repeated predicates. Decision
trees consist of internal nodes for each predicate, and leaf nodes with a prediction label. New
observations can be classifed by traversing the tree from root to leaf. A decision table [190] is
a tabular representation that consists of four quadrants. T e horizontal line divides the table
into a condition part (top) and an action part (bottom), whereas the vertical line separates
subjects (lef) from entries (right), see Figure 2.10.

Huysmans et al. [94] empirically evaluated text, tree, and table representations with 42 par-
ticipants, and found that decision tables achieve the highest perceived ease of use. A recent
study on exploration and validation of decision rule design [200] found similar results with
338 participants, and show that feature alignment (a typical trait of decision tables) enabled
participants to respond much faster in a prediction estimation task.

Figure 2.10: Example of a decision table. Example taken from Huysmans et al. [94].
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2.8.2 Visual Analytics approaches

Interpretable machine learning has become a prominent topic of research in the visual an-
alytics community over the past decade [34]. T e majority of workis PRGHO M&HFL&F
focuses on explaining a single type of model. Examples are Gamut [88], which investigates
the role of interactive interfaces for model interpretation with additive models, and iForest
[205], which enables the interpretation of predictions by Random Forest models. T e models
that received the most attention by far are neural networks [17, 70, 89, 97, 99, 125, 140, 154,
165, 180]. Strobelt et al. [180] for example tailor for sequence-to-sequence models in the
context of automatic translation; Garcia et al. [70] built a system specifc to temporal LSTM
networks for sleep staging; Ming et al. [140] targets Recurrent Neural Networks and reveal
hidden memories in NLP tasks; and GANLab [99] promotes education and understand-
ing of Generative Adversarial Networks. A detailed example specifc to neural networks is
shown in Figure 2.11, utilizing model-specifc computation graphs and a neuron activation
matrix.

Figure 2.11: ActiVis by Kahng et al. [97]. The system integrates multiple coordinated views: (A) The
computation graph summarizes the model architecture; (B) the neuron activation panel's matrix view
displays activations for instances, subsets, and classes (at B1) and its projected view shows a 2D t-SNE
projection of the instance activations (at B2), and (C) the instance selection panel displays instances
and their classification results. Correctly classified instances shown on the left, misclassified on the
right. Clicking an instance adds it to the neuron activation matrix view.

T ese systems focus on providing explanations for one type of machine learning model. An-
other approachistousea PR G HO Dnkdr\NbWOhl¥Fconsidering the input and output
of the model, many diferent types of models can be supported. We adopt this approach in
our work, as it makes it more applicable in the real world where the models used come in all
shapes and sizes.
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T is approach is popular in machine learning research [129, 160], but adoption in the visu-
alization community has been limited so far. Notable exceptions include Prospector [111],
which uses 1D partial dependence asa means to explore the prediction space and the What-if
tool [196], which supports testing hypotheses by means of data perturbations.

Tese systems enable the understanding of single predictions (ORFD O S H huvrSostFW LY H
visual analytics system focus on providinga JO R E D O S bhUndcBikkRelviing models.
Approaches like ModelTracker [5], Squares [159], and work by Alsallakh et al. [2] enable

global performance analysis by highlighting misclassifcations of the model. Other systems

enable global performance analysis by comparing diferent models, like Manifold [203], ML-

Cube [98], and RegressionExplorer [56].

T ese approaches visualize the output of the model directly, and do not make use of the
recent advancements in XAl. In our work, we leverage feature importance techniques for
understanding machine learning models more efectively. A notable exception is RuleMa-
trix [141], a visual explanation system that enables understanding machine learning models
using surrogate learning, one of the key approaches from XAl. T eir approach is to train
a global surrogate model in the form of extracted decision rules, and explain the model in
terms of those rules (see Figure 2.12).

Local and global are typically seen as a dichotomy, with most approaches focusing on one
or the other, but we argue that in between lies a continuous scale. For example, we can
provide local explanations, but provide context with details about the global behavior, or
explain the model behavior for clusters in the dataset instead of for single cases. Hence,
in this dissertation we explore machine learning explanation from all these diferent and
complementary perspectives.

Figure 2.12: RuleMatrix by Ming et al. [141]. The user uses the control panel (A) to specify the detail
information to visualize (e.g., dataset, level of detail, rule filters). The rule-based representation is visu-
alized as a matrix (B), where each row represents a rule, and each column is a feature used in the rules.
The user can also filter the data or use a customized input in the data filter (C) and navigate the filtered
dataset in the data table (D).
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Next, visual analytics systems are ofen tailored specifcally to one problem or use case. Either
a single type of model is supported (as mentioned earlier), or a single type of use case (e.g.,
clinical prediction for Electronic Health Records [38], discovering intersectional biases [25],
yeast cell polarization [86], multi-modal sentiment analysis [191]). A detailed example is
shown in Figure 2.13. While such a clearly defned problem helps to motivate the system
and enables a sharp focus on the use case at hand, it hampers its ability to have a widespread
impact in practice. We strived for visual analytics solutions that are broadly applicable in
practice for any machine learning model based on tabular data. T is is the most occurring
data type at Achmea and many other companies.

Figure 2.13: VBridge by Cheng et al. [38]. The interface of VBridge facilitates clinicians’ understanding
and interpretation of ML model predictions. The header menu (A) allows clinicians to view prediction
results, and to select a patient group for reference. The profile view (B) and the timeline view (C) show
a summary of the target patient’s health records. The feature view (D) shows feature-level explanations
in a hierarchical display, linked to the temporal view (E) where healthcare time series are visualized to
provide context for feature-level explanations. Digits indicate the progression of a clinical use case:
after (0) selecting a comparative group and (1) viewing the patient's profile, the expert (2-4) explores
the feature-level explanations to find the potential risk factors for the target patient. Then the expert
(5-9) refers to the patient’s original records to gain an in-depth understanding.

Finally, a noteworthy aspect of many visual analytics solutions for interpretable machine
learning is that the interfaces tend to be rather complicated. T is may impede the goal of
providing a simple explanation to the end-user. Multiple linked views are great to enable in-
teractive exploration of models, but it immediately presents the viewer with a lot of details,
which can be overwhelming to frst-time users, and makes interaction ofen non-intuitive.
Tis interface complexity can currently not be completely avoided, since a strong involve-
ment of experts and multiple views are required to ascertain the validity of explanations.
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3.1 Introduction

W ith the availability of large amounts of data, machine learning is getting more and more
relevant. However, it is ofen hard to trust and understand the predictions made, as
modern machine learning techniques are usually applied in a black-box manner: only the
input (data) and output (predictions) are considered; the inner workings of these models are
considered too complex to understand.

Tis lack of transparency can be a major drawback. For instance, the model may not perform
adequately: even though it scores well on a test set, it could be based on biases, spurious cor-
relations, and false generalizations [88]. Explanations can enable data scientists to identify
such problems during model development. Understanding the model also plays a crucial
role in decision support. In applications such as fraud detection [13, 49], medical diagnosis
[28, 113] or bankruptcy prediction [195], models make predictions that have a critical im-
pact on real people. It is not sufcient to base decisions on the prediction score of the model
alone [49]. Finally, various stakeholders may have questions about model predictions that
require explanation. T is got very relevant since the recently introduced General Data Pro-
tection Regulation (GDPR) enforces the “right to explanation” [74].

Te feld of explainable artifcial intelligence (XAl) has recently gained a lot of traction as it
aims to alleviate these issues. T ere are two main approaches to provide stakeholders with
explanations that can be understood, justifed and verifed. First, an inherently interpretable
model (e.g., a limited set of rules or a linear classifer) can be used that exchanges accuracy for
understandability. Second, the reference model can be mimicked with a simpler explanatory
(or V X U URnhadzlVvdrd explained in terms of this surrogate. We chose the latter approach
as it is compatible with preexisting machine learning pipelines and hence widely applicable.

T ere are many decisions involved in creating explanations using a surrogate model. Pa-
rameters include the position, size, and shape of the sampling region, choice of surrogate
model, and specifc hyperparameters for that model. T ese choices have a signifcant im-
pact on the resulting explanation, yet ftting values are rarely discussed. Previous work has
shown that techniques may yield incongruent results if parameters are not chosen carefully
[49]. By varying these parameters many diferent explanations can be generated. T ese may
all be considered equally valid and useful [49]. Determining which of these explanations is
best remains challenging, as there is currently no consensus on what a good explanation is
[58, 78,122, 194]. What Lc¥kar is that there is certainly a subjective element to interpretabil-
ity: diferent stakeholders may have widely varying defnitions of a good explanation [88].
Due to the subjective nature of interpretability, we argue it is not possible to fnd the best
explanation using purely automated methods. Rather, we propose using visual analytics to
leverage domain knowledge to determine the quality of an explanation.

We present ExplainExplore: a new approach for analyzing and understanding classif-
cation models using state of the art machine learning explanation techniques. T e system
allows on the fy customization of model and surrogate parameters. Based on that confg-
uration, the data scientist can generate explanations to understand what features are rele-
vant. T e system does not encode strict assumptions about the qualities of an explanation,
but leverages the domain knowledge of the data scientist to select the optimal explanation.
Context for the explanation is provided by showing similar data points, and the efect of
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perturbations can be interactively explored. Finally, a global overview helps to spot general
patterns that could indicate a problem with the model or explanation technique. Our main
contributions are:  an explanation system applicable in many preexisting workfows by
supporting a large variety of data sets and models, in contrast to current literature can
be used even when no ground truth is available, and  the system provides both local and
global perspectives to tailor for diferent applications.

We collaborated with a leading insurance company in the Netherlands to obtain valuable
insights into the relevance of explanations to data scientists. T ey provided feedback on our
early prototypes and the use case described in this chapter.

3.2 Background

Various techniques in the category XAl have been proposed to explain machine learning
models. T e eforts range over multiple felds of research [78, 124, 165]. Here we focus on
machine learning and visual analytics.

3.2.1 Machine learning

T ere are two main approaches in this feld [78, 194]: either amodel is used thatis LQ KHUH QW O\
L Q W H U, siaiHewpariatidnHs generated by means of a V X U URoHE. W H

Inherently interpretable models traditionally include linear models, decision trees and rules
[67]. However, there are some recent advancements, like linear GA "M models that deal
with pairwise interactions [127] and algorithms to induce a concise set of decision rules
[7, 63, 119]. For some domains, these types of models can yield predictions with an accuracy
close to their complex counterparts, while remaining simple enough to interpret.

Tis is not always the case though, as simple models will always compromise on expres-
sive power. T ey also require replacement rather than augmentation of preexisting machine
learning pipelines. An alternative approach is to mimic the reference model with a simpler
explanatory or V X U U RallE), hitlexplain the reference model in terms of that surrogate.
Tis allows using the full potential of the reference model: rather than compromising its
accuracy, the faithfulness of the surrogate is reduced. Surrogate models can be any inter-
pretable model, such as linear models [160] or decision rules [116]. However, as such a
simple surrogate cannot perfectly match the reference model, the explanation yielded from
it is only a rough approximation of the real behavior.

In pursuit of better explanations, XAl recently directed its focus from global [15, 167] to
local [12, 129, 160, 185] surrogate models. Rather than compromising the faithfulness of
the surrogate, the generality of the surrogate is reduced. T is means that the scope of the
surrogate is limited to part of the reference model, resulting in a simple and O R Ffaitkfud \
explanation.
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3.2.2 Visual analytics

As interpretability is an inherently subjective concept, many authors from the visualization
community have built systems to support machine learning tasks. T ere is a variety of works
ranging diferent applications as the ones mentioned in Section 2.4.

Approaches like ModelTracker, Squares and work by Alsallakh et al. [2, 5, 159] help GLDJ
Q Rt¥eHnodel by highlighting disparity between diferent predictions. Other approaches
compare regression output with ground truth [155] or aim to evaluate fairness [196].

In order to U H &Qddls, systems such as Manifold, MLCube and RegressionExplorer [56,
98, 203] enable the comparison of diferent models. Alternatively, approaches such as Baob-
abView [144, 186] enable interactive construction of models. Post-hoc approaches instead
enable intuitive model confguration [123, 150].

'"HFLVLRQ VXSSRU && bijtopiihLv& Rl afdn RHpwever, most approaches
only analyze the G Danti@nly use machine learning for recommendations [39, 81, 95]. De-
cision support using machine learning techniques to provide explanations is a recent devel-
opment, and as such, the amount of work is scarce [49, 70, 177].

Tese visual analytics systems ofen tailor for specifc algorithms. Neural networks have
received the most attention with systems visualizing or projecting neuron weights [97, 124,
141, 158, 201] or highlighting important regions contributing to a prediction [70, 89, 149].
A few model-agnostic systems such as Prospector [113] and What-if tool [196] exist, and
mainly focus on hypothesis testing.

3.2.3 Our approach

Compared to traditional visual analytics approaches that only use the prediction of a model,
ExplainExplore provides more information by using state-of-the-art machine learning ex-
planation techniques. Rather than considering these explanations as a fxed statistic, we al-
low interactive tuning of explanation-related parameters to ensure it meets the subjective
preference of the stakeholders. Fine-tuning machine learning explanations is, to the best of
our knowledge, a novel topic.

T e scope of most visual analytics approaches is limited to the model development stage,
as ground truth (which is not available afer deployment) is ofen an integral part of the
visualization. ExplainExplore does not require ground truth and can thus also be used
with machine learning models in production.

Many systems focus only on global [2, 5, 39, 95, 123, 124, 141, 144, 150, 158, 159] or local
[49, 70, 113] explanation, but few combine the two [88, 97, 112]. T ese perspectives are
complementary [88] and hence are both supported in our system.

To achieve this, the system uses a technique similar to HyperSlice [189], which has previ-
ously been applied to regression models [155]. We extend this method by supporting mul-
tiple classes and categorical variables, facilitating machine learning model comparison by
exploiting the locality of surrogate models, and ofering various options for showing only
the data points local to the shown slice.
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3.3 Problem definition

We interviewed six data science teams at a large insurance frm (dealing with problems rang-
ing from churn prediction, product pricing, recruitment optimization to debtor manage-
ment) to Fgure out how they could beneft from explanations. In our study, we found:

» Most teams that were interested in explaining their models used supervised classif-
cation for decision making. At the company, classifcation models were more promi-
nently used for critical decision making (e.g., having a signifcant impact on people)
compared to regression.

e Tedatascientists used a wide variety of models, created using diferent technologies,
languages, and toolKkits.

» Tey typically use multivariate, tabular input data with a mix of numerical and cate-
gorical data. 3

e Tediferent teams had very mixed preferences for global or local insights.

Our goal is WR DVVLVW GDWD VFLHQWLVW Wi é¢QaBding WilvDQGLQJ W
drive many applications as mentioned in Section 2.4. To facilitate these applications, the sys-

tem should support a wide variety of datasets and models, and enable on the fy customiza-

tion of model and surrogate parameters. Based on that confguration the data scientists can

generate explanations to understand what features are relevant.

Te system is aimed at GDW D V RvhdHv@@i/ tlogely With decision-makers. Teir fa-
miliarity with machine learning is vital for fne-tuning surrogate models, and their domain
knowledge helps to assert the quality of the model and the explanations given.

3.3.1 Data

T e data for the system consists of a multivariate tabular dataset and a classifcation model.
Ground truth is not required but can be provided to train diferent types of models within
the system. All other data used for explanations and visualizations (e.g., surrogate model
and feature contribution vectors) are generated on demand.

3.3.2 User tasks

We derived a list of user tasks to account for needs in a variety of explanation-driven use
cases based on our interviews with six data science teams and previous work in this area:

5 Adjust the model for performance or better explainability.
Adjust the surrogate for faithfulness and simplicity.

Look up how much a feature contributed to a prediction.
Look up quality metrics for model, prediction and surrogate.

Select instances with noteworthy explanations, such as good or bad faithfulness, or
specifc feature contribution values.

Query the model sensitivity to feature perturbations.
Compare surrogate and reference model to assert the faithfulness of the explanation.
5 Explore the efect of input perturbations on prediction and explanation.

o1 o1 01 Ol

(6204
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Figure 3.1: Workflows of ExplainExplore, corresponding to the applications introduced in Section 2.4.

To support these tasks we designed two workfows shown in Figure 3.1. Arrows depict the
common way of interaction, starting from the initial confguration of model and surrogate.
Uppercase words summarize the most important actions performed in each view, and user
tasks are annotated. In the frst workfow (blue) analysis starts with a single prediction and
provides more detail with context, whereas the second (orange) starts from a global overview
and allows investigating smaller subsets.

3.4 ExplainExplore

In this section, we frst introduce the used explanation technique. Next, we describe how we
translated the workfows (Figure 3.1) into an interactive visual analytics system. Figure 3.2
provides a high-level overview of our approach. We enable users to inspect the model at three
diferent scales: locally, globally and context. One of the data points can be selected as the
current focal point for the local view (Figure 3.2-B1). T e global view provides an overview
of (a selection of) the given unseen data points (Figure 3.2-B2). Finally, the context view
shows an environment of the current focal point (Figure 3.2-C). For a demonstration of the
system, we refer to the video availableat #//+.“CC 3+' $)$)"'('C 3+' $) 3+!*-

3.4.1 Explanation technique

Modern XAl techniques derive model explanations through local surrogates. Our system

uses this technique as a basis for understanding machine learning models. A popular local

surrogate technique is LIME [160]. Te technique generates synthetic data (ie., WUDQVIHU
data) in a local neighborhood around the instance to be explained. Next, the transfer data

is labeled by the reference model. By ftting a simpler surrogate regression model to this

labeled transfer data, it will mimic the decisions of the reference model in that local region

of space (i.e., VD P S O L Q.JkHKiZeloRtkis region (i.e., JH Q H)hDdQ@istsde kernel

used are important parameters whose values should be carefully chosen.

To evaluate the Tt of the surrogate, standard goodness-of-ft metrics from machine learning

can be used. In this work, we use the coefFcient of determination (R * as it is a ubiquitous

metric familiar to data scientists. T e ft of the surrogate is also referredtoas IDLWKbK O QH V
the surrogate or explanation to the reference model. With an R “value of 1, the explanation

explains the model perfectly, for any lower value details are lost due to simplifcation.

LIME uses rejection sampling to generate the transfer dataset, which is inefFcient on high
dimensional data [110]. We use a modifed version of LIME that, rather than rejection sam-
pling, samples transfer data directly from the sampling region. Also, we use a distance kernel
with a bounded support instead of a Gaussian kernel.


https://explaining.ml/explainexplore
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Our system supports a variety of linear and tree-based surrogate models, in addition to linear
regression provided by LIME. Feature contribution vectors are extracted using coeFcients
for linear models [160] and local increments for tree-based models [151]. To be able to
compare feature contributions across diferent surrogate model types, we use the normalized
absolute contribution values.

3.4.2 Configuration view

Te primary goal of the confguration view (Figure 3.2A) is to set up the machine learn-
ing problem for further analysis. T e dataset and classifer can be selected and confgured
by following the traditional machine learning workfow: data selection, data preparation,
modeling, and evaluation. At any time during the analysis, this view can be revisited to
adjust the confguration.

First, a dataset can be selected. To allow the system to be applicable for a wide variety of
preexisting setups, any tabular dataset with numeric or categorical values can be added (given
that train, test, and unseen partitions are separately provided). Basic data preparation is
supported by options for feature selection, and data scaling. Data scaling is enabled by default
as some classifers require scaled data.

Next, a classifer model can be selected (Task 5 ). T e system supports all classifers from
the Python . $&$/8§' -)toolkit [152] as well as classifers from other languages (e.g., R)
or applications (e.g., KNIME, SAS Enterprise Miner) using the PMML format [77]. Model
hyperparameters are automatically parsed and confgurable. T e chosen model is Fftted to
the training partition of the provided dataset on-the-fy, and the performance of the model
on the test dataset is displayed (F , score, Task 5 ).

Finally, a surrogate model can be selected. Tis step is an addition to the traditional ma-
chine learning workfow and forms the basis for the explanation technique. Options include
linear models and shallow tree-based models. Other important parameters afecting the ex-
planation can be confgured: model hyperparameters (e.g., regularization constant for lin-
ear models, or depth for tree-based models), the size of the sampling region (J H Q H)AmIO L W\
sampling distance kernel (Task 5 ). Changing these values will immediately update other
views, enabling the data scientist to assert the impact of these parameters on the explanation.

3.4.3 Feature view

Te feature view (Figure 3.2B) is introduced to explain the prediction by showing feature-
wise contribution values obtained using the chosen confguration. Te view is formatted
as a table with multiple columns in two categories: local, conveying information about the
currently selected instance, and global, showing an overview of explanations for all unseen
data instances. A local or global oriented workfow can be achieved by reordering columns
of the feature view.

Two rows are prepended to the table showing the prediction and R “values. T ese values
help to ascertain whether the explanation is sensible, or perhaps misleading. T ese rows will
always appear on top, whereas the rest of the table can be sorted on demand.
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Local columns

Local columns in the feature view (Figure 3.2-B1) show feature-wise properties for a selected
data point.

T e value column represents feature values as text, as this is a familiar representation for
data scientists, and enables to quickly compare values with other systems they use. Double-
clicking brings up an input feld to update a feature value manually (Task 5 ).

T e contribution column encodes the feature contribution vectors as a vertical bar chart.
Values range between 0and 1, where longer bars mean more contribution to the prediction.
T e bars are colored according to the predicted class. T is view helps the expert to quickly
spot which features play a role in the prediction for the selected instance (Task 5 ).

To assert the correctness of these contribution values, information on the prediction cer-
tainty (Figure 3.2-B1.1), and R *value (Figure 3.2-B1.2) are shown (Task 5 ). If the predic-
tion is not very certain, the explanation may not be trustworthy; an explanation with a low
R *sscore (i.e., a bad surrogate ft) could also be misleading. To alert the expert, low values
for these metrics are colored red.

Global column

Te global column (Figure 3.2-B2) provides a high-level overview of the data. \We tried
histograms, violin plots and small multiples, but settled on a Parallel Coordinate Plot (PCP)
as it was best for conveying clusters in the data. Two types of overviews can be shown: unseen
data feature values and the corresponding contribution values.

Teglobal Y D OvEridew encodes the distributions of feature values. T is helps to ascertain
whether an instance is an outlier, and helps to fnd interesting clusters in the unseen data
that can be selected for further analysis (Task 5 ).

Teglobal FR QW U dverXew ¢nBo@es contribution vectors. T is helps experts to iden-
tify whether the selected instance was classifed similar to other instances, and whether the
model has ‘strategies’ (clusters in the contribution vectors and polylines in the PCP) specifc
to a subset of instances. T e expert can use this view to fnd instances that have diverging
explanations, which could indicate a problem with the model or explanation technique.

Te global column includes two additional axes for the prediction certainty and R “score
of the surrogate model. T is enables the selection of subsets based on how certain the
model was of that prediction, and how faithful the surrogate explanations are to the ref-
erence model. Using these axes the data scientist can select subsets or instances for which
automated explanation techniques yield misleading or incorrect explanations (Task 5 ).

Line colors correspond to the predicted class of the instance and a thicker black line indicates
the selected instance in the PCP. T e lines in the PCP are curved by default. T is makes it
easier to spot the intersections with the axes. Using a smoothly graduating curve also allows
experts to discern individual paths better, due to the Gestalt principle of good continuation
[76]. When sorting the feature table view by the global column, the rows are sorted by the
mean feature value of the unseen data.

Selection of instances is enabled by brushing the axes of the PCP. T e selected cases are
highlighted in the PCP, as well as linked to the scatter plots in the context view.
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3.4.4 Context view

Te context view (Figure 3.2C) provides more context for the selected instance and corre-
sponding explanation. Nearby unseen data instances are shown, as well as the class proba-
bility of the reference classifer (global) and surrogate model (local). T e expert can use this
to assert whether the surrogate model is locally faithful to the reference model (Task 5 ),
explore neighboring instances and introduce instance perturbations to improve the expla-
nation (Task 5 ).

Class probability plot

Class probabilities of machine learning models trained on datasets with two features can
be visualized as a two-dimensional heatmap. T is technique is model-agnostic and can be
applied to any model returning a class probability. If this is not supported, the system will
substitute a class probability of 1 for the predicted class (as shown in Figure 3.3b).

Givenachosencolor  py fy @ forclass i u Pwhitecolor X and predicted
class probability 4vihe color Dor a pixel in the heatmap is computed as

D X¢$ 64 X¢ I g max O
dpd

0 — (3.1)

An example is shown in Figure 3.3a. White colors in the fgure show areas where every
predicted class is equally likely. Te class probability plot enables the expert to discover
which perturbations to a data point would lead to a diferent prediction (Task 5 ). In the
example, a scatter plot of training data points is overlaid. T e color of a point corresponds
to the true class of that instance. If the color does not match the class probability color in the
background, the point is incorrectly classifed.

(a) Naive bayes (b) Decision tree

Figure 3.3: Class probability plot of two models trained on the first two features of the Iris dataset.
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T e same technique can be used to visualize the class probabilities of the surrogate model.
However, as the local surrogate is trained on a smaller sampling region, we mask the plot
to only show that region. T e class probability plots are overlaid to enable easy comparison
between reference and surrogate model. T is helps the expert to ascertain the quality of ft
of the surrogate, and hence the quality of the explanation (Task 5 ). An example is shown
in Figure 3.4a. T e surrogate is trained to distinguish one class from all others. Hence the
black color represents all other classes in the plot. To increase contrast, colors are discretized
by default to show only the color for the predicted class, and black for all others.

For categorical features, the plot is split into regions for each category, as shown in Fig-
ure 3.4b. T e surrogate is overlaid as a rectangle.

(a) Numerical ‘Age’ (b) Categorical ‘Sex’

Figure 3.4: Overlaid class probability plots of reference and surrogate model, trained on the Titanic
dataset. The size of the surrogate overlay (left: circle, right: rectangle) corresponds to the sampling
region size.

HyperSlice plot

To deal with models trained on higher-dimensional data, we use a similar approach to Hy-
perSlice [189]. Axis-aligned slices intersecting the selected instance (or | R F D O 8&RllsQ W
played as small multiples. An example is shown in Figure 3.2C. We chose this encoding

to retain meaningful axes for interaction, as opposed to alternatives like multidimensional
projections. Unlike the two dimensional example, these slices do not comprise the entire
feature space, but they do enable to understand the local neighborhood around the current
focal point. For datasets with a large number of features, not all slices can be shown at once.

In this case, the system enables selecting features to be displayed in the table view.

Rodrigues et al. [162] present an alternative way of representing the high-dimensional class
probability in two dimensions using dimensionality reduction techniques. T is presents a
great global overview of the model in a compact visual encoding. However, as with most
non-linear projection techniques, the meaning of the axes of the projections are difcult (if
not impossible) to interpret. T is hampers the experts ability to introduce and analyse small
input perturbations, which we consider a main strength of our context view.
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Data

For each two-dimensional slice, a projection of the data points can be shown. Both the
unseen and training data can be separately shown and hidden. T ey are indicated by diferent
glyphs, and colored according to the predicted class, and ground truth respectively.

Showing all data may however be misleading when comparing against the class probability
plot, as it is sampled only in the slice rather than all feature space. To account for this, an
option is included to Flter points based on their distance to the shown slice.

To this end, the Gower similarity coe®¥cient [75] is computed, which is a popular distance
metric for mixed data types that combines Manhattan and Dice distance for numerical and
categorical features respectively. Given the normalized distance for every point to the slice,
the alpha value of each point is obtained by applying a distance kernel 6to the distance, given

athreshold U p . @ny distance kernel can be used; in the system we use:
) c ) ~ C .
Ohgb_hkiC Y il Ghkbzg ne§k Max O c',—ao (32

Te latter kernel will linearly fade in points as they get closer to the slice. We considered
encoding distance in alternative attributes like size and using focal blur [178]. However, we
found the former did not work well with occlusion, and the latter too resource-intensive for
large datasets.

Interaction

T e context view enables the expert to directly manipulate parameters that afect the expla-
nation provided by the system (Task 5 ).

T e focal point can be dragged to introduce perturbations to the selected instance. In this
process, the class probability plot serves as guidance to nd relevant regions and the expert
can observe the efect on the prediction and explanation (Task 5 ). Alternatively, a data
point can be clicked on to move the focal point directly to that instance. T e class probability
plots, and feature table columns update in real-time when the focal point is moved.

Second, the size of the sampling region can be controlled with the mouse wheel or using
a slider in the confguration view. T is will afect how general the resulting explanation is.
Large sampling regions will yield a general explanation (applicable to many instances) but
will not be faithful to the reference model. Small regions will be faithful but might overft to
insignifcant details of the reference model. T e optimal value difers per instance and needs
to be determined manually, the system can be used to fnd a compromise.

Finally, the shape of the distance kernel for the sampling region can be confgured with the
mouse wheel while holding down the Alt key or using a slider in the confguration view.
Tis afects how the transfer data set is generated (to which the surrogate model is ftted).
T e efect of the choice of distance kernel on the explanation has gotten little attention so
far. Authors of the popular explanation technique LIME [160] mention the choice has no
signifcant impact, but Lundberg and Lee [129] choose a specifc (and diferent) kernel for
LIME to satisfy optimally constraints, and argue that it Lrelevant.
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To enable experimenting with distance kernels, the system includes a confgurable trapezoid
kernel. TTis is a smooth interpolation between a uniform and triangular kernel, defned as

) c
OmkziC  Y3A] (33
SAY

where @the V P R R Whtr&pnetdr. \By controlling this variable the probability of
generating a transfer data point drops linearly when getting closer to the edge of the area of
interest. T e advantage of this kernel is that the described region is well specifed, as opposed
to the Gaussian kernel used in LIME.

3.5 Use case

We collaborated with a large insurance company to validate our approach in a real-world use
case. We found that data scientists were enabled to obtain explanations to identify problems
with their model and justify predictions, even when automated techniques fall short.

Debtor management is a crucial part of maintaining a healthy fnancial administration. Te
process involves lots of manual labor: staying in contact with various clients, sending re-
minders and, in extreme cases calling in o¥Fcial debt collectors. Machine learning can help
to speed up the process and to prevent resource-intensive debt-collection operations that are
unlikely to be efective. However, as the model only provides a prediction, the verifcation
of such a model and justifcation of decisions is challenging.

T e goal of the experiment was to help data scientists from the debtor management depart-
ment to understand the models they developed. T ey have extensive domain knowledge
and worked closely with the decision-makers at their department. T e team created a bi-
nary classifer to predict the efectiveness of a debt-collection operation. It is a Random
Forest (50 trees) trained on a dataset of 60,000 instances with 16 features (9 numerical and
6 categorical). T ey provided 250 unseen data points for our experiment.

To validate our approach, two data scientists of the team participated in a user study. T e ses-
sion consisted of two parts: during the frst part they were tasked to use the global-oriented
workfow to diagnose problems with their model and fnd possible refnements. Te task
during the second part was to use the local-oriented workfow to support decisions made by
domain experts. T e session took four hours, including 30 minutes of introduction. Except
for the introduction, only the data scientists used the system. T e thinking aloud method
was applied throughout the experiment, and all audio and screen activity were captured for
further analysis. Figures in this section are taken directly from the screen capture, but are
anonymized to protect sensitive information.

Part 1. global-oriented workflow

For this part, we confgured a model that was similar to the model they built: it is the same
type of model (Random Forest) and has roughly the same F , score. We reordered the fea-
ture table view columns to show the global columns frst. T e data scientists were tasked
to evaluate if this model behaves as they expected. T ey had an expectation of the global
importance of features based on their own Random Forest.
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Diagnostic insight

Afer having selected a ridge regression surrogate model, they selected an instance to see its
feature contributions. T ey were surprised to fnd that the two features they expected to be
the most important (A and B) were not important at all. Furthermore, the most contributing
feature C for this instance was one they deemed redundant and recently removed in a newer
version of their dataset. T ey hypothesized that this instance could just be an outlier. As
the class probability for this instance was low (P=0.6), they expected the model might use
diferent features compared to very certain predictions.

To verify their hypothesis they looked at the global contribution column in the feature view.
Tis showed that the diferent contribution values were persistent across all unseen data.
Tey concluded this model was behaving diferently from their own. Next, they argued that
the model might infer the values of features A and B from other features. T ey discussed
features that might correlate to A and B in great detail. Afer this, they used the feature
selection option in the confguration view to remove those features from the model. Te
expectation was that features A and B would have higher contributions. T'is was not the
case; their contributions remained relatively unchanged. T ey were surprised to fnd that
other features also had predictive power, as they believed only a few features (such as A and
B) were important. T is insight could help them to refne their current model by leveraging
more or diferent features.

Refinement insight

While they were considering features one by one, the experts realized that a particular feature
D (which is only true for a small number of instances) might be an important indicator for
the class “efective” T ey decided to check if the model used this efect, and brushed in the
global value PCP to fnd instances with a specifc value. T e context view showed that the
predicted class for all these points is the same, verifying the efect. However, for these points,
the feature had a low contribution. T is means that even though the model predicts the cases
correctly, the feature was not used for these predictions (Figure 3.5). By ensuring that the
model uses this feature more efectively, the model could be refned.

Figure 3.5: A subset of points is selected, almost all points are predicted as the same class, however
feature D does not have a high contribution to the predictions.
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Part 2: local-oriented workflow

Next, we reordered the feature table view columns to show the local instance columns frst.
T e datascientists were asked to support the decision-making process for the debt-collection
operations.

Explanation with high R”*

T e data scientists found a point (yellow) amidst a group of points of a diferent class (blue)
that they wanted to investigate further. T ey confgured a Ridge regression surrogate and
considered the feature contributions. T ere were only four features with a signifcant con-
tribution. T ey substantiated that the feature with the highest contribution was important
because the value was very high compared to the rest of the data, which increased their trust
in the explanation. However, from the context view, they noticed that considering this fea-
ture was not enough to explain why the point was classifed diferently from its neighbors.
T e second most contributing feature was a category unique to this point: all neighboring
points had a diferent value. T ey mentioned “this feature is the deciding factor for the pre-
diction in this neighborhood”. Here they used the explanation as guidance to form their
hypothesis. T ey leveraged their domain knowledge to obtain a more logical explanation.
T ey mentioned they would explain the prediction to their decision-maker in terms of these
two features primarily.

Improving explanation with surrogate model choice

T e experts note that the explanations seem to be less faithful for their data and model com-
pared to standard simple datasets used in machine learning education. T is makes sense,
as more complex models are difcult to explain. To improve the explanation they switched
from a linear to a decision tree surrogate model. Te R *axis in the global overview clearly
showed that the faithfulness of explanations of unseen data increased and had less variance.
T is can be explained because tree-based models are better suited to approximate other tree-
based models. Another instance was selected. By considering the class probability plot of
the surrogate, it was clear that the surrogate ft improved because it fts non-linear behavior
(shown in Figure 3.6). T e explanation for this instance was faithful and clear.

Figure 3.6: Switching to a tree-based surrogate improved the R~ and hence explanation faithfulness, as
the decision tree is more suited to fit non-linear boundaries from the Random Forest.
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Improving explanation with perturbations

Finally, they selected an instance that was more challenging to explain: it had a class prob-
ability of 1 and its neighborhood in the local plot was mostly the same class (Figure 3.7).
Switching between surrogate models did not improve the ft. To improve the explanation the
experts moved the focal point closer to a region with points from a diferent class. T ey found
that a small change in feature values yielded a signifcantly better explanation (R *0.52 to
0.84). T e features that were important also changed. Here the experts used the focal point
as a probe to fnd the nearest faithful explanation for this instance.

Figure 3.7: On the left, the R value is low (0.52) aqd feature C has the highest contribution. A slightly
lower value for feature A results in a much higher R value (0.84) and feature A becomes dominant.

Reflection

Te data scientists were very positive about the system. T ey mentioned “Especially for
exploration this will really lead to insights” and “Very useful to see if the model is looking at
the right aspects; if it behaves logically” T e system enabled them to get more insights into
their model and data, which was the purpose of this use case.

We got some important insights during the use case. Even though we proposed a global
workfow, the data scientists found it more intuitive to start with a single instance and build
up from there (our local workfow). As mentioned in Section 3.3, this preference was mixed
for diferent data science teams.

When selecting instances in the global contribution overview, they were unable to determine
the feature values of those selected instances. As soon as they switched from the global con-
tribution overview to the global value overview, their selections were cleared. Even though
the values could be inferred from the context plot, this was not straightforward.

Finally, they would have liked some more features to keep track of one particular instance.
Once an instance is selected in the current implementation, the focal point moves to that
instance. However, this focal point can be changed during interaction and experts might
loose track of the instance they started at.
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Tey also used the system in ways we did not expect. For instance, they used the feature
selection creatively: to test the efect of leaving out features on the model. By leaving out
features they expected diferent features to get higher contribution values.

3.6 Discussion

T e basic ideas presented in this chapter are all simple in nature: 1) ofering broad options
for model and surrogate confguration, 2) brushing and linking parallel coordinate plots
to analyze subsets of data and explanations, 3) locally representing class probabilities with
HyperSlice, 4) overlaid class probability plots to visually ascertain model ft and 5) enabling
free navigation of feature space to enable what-if analysis. However, we have shown that
combined they form a strong visual encoding that enables data scientists to understand their
model by generating explanations.

In contrast to most visual analytics systems that present a single explanation, our system
enables the exploration of many explanations. T is way domain knowledge of data scientists
can be leveraged to discover explanations ftting their subjective preference.

We adopted a hybrid approach, combining global and local representations rather than a sin-
gle perspective. T is helps experts to fnd global patterns, drill down to a single explanation,
but also check whether local explanations are applicable to a larger subset.

Finally, in contrast to visual analytics approaches that are limited to the model development
stage (as ground truth is ofen an integral part of the visualization), our system was built to
augment rather than replace preexisting machine learning pipelines. It supports data without
any provided ground truth and is compatible with various types of classifcation models and
data.

Scalability

Even though we can visually represent many features in the feature view, there is a practical
limitation to the number of features that can be represented in the system. Many features
would make it diffcult to fnd and compare axes in the global overview PCP, and tedious to
select features to be displayed in the context view. To address the limited visual scalability
to an extent, we support feature selection ahead of the analysis. Another approach would be
to apply dimensionality reduction to reduce the number of features, but this would hurt the
interpretability of the features used, and hence the interpretability of the explanations.

Next, the number of categories the system can represent is limited. Because the class proba-
bility plot in the context view is split into regions for categorical variables, it becomes difcult
to compare class probabilities and diferent models if the feature has more than 10 categories.
Tisisnotvery common for business-related applications. As categories are always assumed
to be non-ordinal, a class probability plot for two categorical variables is also not able to guide
the expert as well as a slice with a numerical variable can. T is is a direction for future work,
as the explanation technique also is less efective for purely categorical data.
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Finally, the number of unseen data points that can be represented is of course limited. For
a large number of instances, the data points in the scatter plots will overlap, and lines in the
PCP will start occluding making it challenging to identify local efects in the global overview.
T e number of unseen data points also afects performance as an explanation needs to be
generated for every instance. For this purpose, the number of unseen data points is kept
around a thousand. Te presented use case shows this is sufcient for understanding a
model, and an improvement over automated techniques that can only explain single data
points at a time.

Optimization was needed in order to support fuid interaction with the system. Every sec-
ond, tens of thousands of predictions are made to compute the class probability gradients.
Hence, our system relies on the model to be able to generate predictions quickly. Machine
learning models are ofen only computationally expensive during training, but generating
classifcations is relatively quick. Even so, a hundred layer deep learning model or tree en-
sembles with thousands of trees will be too slow for the system to be interactive. To alleviate
some performance issues the system reduces interactive updates during brushing the PCP
and moving the context view focal point as soon as a complex dataset or model is loaded.

Afer aminute of initial loading time, the system remains interactive using a 30-dimensional
dataset (UCI Breast Cancer Wisconsin), a 15x100 layer fully connected multi-layer percep-
tron, running on a mid-range laptop with an Intel Core i5 (15-7360U) processor and inte-
grated Intel Iris Plus 650 graphics card.

Limitations & future work

T e use of domain knowledge in our system creates the risk of introducing bias. T is is not
specifc to ourapproach but is inherent when using expert domain knowledge. To counteract
this, we show faithfulness metrics, and deliberately lef out surrogate feature selection to
prevent obvious tampering. However, some risk still remains.

As the system introduces many degrees of freedom for explanations, it may also be over-
whelming to new users. We ofer suitable defaults for these options, and expect data scien-
tists (our target audience) are su¥ciently familiar with parameter optimization.

As we previously mentioned we incorporated metrics in order to assert the quality of expla-
nations, but these metrics are not a perfect proxy for trustworthiness. Such metrics remains
elusive, hence fnding an ‘optimal’ explanation with our system does too.

In order to further counteract bias, a direction for future research is to convey the uncertainty
of explanations per feature. Even though our system allows to see how explanations vary for
input perturbations, directly conveying this uncertainty would be very helpful.

Next, the relevance of diferent sampling regions for surrogate models is unknown. Our
techniques assume circular regions around an instance (as does LIME), but some rule-based
techniques [167] consider rectangular regions instead. Our system enables experimenta-
tion with diferent distance kernels, but any in-depth analysis on the relevance would be an
interesting direction for future research.
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3.7 Conclusion

In this chapter, we presented ExplainExplore: an interactive explanation system to assist
data scientists in understanding their models. It is built to support a wide variety of diferent
data sets and machine learning models. We demonstrated the value of the system with a use
case at a large insurance frm. T e participants efectively used explanations to diagnose a
model and fnd problems, identify areas where the model can be improved, and support their
everyday decision-making process. For cases where automated techniques fall short, they
were able to refne surrogate parameters to improve the explanation and found the closest
good explanation that made intuitive sense. We hope that this technique helps to alleviate
some of the issues with current explanation techniques, to diagnose problems with the model
such as unfairness, and help experts to make informed decisions.
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41 Introduction

T he popularity of machine learning has led to much innovation: many new frameworks,
algorithms and opportunities are being developed. However, the speed of this inno-
vation is leading to | U D J P H QD stosyR&n. T is problem afects many businesses
and projects in which standards are lacking, or when various competing standards exist. In
machine learning in particular, this fragmentation leads to the following issues:

« It increases the time needed to design, train and deploy machine learning models due
to the wide variety of specialized options.

« As the models we use become ever more complex, transferring these models between
languages or frameworks becomes cumbersome. T is locks businesses into exclusively
utilizing certain languages or frameworks.

* New post-hoc algorithms and techniques (e.g., to analyze and understand ML mod-
els) typically only work with a single specifc framework. Hence, these developments
remain largely unavailable to a portion of the machine learning ecosystem.

 Due to the diversity of options, diferent data science teams typically use diferent lan-
guages and frameworks. Without a way to transfer models between those contexts, it
makes communication and sharing results between teams challenging.

To address these problems, a universal standard called the Predictive Model Markup Lan-
guage (PMML) [77] was introduced. It is designed to describe almost any machine learning
model, in a human-readable XML format. By now, it is a mature standard supported by all
major data mining applications [77]. T is includes various languages (e.g., R, Java, Matlab),
frameworks (e.g., scikit-learn, caret, mlr, xgboost) and enterprise sofware (e.g., SAS Enter-
prise Miner, Cloudera, PEGA, KNIME). T is is in sharp contrast with more model-specifc
formats like Open Neural Network Exchange (ONNX), or generalized formats like Portable
Format for Analytics (PFA), that are still in their infancy and lack widespread adoption.

Despite widespread adoption, most frameworks only support exporting to the format, and
lack functionality to import PMML models. T is functionality is also lacking in . $&$/8§

-) [152], one of the most popular and widely used machine learning library for Python
[54]. Itis heavily optimized, has industry-proven reliability, and includes additional features
for post-hoc analysis of trained models. Without an import functionality, these benefts
remain inaccessible to PMML users.

In our own experience, import functionality also greatly benefts the valorization of research
results. By ofering a single, universal interface for predictions, new solutions and algorithms
can be tested and applied in practice regardless of the implementation details.

Driven by this empirical use case, we argue that it is hugely benefcial to enable interop-
erability at the development level. Instead of just using the PMML format for scoring in
production, it can be used to transfer between development environments, and widen the
applicability of new techniques. To this end, we introduce . &' -)8§+(('8(* ' alibrary
to import PMML models natively into . $&$/8' -) Tis facilitates collaboration, shar-
ing results, and applying post-hoc algorithms (e.g., for explainability).
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4.2 Overview & Design

L&' -)8+(('8(* ‘'addsPMML importfunctionality toall majorestimatorsin . $&$/8
-). Te APl is designed to closely resemble the . $&$/8" -)APIL. Te same direc-
tory and component structure is used, and each estimator is a sub-class of a correspond-
ing estimator in . $&$/8' -) Tisensures an identical interface between the imported
PMML model and corresponding . $&$/§' -)model. Each estimator is also a sub-
class of . .I$( /*- whichprovides general PMML parsing logic applicable to any
model, such as data Felds, feld type parsing, target feld, and data preprocessing to support
categorical variables. Next, two base classes .88 - and . - .§
.*-add PMML parsing logic specifc to the diferent estlmator paradigms. See Figure 4.1.

To ensure high quality code, all implementations adhere to the PEP8 code style and have
inline documentation. T e code has full test coverage through integration tests using other
languages and frameworks as a reference. T e tests are executed on all supported platforms
for each contribution by our continuous integration workfow.

4.2.1 Compatibility enhancements

A limitation of our approach is that we cannot import PMML models which use mecha-
nisms that cannot be represented in . $&$/§' -) Several enhancements mitigate this
limitation.

First, categorical features are supported despite of the lack of explicit supportin . $&$/8§

-) . Tisis achieved by preprocessing the data prior to making predictions. During this
preprocessing step, categorical columns are encoded in a format that is compatible. For in-
stance, for linear models we use one-hot encoding to ensure compatibility with other frame-
works. For tree-based models, we use a slightly altered internal tree structure (based on code
bythe . $&$/8"' -)team) that supports categorical splits.

Inaddition, tree-based modelsin . $&$/§" - )arelimited to using binary splits. However,
decision trees exported to PMML are ofen represented as multi-split to reduce fle size. To
support multi-split decision trees, models are preprocessed and converted into an equivalent
binary tree format with equal model output.

Figure4.1: APl designof .&' -)&+(('8(* ' PMML estimators extend both a corresponding . $&$/8§
-) estimator, and a base class for either classification or regression.
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4.3 Installation & Usage

Tesourcecodefor .&' -)8+(('8(* 'ishosted on GitHubl, and pre-compiled pack-
ages (wheels) for Python are available for Linux, macOS, and Windows through PyPI. Ex-
ample 4.1 shows a basic example of loading and evaluating a Random Forest PMML model.
More elaborate examples can be found in the online documentation.
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Example 4.1: Minimal usage example using . &' -)8§+(('8§(*

4.4 Benchmark

To evaluate performance, we compare . &' -)8+(('8§(* ‘'againstthe only other Python
library available (at the time of writing) that ofers the same functionality: 4 2. Tis li-
brary doesnotimportinto . $&$/8§' -)butdirectly evaluates the PMML for predictions.

We tested with two commonly used UCI data sets: Wine and Breast Cancer. For each data
set, we tested fve diferent models with varying complexity, trained with . $&$/8' -)
exported to PMML, and then provided to the two subject libraries. T e average times for
both loading the model, and generating predictions (for the entire dataset) are recorded dur-
ing 100 repeated trials. For brevity, only the overall running time is reported. More details,
along with the source code for this benchmark, can be found in the repository.

Especially for interpretability techniques such as partial dependence plots or feature contri-
bution techniques, a large number of predictions are required to analyze the behavior of the
model. In these cases, the run-time beneft of our library will make all the diference.

L#//+.“CC"$/#0 * *(C$ ( * C.&' -)§+(('§(*
2#1/+.“CC"$/#0 * *(C 0/* +'*4 $C+a+(('


https://github.com/iamDecode/sklearn-pmml-model
https://github.com/autodeployai/pypmml
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LM NB DT RF GB
4 0773291 0.77384 0777425 0.895204 0.902355
Wine .&' -)8+(('8(*
Improvement 133x 122x 289% 8x 7%
4 3849855 3878448 3.83623 4.16358 4.13766
BC L&' )8+ ((T8(Y
Improvement 245x 344x 1367x% 28x 9x

Table 4.1: Average inference time (in seconds) for Linear Regression (LR), Naive Bayes (NB), Decision
Tree (DT), Random Forest (RF) and Gradient Boosting (GB) models, trained on the Wine (top) and Breast
cancer (bottom) dataset.

45 Conclusion

L&' -)8+(('8(* 'isaPython package that provides import functionality to all major
estimator classes of the popular machine learning library . $&$/8' -)usingPMML. Tis
enables portability and interoperability with a wide range of diferent languages, toolkits and
enterprise sofware, which facilitates collaboration, ensures wider applicability of post-hoc
techniques and algorithms, and alleviates vendor lock-in. In addition, we have shown the
native implementation of our library greatly outperforms alternative scoring libraries.
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5.1 Introduction

T he past decade has witnessed a sharp increase in the popularity of artifcial intelligence
and machine learning. T is prevalence has resulted in a wide variety of new approaches
and techniques (e.g., deep learning) that have achieved astounding results previously not
deemed possible [100, 135]. Clearly, these models have advanced over their predecessors
in terms of predictive performance (e.g., accuracy, precision, recall, F, score). However,
there are more properties of these models that have not received as much attention, such as
complexity, interpretability, and fairness [58]. As a consequence, state-of-the-art techniques
are ever increasing in complexity, yielding black-box models that cannot easily be inspected
or verifed.

T e feld of explainable artifcial intelligence (XAl) has recently gained a lot of traction as it
aims to alleviate these issues. It exposes more details about the behavior of complex machine
learning models, which helps experts to verify and validate model predictions. XAl has
proposed a variety of new techniques to show the impact of a feature on the model prediction
[68, 73, 129, 160]. However, due to the novelty of the Feld many challenges remain open.

In particular, the complex and ill-defned nature of interpretability hinders a strict defnition
of concepts such as contribution of a feature. Diferent techniques have varying underlying
assumptions, which can cause diferent and conficting results. In this work, we present
Local and Global Contribution-Value plots as a novel technique to explain machine learning
models. T e plots visualize the feature contribution to a prediction, as well as the relationship
with feature value. Such information about the model is typically conveyed with multiple
techniques, which could lead to contradictory results. We discuss relevant design decisions,
and show an exemplary visual analytics instrumentation, and show it enables insights into
the model that were previously not possible.

To validate our proposed technique, we conducted a comparative user study with a variety
of machine learning professionals and visualization experts. T e results show that our visu-
alizations aid model interpretation by increasing correctness and confdence, and reducing
the time taken to obtain an insight.

Figure 5.1: Design space of interpretability methods. Blue boxes indicate our contribution. The gaxis
denotes feature values; the r-axis denotes either prediction probability (A, B, C) or feature contribution
values (D, E, F).
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5.2 Background & Related work

Visualization can help data scientists to get a better understanding of black box models. For
trivial prediction problems this can be done by inspecting the predictions of a model directly
(Figure 5.1A). Scatter plots can be used to show the relationship between prediction prob-
ability Amd feature value Y However, for any non-trivial prediction problems, there are
likely many interactions between features which make it impossible to identify patterns and
trends.

5.2.1 Local Partial Dependence Plot

To help to gain insight into models, Friedman [68] introduced the Partial Dependence Plot
(PDP). Tis is a sensitivity analysis technique that shows how the prediction Akanges as
the features of interest [(i.e., target features) are varied over their marginal distributions
(Figure 5.1B).

To defne partial dependence for a data point Ylet [,/ Y, Y, be aset of target features,
and [, the complement of [,such that

[ x[m Y [ Olm 2 (5.1)
T e prediction eAY in principle depends on both subsets;
Av eAY e'é{m [y (5.2

However, if we fx the specifc values of features in [, then eAY can be considered as a
function only dependent on [, T is function representsthe ORFD O S D U W Lofxi@
features in [,

e [m eAm_l\ (53)

If [consists of a single feature, a line graph of this function shows how changing [, impacts
the prediction of a single data point. T is conveys much more about the model than just
showing the prediction for single points, and has been used in prior visualization work to
explain machine learning [111, 113].

5.2.2 Global PDP and ICE plot

Local PDPs provide a great insight into a single prediction. However, for many applications
such a local explanation is not sufFcient. In an explorative setting, experts would like to in-
spect much more than just a single prediction. For example, the explanation of a single pre-
diction is not helpful for diagnosing problems with a model, or for model refnement. Even
if there is a single prediction of interest, instance-level explanations do not show whether
they are specifc to that instance, or generalize to a larger set of instances. For these cases
we need J O Rekpludations. To get a global insight into the entire model, Friedman [68]
proposes averaging local partial dependence lines of all Straining data points as follows:

)

GHSHQGH



58 Background & Related work

M

Al [r A E  eALl Rcl, b <83 AP (54
b A

where R, is the marginal probability density of [,. T is global PDP is used in visualization
work to explain and compare machine learning models [196, 205]. However, Friedman notes
that Equation 5.4 does not hold when there is a strong interdependence amongst features,
which is ofen the case for complex black box models.

To deal with interdependence, Goldstein et al. [73] proposed an alternative called Individ-
ual Conditional Expectation (ICE) plot by superimposing all individual local partial depen-
dence lines. T is reveals patterns that would otherwise be hidden by averaging. For example,
Figure 5.1C shows two clusters of partial dependence lines that would not be apparent in a
global PDP.

5.2.3 Feature Contribution

An alternative approach to gain insight into machine learning models is the feature contribu-
tion technique (Figure 5.1D). Such methods yield feature contribution vectors that indicate
how much every feature contributed to a prediction.

Initially, Baehrens et al. [12] showed that machine learning models can be explained using
the derivative of the class probability function. T e reasoning is that if a small change in
feature value leads to a large change in the prediction probability (or regression output), that
feature is relevant for the prediction. T ey note, however, that an exact derivative for the
majority of models does not exist.

To this end, LIME was proposed by Ribeiro et al. [160]. It solves this issue by ftting a lin-
ear regression surrogate model to the class probability gradient with a local sampling region
around an instance. T e coeFcients of the linear model approximate the derivative of the
probability function, regardless of whether a formal derivative exists. Next, the approxima-
tion can be used to show which features have the most impact on a prediction.

Another prominent approach for feature contribution are Shapley values [109, 129, 181].
T is method estimates the contribution of a feature by comparing the class probability of
a prediction including and not including this feature [136]. T e absence of a feature is es-
timated by averaging the predictions for diferent values for that feature sampled from the
training data distribution.

Any of these techniques yield feature contribution vectors that give a quick overview of which

feature had an impact on a single prediction. However, it remains unclear for which Y DO XHV
in general that feature is relevant. For example, in a medical trial where feature attribution

shows that ‘dosage’ is important predictor for recovery, we would also like to know what val-

ues of ‘dosage’ were most relevant. In addition, these methods only target single predictions,
whereas some use cases require a global perspective on the model.

Finally, various other explainable Al visualization works exist [78], but those ofen use the
presented elementary techniques as a basis.
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5.3 Local Contribution-Value plot

To alleviate the limitations of previous techniques, we propose the Local Contribution-Value
(LCV) plot. Te curves are generated in the same way as PDPs (Section 5.2.1), but instead
of class probability values we use feature contribution values (Figure 5.1E). T is yields a plot
that reveals how the IHD W X U H F RaQed/fdu thangedin fiea@re value. It has some key
advantages over local PDPs.

First, contrary to a PDP [68], the LCV plot is also efective when features are heavily corre-
lated. For example, if feature i and jare correlated, changing the value of either does not
change the prediction, while changing both would. As the sensitivity analysis used in PDPs
only alters the value of a single feature at a time, the PDP would not show variation in the
prediction. In contrast, LCV plots use an explanation technique that considers a wider re-
gion of feature space (compared to a single point), which enables them to show variation in
contribution even when features are correlated.

Next, for certain use cases the LCV plot may be easier to read and compare. To infer rel-
evance of a feature in a PDP plot, experts have to consider the V O Bf $hklline. Previous
work has shown that human slope estimation is not trivial and prone to be biased (i.e., angle
contamination) as our visual system is geared towards judging angle rather than slope [42].
Hence, our graphical perception of slopes prohibits any exact judgement of contribution or
importance in prediction-value plots. LCV plots encode feature contribution with position,
making it easier to read and compare exact values (see Figure 5.2).

Tis does mean that the prediction probability is not directly encoded in LCV plots. We
argue PDP and LCV plots serve a diferent (and complementary) purpose. When experts
are interested in the predictions for specifc data points, PDPs are more suitable. However,
when trying to understand how the model makes predictions, LCV plots are more suitable.

Finally, the LCV remains a local approach focusing on a single instance. T is makes it dif-
fcult to get a global overview of the model, and whether a feature that is locally relevant is
always relevant, or only for a small number of instances.

Figure 5.2: LCVs can be directly compared with feature contribution visualizations because they share
the same r-axis scale. Left: contribution for two features of instance lrepresented as a bar chart. Right:
LCV plots for the same features for full feature range. Value of instance hindicated with a black line.
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5.4 Global Contribution-Value plot

For a global overview, we propose using the same procedure as for an ICE plot: to super-
impose LCV plots to show the contribution for an entire data set (Figure 5.1F). Tis helps
experts to get a global overview of the model behavior for typical data. We refer to this
approach as the Global Contribution-Value (GCV) plot.

Te GCV shows more clearly which values of a feature have a signifcant impact on the
model prediction, which helps to understand the model. As an example, we examine the
Wine Quality dataset [52]. Figure 5.3b shows two diferent thresholds (3.05 and 3.35) for
pH that the Random Forest model uses to determine wine quality. Next, GCV plots en-
able the comparison of feature importance at diferent feature values. For instance, for the
selected instances in Figure 5.3b, the frst threshold contributes more than the second.

In addition, in a GCV plot it is much easier to nd patterns and clusters compared to ICE
plots. Such expert-guided subgroup discovery can for instance be used to assess model fair-
ness, and to discover diferent ‘strategies’ a model has for predicting the same class. T ere
are two reasons for this.

First, in ICE plots the diferences in prediction probability lead to vertical dispersion of poly-
lines that obscures global patterns. For example, both plots in Figure 5.3 refect the same
model and data. Te GCV plot in Figure 5.3b clearly highlights two diferent clusters (the
selected and non-selected lines), whereas this bi-modality is difcult to spot in Figure 5.3a.
Te lower vertical dispersion in GCV plots also enables intuitive interactive selection by
means of lasso brushing [157], as shown in Figure 5.3b. In an ICE plot, lasso selection does
not yield any interesting clusters; this would require selecting lines based on angle. To ad-
dress the vertical dispersion, Goldstein et. al. discuss a variant called centered ICE plots that
center the curves at a certain feature value vgand display only the diference in prediction to
this point. However, some dispersion remains, fnding a suitable value for vgis challenging,
and the interpretation of the waxis becomes very unclear. In addition, the authors introduce
a derivative ICE variant. T is approach is similar to a GCV plot using LIME, but considers
only the derivative with respect to a single feature, whereas LIME considers all features.

(a) ELb 2 ue to the huge variance in class proba- (b) *LC 3¢ Belected polyline (blue), revealing two clus-
bilities it is difficult to find patterns. ters with diverging contribution values.

Figure 5.3: Two visualizations of a Random Forest (100 trees) trained on the Wine Quality dataset [52],
showing feature “pH”.
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Second, feature contribution techniques have to simplify in order to approximate the refer-
ence model. For instance, LIME fts a linear model to a sampling region around an instance.
Tis simplifcation yields smooth curves in LCV and GCV plots, making it easier to spot
more subtle patterns [76]. T is also gives an intuitive visual interpretation of the kernel size
parameter in LIME: changing this parameter afects the smoothness of the curves.

5.5 Design

We built a visual analytics instrumentation of all discussed techniques (Figure 5.1), as they
are valuable in diferent situations. It can be used by data scientists to understand how a
feature impacts model predictions on a global level. In addition, it also shows what values
of a feature are relevant. T rough interaction, diferent patterns in feature contribution can
be analyzed. More detail and a usage scenario are shown in the supplemental video of the
original paper, or video availableat #//+.“CC 3+' $)$)"*("C 1+'*/.

5.5.1 Feature Contribution technique

Even though feature contribution techniques can provide great insight into model predic-
tions, the output of diferent techniques may vary signifcantly, making it challenging to
compare them. T e examples in Figure 5.4 show that LCV plots with diferent explanation
techniques can vary signifcantly. Te diference is that LIME contribution values are ap-
proximate (partial) derivatives, whereas Shapley contributions are additive: the sum of all
feature contributions (plus the constant E D V H ild. XYW &derage predicted value) equals
the class probability Av

To further explain the diference, we consider the relation between contribution vectors and
the class probability for the various methods:

LIME: Av 6 %], (3
z
Shapley:  Aw $, (b
z
Because the base rate  of Shapley values is constant, the sum of Shapley contribution val-
ues recovers the original class probability ARor LIME, the contribution values need to
be composed with the feature values frst. Next, the linear regression intercept ( g is not
constant but varies per instance.

(55

(a) Synthetic data set (b) Class probability (c) LIME (d) Shapley

Figure 5.4: The class probability (b) of a model trained on a synthetic data set (a) and two LCV plots
using different contribution techniques (c, d). All plots share the same ¢-axis domain.
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For this chapter, we focus on LIME contribution as it has a more straightforward interpreta-
tion (i.e., a small change in feature value results in a big change in prediction) than Shapley
values, and a lower computational cost [71]. A kernel size of 0.5was used, but we encourage
tweaking this parameter on a per-dataset basis.

5.5.2 Visual encoding

In PDP and LCV plots, a single instance is traced over the entire marginal distribution of
a feature. Tis may yield data points that are out-of-distribution (e.g., a person with age 5
and height 200cm). Such data points force the model to extrapolate to an unseen part of the
feature space, which could be misleading.

To account for this, we gradually fade out polylines as they get further away from the original
data point. Any kernel can be applied, but in our implementation we use a triangular kernel:

) . s,
6 s max O 6_\%0 (56)

where ! isaconfgurable parameter impacting the length of the fade, and Wthe range
of the marginal distribution of feature .

T e result is shown in Figure 5.6A, which depicts the same data as in Figure 5.3b. Note that
towards the end of the feature range, Figure 5.3b shows a third bump in feature contribu-
tion. Tis bump is not visible in Figure 5.6A with line fading. Tis shows that the efect
was extrapolated from out-of-distribution data. Additionally, the original data points can
be shown to further enable the identifcation of out-of-distribution efects (Figure 5.5a).

Our implementation (shown in Figure 5.6) contains two views. Te P R G H Ghevisishzall
multiples of GCV plots for all features (Figure 5.6A). T is enables data scientists to determine
which features are used by the model, and what values play an important role in predictions.
Te waxis is shared across all plots for easy comparison. Line fading can be customized by
confguring the fading parameter on-the-fy, and an option is provided to average all local
polylines (similar to global PDPs). Selection is enabled by lasso brushing [157]: dragging
a line in the plot will select all polylines which intersect that line, revealing clusters in the
feature contribution vectors. Tis selection is linked to all other GCV plots as well as the
data view.

(a) Data points shown (b) Line fading with | £ ° °¢ (c) Line fading with j &£ ° ¢

Figure 5.5: Included methods to enable the identification of out-of-distribution effects.
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Figure 5.6: Overview of our visual analytics instrumentation of techniques in Figure 5.1. More features
are revealed by scrolling down. Line fading is enabled with | A& © (¥ee Equation 5.6 for details).

Te G DW D(Mduid B.6B) contains a list of histograms to show the original data distri-
butions. T e distribution of the selected instances in the model view is highlighted in blue.
In the example, the data view shows that the selected cluster in the model view (for which
‘pH’ is an important to the predictions) corresponds with data instances with high
alcohol content. Te waxis of the histograms can also be brushed to selected instances with
specifc feature values, and to highlight lines in the GCVs.

5.6 User study

To validate our proposed technique, we conduct a comparative evaluation through a user
study with a variety of machine learning professionals and visualization experts. T e goal of
the experiment is to analyze how experts use diferent visualizations to understand complex
machine learning models. We aim to answer the following research questions:

32 Can experts determine which features are most relevant and most used by the model
for predictions?

32 Does the visualization enable the understanding of the relationship between feature
value and importance? Can experts fnd feature values at which the prediction changes
drastically?

32 Are experts enabled to detect divergent model behavior (i.e., groups of instances are
treated diferently)? Tis corresponds to diferent ‘strategies’ the model employs to
produce predictions.
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5.6.1 Participants

We invited 66 experts with an interest in machine learning explanations. We received 22
replies, of which 6 were female, 15 male and 1 other. T e ages of the participants range from
24 to 50 years old. 10 participants reported having high experience with machine learning
(!'3o0n5-point Likert scale), while 9 participants reported having high experience with visu-
alization (! 3 on 5-point Likert scale). Seven participants reported having used explainable
Al techniques such as LIME and SHAP before, the rest was new to the concept. Participants
were not compensated for their contribution.

5.6.2 Study procedure

We set up an interactive online survey that took around 10 to 20 minutes to complete. To
start, each participant completed a short background survey we used to report on the pop-
ulation demographics. Participants were then introduced to the diferent visualizations for
model interpretability as listed in Figure 5.1 and to the Wine Quality dataset. Finally, the
participants were asked three sets of 10 questions about a complex model predicting wine
quality. Each set corresponds to one of the main research questions and is preceded with an
introductory example. To compare the diferent techniques, the participants were provided
with ICE plots for the frst fve questions of each set, and GCV plots for the latter half. To
avoid a learning efect due to the order of the plots, the features used were distinct.

32 Participants were presented with static visualizations of two randomly selected fea-
tures of the wine quality dataset, and had to indicate which of the two was more rele-
vant to the model predictions.

32 Participants were shown a static visualization of a single feature, and had to indicate
the most important feature value (i.e., for which feature value the prediction changed
most rapidly).

32 Participants were shown an interactive visualization (i.e., with lasso selection), and
were tasked to detect whether certain wines were treated diferently by the model than
others (i.e., whether model strategies exist).

5.6.3 Results

We recorded the answers, the self-reported confdence in the answer on a 5-point Likert
scale, and the time spent at each question in milliseconds. Te participants successfully
completed the questions in 12 minutes on average, excluding the background survey and
introductory example.

To test for statistical signifcance, we use the one-sided proportion _-test for the proportion
of correct vs. incorrect answers, the Mann-Whitney test for self-reported confdence due to
the ordinal nature of the Likert scale, and the rtest for the time taken for each question. For
the alternative hypotheses, we assert that participants have a higher proportion of correct
answers, higher confdence, and less time taken using GCV plots. We evaluated diferent
participation cohorts independently, but did not nd a signifcant diference. Furthermore,
the number of participants in each cohort is insufFcient to prove statistical signifcance.
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RQL. Feature importance

In general, participants were able to determine which of the two presented features was most
important using both visualizations. We defne the correct answer as the average LIME con-
tribution for both features; the one with the largest average contribution was deemed most
important. On average, 69.1% of participants selected the correct answer using ICE plots,
and 86.3% using GCV plots. T is result is statistically signifcant with n

In addition, participants were a lot more confdent in their answers with GCV plots with a
statistical signifcance of n d*A Te distributions of reported confdences for each
technique are shown in Figure 5.7a.

Finally, participants took less time fnding an answer: 21.9 seconds with ICE plots and 10.6
seconds with GCV plots. As participants took a bit longer on the frst question for each
visualization, we omitted it from the time averages.

RQ2. Feature value and contribution relationship

Participants also understood the relationship between feature value and importance. We
defned the correct answer as the feature value with the highest average LIME contributions
out of all line segments. We deemed the answer correct if the participants were within 5% of
the correct answer (relative to the marginal range of the feature) to account for insignifcant
deviations and tick value bias. On average, 56.4% of participants selected the correct feature
value using ICE plots, and 75.5% using GCV plots. T is result is statistically signifcant with
n

We found a slight positive diference between reported confdences. However, this diference
does not pass the statistical test ( n ! ). We hypothesize this is, at least in part,
due to participants being less rigorous when reporting confdence: for RQ2 and RQ3 a few
participants seemed to have just leF the slider on the default value. T e distributions are
shown in Figure 5.7b.

In terms of taken time there is again a signifcant diference of 14.7 seconds for ICE plots
and 11.4 seconds for GCV plots (n ). Te Frst questions for each visualization
technique was again omitted.

(@RQL(i £ A A%y (b)RQ2 (i £ ° °AWA (C)RQ3 (i /£ ° °¥)¥%A

Figure 5.7: Histograms of the self-reported confidence per research question, separated by ICE plot
(grey) and GCV plot (blue). Mann-Whitney significance test i-values are annotated.
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RQ3. Model strategies

Finally, we tested whether participants were able to discern diferent model strategies. Un-
fortunately, there was no statistical diference (n ) in correctness: 67.3% of par-
ticipants selected the correct answer using ICE plots, and 70% using GCV plots. T 'is may
be caused by the relatively simple dataset used for the experiment, making it easier to spot
strategies in ICE plots regardless of the many occluding and intersecting lines. Another con-
tributing factor is the ambiguity of what constitutes a cluster. T e provided example may
have been insufFcient to explain the concept of model strategies we expected.

In terms of confdence (Figure 5.7¢) and time taken, there was again a statistically signifcant
diference with nvalues of and respectively. Using ICE plots, participants
took 27.2 seconds, and with GCV plots only 13.9 seconds.

Feedback

At the end of the experiment, participants were asked to provide optional comments about
the survey. We received three questions about how best to interpret importance in an ICE
plot. As we have argued, the translation of variation in the predicted value shown in ICE
plots is subjective and challenging, whereas GCV plots directly show feature importance by
value, adopting the assumptions of the underlying explanation technique. As a result, all
these participants reported higher confdence using GCV plots over ICE plots during RQ1.

Regarding RQ3, one participant remarked that using the interaction helped them fnd the
clusters. Two other participants mentioned they liked this part of the survey, but found it
difcult to determine what constitutes a cluster. Tis is valid feedback, and refected in the
lack of signifcant correctness results for RQ3.

5.7 Discussion & Future work

Our proposed visualization supports answering various questions about the model to under-
stand a complex model. First, an expert can check the feature contribution and relationship
with feature value at a single glance. In prior work this could only be done with separate visu-
alizations of feature contribution and partial dependence based plots. We showed these are
difFcult to compare (it requires estimating the slope), and may not show consistent results, as
they encode diferent information. Next, patterns (or ‘strategies’) can be spotted that would
otherwise remain hidden (e.g., Figure 5.3b highlights two distinct clusters of lines). In addi-
tion, linking with the data view helps to ascertain what constitutes this strategy (e.g., alcohol
contents). Finally, our approach enables the validation of the (un)certainty of contribution
through line fading.

Our user study has shown that GCV plots can aid the understanding of complex models by
increasing correctness and confdence, and reducing the time taken to obtain an insight into
how complex machine learning models work, compared to traditional techniques.

However, the current implementation has a few limitations. First, much computation is
needed to obtain these curves: our examples with all features of the Wine Quality dataset
took 5 minutes (on AMD Ryzen 5 3600X); it will take longer for larger datasets and more
complex models. Hence, computing these plots on-the-fy is not possible. We address this
by caching the results in our implementation. T e optimization of current implementations
of feature contribution methods for large datasets is an interesting topic for future research.
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Next, even though we can visually represent many features there is a practical limitation on
the number of features that can be shown. Hence the plots are best applicable to data sets
with at most 10-20 features. In addition, for the plots to be interpretable we rely on a dataset
that has features with inherent meaning.

Finally, our work relies on the validity of the used underlying explanation technique. Tis is
not rock solid yet, as both LIME and Shapley values have been criticized [71, 115, 136]. We
chose LIME as it has a more straightforward interpretation than Shapley values (i.e., which
small changes in feature value result in a big change in prediction) and is computed faster.
However, we think our plots are able to help experts understand the diferences between
explanation techniques, ultimately encouraging this line of research.

As a follow up, the user study can be expanded to cover a wider variety of data sets and
participant cohorts to further investigate the suitability of our approach.

5.8 Conclusion

We have presented Local Contribution Value (LCV) plots, a novel way of conveying feature
contribution as a function of feature values. T is was previously only possible by combining
multiple views, or by fallibly estimating the slope of partial dependence curves, which is
challenging and subject to errors. Futhermore, we introduced Global Contribution Value
(GCV) plots to show a comprehensive overview of the full model behavior. T ese plots are
information dense and enable novel insights into a model. We have addressed uncertainty
of the sensitivity analysis by interactively fading out lines, enabling the validation of patterns
for real data, and empower an analysis workfow with linked views.

In a user study with 22 machine learning professionals and visualization experts, we have
shown that the visualizations support model interpretation by increasing correctness and
confdence, and reducing the time taken to obtain an insight compared to previous tech-
niques.

T e proposed visualizations provide data scientists with an in-depth view of the role of a
feature in predictions, and enable model diagnosis, refnement, decision support and justi-
fcation use cases commonly driven by model interpretability [45].
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6.1 Introduction

N ow that machine learning is increasingly used for high-stakes decision making, it is
essential the models we built can be held up to scrutiny. To this end, the feld of eX-
plainable Al (XAl) has introduced various techniques in order to support understanding
the decisions of complex machine learning models. Many of these techniques fall under the
umbrella of ‘feature importance’: techniques that calculate a scalar value for each feature to
provide insight into the importance of that feature towards either the overall behavior of the
machine learning model (i.e., global) or an individual prediction (i.e., local). In this work,
we focus specifcally on local feature importance.

Local feature importance techniques have seen widespread adoption, popularity, and suc-
cess in solving real world problems [38, 130]. However, a systematic way to evaluate and
compare these methods remains elusive, as the qualities of an adequate explanation of a
machine learning model are inherently subjective. Diferent feature importance techniques
make diferent assumptions about the properties that a good explanation should have, which
can cause them to be inconsistent or even contradictory [49]. In addition, recent work has
critiqgued many of the existing technigues on various accounts: being misleading [71], lack-
ing robustness [4], and not enabling action [115].

In this work, we explore the extent to which experts’ assumptions about local feature impor-
tance match existing techniques. Specifcally, our main contributions are:

1. anoverview of important properties afecting the interpretation of feature importance;

2. aqualitative characterization of how data scientists in industry defne the importance
of a feature;

3. aquantitative survey exploring their expectations of the identifed properties; and
4. aconcrete set of recommendations to better match expectations of data scientists.

While we found most identifed properties are expected, some expectations were conficting,
or varied a lot amongst participants. T is warrants careful consideration.

T e remainder of this chapter is structured as follows. We Frst describe related work (Sec-
tion 6.2and 6.3). In Section 6.4, we lay out several potentially misleading properties of local
feature importance techniques. Section 6.5 details our survey design. Section 6.6 and Sec-
tion 6.7 cover the results, followed by a discussion (Section 6.8) and concluding remarks
(Section 6.9).

6.2 Local feature importance

We defne feature importance as any quantitative assignment of importance or infuence
to the features used by a machine learning model. T ere are two primary ways in which
feature importance is construed. * O R feafuf2 importance techniques attribute importance
to a feature in relation to the model or its predictions as a whole. / R FfEatDre importance
techniques, on the other hand, produce explanations that pertain to the prediction of a single
data point. T e focus of this chapter is primarily on local feature importance. We distinguish
between two types of techniques to compute these values: gradient-based and ablation-based
feature importance.
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Gradient-based

Tis type of feature importance techniques assume that features are important when small
changes in feature value result in a (relatively) big change in model prediction. As such,
gradient-based feature importance values can be interpreted in a similar fashion as the co-
eFcients in linear regression models, which are widely considered as interpretable (global)
explanations [78, 194]. We discuss three examples of infuential gradient-based techniques.

Baehrens et al. [12] show that an exact derivative (i.e., gradient) of a model can be used as
feature importance. As an exact derivative may not always exist, they use a Parzen window
surrogate model to mimic the reference model, and use the derivative of that surrogate model
to generate feature importance vectors.

Next, LIME [160] is a very popular technique that approximates the gradient by training a
local interpretable surrogate model on generated samples, weighted by the inverse distance
to the instance to be explained. If a linear regression surrogate model is used, the coeFcients
of that model approximate the derivative of the model.

Finally, saliency maps are a gradient-based explanation technique specifcally targeted to
neural networks trained on image data. T ese techniques aim to show which pixels in the
input image were most relevant for the prediction, by computing the gradient of the neural
network directly using back propagation (e.g., Grad-CAM [169]).

Ablation-based

T ese techniques assign feature importance by comparing model predictions when a feature
value is present to when it is absent (i.e., D E O D W IsBeQerally not possible to simply
remove a feature value from an existing model without changing the model’s parameters. As
such, ablation-based feature importance approaches require a method to simulate absence
of a feature value. Two of these techniques are introduced in [129] and [202].

Shapley-value based approaches [109, 129, 181] pose the distribution of feature importance
as a cooperative game, where each feature value is a player. In order to capture the infuence
of interactions between features, Shapley-value based approaches consider how the model
prediction changes for each subset, or ‘coalition, in the power set of features. Next, Shapley-
value based approaches compute the ‘value’ (i.e., change in prediction) of each subset by
averaging across all possible feature values of the features that are not part of the subset
under consideration.

Zeiler and Fergus [202] present another ablation-based feature importance technique specif-
ically for image classifcation. Here, importance is computed based on the extent to which
iteratively masking input pixels with a gray value changes the prediction output.

Gradient-based and ablation-based approaches seem similar: both ascribe importance of a
feature value based on how the model’s prediction changes when the feature value changes.
However, where gradient-based approaches consider the U Dofghange in the output, ablation-
based techniques consider the P D J Q Lo/tKe@Hdnge. Consider the example shown in
Figure 6.1, which shows the predicted outcome e vgiven avalue vfor a feature. T e base
rate denotes the average outcome over all values of v For v , we see a large diference
of e vwith the base rate, but a small gradient (i.e., slope); for v this pattern is reversed.
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Here we see that a small perturbation changes the prediction signifcantly, whereas removal
of the feature has almost no efect. As we describe in Section 6.4, this diference results in a
very diferent interpretation of feature importance.

Figure 6.1: Gradient-based compared to ablation-based feature importance. Two points are highlighted
for which the feature importance scores of both techniques vary widely.

6.3 Related work

Our study is closely related to recent work on mental models in XAl. Additionally, our ex-
position of potentially misleading properties is in line with recent critiques of local feature
importance approaches.

6.3.1 Mental models of explanations

In the context of human-computer interaction, a P H Q W D Gs ®WRe@sHdllef about how
the target system works [114]. Mental models are typically contrasted with a system’s F R Q
FHS W XD ©rdpreséntation of the system as intended by the designer [148]. Erroneous
mental models can lead to behavior with unintended consequences [148]. In XAl, expla-
nations are ofen viewed as tools to increase the accuracy of a user’s mental model of the
machine learning model [79, 114]. In this chapter, we are concerned with mental models of
the explanation technique itself. If a user's mental model of an explanation technique is in-
accurate, this can result in misuse or misinterpretations. For example, in a recent evaluation
of explanation tools, Kaur et al. [101] fnd that practitioners who have (partially) accurate
models of an explanation tool make more careful decisions compared to those who take the
visualizations at face value. We build upon these fndings and set out to characterize a more
detailed mental model of local feature importance.

6.3.2 Critiqgues of feature importance techniques

Several scholars have critically examined the underlying assumptions and intended inter-
pretation of local feature importance techniques. A recurring topic of interest is the faith-
fulness of explanations: the extent to which the explanation approximates the prediction of
the black-box model [161]. One of the main assumptions of LIME is that, even if a model
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is complex globally, it might be possible to estimate the model’s gradients locally. However,
even locally, it may not be possible to accurately estimate the gradients. Additionally, Lipton
[122] remarks that for diferentiable models (e.g., neural networks) the added value of LIME
over raw gradients is unclear.

Another regularly discussed issue is the ambiguity of axiomatic ‘desirable’ properties of fea-
ture importance, which can lack proper justifcation [122] and contextualization [83]. For
example, Kumar et al. [115] question the justifcation of the additivity constraint imposed
by SHAP. Regarding contextualization, XAl techniques are typically developed without a
specifc use case in mind, even though the efectiveness of a technique likely varies across
scenarios [58]. For example, several studies have shown a limited utility of using local fea-
ture importance for improving accuracy in decision-making by domain experts [96, 193],
whereas other studies show that systems that rely on feature importance can lead to novel
insights [88], faster decision-making [96], and efective feature selection [3].

In this chapter, we examine to what extent several of these possibly misleading properties
of local feature importance techniques may infuence data scientists’ interpretations of local
feature importance.

6.4 Properties of local feature importance

We start by providing an overview of several properties of local feature importance values
that infuence how they can be (mis)interpreted. T ese properties will provide the basis of
our survey.

P1. Actionability

Feature importance computed through gradient-based approaches can be regarded as an
approximation of the derivative of the model’s predicted score over the feature. If the ap-
proximation is sufciently accurate (locally), gradient-based feature importance can be in-
terpreted as (locally) D F W L R iQaddgt@rdHs important, an action (i.e., a small change in
feature value) will afect the model’s score [101]. T e same does not hold for ablation-based
approaches. For example, a high SHAP value implies that, on average, the model’s score
would have been diferent if the instance would have had another feature value. However,
presented as an average, it does not indicate K RtHe feature value should have been diferent
- there could have been one specifc alternative feature value with a very diferent score or
an entire range of feature values with varying scores.

P2. Causalily

f&ERUUHODWLRQ GRH VTDiRkeXprésstida O dfierbusedl tb Werln Ra@ gnalysts of
misinterpreting statistical correlations as causal relationships. Most machine learning mod-
els are statistical models. While (local) feature importance values may help to formulate
new hypotheses, they should never be interpreted directly as causal relationships between
features and the target variable. Clarifcation of the non-causal nature of feature importance
is especially important when the explanations are used to support for less experienced users.

INote we use the defnition of actionable as introduced by Kaur et al. [101]. In diferent contexts actionability may
refer to other things, such as practical usefulness, or (in counterfactual explanations) the practical feasibility of
changing a feature value for an individual.
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P3. Stability

Several local feature importance techniques rely on randomly sampled feature value pertur-
bations. Additionally, explanations may be sensitive to the choice of parameters. As such,
the resulting feature importance values may difer across subsequent runs of the explanation
algorithm [204]. We refer this as the V W D Bf th®dxpaNation. Instability may cause users
to be reluctant to use explanation methods [91].

Instability can be mitigated to some extent by increasing the number of samples [71], but
this depends on the dimensionality of the data and afects running time. Regardless, for
complex models, feature importance values will always constitute an approximation of the
model’s underlying prediction-generating mechanism. Consequently, there are usually vari-
ous alternative (and equally valid) explanations for the same prediction [45]. Feature impor-
tance is typically presented as a single value per feature, but this may disguise the inherent
uncertainties in how the values are derived [83].

P4. Robustness

T e robustness of an explanation technique considers the similarity of explanations for sim-
ilar instances [4]. Tis means that if feature values are perturbed slightly, the explanation
is not changed unless the perturbations also strongly change the prediction. T e property
is closely related to stability. Te main diference is that stability considers sensitivity to
S D U D R wiharddsrobbustness considers sensitivity to the L Q S &iWh their reliance on
input perturbations for computing feature importance, it is perhaps unsurprising that if we
rely on a relatively small number of perturbations, both SHAP and LIME can yield varying
and inconsistent explanations for more complex models [4].

More generally, as the complexity of the model increases, it becomes more challenging to
determine whether variations in feature importance should be attributed to the erratic be-
havior of the explanation method or the underlying machine learning model. Should we
expect explanations to be robust at all? If the purpose of an explanation is to understand
the underlying data, robustness may be desirable, as we are more interested in consistent
patterns. However, if the purpose is model validation, ‘robust’ explanations may disguise
unexpected model behavior.

P5. Selectivity

Research from social sciences shows that people do not expect explanations to provide a
complete account of all causes for an event. Instead, people select a subset of causes for
the explanation they believe to be the most important [139]. A feature importance method
can be selective by limiting the explanation to the most important features (where the exact
meaning of ‘important’ depends on the method). For example, common implementations of
LIME use L1 regularization (by default), to reduce the number of features in the explanation
[160]. In contrast, SHAP explanations will include all features in the fnal explanation. Im-
portantly, selectivity can be in tension with the faithfulness of an explanation: a very simple
explanation is not able to fully capture the complexity of the model’s decision logic.
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P6. Additivity

Lundberg and Lee [129] introduce the concept of additive feature attribution methods as
a set of feature importance techniques that can be interpreted as a decomposition of the
model’s predicted score over all features, resulting in one value per feature. Additivity can
potentially lead to misleading interpretations. If features have a strong statistical relation-
ship in the data set, it is unclear how feature importance of individual features should be
interpreted. Similarly, features may strongly interact with each other in the machine learn-
ing model. For example, how should we distribute importance in an additive fashion if the
model presumes an ‘XOR' relationship between two features? As remarked by Hancox-Li
and Kumar [83], users may interpret feature importance to represent solely univariate ef-
fects, which is fundamentally misleading when a non-additive model is explained. Again,
we see that summarizing complex model behavior in a few numbers may be an oversimpli-
fcation.

P7. Proportionality

We consider a feature importance technique to be proportional if the sum of feature impor-
tance values is proportional to the output of the original model. To illustrate, consider the
relation between feature importance vectors from LIME and SHAP and the predicted score
of the model:
Gradient-based (e.g., LIME):  Av ¢ $5,],; (a)
z
Ablation-based (e.g., SHAP):  Aw $, (b
z
Asthe base rate  of Shapley values is constant, the sum of Shapley feature importance values
is directly proportional to the original model prediction score fwith ofset ). However,
LIME feature importance values frst need to be multiplied by the feature values, and then
added to the intercept othat is diferent for each instance. As an (arguably counter-intuitive)
consequence, features tend to have low importance when the model is very certain, and
features tend to be more important when the model is very uncertain (notable in Figure 6.1).

(6.1)

P8. Sampling Distribution

Various feature importance techniques rely on perturbing feature values, which requires a
predefned distribution of possible feature values. We can distinguish two types of sampling
distributions [115] with a diferent underlying intuition that afects how the resulting feature
importance scores can be interpreted.

, QW H U Y tHsiiutiors@lDwdfor sampling across all possible feature values for each fea-
ture independently, irrespective of whether the resulting combination of feature values is
likely to occur in the data. Chen et al. [37] consider an interventional approach appropriate
when the goal is to understand the model independently of the data, as a mathematical func-
tion that maps input to output. However, when importance is used to identify relationships
that hold true in the data, interventional distributions can be misleading [92]. In particular,
this can result in out-of-distribution samples. In these cases, Hooker et al. [92] propose to
sample feature values from distributions that are F R Q G LA th&réraiding features. As
a result, any perturbed instance is consistent with the original data distribution.
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T ese diferent approaches towards sampling reveal fundamentally diferent views of what it
is that feature importance explains. Conditional distributions consider the informativeness
of the feature, given the structure of the training data, whereas interventional distributions
quantify the sensitivity of the model to a feature, regardless of the underlying data.

6.5 Methodology

Our goal is to explore data scientists’ mental models of (local) feature importance values
and their implications for existing techniques. To this end, we pose the following research
questions:

32 How do data scientists defne feature importance?

32 What are the expectations of data scientists with respect to properties of local feature
importance?

To answer our research questions, we conducted an online survey amongst data science pro-
fessionals, using an exploratory mixed-methods survey approach.

6.5.1 Participants

We recruited participants using snowball and convenience sampling strategies. T is means
we invited industry acquaintances to participate in our survey and asked them to suggest
and forward the survey to colleagues. T e study was approved by our institution’s Ethical
Review Board (ERB). Participants were not compensated for their contribution.

Each participant was presented with a consent form detailing the purpose and process of
the study. Afer giving consent, participants were asked to supply basic demographic infor-
mation (age, country of residence, gender identity, job title) and to indicate the number of
years they have worked as a data scientist. 34 participants flled out the survey. Details about
participant demographics are shown in Table 6.1.

6.5.2 Survey

We set up an online survey that took between 20 and 30 minutes to complete. T e survey
started with the demographics questions as mentioned earlier. T e remainder consisted of
three parts:

Feature importance

To answer 32, participants were asked open questions to explain their interpretation of
feature importance, (2 ) in the context of machine learning, (2 ) for a (trained) machine
learning model, and ( 2 ) for an individual prediction. Additionally, participants were asked
to express their opinion on the value of feature importance ( 2 ) and to describe a specifc
use case in which feature importance may support a process or workfow ( 2 ).
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5ZQF "OTXFST DPVOU
(FOEFS Male , Female , Prefer not to disclose  , Prefer to self-describe
"HF

- P D B U J PNietherlands , United States  , Prefer not to disclose , Colombia
India , Singapore ,Spain , Switzerland , United Kingdom

3PMF Data scientist , (Data science) researcher , Sofware/data/Al engineer
, PhD candidate , (Data science) consultancy , AVP , Prefer not to
disclose

&YQFSJFODF

"B N J M J B Bdedr Zegression coefcients , Random Forest feature importance ,
SHAP/Shapley values , LIME , Permutation importance , Saliency
maps (e.g., GradCAM) , treeinterpreter , Anchors , DeepLif

Table 6.1: Summary of the participant demographics.

Expectations of properties

To answer 3 2, participants were asked to indicate their expectations of local feature im-
portance. We showed them fve sets of statements (18 in total), each corresponding to the
properties identifed in Section 6.4. T ese statements were made more concrete through

a running example about a medical model predicting risk of complications, based on (un-
specifed) medicine levels. Next, we asked participants to what extent they agreed with these
statements, in the form of a 5-point Likert scale, ranging from cVW UR Q J @0 &AW DR QH
D J U Additionally, participants could provide optional textual comments to motivate and

explain their answer.

To avoid primacy bias, we repeated each binary statement (e.g., either changes a little, or
changed a lot) with reverse wording in the survey, and randomized the order of these two
options. Repetition also enables us to check the internal validity of the items, as we typically
expect them to be opposing.

Familiarity

In the fnal part of the survey, participants were frst asked to list all feature importance
techniques they have used. Once they had flled this in, they were provided with a list of
specifc techniques and asked to indicate which of these techniques they were familiar with.

6.5.3 Data analysis

Qualitative data analysis

We performed a thematic analysis [19, 30] of the participants’ textual comments to identify
which topics and aspects were reoccurring. T e analysis consisted of an iterative qualita-
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tive coding process, characterized by alternate phases of coding, discussing and identifying
(sub)-themes. Initially, the frst three authors read and re-read the comments in order to
identify potential themes. We used both inductive and deductive reasoning, the latter based
on the identifed properties of local feature importance methods. T e second level of anal-
ysis involved reviewing the initial codes and identifying overarching elements. T is process
was repeated another two times, refning codes and themes.

Quantitative data analysis

We explored the data by visualizing the results using divergent stacked bar charts, as shown
throughout Section 6.7. Charts are annotated with p-values computed using the Mann—
Whitney U test, chosen for its suitability to low frequency independent ordinal samples (e.g.,
Likert scale data). We compare the distribution of answers against only-neutral answers, and
report if the answers are skewed towards agreement or disagreement. We use signifcance
level n (indicated with *) and correct for multiple comparisons using the Bonferroni

method with k , rejecting the null hypothesis at n %\é(indicated with **),

6.6 Qualitative results

T e thematic analysis of fve questions yielded 10 themes, summarized in Table 6.2. Below,
we discuss the defnition of each theme, and the codes that belong to it. T e frst three themes
concern the types of perspectives that our participants have about feature importance, giving
us insights into their mental models. T e latter themes (5 -5 ) refect the pros and cons
of feature importance identifed by our participants. One of our participants did not answer
the open questions, so for this section we have 33 active participants.

T1. Locality

T e theme of locality focuses around the questions of whether our participants describe fea-
ture importance largely as a local technique, a global technique, or whether it concerns mod-
els in general. Most of the participants ascribed to a single perspective, fve participants
mentioned aspects of two diferent perspectives.

Participants who interpreted feature importance as mainly local (9 of 33), described feature
importance from the perspective of a single prediction. For example, participant 17 men-
tioned f>, W PHDVXUHV@ KRZ PXFK D IHDW X U paRiQpantJ2BE X W H V
wrote: f> W@ PHDVXUHV KRZPXFKRIWKHRXWSXW SUHGLFWLI

Participants who think of feature importance as mostly global (20 of 33) discussed the tech-

nique as applied to ‘a model. Examples of participant answers include f, WdV D VFRULQJ F
WKDW VFRUHVY WKHLPSRUWDQFH LPSDFW RI HihéF K+HIRHD W X U |
PXFKLQ'XHQFHDQG WR ZKDW GHJUHH HYHU\ IHDWXUH KD\
OHDUQLQJPRGHO g

Finally, there is the even broader perspective of the importance of a feature towards any
possible model for the data. In these answers (9 of 33), the words ‘prediction’ and ‘model’
are typically not present at all. For example, participant 13writes: f)HDW XUH LPSRUWDQ
FRQWULEXWLRQ RIHDFKIHDWXUH WR PRGHOLQJGHFLVLRC
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T2. Explanandum

T is theme describes what our participants believe that a feature importance score captures.
It contains two main categories. T e frst group of participants supposes that feature impor-
tance explains the quality of the model (12 out of 33 participants). T e second group is of the
opinion that feature importance explains the predictions of the model (27 out of 33 partici-
pants). T ese two groups are not mutually exclusive, some participants’ remarks contained
elements of both categories (6 out of 33).

For the participants discussing feature importance as a measure of quality, terms we catego-
rize to indicate model quality include informativeness, accuracy and predictive power. For
example, answering Q2 on what global feature importance means to them, participant 10
mentions; fuDW WKLY IHDWXUH LQ JHQHUDO LV TXLWH LQIRUPD
Regarding the infuence and predictive power of a feature, participant 18 describes feature
importanceas f> @ KRZLQ'XHQWLDODIHDWXUHLV ZLWKLQ WKH
OHP ,Q RWKHU ZRUGV LIWKHIHDWXUH ZHUH WR QRW EH X'
SHUIRUPDQFHIRUPDFKLQH OHDUQLQJPRGHOV ZLWKLQ WK

T e group that views feature importance as a refection of a prediction uses words such as

outcome, decision boundary, model input and -output on top of the term prediction. For

example, participant 25writesthat f, W PHDQV WKDW WKH IHDWXUH LV LPSR
VWUXFWXUH > @ WKDW LQ'XHQFHV WKH RXWFRRid RU LW
participant 27 writes f)yHDWXUH LPSRUWDQFH H[SUHVVHV WKH LPSRL
EHWZHHQ LQSXWDQG RXWSXW g

T3. Underlying mechanism

T is theme describes which of the two identifed mechanisms in Section 6.2 the users’ de-
scription matches. Only a part of participants’ answers (16 of 33) clearly indicated properties
related to this theme.

A J U D G L H Qangpdetiveimas@dicated by mentioning permutations or small changes to
the input data. T is perspective was held by 8 of our 33 participants. Participant 30 describes
feature importanceas fSHUWXUELQJ WKH YDOXH RI WKLV IHDWXUH M
W KH R X W& Rridipapt 34 writes f)HDWXUH LPSRUWDQFH VD\V VRPHW
RID FKDQJLQJ IHDWXUHRQWKHRXWFRPHRIDSUHGLFWL

An D E O D W L pepeEteWvet @idicated by mentioning model performance when leav-

ing out a feature. 9 of our 33 participants used words that indicated this perspective. For

example, participant 4 mentionsthat f: LW KRXW WKH IHDWXUH WKadWUDLQ
participant 14 writes that feature importanceisa f> @ LQGLFDWH KRZ PXFK LPS
DEOHVY KDYHDW WKH SUHGLFWLRQ RI WKH WDUJHW YDULD
SUHGLFWLRQHUURULQFUHDVH"g

T4-9. Purpose

We bundled the six themes that cover the purpose of feature importance: 8QGHUVWDQGL
JHDW XU H, VHHEXUIPBWOQRWVW D QGHBLVDRIAMDOREQRYH PRGHO SH
P D Q HHdse themes are in line with motivations for XAl described in the literature, such
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as social acceptance, managing social interactions, detecting faulty model behavior (debug-
ging, auditing), and acquiring new knowledge [29]. T e majority of our participants was
enthusiastic about feature importance, describing its perceived value and various use cases
for questions 4 and 5.

T e frstuse case is to apply feature importancefor SQGHUVWDQGLQJP)PRISHO RU GD\
theme was mentioned by 24 participants (73%). Categories under Understanding include
explainability, justifying predictions, and discover relationships. For example, participant
21 writes f, W FDQ SURYLGH YDOXDEOHLQVLIKWVLQWR WKH ZRUNL

T e second sub-theme regarding purpose is ) H D W X U H (\6H. O'tik Ehévine Ra@brought
up by 11 of our participants (33%). Some keywords used by our participants include remov-
ing unwanted features, removing redundant features, and the term feature selection itself.
Participant 12 writes that f,| IHDWXUHV DUHFRQVLGHUHG GLVFULPLQDWR
WKHPRGHOLQSXW ,IIHDWXUHV VHHP ORJLFDO WKH\PD\EH X\

Te third purpose is for 'HE X J X5 dvhich includes specifc investigations upon the
model based on the Understanding from T4. For example, it includes the identifcation of
undesirable or unexpected behavior, the validation of the model, and understanding or pre-
venting failure. T is theme was introduced by 14 of our participants (42%). Participant 11
described: f, KDYH XVHG IHDWXUH LPSRUWDQFH JUDGFDP LQDQLF
WKHPRGHO ZDVDFWLYDWLQJRQ WKHgULJKWg SDUWV RI WKH

T e fourth sub-theme for purpose is to use feature importance for 7UXVW DQG5IDLUQHVYV
Tisisabroader theme, and includes using feature importance to increase trust in the model

and to identify unfairness. 9 participants introduced purposes in this category (27%). Par-
ticipant 16 predicts: f> @ IHDWXUHLPSRUWDQFH ZLOO EHFRPH SDUW
VXUHWKHPRGHOVDUHIDLUDQG GRHVY QRW KDYHELDVHV D HF

Te ffh use case identifed by our participants is to support 'HFLVLR Q (B P NTQ J
theme was mentioned by 8 of our participants (24%). Participant 22 writes: f$V DQ HQ G XV 6
LWFDQ KHOS WR GHFLGH KRZ PXFK WUXVW WR SODFH LQ
DQG KRZ WR DFW E DV H&dRdps\Wol¢ i veh Bosedvup Bhe ddcigion-making

process: f> @ IHDWXUHLPSRUWDQFHFDQEHXVHGWRJXLGHDQL
WKHPRGHO IRXQGLPSRUWDQW uLVPD\VDYHWLPH EHFDXVH"'
WKH VWDUW g

Te fnal identifed purpose of feature importanceisto ,PSURYH PRGHO(SHUIRUPDQF
T is theme includes performance in the sense of accuracy, energy e¥ciency and speed. Im-
proving performance was brought up by 4 of our participants (12%). For example, partic-
ipant 23 writes; f,W FDQ DOVR KHOS LGHQWLI\ ZKLFK IHDWXUHV FDQ
SHUIRUPDQFH PDNLQJWKHPRGHO PRUHWLPH HQHUJ\H"FLHQ

T10. Downsides

T e fnal theme contains the downsides of feature importance as identifed by our partici-
pants. Our participants were positive about feature importance techniques, but seven par-
ticipants also reported some doubts. In general, the downsides regard the incompleteness of
the defnition of importance: it is unclear what score is ‘good; it does not explain the why of
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a score, and it requires domain knowledge to interpret. Furthermore, one participant noted
that they did not understand how to interpret local feature importance scores. Finally, one
participant mentioned that feature importance scores can be misleading. Participant 4 was
rather critical: f, KDYH\HW WR KHDUDERXWD PDJLFQXPEHU WKDW
HHFWRIDIHDWXUHLY ,QP\PLQG UHDOLW\LV PXFKPRUH
cCLPSRUWDQFHdLVERXQGWROHDGWRDPLVLQWHUSUHWD

Summary

To answer 3 2, our qualitative analysis showed that the way data scientists defne feature
importance varies widely. Without context, the majority of our participants (20 of 33) see
feature importance as a global technique (5 ). Participants also mentioned various ex-
planandums ( 5 ): they argued feature importance explains the quality, informativeness and
predictions of the model (each have diferent semantics). Furthermore, in 5 we found that,
for those participants that indicated assumptions of an underlying mechanisms, these per-
spectives were held equally, with 8 participants for gradient-based, and 9 for ablation-based.
Finally, our participants indicated aspects that made feature importance valuable (5 ), as
well as downsides of the techniques (5 ), especially that it is incomplete. A main problem
is that there are no guidelines on what feature importance scores are ‘good’ or ‘bad.

6.7 Quantitative results

We now turn to the quantitative results. For each of the properties identifed in Section 6.4,
participants were presented with a set of statements and asked to indicate their level of agree-
ment. In order to elicit expectations in absence of specifc implementation details, the pre-
sented examples were relatively abstract. Asaresult, several participants reported it was chal-
lenging to indicate their agreement. Some remarked the interpretation depends on which
model is explained, or that the questions were not sufciently specifc.

P1. Actionability

T e six statements related to actionability evoked the most neutral answers out of all ques-
tions (Figure 6.2). Specifcally, 65% of all participants answered question 3 and 4 with neu-
tral, and for the last two questions that goes up to 74%.

T e frstand second questions are opposites. Although the results of the frst question are not
signifcantly diferent from neutral, for the second question we see a slight tendency towards
agreement (n A. Tis indicates that some experts expect feature importance to
be actionable: it should indicate how instance perturbations will afect the model’s score.
Tis corresponds to a gradient-based rather than ablation-based interpretation of feature
importance.

For the other four statements, there was no statistically signifcant (dis)agreement. Partici-

pant 19 clarifed: f DUH REYLRXYV \RX khA pavticipaRt 1Rl NQR Z g
VDPHUHDVRQLQJDYV ZH GRQdAW NQRZ TIisWildtetestingl &W LV SF
existing gradient-based techniques such as LIME actually do indicate the direction of change

based on whether the feature importance value is positive or negative.
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Figure 6.2: Is feature importance actionable?

P2. Causality

T isset of questions (Figure 6.3) includes statements on whether feature importance explains

a specifc model, the informativeness of a feature in general, or the real world phenomenon.
Unintentionally, this corresponds quite well with the explanandum theme (5 ) from the
qualitative analysis.

Overall, most participants (76%) expect that feature importance refects the usage of a model

to make predictions, as expected this corresponds well with currently available techniques.
Alarmingly, there were also quite a few participants (44%) that expected feature importance

to refect how relevant the feature is to the real world phenomenon (a causal statement) which

is unexpected. T is does not correspond with current feature importance techniques, which

all explain what caused the model to make certain predictions (correlation), as opposed to

what caused the phenomenon in the real world (causation). In fact, as machine learning
models are only able to identify correlation, not causation, it would require a totally diferent
approach to computing feature importance (e.g., causal inference). As participant 34 puts it:
fSUHGLFWLQJ KRZ PDQ\LFH FUHDPV D VXSHUPDUNHW ZL
GRHVQdW PDNH VHQVH HYHQ W KR XJ Rwblha/pértldipdn® S R U
expecting feature importance to explain causation, did mention in the optional comment

feld they did not quite understand the question.

P8. Sampling Distribution

T estatements in Figure 6.3also relates to the sampling distribution property ( 1 ). If feature
importance strictly explains predictions (question 1), an interventional distribution is su¥-
cient to match data scientists’ expectations. If feature importance explains the informative-
ness to a model or the real world phenomenon (question 2 and 3 respectively), a conditional
distribution seems more appropriate. Our results only show signifcant evidence for the frst
interpretation; interventional sampling for instance perturbations has most support.

Figure 6.3: Is feature importance not causal?
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P3. Stability

Most participants (68%) expected that feature importance is stable (Figure 6.4.1): slight

changes in parameters will not impact the explanation signifcantly. Participant 26 justi-

fes: f, GRQAW ZDQW WR VSHQG D ORW R W L PSama/pdrQdipgnts W K H H [
remarked that, even though ideal, it may not be possible to satisfy this property for all models

(especially in the case of correlated features).

P4. Robustness

Even more participants expected feature importance to be similar (Figure 6.4.2) for two sim-

ilar data points (82%; the most agreement out of all statements). T is is surprising, since this

property constrains feature importance in its ability to closely match the reference model.

In particular, if the reference model’s score does change rapidly, this property prevents the

feature importance technique to convey the true behavior of the model. Participant 27 notes

there isa diference between fZKDW , ZRXOG H[SHFW LI, ZHUH D OD\PDQ >
FDQ EHDEUXSW ERXQGDULHYV Qwral K ddemSxtdfarRit ®XW V S D
bustness of the explanation in spite of possible problems regarding faithfulness with respect

to the reference model.

P5. Selectivity

T e results show a slight tendency towards selective explanations: 56% of participants ex-
pected feature importance to Q Ridlude all features (Figure 6.4.3), versus 35% favoring all
features to be included. However, expectations varied a lot, and only three participants an-
swered neutral. As preferences for selectivity seem subjective, we should strive for a more
fexible approach.

Figure 6.4: |Is feature importance 1) stable, 2) robust and 3) selective?

P6. Additivity

Next, we analyzed participant expectations of the potential side-efects of additivity (Fig-

ure 6.5). As described in Section 6.4, additivity can potentially lead to misleading interpre-

tations: as the feature importance values need to add up to the prediction, we need to make

a decision on how to divide the importance over strongly correlated features. From the frst

two statements, we see participants expect the importance of a feature to include all of its
interactions with other correlated features (74% and 65% respectively). Participant 11 re-

marked: f, ZDQW WKLV WREHWKHFDVHIRUD SHUIHFWH[SODLC
SH[LVWLQJPHWKRGV@ ZRUN g
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In the last two statements, we gave a concrete example of two correlated features (length and
weight), and two uncorrelated features (medicine X and Y dose). Here participants were a
bit more divided: only a small majority expected feature importance to cover all correlated
features (50% agreed, 32% disagreed, n ).

It is noteworthy that, although the importance of a feature never includes the importance of
a completely unrelated feature, 35% of participants nonetheless agreed with question 4.

Figure 6.5: How is importance distributed across correlated features (consequence of additivity)?

P7. Proportionality

Most participants clearly expected (Figure 6.6) feature importance to be proportional, which
means that the sum of feature importance values is proportional to the model’s predicted
score. T is matches an ablation-based feature importance perspective, and is not compatible
with a gradient-based perspective.

T is expectation is problematic, as the proportionality property is directly at odds with ac-
tionability: it is impossible to satisfy both properties at once (apparent in Figure 6.1). Yet,
quite a few participants (24%) agreed with both the second statement D Qa@h the action-
ability statements in the previous set of questions. T is reveals an incompatibility in data
scientists’ expectations.

Figure 6.6: Is feature importance proportional?

Summary

Toanswer 3 2, our quantitative results indicate data scientists mainly expected feature im-
portance to be robust (1, 82%), not causal (1, 76%), additive (1, 74%) and stable (1,
68%). T e expectation of participants varied quite a bit for the properties: selective (1,
56%), proportional (1, 53%) and actionable ( 1, 41%). T is highlights the importance of
understanding the properties of diferent feature importance techniques, since there is no
obvious choice of property that aligns with data scientists’ expectations.

None of the expected properties seem to fully match existing gradient-based or ablation-
based feature importance defnitions. While current techniques are not causal, and mostly
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additive, they are generally not stable. Furthermore, robustness difers per technique: the
model-agnostic techniques participants were most familiar with (i.e., LIME, SHAP) do not
have this property [4]. Finally, gradient-based technigues are inherently actionable, but not
proportional, while ablation-based techniques are not actionable, but are proportional to the
model output.

6.8 Discussion

Related work has identifed and critiqued various properties of feature importance tech-
niques. However, to the best of our knowledge, we are the frst to verify the relevance and
alignment of these properties with data science practitioners: one of the stakeholders that
explanation techniques are ultimately meant to support.

6.8.1 Properties expected by data scientists

In our qualitative study, our participants mention purposes that are in line with the ones de-
scribed in literature: social acceptance, managing social interactions, detecting faulty model
behavior (debugging, auditing), and acquiring new knowledge [29]. Interestingly, feature
selection was mentioned ofen (33.3%), even though this goal is not ofen explicitly men-
tioned in recent literature on XAl.

T e results of our quantitative study indicate that several properties of local feature impor-
tance techniques were largely expected by our participants: robustness, (non-)causality, ad-
ditivity, and stability. Although several of these properties align with existing techniques,
others are currently not supported.

Robustness & Stability

Te majority of participants expected feature importance to be robust (1, 82%). Simi-
larly, we saw strong evidence experts expect techniques to be stable ( 1 , 68%). Importantly,
perturbation-based feature importance approaches exhibit neither robustness nor stability
if the number of samples is too small [4, 71], revealing a potential mismatch of expectations
and practice. An interesting direction of future research would be to improve sampling tech-
niques to satisfy these two properties. In particular, future work could focus on satisfying
robustness without reducing the faithfulness of an explanation. Additionally, in order to
manage user expectations, future work could focus on the efective communication of these
inherent uncertainties.

Causality & Sampling Distribution

Most participants expect feature importance to explain predictions (1, 1, 5), supporting
a non-causal interpretation of feature importance. However, some participants also expect
feature importance to refect the extent to which inclusion of the feature improves the qual-
ity of the model or refects relevance to the real-world phenomenon varied (1, 5). Tis
suggests that data scientists do not expect explanations to be causal, but also do not always
consider the model in isolation. T e latter does not correspond with how current feature
importance techniques work and could lead to incorrect insights into the data.
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As shown in Section 6.4, diferent sampling approaches reveal fundamentally diferent views

of what it is that feature importance explains. Our fndings suggest that interventional sam-

pling, as used by most existing techniques, may be suitable to match most data scientists’

expectations - but the results are not conclusive. In particular, we believe that future work

should explicitly consider the efects of the out-of-distribution problems on the (mis)interpre-
tation of feature importance scores.

Additivity

Hancox-Li and Kumar [83] pose that users may interpret feature importance to represent
solely univariate efects, which would not match existing techniques. We have seen no evi-
dence for this in our study: the large majority of participants ( 1 , 74%) expected a feature
importance value to include all interactions with other features. T is is consistent with ex-
isting additive techniques, such as LIME and SHAP.

6.8.2 Properties with varying expectations

For selectivity, proportionality, and actionability, expectations were much more varied, high-
lighting the importance of clearly communicating the underlying properties of techniques.

Selectivity

In our study, participants widely varied in their preference for selectivity (1), refecting
the possible tension between the faithfulness and selectivity of an explanation. T ese results
suggest that a more Fexible approach towards selectivity is desirable over selectivity inherent
to the explanation algorithm (e.g, L1 regularization in LIME). In particular, we recommend
including an option to flter out features with low importance when feature importance is
presented to the user.

Actionability & Proportionality

As explained in Sections 6.2 and 6.4, gradient-based feature importance is inherently ac-
tionable, but not proportional. In contrast, ablation-based feature importance scores are not
actionable, but proportional to the model output. For actionability we observed a slight ten-
dency towards agreement, most participants did not expect feature importance scores to be
actionable ( 1 ). Contrarily, most participants did expect feature importance to be propor-
tional (1). Importantly, certain participants (24%) had expectations that fundamentally
contradict each other: they expected feature importance to be both actionable and propor-
tional. In our qualitative analysis we see similar contradictory results ( 5 ).

We speculate that this contradiction arises from overloading terminology of the term ‘feature
importance, which is insu®cient for explaining what existing techniques do. To address this,
we propose diferent terms to refer to local gradient-based and ablation-based techniques.

For gradient-based feature importance we suggest AGFB UV SF Tas théfelvaliey\ig-U Z
scribe the sensitivity of the model towards changes in this features value. Next, we suggest
AGFBUYVSF Bfty ebitioG-Wakkd féature importance, because ‘attribution’ implies the
additive nature of these techniques. T is term has already been used by some authors, such



88 Discussion

as Lundberg and Lee [129], but not consistently. We hope that using diferent terms helps
data scientists to recognize the diferences and update their expectations of how feature im-
portance scores should (not) be interpreted.

6.8.3 Limitations

In this paper, we explore the mental models of data scientists through an online survey. T is
method is convenient for gathering larger samples of data, but is also prone to some biases.
First of all, there is the risk of selection bias, as data scientists with an above average interest in
XAl (and therefore a better understanding of existing feature importance techniques) may
be more likely to respond to the survey. However, we argue that targeting this audience
enables us to uncover misconceptions that are held despite a good understanding of existing
techniques, which tend to be more problematic due to their persistence.

Furthermore, there is a risk of response biases associated with the Likert-scale questions,
such as extreme responding and primacy bias. To reduce the efects of these biases, we have
carefully considered the wording of the questions between the authors, and ask each Likert-
scale question in both directions (both negatively and positively framed).

T is approach of checking each question both ways also makes it more likely that our ques-
tions accurately capture the participants’ perspectives (interpretive validity). T e two-way
questioning uncovered contradictions that would be much more difcult to surface from
more unstructured data such as interviews, as “[...] participants may be unaware of their
own feelings or views, may recall these inaccurately, and may consciously or unconsciously
distort or conceal their views.” [133, p. 290].

Our sample of participants was not large enough to ensure all results fully generalize to other
communities. Our sample of participants was not large enough to ensure all results fully gen-
eralize to other communities (external generalizability). However, even in a small sample,
we have found signifcant contradictions in our data scientists’ mental models of explanation
techniques that are unlikely to be just outliers.

With regard to internal generalizability (generalizing within the same group to unseen ex-
amples and questions) the aim was to have generalizable questions, contextualized with an
example. T e introduction of this running example served to make the statements more
concrete and easier to read. However, it caused some participants to (mis)interpret these
statements as questions specifc to the running example. For example, some participants re-
ported whether they considered O H QaJbé/r&levant for medical prediction, as opposed to
whether they expected any feature with similar characteristics to be important. Tisis inher-
ent to the nature of our exploratory study. In future work, we may compensate for this lack
of internal generalizability by introducing more running examples. However, considering
the length of the survey, the latter would require a narrower set of properties.

Finally, although these exploratory fndings are a good frst step towards uncovering mental
models, the addition of interviews to the study could have been valuable. Although Likert-
scale questions are good for quantifying opinions and uncovering contradictions, they are
also a very closed-of method. It would be interesting to examine mental models of local
feature importance through interviews, as those may give more specifc insight into the mis-
conceptions that the data scientists have.
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6.8.4 Future work

In addition to the avenues for future work discussed so far, we envision several extensions
of our work. In addition to the discussed properties, future work may consider data scien-
tists' expectations of other properties such as faithfulness [139], contrastiveness [139], and
representativeness [161].

Additionally, data scientists may have a diferent understanding of feature importance than
domain experts or the general public. Since these groups have a more limited understanding
of machine learning models and how explanations are derived, this may increase the risk of
misinterpretations. For example, as opposed to the data science practitioners surveyed in
this study, other groups may interpret feature importance scores univariately. Future work
should consider the mental models of other stakeholders for feature importance.

T iswork presented the frst steps in exploring the mental models of feature importance. Te
results of our study warrant more targeted future work to investigate individual properties
in more detail.

6.9 Conclusion

In this chapter, we investigated local feature importance scores that quantify the importance
of the feature values to a prediction of a particular instance. While these techniques are
popular and many techniques exist, they have widely varying underlying assumptions of
what ‘importance’ means.

To address this, we surveyed related work and present an overview of key properties of lo-
cal feature importance approaches that may lead to misleading interpretations. We con-
ducted a mixed-methods survey to explore the expectations of data scientists in industry.
We found that data scientists have widely varying defnitions of feature importance and
its values ( 3 2), especially regarding the themes Locality, Explanandum and Underlying
mechanism 5 5. Regarding the properties of local feature importance ( 3 2 ), while we
found evidence that the identifed properties are indeed largely expected by practitioners,
data scientists also held intuitions that do not necessarily ft with existing techniques. For
example, while existing techniques are not causal, and mostly additive, they are generally
not stable and can lack robustness. Next, we uncovered contradicting expectations of both
actionability and proportionality, which cannot be satisfed simultaneously. We argue that
this contradiction is the result of fundamental diferences in how feature importance is de-
rived (gradient and ablation-based) and should be more clearly refected in communication
about the techniques.
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Figure 7.1: Feature contribution vectors (1) are projected to show model strategies as clusters in the
StrategyMap (2). Our proposed visual analytics system StrategyAtlas offers three methods to identify
and interpret model strategies: (3A) a gradient heat map for individual features, (3B) interactive density
plots for an overview of all features, and (3C) decision tree representations of strategies.

71 Introduction

W hile modern machine learning (ML) techniques have great potential to solve a wide
spectrum of real-world problems, some businesses have been reluctant to adopt this
technology. Especially in high-risk environments, such as health care or the insurance sec-
tor, predictive performance alone is not sufcient. When critical decisions are made, we
need to be able to hold ML models up to scrutiny. Either the model needs to be inherently
interpretable, or the model has to be suFciently explained using an external method.

Tis need is further exemplifed by the surge of papers in which models are shown to be
vulnerable to adversarial attacks. In these cases authors show that a small perturbation in
the input (e.g., a single pixel in an image) can lead to unexpected, extreme changes in the
output, ofen leading to absurd or incorrect predictions [16, 147].

In this chapter, we show that complex models can be interpreted and analyzed through the
identifcation and interpretation of diferent PR G H O V Wilfdent itrehtotdns by the
model of distinct groups in the input data. As an example, fraud detection models typically
classify data points into two categories: either fraudulent or not. However, there are likely
many diferent ways to commit fraud, perhaps even ones that are unknown to experts. In
this case, a single model needs to account for the many ways fraud can occur, leading it to
become complex and uninterpretable. In this example, model strategies target the difer-
ent ways of committing fraud, and can help to understand how the complex fraud model
operates.

Finding these strategies is no trivial matter. Domain knowledge is required to ascertain the
validity of these strategies. For this reason, we chose a visual analytics approach to actively
involve data scientists in the analysis of their models and model strategies.



Strategy Analysis for Machine Learning Interpretability 93

We present StrategyAtlas (see Figure 7.1), a visual analytics system to enable understand-
ing of complex models by identifying and interpreting diferent model strategies. T ese
strategies give an intuitive global insight into the inner workings of the model. We apply
dimensionality reduction to feature contribution vectors from well-known explanation tech-
niques (e.g., LIME [160], SHAP [129]). Points close to each other in such a projection have
similar feature contributions, which indicates a similar treatment by the model (i.e., a model
strategy).

T ese strategies can be used in various ways: to verify whether the model picks up on impor-
tant concepts; to improve models if strategies do not match with the expectations and prior
knowledge of data scientists; and to distill a simple and inherently interpretable surrogate
model with minimal performance loss.

Specifcally, our main contributions are:

« StrategyMap, a projection based visualization approach to cluster data points based
on similar treatment by the model (which correspond to model strategies);

 StrategyAtlas, a visual analytics approach to reveal what makes a cluster unique in
a StrategyMap using contrastive explanation of the clusters, and assert their validity
using domain knowledge; and

¢ a human-in-the-loop workfow to convert the assessed strategies into a set of corre-
sponding interpretable models with comparable performance to the original reference
model.

We collaborated with a leading insurance company in the Netherlands to obtain valuable
insights into the relevance of explanations to data scientists, which guided our design de-
cisions. We present a use case analyzing an operational machine learning model used for
automatic acceptance of certain insurance policies. Te use case shows that the analysts
were enabled to understand a complex model and use that insight to improve their model
used in production. Finally, we conclude with a refection on our work and outline open
research directions.

7.2 Related work

&Y Q M B J O BT:M Bre'ttvo main approaches in the machine learning community to
produce insights into the inner workings of a model: either creating inherently interpretable
models (e.g., GAM [127] and CORELS [7]), or explaining models post-hoc, using an external
method (e.g., LIME [160] and SHAP [129]). Our work supports both approaches: model
strategies are a post-hoc method for understanding models, and the system also enables
creating interpretable models using strategy trees.

7JTVBMJ[BUJP O GP S TTreinErbasing iBtedezt inkXplainable machine learning
has led to an increasing demand for reliable visualization tools to support the understanding
of ML models. It has become a prominent topic of research in the visualization community
over the past decade [34]. T e majority of work focuses on explaining a single type of model
(ie.,, PR GHO )ys8cH & G&rtut [88], which investigates the role of interactive interfaces
for model interpretation with additive models, and iForest [205] which enables the interpre-
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tation of predictions by Random Forest models. T e models that received the most attention
by far are neural networks [17, 70, 89, 97, 99, 125, 140, 165, 180]. Strobelt et al. [180] for ex-
ample tailor for sequence-to-sequence models in the context of automatic translation, Gar-
cia Caballero et al. [70] built a system specifc to temporal LSTM networks for sleep staging,
Ming et al. [140] targets Recurrent Neural Networks and reveal hidden memories in NLP
tasks, and GANLab [99] promotes education and understanding of Generative Adversarial
Networks.

T e systems mentioned focus on providing explanations for one type of ML-model. An-
other approach istousea PRGH O Dnde@d&IMM &dept this for StrategyAtlas, as it
makes it more applicable in the real world where the models used come in all shapes and
sizes. T is approach is popular in Machine Learning research [129, 160], but adoption in
the visualization community has been limited so far. Notable exceptions include Prospector
[111], which uses 1D partial dependence as means to explore the prediction space, Explain-
Explore [45] uses 2D partial dependence and incorporates feature contribution methods,
and the What-if tool [196] enables testing hypotheses by means of data perturbations. T ese
systems enable the understanding of single predictions (O R FD O S HWhyfédbEratt Y H
egyAtlas aims to build an understanding of the model as a whole (multiple instances at
once,or JOREDO SHUVSHFWLYH

A visual explanation system that ofers a global perspective is RuleMatrix [141], which in-
duces and visualizes simplifed derived decision rules. T eir approach is to train a global
surrogate, whereas our approach is to aggregate the result of local surrogates tailored for
individual data instances, as recommended by Krause et al. [112].

7JTVBMJ[BUJPO FOBCMJ@ksBMNAIYsS B Slst @ @rdvialeiit &d related
topic in visualization. T ese systems enable the discovery and understanding of clusters
in the data with exploratory visual analysis. T e Hierarchical Clustering Explorer [170] is
an early example of such a system that relies heavily on interaction with dendrograms. It
also features a heat map visualization to compare clusters, which is adopted in many more
recent clustering systems [31, 55, 138]. While this visualization ofers a concise overview of
the clusters, we instead opted for density plots as they can convey more information about
feature values, and also enable us to separate clusters on the basis of other properties than just
mean value (e.g., variance and multi-modality). In addition, we leverage unique properties
of feature contribution vectors (e.g., generally only few features are important, and features
share the same range that can be meaningfully sorted by value).

In recent works, clustering has also been applied to explain machine learning. Again, au-
thors primarily target the explanation of neural networks. Rauber et al. [158] apply cluster-
ing on dimensionality reduced neuron activations in CNNs. T ey found that clusters ofen
carry a semantic meaning, such as light digits on dark background vs. dark digits on a light
background. Zahavy et al. [201] apply the same technique to reinforcement learning agents
playing video games. T ey found clusters corresponding to distinct playing strategies, like
trapping the ball above the blocks in the game Breakout. Finally, DeepEyes [154] uses di-
mensionality reduced neuron activations for understanding the training process. Our goal
is to highlight similar cluster structures, but preserve the model-agnostic nature to enable
the analysis of a wide range of diferent classifers.
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A recent unpublished work that was released during our development also explores pro-
jections using feature contribution [33]. However, the interpretation of clusters is limited
to mean value bar charts only, and clusters are not related to patterns in the data, which
is the main strength of our work. Another unpublished work called Melody [32] also ex-
plores clusters in feature contribution vectors. However, these clusters are automatically
constructed using a complex and opaque algorithm, which leaves no room for expert inter-
pretation of the clusters.

7.3 Problem description

T eprimary goal of StrategyAtlasistosupport G D W D V klukti€stridiythe model
they built. Aswe collaborate with a large insurance company, our primary focus will be data
scientists in a business environment. T e company asked us to support their data scientists
in understanding their models, as they ofen had to choose between either interpretability
(a small set of trusted models) or predictive performance (e.g., accuracy, F ,,score).

7.3.1 User goals

We conducted six semi-structured interviews with data science teams interested in machine
learning explanations at the insurance company. Guiding questions included whether and
what they required explanation for, the type of data and model, and how explanations will
beneft their daily work. We identifed the following goals that our target users sought afer
when requiring explanations for their models:

( Understand models to optimize performance (UH & Q H

( Enable experts to address problems and biases (GLD J)Q RV H

( Comply with regulations and customer requests (M X YW L I\

(' Reduce the time spent manually investigating classifcation results(GHFLVLRQ PDNLQJ

Tis is consistent with distinctions made in prior work [177].

7.3.2 User tasks

Model strategies enable understanding a machine learning model by providing an intuitive
representation that is not too simplistic (e.g., global feature importance), but not overly com-
plex (e.g., showing all complex model internals, or feature contribution for each instance
individually). By understanding how their model works, data scientists can make more in-
formed decisions to achieve the goals mentioned previously:

« If strategies are deemed sound by domain experts, the important features in a strat-
egy can be used to justify decisions to stakeholders ( ( ) and support decisions ( ( ).
In addition, extra class labels can be added which could improve the generalization
performance of the model ( ( );

« If astrategy is not sound, this insight can be used to circumvent unexpected behavior
( (), or involved features can be removed to simplify the model ( ( );

¢ Finally, strategies can be used to decompose a complex model into smaller, individu-
ally interpretable parts which makes it easier to make ( ( ) and justify ( ( ) decisions.
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Problem description

To help experts to fnd and analyze model strategies to reach the user goals, we derived the
following user tasks:

5

Evaluate model performance. Performance is still a key indicator on how the model
behaves. Assessing its performance is important for experts to determine if the model
requires explanation ( ().

Assert whether the model has multiple discernible strategies, or whether every in-
stance is treated (roughly) equally ( ().

If strategies exist, determine what constitutes a strategy: what are relevant features
and decisions unique to this strategy (contribution)? What makes these cases unique
(value) ((, ()?

Compare strategies: how are these cases treated diferently from another group (con-
tribution)? On what grounds are they treated diferently (values) (( , ( )?

Identify and remove features with minimal impact ( ( ).

Use strategies to decompose the complex model into simpler surrogates (( , ( ).

To support these tasks, we followed Brehmer and Munzner [20] to design the workfow
shown in Figure 7.2. It was verifed by experts during the use case described in Section 7.7.
A clear distinction is made between data (green) and model (blue) as early testing showed
that experts tend to switch ofen between these perspectives and sometimes get confused.

Figure 7.2: Workflow for StrategyAtlas. Arrows depict the typical flow of interaction, starting from the
initial configuration of data and classifier. Uppercase words summarize the most important actions
performed [20], and the corresponding user tasks are indicated.
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7.3.3 Data

We specifcally target W D E X O bnly, @D Méddage some of its unique properties (e.g.,
user-interpretable feature names) to our advantage. Empirically, we found that such tabular
datasets are much more commonly used in machine learning tasks (at our client) compared
to images, text, and time-series data. T e system supports both numerical and categorical
features, as well as a mix of the two. As we aim for model-agnosticity, any classifcation
model can be used in StrategyAtlas, regardless of the number of classes.

T roughout this chapter, we use the FICO HELOC Explainable Machine Learning Challenge
dataset as an example [65]. Te goal is to predict whether an individual has been 90 days
past due at least once in 24 months since opening a credit account (encoded with classes
% @ * R B @ contains 22 features (both numeric and ordinal) and 10,459 home equity
credit applications. We trained an XGBoost classifer with 100 trees as the model we like to
understand, as it achieved the highest F ,, score out of all the models we tested.

7.4 StrategyMap approach

Core to the StrategyAtlas system is the StrategyMap, which displays clusters correspond-
ing to model strategies (Task 5 ) using a projection-based visualization approach. To achieve
this, our system uses feature contribution techniques as a basis for model-agnostic machine
learning understanding. T ese methods generate a vector of weights that indicate how much
each feature has contributed to a single prediction. Any feature contribution technigues can
be used, but we use LIME [160] as it has a straightforward interpretation (i.e., a feature con-
tributes if a small change in feature value results in a large change in prediction), and rela-
tively low computational cost. T is low cost is benefcial, as we generate feature contribution
vectors for every data point in the training dataset.

As the feature contribution values from LIME do not have a lower- or upper bound, all
feature contribution vectors are max normalized. T is can be thought of as “a feature vcon-
tributed 80% to this prediction”, which is easier to explain to experts. T is normalization
step also improves the cluster separability by eliminating small diferences in the prediction
probability. For example, if two data points are predicted using the same subset of features
but the prediction probability difers, the normalization step ensures they would still appear
in the same cluster.

Next, the feature contribution vectors are projected down to two dimensions using UMAP
[134]. UMAP performs better at preserving some aspects of the global structure of the data
and is generally faster than its competitors. It is also relatively stable which keeps the vari-
ation between consecutive runs small. However, StrategyMap is not limited to this choice:
our initial prototypes used tSNE [131] and achieved similar results in terms of class separa-
bility.

Points close to each other in the projection will have similar feature contribution vectors,
which indicates a similar treatment by the model (similar to [158, 201]).
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(a) DataMap (b) StrategyMap

Figure 7.3: (a) Four clusters can be easily separated by ripeness (6 ¥ D'c x)éusirig the L ¢ 3 ¢cf#ature
alone. (b) As far as the model is concerned, there are only two groups: green and red peppers.

As an example, consider a dataset of peppers with two features 6 S L F lar@@ RRARVAFR)Y
ure 7.3a). T e clusters correspond to chili peppers (top) and bell peppers (bottom), of dif-
ferent colors; green (lef) and red (right). If a model predicts the ripeness of the pepper, in-
dicated by the light and dark grey dot colors, only the feature & R @dRd.to be used. Hence
only two clusters are noticeable in Figure 7.3b, indicating that all items are classifed using
the same strategy.

However, if we instead would like to predict whether the vegetable can be represented as
an emoji (e.g.,, or ) asshown in Figure 7.4a, no two clusters of the same class can be
classifed using the same feature thresholds. All clusters have diferent feature contribution
values, and hence all four clusters show up in the StrategyMap.

(a) DataMap (b) StrategyMap

Figure 7.4: (a) Four clusters can not be separated linearly by whether an emoji exists (emoji/non-emoji);
different groups need different thresholds. (b) Hence, all four clusters show up in the StrategyMap.
Note the snake-like structures are artifacts from oversimplified data.

T ere is no guarantee that these model strategies are present in all datasets and model com-
binations. For instance, a StrategyMap for simple datasets such as the Iris or Titanic dataset
will rarely show discernable clusters. T e classes for these problems are suFciently specifed:
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no further structure can be inferred. Furthermore, simple models will rarely employ difer-
ent model strategies. For instance, the feature contribution in linear models is the same for
every data point in the dataset by design, and hence will show no clusters. However, in all
these cases, the model is simple enough to be understood, and hence a global model explana-
tion would not be needed. Our aim is to explain complex models. We argue that complexity
in models will ofen be due to oversimplifed, generic specifcation of classes. T is is related
to the Anna Karenina principle. Tolstoy’s famous novel starts with “All happy families are
alike; each unhappy family is unhappy in its own way” Similarly, for instance fraudulent
behavior can have many diferent manifestations, and detecting these automatically leads to
complex models with a variety of strategies.

As an example of a truly complex model, we consider the FICO HELOC Explainable Ma-
chine Learning Challenge dataset and an XGBoost model with 100 decision trees (intro-
duced in Section 7.3.3). It is the best model we managed to train and achieves an accuracy of
0.752, which is comparable to the accuracy achieved by the winners of the challenge (0.74)
[36]. A projection of this dataset and a StrategyMap projection of the XGBoost model are
shown in Figure 7.5.

(a) DataMap (b) StrategyMap

Figure 7.5: (a) Data projection of the FICO dataset, (b) and corresponding StrategyMap projection show-
ing five model strategy clusters.

Note that no cluster in the StrategyMap corresponds to a cluster in the DataMap. T is occurs
because all features in the data projection weigh equally, whereas low-contribution features
will hardly afect the StrategyMap projection.

To conclude, the StrategyMap reveals structures in the model behavior that were previously
challenging to detect. Clearly, certain data instances are treated diferently from others by
this model. However, it remains challenging to determine what constitutes these clusters.
What features are used for classifcations in a cluster? On what grounds are data instances
treated diferently? To answer these questions, and to verify whether it makes sense for the
model to make these distinctions, we introduce StrategyAtlas.
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Figure 7.6: (1) User interface of StrategyAtlas showing the main components: (1) the configuration view to select a dataset, model and feature contribution
technique; (2) the projection views to highlight both (2A) clusters in the data, as well as (2B) model strategies as clusters in the feature contribution values;
() a list of density plots to summarize and contrast selected clusters in terms of (3A) the data distribution, and (3B) the feature contribution values; and (4)
the cluster view, to store selected clusters and train surrogate decision trees to explain and represent model strategies. A primary and secondary selection
(blue and red respectively) highlight the properties of two clusters throughout the system.
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7.5 StrategyAtlas

In this section, we describe how we translated the workfow (Figure 7.2) into an interac-
tive visual analytics system. Figure 7.6 provides a high-level overview of our approach.
T e system ofers three complementary methods to support interpreting model strategies:
gradient heat maps (Figure 7.6.2) enable the inspection of single features in the projec-
tion space; interactive density plots (Figure 7.6.3) enable the analysis of clusters in terms
of multiple features; and the cluster view (Figure 7.6.4) helps to understand clusters by sep-
arating them from the other data. T e main interface components are split into two rows:
the top row shows components showing data aspects, whereas the bottom row pertains to
model characteristics. For a demonstration of the system, we refer to the supplemental video
of the original paper, or the demonstration video available at #//+.“CC 3+' $)$)"'('C
-1 t4A L

7.5.1 Configuration view

Te frst step in the workfow is to set up the problem context to be analyzed. In this view
(Figure 7.6.1), any tabular dataset with numerical, categorical or mixed feature types can be
added. Next, any classifer from the Python . $&$/8' -)toolkit [152] or classifers from
other languages (e.g., R) and applications (e.g., KNIME, SAS Enterprise Miner) using the
PMML format [77] are allowed.

If certain features are shown to have little relevance for classifcation, this view enables basic
feature selection. A list shows all features annotated with the feature contribution density. A
vertical bar plot of the mean value hides too many details (e.g., multimodality in the feature
contribution values). However, displaying the distribution with a box plot or violin plot is
more diFcult to read due to the lack of correspondence between glyph area and feature con-
tribution. We designed a bar plot using a Complement Cumulative Distribution Function
(CCDF) that combines the strengths of both visualizations. An example is shown in Fig-
ure 7.7, which shows 1THW)UD F W L R Q 5 HeIR@tvalweys tteXridsGddrfyibuting
feature. Te contributionof 1 XP,QT/DVW O kit pru@imGdall f¥6r some data points
it contributes around 60% and for others 80%. Either visualization can be chosen from the
interface.

Figure 7.7: Feature selection view showing three alternative encodings for global feature importance.


https://explaining.ml/strategyatlas
https://explaining.ml/strategyatlas
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7.5.2 Projection views

To identify clusters, the interface contains two maps: the DataMap, a UMAP projection of
the dataset into two dimensions; and the StrategyMap, a UMAP projection of feature contri-
bution vectors, in which clusters represent model strategies. We chose a scatterplot encod-
ing to enable the expert data scientist to perform the clustering task. Other approaches (e.g.,
automated clustering) leave no room for expert interpretation of the data, and this expert
judgement is important, as the optimal granularity of clustering depends on the data and
problem context.

T e data points are colored using a greyscale colormap according to the predicted value by
default. T e colormap can also be applied based on ground truth values: a button underneath
the legend enables quick toggling between the two (Task 5 ). Tis toggle can be used to
estimate how many instances are incorrectly classifed per cluster. T e model performance
may vary per cluster: one strategy cluster may be predicted almost perfectly whereas another
may contain the majority of misclassifcations. T is helps to check the validity of a model
strategy. We deliberately put this button front and center to reinforce the understanding
that the system helps to understand WKH PR GH O &U hbGtheRWUn® @Quth. No
conclusions should be drawn concerning the ground truth without considering the machine
learning model makes mistakes too (correlations not causation).

To address overplotting, only a random subsample of 5000 points is displayed. We found this
to be representative for most datasets, and did not fnd additional model strategies beyond
this limit. Additional data for each point is available via a customizable tooltip.

DataMap

To provide an overview of the entire dataset, the system includes a data projection view,
shown in Figure 7.6.2A. It also helps to relate whether strategy clusters in the StrategyMap
are rooted in patterns in the data. For example, the lef-most cluster in Figure 7.6.2A is com-
prised of outliers with almost all feature values missing. T e lef-most cluster in Figure 7.6.2B
directly corresponds to those outliers.

Te UMARP algorithm requires a distance function, and Euclidean distance is not sufcient
for dealing with mixed numerical and nominal data types. Instead, we opted for Gower dis-
tance [75]: a combination of Manhattan distance for numerical, and Dice distance for nom-
inal features. T e Gower distance ¢ QR between the (appropriately normalized) vectors Q
and Ris given by

W o, QeR” Q1T
cQR —Z 8 % Q R (7.9)
Otherwise

Note that for a dataset with only numerical features, the Gower distance is equivalent to the
Euclidean distance.
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StrategyMap

Tis projection view includes a StrategyMap as introduced in Section 7.4, which enables
Task 5. An example is shown in Figure 7.6.2B. As feature contribution values are always
numerical, regular Euclidean distance can be used for the UMAP algorithm.

Gradient heat map layer

Tis layer enables the inspection of the distribution of values of a specifc feature in the data
and feature contribution projection spaces (Task 5 ). T is is achieved by interpolating the
values of a chosen feature over the 2D projection space. Although interpolation only esti-
mates the true value for each pixel in the projection space, it provides a sufcient heuristic
for interpreting the space, that can be computed interactively (unlike more exact techniques

[64)).

For numerical features, Inverse Distance Weighting (IDW) [172] is used for its applicability
to irregularly spaced data. As UMAP projects points close together with similar values, it
naturally enforces smooth transitions in the heat map, which is easier to navigate.

For nominal features, Voronoi tessellation is used by default because no smooth transition
exists between the categories of a nominal feature. However, experts can freely choose be-
tween interpolation methods and adjust parameters such as the nparameter for IDW inter-
actively, as shown in Figure 7.8, by clicking the settings icon ().

We chose diferent colormaps to emphasize the diference between the data and model per-
spectives (Figure 7.2). T e data heat map uses a green sequential colormap, while the Strat-
egyMap heat map uses a blue and red diverging colormap due to the divergent nature of
feature contribution values (i.e., range from ¢ to ). T e colormaps were chosen following
the recommendations of prior work [85].

Tis gradient heat map can be computed for both the DataMap and StrategyMap. For ex-
ample, in Figure 7.6.2A the heat map shows the lef-most cluster has a low value for feature
([WHUQ D O 5 | Whig tanrdsthoDtlié Hata has similar values. For the StrategyMap,
Figure 7.8 shows the feature 06 LQFHORV W 5 H F HIQ@3¥ pQsilive [iRiact@bthy
predictions of the two lef-most clusters, a negative impact on the right-most cluster, and a
varying impact in the remaining clusters.

(@ IDW, i =3 (b)IDW, i =6 (c)IDW, i =13 (d) Voronoi

Figure 7.8: Interpolation and parameter choices for the contribution heat map.
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Most-contributing feature map

To get an overview of all gradient heat maps, we tried aggregating all heat maps and calcu-
lated the feature with the highest contribution for each pixel. T is was implemented using
a multi-pass GPU shader. We hypothesized the most contributing feature would difer per
cluster, and hence this map would show a concise overview of the important features per
cluster. However, we found that the most contributing feature ofen varies a lot, even within
clusters, which makes the map difcult to interpret. An example is shown in Figure 7.9. We
decided not to include this feature in the fnal prototype.

Figure 7.9: Most-contributing feature map for the FICO xML dataset.

Interaction

Selection enables experts to examine diferent subsets of data points. To this end, we chose
lasso selection (e.g., draw a line around data points) to provide an intuitive interaction with
full granular control. An example of lasso selection is shown in Figure 7.1.2. T e selection is
linked and highlighted in all other views using the same blue color (®) chosen to stand out
amongst the other monochrome elements.

In addition to analyzing single clusters, the system enables F R Q W Explangtidnfivhat a
cluster means: we can select two clusters and explore the diferences between them (Task 5 ).
With this, we follow the recommendations from social sciences [139] that adequate explana-
tions of machine learning are ones that are contrastive with respect to another group. To this
end, experts can make a secondary selection by using the right mouse button. T e secondary
selection is highlighted in a hot/cold contrasting red color (®).

7.5.3 Data density plot lists

To understand the cluster in terms of multiple features, the density plot lists enable com-
parison of the selection against the rest of the dataset. Two scrollable lists are shown for the
data (Figure 7.6.3A) and feature contribution values (Figure 7.6.3B) respectively, echoing
the separation of data and model from the projection views.
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Ordinal and nominal feature densities are encoded using as a histogram by default (shown
in Figure 7.10.1), as it is a familiar encoding to our end user. T e bars for the entire dataset
are colored grey to blend into the background, while the primary and secondary selections
are highlighted in the bottom fraction of each bar.

T e density of numerical features is instead encoded with Kernel Density Estimation (KDE)
plots by default (shown in Figure 7.10.2), as the lines are less overwhelming in a list showing
many feature densities at the same time. It uses an Epanechnikov kernel for its optimal e -
ciency and low computational cost [61]. T e density for the entire dataset is shown as a grey
area chart, and the primary and secondary selection as lines to minimize occlusion for easy
comparison (Task 5 ). T e lines are colored bright blue and red to sharply contrast with the
background.

Figure 7.10: Density plot for a (1) categorical and (2) numerical feature.

Experts are enabled to switch between these visualizations, as some patterns in the data are
easier to spot in one representation over the other. For example, sudden value spikes may be
smoothed out in a KDE but visible in a histogram. In contrast, KDE can show more intricate
details that would be hidden within a single histogram bar.

Other settings include the KDE kernel width parameter for the amount of smoothing, nor-
malization of the selection densities, especially useful to enlarge and compare selections of
few data points, and absolute values, which simplifes the interpretation of contribution val-
ues to important (high value) vs. not important (low value).

Interaction

Experts are enabled to interact with the density plot lists in a variety of ways. Te views
can be sorted according to various properties, and each visualization supports selection by
clicking or dragging.

4 P S U Fistithe expert can sort density plots by the mean value. T is is especially useful

forthe F R Q W Udeisixida/ o fu@@kly spot what are the most contributing features globally,
in the entire dataset. In addition, the plots can be sorted based on the mean of the primary
selection and secondary selection to consider the most contributing features within those
clusters (Task 5 ).
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Second, the plots can be sorted by the standard deviation of the values. T e results are sorted
in ascending order, such that the feature with the lowest standard deviation is shown frst.
Tis is especially helpful when sorting G DdahElties, and helps to fgure out whether a se-
lected cluster has (roughly) the same feature value for all data points.

Finally, the plots can be sorted by “selection separation” T e two-sample Kolmogorov-
Smirnov statistic is computed for each feature as

lgt SUup _Kgv ¢Ktv _ (7.2
q

where K, and K, rare the empirical cumulative distribution functions of the frst and the
second selection, and sup the supremum function. T is statistic indicates how likely samples
from one selection are drawn from the same probability density function as another sample.
In our case, it enables sorting on the diference between selections (Task 5 ). T ree variants
are provided: comparing primary selection to all data, comparing the secondary selection to
all data, and comparing the primary and secondary selection.

- J O L J ®ytdefault, the data and contribution density plot lists can be navigated and sorted
separately. However, to enable quick and easy comparison of the diferent densities (for in-
stance, to analyze the feature values of the most contributing features), we provide a “link”
button () tosynchronize the two lists. Once activated, every action in one list (i.e., scrolling,
mouse-over and sorting) will also be applied to the other list.

&Y Q B O ETd ke it easier to compare data and contribution density of every feature,
an “expand” button () enables to temporarily break the data and model separation in the
interface and place the two lists side-by-side across the full height of the interface. Along
with the link feature, it eFectively turns the lists into a table.

4 F M F D HlbderGity plots support selection, which enables experts to select data points
based on specifc feature values or contribution values. T e selection is highlighted in all
other views in the system. For numerical features, brushing anywhere in the plot will select
data points within the selected range. An example is shown in Figure 7.10. For ordinal
features, this range selection snaps to the categorical steps of the histogram. Finally, ordinal
features can be selected by clicking on histogram bars. Any of these interactions can be
performed with either the lef or right mouse button, which controls whether the primary
or secondary selection is used.

75.4 Cluster view

Tis view (shown in Figure 7.6.4) enables experts to save selected clusters, and retrieve these
at a later time. Additionally, decision trees can be trained to automatically compute the most
relevant feature splits to explain the clusters, and to create surrogate models as an alternative
to the complex reference model.

If a selection is made anywhere in the system, it can be stored using the add button ( ).
Along with the selection, the most occurring predicted class within the cluster, and a user-
defned label for the cluster are saved. T e selected clusters are represented as tiles (Fig-
ure 7.6.4) and include information such as the label and number of points in the cluster.
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When data points are selected that reside within the stored cluster, the tile is outlined with
a thin blue or red border. If all points within the cluster are selected the tile is outlined with
a thick border. Clicking on the tile will update the primary (lef click) or secondary (right
click) selection in the rest of the system.

Decision tree separation

T e “train surrogate” button enables training a decision tree for each saved cluster, classifying

data points as either within the strategy cluster or outside of it. We call these VW UDW HsI\ WUHHYV
our goal is to display a simple tree that is interpretable by the data scientist, we apply Minimal
Cost-Complexity Pruning [21] with 6 . If a cluster tile is clicked, the strategy tree

for that cluster is displayed. T e width of the links corresponds to the number of data points

that end up in each child node, the color of the link is smoothly blended between gray and

selection color based on the percentage of points in the child node that are selected. T is

strategy tree visualization is useful in two ways:

First, the strategy tree helps to understand strategy clusters. It shows the minimal subset

of features required to discern the strategy cluster from others, as well as the order of im-

portance. Tis provides a natural way of describing a strategy cluster (Task 5 ) and is a

familiar encoding for our target user, the data scientist. In this example in Figure 7.11,

only four features are required to separate the cluster from the other data: most customers

have 0O6LQFHORVW5HFHQMW , nd rdthsir@edashnquiry), ([WHUQDOSLVN (V
W L P D W Ha low risk estimate, higher is better)and $Y HUDJH 0, Q) @iy time

customer).

Figure 7.11: Example of a strategy tree, highlighting the primary selection.

Second, our system includes ways to directly utilize the model strategies. Afer the data sci-
entist has verifed that the strategies are suitable for prediction and match their prior domain
knowledge, the strategy trees can be used as a simple yet efective building block for a sur-
rogate model that mimics the reference model. Such a surrogate model may be used as a
more interpretable alternative to the complex model, striking a balance between complex
black-box models and interpretable simple models.
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Given that the model strategies are clusters of points that are classifed V L P L ®ithib B
cluster, and G L H UfkbiQ b¥hér\clusters, we hypothesize that the behavior of this part of
the model can be concisely represented with a shallow decision tree. For example, if only a
few features are used to make predictions for a cluster, the corresponding strategy tree would
only include those features. Prior work in the machine learning community has shown that
tailoring smaller models to part of feature space can be efective and can even increase pre-
dictive accuracy [106].

At the bottom of Figure 7.6.4 a table is shown to enable the comparison of the reference
model (Task 5 ) and the strategy trees. In addition, a third row shows the performance
of a set of decision trees (the same number as strategy trees) trained on all data instead of
per strategy cluster. T is serves as a sanity check to ensure the strategy trees are indeed an
improvement over normal decision trees.

Te frst column shows the F,, score of these models on the test set. In the example, the
strategy trees perform close to the reference model (1.1% diference) whereas the Random
Forest performs a bit worse (2.8%), even though signifcantly fewer data are used to train
the strategy trees. Next, the memory footprint of the model is shown as an estimate of the
complexity of the model. T e strategy trees are roughly 10% the size of the original model,
while retaining most of its performance. Finally, the third column shows the percentage of
overlap in predictions with the reference model. T e strategy trees are more faithful to the
complex model than the Random Forest.

T ese results are promising, but no defnitive proof that the approach works. More research is
needed to verify the efectiveness of this technique, which is outside the scope of this chapter.

7.6 Use case 1: FICO credit risk

To illustrate the typical usage of StrategyAtlas, we explain some of the strategy clusters
for the running example of the FICO HELOC dataset, shown in Figure 7.6.2b.

Tere are two clusters for * R R@dit risk prediction. Afer selecting both clusters, the data
density plots can be sorted based on selection separation to show in terms of which features
the clusters difer. Figure 7.6.3A shows that these clusters difer primarily in terms of fea-
ture 06 LQFHORV W5 H F H @&vnaQthskipée Gst@uiy. Negative values for this
feature indicate missing data, so customers are treated diferently based on either having no
recent inquiry, or any positive number of recent inquiries.

To fgure out how the model treats customers in these clusters diferently, we sort the con-

tribution density plots by selection separation. Figure 7.6.3B shows that for customers with

no recent inquiry (@), the missing inquiry itself is the most important factor; all other fea-

tures are less relevant. For customers that G Rave a recent inquiry (e@), the model is more

vigilant, and uses (amongst others) ([ W H U Q D O 5 L(Md\dr\is\Wette?)DWH UDJHO0,Q)L O
(customer duration) and 3H U FH Q W 7 U D @tinvbartaf\délinguehCrRdes).

Tediferenceinrelevance of thefeature 06 LQ FH O R V W 5 H F Hiako sapotddbd G D\V
the heat map in Figure 7.6.3B. Additionally, the most distinguishing features for the cluster
are also present in the strategy tree for the cluster, which is displayed in Figure 7.11.
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7.7 Use case 2: automatic insurance acceptance

To validate our approach in a real-world use case, we conducted a user study. T e goal of this
experiment was twofold: to test whether our system enables data scientists to understand the
behavior of a complex machine learning model, and to test whether the experts were able to
verify the validity of model strategy clusters using domain knowledge.

We collaborated with data scientists from a large insurance company. T e team created a
predictive model for the purpose of aiding automatic acceptance of car insurances. T e pro-
prietary dataset contains 69 features (23 numeric, 13 ordinal and 33 nominal) and around
40,000 instances. T ey currently use a logistic regression model for the sake of transparency
and interpretability (in spite of more complex models performing better). T e model classi-
fes data points into two categories: U LaidNQ R Q . WdeXphdre whether complex models
can be suFciently explained using StrategyAtlas, we trained a complex histogram-based
gradient boosting model on their data for the data scientists to analyze. Compared to the lo-
gistic model, this model performs ten percent-points better, and is sufciently diferent from
the model developed by the team such that no confdential information can be inferred.

7.71 Participants & procedure

Out of the four data scientists active on the project, three of them were prepared to partic-
ipate in our study. T e participants are between 30 and 42 years old, and are all full-time
data scientists with at least fve years experience in machine learning. T ey all primarily
work with tabular data in their daily job, and only one of the participants reported having
prior experience with XAl techniques. Finally, they had not used StrategyAtlas before
the study.

Every session was conducted through a videoconferencing platform, and took two hours per
participant. To start, each participant had signed a consent form and flled out a background
questionnaire before the session. Next, we briefy introduced the system along with a demo
using the FICO HELOC dataset, which took around 20 minutes.

We want to evaluate the system in a realistic scenario, and hence decided to structure the
studyasa & HO G H[ Sdd tittned-b@drpendale [27]. By means of open ended ques-
tions we challenged the experts to explain aspects of their model, through which they would
perform each of the user tasks. During this part, the data scientists interacted independently
with the system, which ran on the infrastructure of the company to protect customer pri-
vacy. T e think-aloud method [27] was applied throughout the experiment, and all audio
and screen activity were captured for further analysis.

7.7.2 Results

In the following subsections, we summarize our fndings structured according to the user
tasks introduced in Section 7.3.2. Figures are copied directly from the screen capture, but
are redacted to protect sensitive information. We also name only a few key features, even
though more features played a role during the analysis.
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Task T1: Evaluating model performance

All experts started of with exploring the data itself before moving on to exploring the model.
Tis helped them to get acquainted with the system. In this process, they toggled between
prediction and ground truth coloring in the StrategyMap. Unexpectedly, two experts used
this functionality to estimate the false positive rate among the Q R Q paibty, Ahd the false
negative rate among the U Lddt&lpoints (i.e., the performance per cluster, see Figure 7.12).

Even though not quite exact, this insight was sufcient for proceeding with caution, and it

showed that they were aware the analyzed strategies were derived from an imperfect model,

and thus did not refect the true risk in the data. One expertsaid f2K \HDK KPP LWdV QR
W KH W U X WIKs ihsM@id Wiploidntgas overconfdence in explanations is a signifcant

issue in ML [49, 101].

Figure 7.12: Toggling between prediction and ground truth point color enables experts to infer the model
performance per cluster from the ratio of colors.

Later during the analysis, the experts created strategy trees for strategy clusters. To compare
these strategy trees and the complex model they required a more exact metric, and here they
did fnd and use the exact F , score at the bottom of the cluster view to evaluate the model
performance and relative loss of the strategy trees.

Task T2: Verifying the presence of strategies

All experts immediately identifed the same four clusters in the StrategyMap, and referred to

these as distinct strategies. One expertsaid f, ZRXOG VD\WKHUHDUH GL HUHQ\
WKHUH DUH FOXVWHUYV WKDW K DWVetelections byrdxpen thid bod X UH L P
the screen capture are shown in Figure 7.13. T e few outliers in between cluster two and

three were not selected as they did not seem to belong to any of the clusters.

One expert was not very confdent about cluster two, as the points were not as close together
as the other clusters, and some sub-clustering was visible within the group. Tey rather
considered it a ‘remainder’ group than a real model strategy. At a later point, the strategy
tree corresponding to this cluster showed the expert it could be clearly separated from the
rest of the data, and explained using a few features. T is increased their trust in the strategy.
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Figure 7.13: Selections in the StrategyMap made Figure 7.14: The feature Lc 6 % D x T ' u % yio3t D
by the second expert. relevant in cluster 2.

T e experts were surprised to fnd that there was only one cluster for the U Lpye#iction, and
multiple for the Q R Q ddtegori Te label U LiN the dataset was constructed manually
using multiple indications, including proved fraud, prior defaulting and excessive number
of previous claims. Hence, they expected the model to derive and use the same distinctions.
However, they learned that due to data imbalance (e.g., the model has signifcantly more
examples for the Q R Q ddtegaril compared to the U Lcetégory) the model learned the
opposite correlation instead.

Task T3 & T4: What constitutes a strategy?

To understand the model, the experts sorted the contribution density plots according to
global mean value. Tis showed them the most important features for the entire model.
Next, the experts used diferent approaches to interpret each of the clusters. We highlight the
frst three. T e most used and preferred method was highlighting selections in the density
plots along with the various sort options.

Cluster 1 All experts started analyzing the model by selecting the U Lclster frst. Tere
is only a single cluster for U L. WHith means that the model does not distinguish diferent
types of risk, but rather diferent types of non-risk.

By sorting on the mean contribution value within the primary selection, the experts listed

the most important features within this cluster ( 5 ). One of these was the feature & DU SULFH

One expert linked the distribution plot lists and checked the data distribution for this feature.

Surprisingly, the distribution of this feature was fairly similar across the U Landdhe QRQ ULVN

data points. One expertsaid f6WUDQJH LILWLV WKLV LPSRUWDQW ,DOVR I
H[FHS WL RUQibdocitdbetidisgthe feature does not correlate with predicted risk on

its own, but only in combination with other features; a typical trait of complex models. Tis

became apparent when the expert analyzed the strategy tree for this cluster: & DU Sadd F H

shown at a deeper level in the decision tree, meaning the correlation was only present for a

subset of the data (Figure 7.15). Another important feature for this cluster was & ODLP IUHH
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\ H D kbMthis feature the data distribution Z DdVfFerent: data points in the U LclWister had
much lower values compared to the rest of the data. Experts agreed this makes sense and
matches with their expectations.

Figure 715: Lu% 6 is'dnly relevant in combination with other features.

Cluster 2 Tis cluster is the largest of the Q R Q dluktardN T e experts found that the

feature & O DL P | Uwhblalstlibipbktant for this cluster. When consulting the data dis-

tribution plot, the values within the cluster were now much K L J #&h @verage. One expert
mentioned f WKLV PDNHV D ORWRIVHQVH DV VRPHRQH ZKR KDV
PXFKOHVV ULVNJg

To check what made this cluster unique, one expert sorted the contribution density plots
according to selection separation between cluster one and cluster two ( 5 ). T e clusters dif-
fered in terms of four features, amongst which & X U U H Q W. HB ddn¥ribufiok Heat map
for this feature (shown in Figure 7.14) showed that this feature was much more important
in this cluster than all others.

Tiscluster was described as the ‘typical’ Q R Q dabés\Mcistomers who submitted few claims
in the past. For these customers, they found the model pays more attentionto & XUUH QW F D!
Y D @ofrigared to the other clusters (5 ).

Cluster 3 T e experts noticed that cases in cluster three have relatively low values for fea-
ture & ODLP | U BinilaHdthé WU LeMdter, all customers in this cluster recently submit-
ted a claim. However, if recent claims are a risk indicator, what makes this cluster non-risk?
How does this Q R Q dlutey & Fer from the U Lcladter?

To fnd out, one expert trained a strategy tree for the cluster. T is tree showed a very clear

separation between data and clusters, with a ft of 94.5% and only 7 nodes. One of the impor-

tant nodes in the tree selected cases based on high & X VW R P H U Geé¢xp&risohtihaed

to explore a couple of tree nodes, and verifed the thresholds using selections in the data

density plots. Tey concluded fZLWK WKLV WUHH \RX FRXOG LGHQWLI\V
ZD\ g

To summarize (5 ), this cluster could be labeled as reliable long term customers who did
claim in the past.
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Task T5 & T6: Utilizing strategies
All experts trained strategy trees for each of the selected clusters during their analysis.

As they actively used strategy trees to understand model clusters, they gained familiarity
with them, and were able to use them to explain predictions. T is proves that strategy trees
can be used as an inherently interpretable model.

T e complex model, strategy trees, and reference Random Forest of participant 2had an F,,

score of 65.5%, 63.1% and 54.7%. T e estimated complexity, measured as the memory foot-

print in kilobytes, was 186kb, 9kb and 4kb respectively. T e results of the other participants

were similar. As the performance is so similar to the performance of the reference model,

oneexpertsaid fLQ DQ\FDVH ,ZRXOG UDWKHU XVHWKH >VWUDWHJ\C(
Another mentioned fWKH SHUIRUPDQFH >R WKH Vahdséng td paArWUHHV @ L°
form better than the production model, fZKLOH UHPDLQLQJ LQWieyws8¢ HWDEOH
enthusiastic about using (aspects of the) strategy trees in their project.

As for feature selection, it was clear to the data scientists which features were globally rele-
vant, only relevant to a select subset of the input data, and which were not important. Due to
a technical limitation the feature selection dialog could not be used during the experiment,
but experts were keen on experimenting with using diferent features in their production
model, based on the insights from this study.

7.7.3 Reflection

In general, the participants positively received the system and reported StrategyAtlas
helped them understand the complex model. T e study sparked a lively discussion on the
design decisions and possible improvements to their current model. T ey found the sys-
tem easy to use, and learned to use the interface quickly. T e experts were able to interpret
and explain model strategy clusters and validate the behavior of the model by using domain
knowledge.

We observed some interesting uses of the system. Even though data exploration is not an
explicit goal of the system, all data scientists started with exploring the data before moving
on to the model. Additions to support data exploration will beneft the workfow.

Next, density plot normalization was utilized more than expected. T e densities for small
selections are difFcult to see, and this feature helps to compare them efectively. Based
on this feedback, normalization could be enabled by default.

Experts had a personal preference for the absolute values feature in contribution density
plots. One of the experts found the positive and negative correlations confusing and pre-
ferred this setting, whereas the other experts preferred seeing the unfitered output from
LIME.

Finally, none of the participants changed the interpolation method or corresponding settings
during the experiment. We expect the default choices were sucient for their analysis.
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7.8 Discussion & Limitations

T e basic ideas presented in this chapter are all simple in nature: 1) data and feature contri-
bution projections using UMAP; 2) brushing and linking using lasso selections; 3) histogram
and KDE density plots to analyze subsets of data and contribution; 4) persisting selection his-
tory to save clusters; and 5) training decision trees to discover diferences between clusters.
However, we have shown that combined they form a strong visual encoding that enables
data scientists to identify and interpret model strategies, enabling them to understand the
models they built.

Tere are, however, some limitations with regards to the applicability of our system. Our
approach is specifcally targeted at tabular data, as we found it to be much more prevalent
in machine learning tasks (at our client). Hence, the application to other types of data falls
outside the scope of this chapter. Better visualization encodings can be used by tailoring
specifcally to images [89]. In addition, our approach requires user-interpretable feature
names in the dataset. T is excludes pre-processed datasets containing neural network latent
representations (as arguably, this can be considered tabular data too).

StrategyAtlas is model-agnostic and supports a variety of models. However, it is cur-
rently limited to classifcation. For training strategy trees for each cluster, a clear distinction
between classes is required. Next, smooth transitions in the output space (i.e., regression)
inhibit the visual separation of clusters in the StrategyMap, which makes our approach less
efective. In addition, we acknowledge that a solution tailored to a single type of classifca-
tion model may yield deeper insights [158]. However, our model-agnostic approach ensures
it can be applied in practice, where the types of used models are numerous.

Tereisno L Q K Hiohitatporon the number of features that can be represented. Both the
DataMap and StrategyMap are visually unafected by the number of features, nor are the
strategy trees in the cluster view. However, there isa S U D FliitaBidd @n the number of
features shown in the density plot lists. In the use case, 69 features did not cause any prob-
lems, however we estimate an upper limit of about 100 features. T is problem is mitigated
in part by the sort option, as well as integration with the browser search feature. Meanwhile,
in all datasets we tested, we found that typically only the top 10-20 of features were relevant.

Due to overplotting concerns, the number of data points in both projection views is limited
to 5000. We argue this subsample of the dataset is suFcient for exposing strategy clusters in
the model behavior. However, this subsampling step may not always faithfully represent all
data.

Finally, the computation of all feature contribution vectors and UMAP projections takes
around two minutes (on AMD Ryzen 5 3600X). Hence, it is currently not possible to interac-
tively update parameters for the explanation and projection technique. T e main bottleneck
is computing the explanation technique; a more optimal inference of feature contribution
vectors would beneft the system.
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7.9 Conclusion

In this work, we presented StrategyAtlas: a visual analytics approach to enable a global
understanding of complex machine learning models through the identifcation and interpre-
tation of diferent model strategies. T ese model strategies are identifed in our projection-
based StrategyMap visualization. Domain experts are enabled to ascertain the validity of
these strategies: feature values and contributions can be analyzed using heat maps, density
plots and decision tree abstractions. We explored the efectiveness of this approach using
two use cases. First, we analyzed a model for a home equity line of credit dataset by FICO,
and found distinct groups of customers that are treated diferently by the model. Next, in
collaboration with a large insurance frm, we applied the system in a real-world project for
automatic insurance acceptance. Te participants in the study received the system posi-
tively, and reported StrategyAtlas helped them to understand the complex model. Te
study sparked a lively discussion on the initial choices and potential improvements to the
production model.










118 Introduction

8.1 Introduction

xplaining artifcial intelligence (XALl) is an increasingly important topic in the machine

learning community. By supporting the interpretation of complex models, it enables data
scientists to validate and improve the models they develop, and supports decision makers to
assess cases and motivate predictions to customers and regulators [40].

Tisis particularly important in high-impact domains such as credit, employment and hous-
ing [14, 41, 60Q]. In these felds, incorrect model behavior may lead to unfavorable bias and
discrimination, and XAl techniques can help identify and alleviate such problems [1]. Let
us consider a real-world example of how explanation techniques are useful in practice. Re-
cent work has shown that, for commercial face classifcation services, accuracy of gender
classifcation on dark-skinned females is signifcantly worse than on any other group [23].
T is discrepancy was conjectured to be largely due to unrepresentative training datasets and
imbalanced test benchmarks. However, using explanation technigues, it was demonstrated
that the classifers made use of makeup as a proxy for gender in a way that did not generalize
to the rest of the population [145].

Next, with the recently enforced “right to explanation” in the General Data Protection Regu-
lation (GDPR), businesses in Europe are obliged to provide explanations for any automated
decisions they make [74]. T is prevents them from utilizing modern ML methods, unless
they can explain the predictions using a technique for model explanation.

Tus, it is imperative that data scientists are able to interpret and understand complex ma-
chine learning models, especially in high-stakes decision-making, to prevent biases and jus-
tify automated decisions.

A common approach to explain machine learning models is to create an explanatory, or
V X U U RaHE taHmimics the reference model. T e extent to which this surrogate accu-
rately approximates the reference model is called |1 D L W K (ot ®d&lity)V Xs the surrogate
is typically simpler, it can be used to understand the complex reference model.

Tere are two ways to obtain a surrogate model. Te frst is to J O R Eiin@cQHe refer-
ence model with an inherently simple surrogate model (e.g., linear model or shallow tree).
However, due to this simplicity, the resulting surrogate can ofen not faithfully represent the
reference model, which leads to inaccurate or incorrect explanations.

Another approach is to consider only a small part of the reference model, and only ORFD O O\
mimic that portion of the complex reference model. Such surrogate models will remain lo-

cally faithful to the reference model, while also being simple enough to understand. Te

current state-of-the-art techniques to explain individual predictions [129, 160, 185] apply

this approach by targeting only the part of the model that is relevant for that particular pre-

diction. Tis process is illustrated in Figure 8.1.

To generate such a surrogate model, a simple model is trained on WUD Q V:I kddt &D W D
data points labeled by the reference model. T is technique is well-known, but until recently

was only applied to approximate models J O R E BbO O R é&xplaDations, samples from a
constrained region are used to obtain a surrogate that is locally faithful, and simple enough

to be considered ‘interpretable’ [12, 160].
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In this chapter, we investigate transfer data sampling techniques for local surrogate mod-
els, and identify that the faithfulness of existing techniques may be impaired in high di-
mensionality. We explore alternative sampling techniques and introduce Local Explainable
M0Odel explanations using N-ball sampling (LEMON): an improved sampling technique that
is more faithful and robust than the current state-of-the-art techniques by sampling directly
from the desired distribution instead of reweighting samples (as shown in Figure 8.1).

T e remainder of this chapter is structured as follows: we frst introduce related work in
this area (Section 8.2). Next, we outline some limitations of current sampling techniques
in Section 8.3, and describe our proposed solution (Section 8.4). We evaluate and compare
our technique against the current state-of-the-art explanation technique (Section 8.5) and
conclude with a refection and identifcation of open research questions (Section 8.6 and
Section 8.7).

Figure 8.1: The process of local surrogate learning: 1) choose a data point to be explained, 2) sample
in the neighborhood of that point to obtain transfer data, 3) label the transfer data with the reference
classifier, and 4) train a linear surrogate model on the data. Annotated are two examples of 20 sam-
ples generated with alternative sampling techniques (2): the one used in LIME [160], which reweights
samples, and our proposed LEMON technique sampling directly from the desired distribution within a
radius. Since more local samples are available with LEMON, the explanatory surrogate model is able to
more faithfully represent the reference model.

8.2 Related work

T e concept of using transfer data to approximate a model globally was introduced in the
early 90s by Craven and Shavlik [53] and Domingos [57]. T e method has been applied and
refned in contexts such as model compression [10, 22, 87, 126, 163, 197], comprehensibility
[12, 15, 160, 167] and generalization [87].

T e types of surrogate models used vary widely. While for local explanation, linear regres-
sion is sufFcient [160], global explanation requires more expressive surrogate models, such
as shallow neural networks [163, 197], decision trees [15, 53], and rule sets [57, 167].

Furthermore, we identifed three types of sampling techniques for surrogate learning used
in previous work:
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Synthetic  Synthetic sampling draws new samples from a distribution (e.g., uniform or
normal), independently of the original data. For local techniques, this distribution is re-
stricted to a predefned region of the feature space (i.e., the region of interest). T e advan-
tage of this approach is we can sample as many transfer data points as desired. Most local
explanation techniques use this sampling approach.

Observation-based Observation-based sampling uses the same data on which the model
was trained as transfer data. When features in a dataset are correlated, certain values in
feature space are less likely (or impossible) to occur compared to the correlated (or ‘sensible’)
region of feature space. Observation-based sampling yields more samples in that sensible
part of the feature space. However, the number of samples we can use for transfer data is
limited. Oversampling techniques like Naive Bayes Estimation (NBE) or MUNGE [22] can
partially address this problem.

Model-based T issampling technique leverages the reference model to generate samples
[15, 53, 121]. Samples are generated close to the decision boundary, which is where the pre-
diction changes most rapidly, and hence can be learned from more efectively. However,
these approaches are limited to a specifc type of reference model (usually tree-based) and
some techniques also impose constraints on the type of data supported [121].

Which of these sampling techniques to use for surrogate learning is generally not considered
thoroughly. For example, some authors make empirical claims such as “We have found that
using the original training set works well” [87]. However, it is not clear what kind of beneft
observation or model-based sampling yields compared to synthetic sampling, or how the
chosen synthetic sample distribution afects the quality of generated explanations.

T e vast majority of the reviewed papers focused on J O Ragdpokimations, in which the
faithfulness (i.e., accuracy with respect to the reference model) of the surrogate model is
compromised in order to simplify the surrogate and hence the resulting explanation, or re-
duce its memory footprint for model compression. T e focus of this chapter is on sampling
for O R4udagates instead. By only considering a small part of the reference model, and
only O R Fri®icking that portion of the complex model, the surrogate remains faithful
and simple. T is approach is more recent and gained a lot of popularity with the introduc-
tion of the LIME explainability framework [160].

8.3 Issues with sampling for local surrogates

To understand sampling for local surrogates, we consider LIME [160], as it is a widely pop-
ular local explanation technique, and for its clear and accessible usage of surrogate models.
Te transfer data in LIME are samples that are drawn from a fxed multivariate Gaussian
distribution centered on the global mean of the training data. Here, fxed means that the
distribution does not depend on the data point to be explained. Next, these samples are
weighted based on their proximity to the data point to be explained. Te locality of the
technique is a result of this weighing.
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In LIME, a linear regression surrogate model is trained on these weighted samples, and the
coefcients are presented as a “feature contribution” explanation that shows how important
a feature is to a prediction: a small change in a feature with a high coe®¥cient will lead to a
large change in prediction, and hence can be considered important to the model.

T e quality of the resulting local surrogate is typically measured in 1 D L W K:ltKe@x@eht ¥V
which the local surrogate accurately represents the local behavior of the reference model.

8.3.1 Faithfulnesstothe model: ...d " EdOdeg+tcgd;O0dc §+ "§5S" R§dd=+c§ =

As a consequence of Fxing the transfer data independently of the point to be explained, a
notable drawback of systems such as LIME is that as the dimensionality of the data increases,
the chances of obtaining samples close to the instance to be explained gets ever smaller.
Hence, the robustness and faithfulness are signifcantly impaired for high-dimensional data.
Tis is very similar to the known “curse-of-dimensionality” limitation of rejection sampling,
in which most proposed points are not accepted as valid samples in high dimensions. In
addition to faithfulness, Alvarez-Melis and Jaakkola [4] have demonstrated that using only
few relevant samples (100 in their study) degrades the U R E X \0f#AH® éxtplaiation from
LIME (i.e., explanations may change signifcantly for small input perturbations).

To experimentally verify this efect, we set up an experiment in which we can arbitrarily
increase the dimensionality of the model without afecting other semantics of the machine
learning setup. Consider the I-dimensional feature space % / 9, and two classifcation
models representing a hyperbox (a Y) and hypersphere (g Y) respectively:

ayY }Y and qY } VY, (81)

classifying Y ¥as either true or false. T ese models are simple enough to quickly change
the dimensionality of the model, while being complex enough to resemble a realistic complex
classifcation model that cannot perfectly be represented by the local surrogate model. For
the input data point Ywe choose Y > . a @int on the surface of the decision
boundary of the model. To illustrate, Figure 8.2 shows a schematic representation of a Y,
gYand Y

(a) Box model [ Y (b) Sphere model | Y

Figure 8.2: Schematic representation of a 2D classification models (green shape) and data point Y
(marked in blue).
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(a) Box model [ Y (b) Sphere model | Y (c) Coefficients (g & )¢

Figure 8.3: (a,b) LIME (5000 samples) is not faithful when explaining high dimensional models. Different
lines represent different kernel widths Y. (c) the coefficients of the generated linear surrogate model
(green) do not match the expected coefficients (blue).

Next, an explanatory surrogate model is generated using LIME and four diferent kernel
width parameters. We chose values 0.1-0.4 to approximate the right side of the model only
(vo ! ). By measuring the faithfulness of the surrogate models generated for diferent di-
mensional models, we assert whether the faithfulness is impaired in high-dimensional space.

For data point Yand varying levels of dimensionality, we measure the faithfulness of the
linear surrogate model, using the cosine similarity between the coe¥cient vector of the sur-
rogate, and coefcient vector from the best possible linear model in this setup: e Y ¥,
coefcients shown in Figure 8.3c. Contrary to more traditional faithfulness metrics (e.g.,
W R Xol W}, this approach measures the agreement between the models without the need
for additional sampling.

Figure 8.3 shows that for models with only a modest number of dimensions (i.e., 10-20 de-
pending on the kernel width), the faithfulness of LIME is already signifcantly impaired,
which can result in untrustworthy and misleading explanations. In addition, heavy fuctu-
ations indicate the explanations are not robust. T is happens because in high-dimensions,
only very few relevant samples are generated in the neighborhood of the point to be ex-
plained, and hence, the linear model is not able to approximate the behavior of the reference
model. For a 15-dimensional box model, Figure 8.3c shows the expected coeFcients (blue)
and coeFcients of the linear surrogate from LIME (green). Only feature O has a signifcant
role for the prediction, but LIME incorrectly reports that many other features are relevant.

8.3.2 Faithfulnesstodata: R8ctg+Fd EdJE+dOc R8cEdSgER E§S8-00O Rg1

An additional drawback of LIME is the assumption to weigh samples using a Gaussian dis-
tance kernel that disregards the distribution of the original data (similar to the drawback of
synthetic sampling). Hence, the samples do not accurately describe the distribution of the
original training data. T is means that the samples that LIME is trained on are likely unre-
alistic or infeasible data points. T is problem is referred to as “out-of-distribution” in prior
work [47, 115], and discussed in detail by Hooker et al. [92]. In addition, some authors have
argued this disparity between test and transfer data opens up an opportunity for adversar-
ial attacks: a model could distinguish between data points used for sampling in LIME and
real data used in production [166], which enables the model to exhibit malicious bias for
production predictions, yet seem harmless when explaining those predictions with LIME.
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8.4 LEMON: robust sampling in high dimensions

We introduce LEMON: Local Explainable MOdel explanations using N-ball sampling, which

is tailored to address the issues identifed in Section 8.3.1. T is technique samples directly
from the desired distribution (that we defne by a distance-kernel function), instead of reweight-
ing samples. T is will naturally yield data points where we need them: in the neighborhood
(or UHJL R Q R)loLtl2 Wiskhiedd WoMe explained.

8.4.1 Sampling from a hypersphere

To achieve this, we frst use sampling within a unit hypersphere, followed by scaling the
samples by radius p(describing the region of interest), and translating the samples to be
centered at Y

Prior work [66, 82, 84] describes an efcient way to obtain data points within an | dimen-
sional hypersphere (i.e., @phere). If » é S , then X Fxxg uniformly distributed
on a unit @phere. Next, when we apply

%1 Z ©2)

where Z has the uniform distribution on the unit interval , we obtain the uniform
distribution of a unit @ball; the region enclosed by an Gsphere. Uniform samples from
this distribution correspond to points that are uniformly distributed within the sphere.

T is method will ensure that all samples reside strictly within the region of interest within
radius paround Y With more relevant samples, the surrogate model is able to more faithfully
represent the reference model, and output more robust results with less variance between
subsequent runs of the algorithm.

8.4.2 Accommodating arbitrary distance kernels

Sampling X Q L | Rftb @ hypersphere is rather restrictive, and makes it challenging to
compare fairly against LIME, in which the samples are normally distributed. In addition,
diferent domains may require diferent distance metrics and kernels (e.g., Ribeiro et al. [160]
use cosine distance for text and L2 distance for images). Hence, we expand our sampling
technique to accommodate arbitrary distance kernels.

Let P pdenote a distance kernel on the domain > g, @vhere the maximal distance
Phax ! mMay depend on the kernel. To sample points that are weighted by this kernel, we
observe that the total weight of points at radius pisgivenby g, P p 94" for some dimension-
dependent constant k. T us, the cumulative distribution function for the radius of a sample
is given by

_ ZP quq

Kp E}} P'mq for p phax (83)

To sample using Equation 8.3, we use inverse transform sampling [72]. However, an exact
analytical integral of this density function may not always exist. For instance, the Gaus-
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sian distance kernel used by LIME does not have a closed solution. Hence, we use numeric
approximations for the inverse to sample from arbitrary distance kernels.

Next, we show three examples of specifc types of distance kernels that can be used with this
technique.

Uniform distance kernel

T e most basic distance kernel is the uniform kernel

Riniform P (84
We frst show that substituting this distance kernel function into Equation 8.3 yields the same

cumulative distribution function as the uniform sampling approach we initially started with,
in Equation 82 We getfor p  phax

g fhdg I g
dﬂm qQAdq Max | P e

Ignoring the factor X, that determines the angle from (8.2), we getfor p = .

Kp

EZ9 ppxl EZ Pl PRx’ Kp

In the equation above, the second equality follows from the fact that Z has the uniform
distribution on the unit interval

Hence, using this uniform distance kernel results in uniformly distributed samples within a
hypersphere with radius pnax. An example of sampling using this distance kernel is shown
in Figure 8.4.

Figure 8.4: Samples from a uniform distance kernel in 2 dimensions. Radius k,ay is indicated with a red
line.
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Gaussian distance kernel

To enable a fair comparison with other techniques, our sampling technique should also sup-
port the Gaussian distance kernel as used in LIME, defned as

Ryaussian P €Xp E¢?P 1 (85

However, this distance kernel poses a problem: the Gaussian distribution is unbounded,
while for our numeric approximations we require a kernel whose domain is bounded by
some radius phx  E.

For comparison to the Gaussian kernel used in LIME, we use a truncated distance kernel: we
sample points from a Gaussian distribution with the same kernel standard deviation condi-
tioned to be at most ph,x. Here, we choose pnay Such that a fraction nof the sampled points
resides within this radius. In the appendix of this chapter, we show that

1 T .
Phax @6 on @O0 (8.6)

Alternatively, we can startwitha S U H G Ira&i@ k& that defnes the region that we would
like to explain using a Gaussian distance kernel. Tis yieldsa *such that a fraction n p
of the sampled points resides within, i.e.,

Vi

@ ”E?/A én @TE &7)

Ya

In Figure 8.5 we show the efect of diferent values of non the resulting distribution.

Using a truncated Gaussian distance kernel with these parameters enables us to generate
samples that are distributed very closely to how samples in LIME are weighted, which enables
us to fairly compare both techniques. An example of sampling using this distance kernel is
shown in Figure 8.6.

Figure 8.6: Samples from
Figure 8.5: Predefined radius k,.x /A& Y4(tlashed line), and agTruncated '?Baussian

t'h,ree truncated Gaussian distributions (yellow) with calculated (Y /% /£ ° Adistance

Y such that a percentage i of the density resides within ra- kernel in 2D. Radius Ky,
dius k For values of i closer to one, the distribution becomes
more peaked.

is indicated with a red
line.
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Squared cosine kernel

To enable a gradual drop-of towards the edges of the region of interest, another kernel we
can use is

Rgcos P cos” p (88)

Similar to the Gaussian kernel, this distance kernel function yields samples for which the
probability of being close to the edge of the region of interest gradually drops to zero. How-
ever, contrary to the Gaussian kernel, it has a well-defned boundary at pnax —:/Awhich is
easier to compute. Figure 8.7 shows an example of sampling using this distance kernel.

Figure 8.7: Samples from a squared cosine distance kernel in 2 dimensions. Radius ks is indicated
with a red line.

8.5 Evaluation

In this section, we Frst revisit the frst synthetic evaluation example introduced in Sec-
tion 8.3.1. Next, to compare the technique in a more realistic scenario, we compare LEMON
and LIME using standardized UCI datasets and a variety of models.

8.5.1 Synthetic scenario

In the example in Section 8.3.1 we showed that the faithfulness of LIME is impaired for
models trained on higher dimensional data (Figure 8.3). We now repeat this experiment
with our LEMON sampling technique. We chose a truncated Gaussian kernel with the same

as LIME, and an phax computed using Equation 8.6 with n . Tis ensures we
generate samples that are distributed very closely to how samples in LIME are weighted,
such that we can fairly compare both techniques.

Te results are shown in Figure 8.8. Contrary to the results for LIME (shown in Figure 8.3),
LEMON remains faithful to the reference model regardless of the dimensionality of the
model. T is is because more relevant samples are generated in the neighborhood of the point
to be explained even in high dimensions. And with more samples, the linear model is able
to approximate the behavior of the reference model better than LIME. For a 15-dimensional
box model, Figure 8.8c shows the expected coeFcients (blue) and coeFcients of the lin-
ear surrogate from LEMON (green) are very close, as opposed to the coeFcients of LIME
shown in Figure 8.3c. In addition, there results show smaller vertical fuctuations compared
to LIME, indicating that the robustness of explanations generated by LEMON is afected less
by random variation in the transfer data samples.
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(a) Box model [ Y (b) Sphere model | Y (c) Coefficients (g A& % ¢

Figure 8.8: The same evaluation as performed on LIME shown in Figure 8.3. (a,b) LEMON (5000 sam-
ples) remains faithful when explaining high dimensional models. Different lines represent different kernel
widths Y. (c) the coefficients of the generated linear surrogate model (yellow) closely resemble the ex-
pected coefficients (blue).

8.5.2 Real-world scenarios

Next, to evaluate our technique in a more realistic scenario, we compare both LIME and
LEMON on standardized datasets and a variety of models. We have opted for the Wine
dataset, Pima Indian Diabetes dataset and Breast Cancer Wisconsin dataset, which are read-
ily available through the UCI repository [59] and ubiquitous in machine learning research.
T e datasets have a dimensionality of 13, 9 and 32 respectively. For the reference models to
be explained, we chose a Naive Bayes classifer, a Neural network with three layers of 100
neurons each, and a Random forest with 200 trees. As the kernel width may have signif-
icant impact on the explanation, we chose a wide range of kernel width parameter values

and . Te latter two are included to be close to the default
kernel width used in LIME (i.e., % (;T with dimensionality |), but are so large that they can
hardly be considered local. Next we computed phax for LEMON using Equation 8.6 with
n

To evaluate, it is not possible to directly compare the resulting surrogate model against a
perfect surrogate model like we did for our synthetic scenario evaluation, because a perfect
surrogate model for these classifers is not known. Instead, we chose to compute the Root
Mean Square Error (W R X Based on newly sampled evaluation data in the neighborhood
of the point to be explained. For each data point in the dataset, we generated k

new samples in the area within radius pnax Using Equation 8.3 and an equivalent distance
kernel to the ones used in LIME and LEMON. Next, we recorded the W R Xhgtween the
predicted score of the reference model Band surrogate model Afor all k samples as

f
WRXJ¢ A <8 A A (89)

b /£ »

Note that due to the simple nature of the linear surrogate and complexity of the reference
classifer, a perfect WR X J is implausible [71]. However, the metric does enable us to
compare the relative faithfulness between LIME and LEMON. In Table 8.1 we show the mean
W R Xsdores over all data points in the dataset.
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Table 8.1: Average faithfulness scores (measured with Q L R Bn 50,000 evaluation samples) of expla-
nations generated for all instances in each of the 3 datasets, classified by 3 different ML models (Naive
Bayes, Neural network and Random forest), using 7 different kernel width values.

Kernel Naive Bayes Neural network Random forest
width (V) LIME LEMON LIME LEMON LIME LEMON
Wine dataset 01 0.010803 0.004376 = 0.060528 0.016648 0.046951  0.019903
(g £ Y% 0.2 0.040079 0.022685 0.153498 0078796 0.114962  0.046080
03 0.080317 0049155 0284860 0.155530 0.178592  0.068514
05 0205500 0136002 0302440 0.163927 0278609  0.097937
10 0469380 0284234 0415335 0289507 0.267166 0116724
20 0.729283 0287857 0667646 0278716 0443368 0.115783
40 1159073 0.258247 = 1.365969 0284775 0.836679  0.111562
Pima Indian dataset 01 0019762 0017457 = 0018643 0.016472 0.076236 0.036854
(g £)A 02 0.056653 0.030512 0.053963 0.027690 0.143864  0.050843
03 0.090880 0.039702 0.084326 0029368 0.182723  0.058985
05 0130931 0073673 0107936 0.042219 0.156096  0.074495
10 0244007 0176104 0145891 0.104622 0.187966  0.091348
20 0546066 0302690 0.356592 0.169856  0.347090  0.091682
40 1091590 0415790 @ 0.766702 0205972  0.670934  0.088685
Breast cancer dataset 0.1 0.015569 0.008265 0231906 0.133241 0046481 0.017380
(g £ %% 02 0.042665 0023198 0410140 0203188 0.092330 0.032813
0.3 0.086801 0.052640 0470570 0217265 0.140595  0.046902
05 0287637 0192482 0542495 0245061 0.224804 0.062128
10 0.604850 0147309 0552336 0269102 0.316536  0.068442
20 0476708 0008331 0791283 0.296810 0.268537  0.065544
40 0.642045 0.000188 1543161 0330073 0.484667  0.062372

On average, LEMON achieves 42.6% less W R Xcbmpared to LIME. T ese results show
LEMON manages to consistently improve the faithfulness of the local surrogate model com-
pared to LIME. T is holds for each dataset, model and kernel width combination we have
tested.

Next, we see that explanations generated with smaller kernel width tend to have a smaller
W R X JTis is expected, because smaller regions naturally contain less intricate decision
boundaries from the reference model, and smaller output gradients (e.g., the further we
zoom in on a model, the better a linear model will ft its gradient).

However, there are a few exceptions to this, most notably the Naive Bayes classifer trained
on the Breast cancer dataset. Here, the LEMON explanations get lower W R Xsgores for
very large kernel width values (! ). T e intuition for this is illustrated in Figure 8.9. While
a smaller kernel width yields a faithful local surrogate (lef), for larger kernel widths a lin-
ear surrogate may not be able to capture the complex behavior of the reference classifer
(middle). But if we increase the kernel width beyond the bounds of the original feature
space (approximately ! ) the evaluation data points become out-of-distribution. For our
example, the mean Euclidean distance of all Breast cancer training data to a point to be ex-
plained is 545.11, the mean Euclidean distance of all evaluation data with is 811.48,
with is 1618.38, and is 3231.04. T e latter is almost six times larger than
the training data. Hence most predictions for evaluation data points are out-of-distribution
model predictions, which yields unexpected results.
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Figure 8.9: Small regions of a complex model model (left) can often be approximated with a linear model,
but for larger regions (middle) the linear model may be insufficient. If we consider a region much larger
than the original feature space (right) the (out-of-distribution) model decision boundary may appear
linear again.

T ese (unrealistically) large kernel widths also cause LIME to produce W X Rsdores exceed-
ing 1 for certain dataset and model combinations (e.g., Neural network trained on the Breast
cancer dataset). Smaller kernel width values should be chosen to ensure that LIME explana-
tions remain faithful to the reference model.

Te W R Xsgores vary quite a bit per dataset, and per model. Tis happens because the
dataset and model both afect how much diference in predicted score (i.e., gradient) can
be expected within the sampling region. For instance, in Naive Bayes models the predicted
score does change smoothly for changes in the feature value. Hence, this model can be closely
approximated with a linear model (especially for small kernel width values). T e other two
models are more complex, and hence cannot always be accurately approximated with a linear
model (especially for larger kernel width values). Additionally, as the dimensionality of a
dataset increases, the portion of the feature space within the sampling region gets smaller.
Hence, a larger kernel width yields more faithful explanations for the Breast cancer dataset.

8.6 Discussion & Future work

Te LIME explanation framework includes a feature selection step (using LASSO). One
could argue that feature selection ahead of the explanation technique decreases the dimen-
sionality, enabling LIME to be more suitable in higher dimensional space than we have
shown in Section 8.3.1. However, the feature selection algorithm still needs to consider the
full feature space in order to select features, which it cannot properly do without su¥cient
neighboring samples. Hence, we have disregarded the feature selection step in LIME, as we
do not consider it a part of the core algorithm, and makes evaluation more difcult.

8.6.1 Supporting observation-based sampling

Sampling with either a uniform or Gaussian distance kernel remains a V \ Q WdgppitdAth: F
new samples are drawn regardless of the distribution of the original data. T is means that the
surrogate model may be ftted using R XW R 1 G L déatd/(ab ddscxibbdimSgction 8.3.2).

To address the limitation outlined in Section 8.3.2, we cannot simply use a custom distance
kernel in Equation 8.3. T e distance kernel is a kernel function applied to the distance p
between a sample Y,and the instance to be explained Yand pdoes not tell us enough about
the location of that sample.
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Instead, we propose fnding all training data samples °Tp % B Y¢ T%  ppax FWithin
radius pnax. Next, we approximate the density of these local samples with kernel density
estimation (KDE) and sample points from the resulting estimated density function. T is can
easily be done by choosing a random point, and ofsetting it by randomly drawn value from
the KDE kernel function. T is yields an alternative probability distribution on the ball of
radius phax around Yto Equation 8.3, but does not conceptually change the key idea behind
LEMON. Tis process is illustrated in Figure 8.10.

(a) Original data points (b) Estimated density using KDE (c) Transfer samples from KDE

Figure 8.10: lllustration of observation-based sampling approach using local kernel density estimation.
Original data points colored blue, newly obtained data samples colored grey.

Kernel width

Our evaluation has merely shown that the optimal sampling radius difers per dataset and
model. We argue it may also be dependent on the data point to be explained, or more specif-
cally about the proximity of that point to the decision boundary of the model. More research
is needed to infer which is the best radius. In Chapter 3 we have proposed a visual analyt-
ics solution such that experts can experiment with such properties, but that remains a labor
intensive process.

On a related note, our strict defnition of the area of interest (defned by a radius pnax) can
in some cases also be a limitation. If the kernel width is small, and the data point to be
explained is very distant from the relevant decision boundary, all samples within p,.x may
have the same predicted probability. In this situation, there is not enough information for the
surrogate model to infer the direction of the gradient. LIME sampling may yield a few very
distant samples with diferent predicted probabilities. T ese samples will have very small
weight (due to the distance), but still enable the recovery of the gradient to some extent.
However, we have not seen evidence of this happening when explaining real life datasets in
our evaluation.

Kernel shape

Previous work (including this chapter) make the assumption that a spherical region around
an instance is the best representation of a local neighborhood. However, some recent rule
based techniques efectively use hyperboxes instead [116, 167]. In addition, sampling to-
wards the closest decision boundary may yield samples with a more salient gradient. It would
be interesting to investigate what the relevance and efect is of the shape of the sampling re-
gion to the resulting explanations.
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Next, local surrogate explanation techniques mostly focus on explaining single instances.
It would be interesting to see if we can extend our work to explain multiple instances in-
stead: sampling from multiple distributions eFciently, such that explanations for subsets of
instances can be computed.

Measuring faithfulness

We currently evaluated the explanations using faithfulness: the more closely the local sur-
rogate model resembles the reference model, the better. However, there is no consensus on
the best way to measure this. LIME itself calculates faithfulness based on the transfer data
points the surrogate itself was trained on. T is is problematic because, as we have shown in
Section 8.3.1, LIME produces only few relevant samples in the neighborhood of the point to
be explained. Hence, using their approach the surrogate model is also evaluated using few
relevant samples, leading to misleading faithfulness scores. In our synthetic examples, we
could circumvent this as the most optimal set of coeFcients was known, and hence we use
the cosine similarity between the most optimal coefcients and those from the local surro-
gate. However, in a realistic scenario, the most optimal coe¥cients are simply not known.
For evaluating with real datasets (Section 8.5.2), we thus decided to use the W R Xb&tween
the reference and surrogate model, computed on many (50,000) Q H Zjéhé&rated samples
instead of the transfer data.

As an alternative, we considered the coefcient of determination (Wj as a metric for faith-
fulness. Tis metric is also used internally in the implementation of LIME, and shows the
proportion of the variance in the response variable of a regression model that can be ex-
plained by the predictor variables. However, we noted that for some (outlier) data points in
our evaluation, almost all sampled data points get roughly the same predicted outcome from
the reference classifer. In such case, the variance of the predicted outcomes is (very close
to) 0. Computing the W'score with this evaluation data yields W4alues of (close to) minus
infnity, severely skewing the results.

Finally, faithfulness in itself does not guarantee the best possible explanation. T ere are many
(and ofen subjective) desiderata to consider when evaluating explanations, which are almost
impossible to formalize due to their subjective nature. Hence, we do not claim to fnd an
optimal explanation, just one corresponding closer to the behavior of the original model.

8.7 Conclusion

In this work, we have explored alternative sampling techniques in pursuit of more faith-
ful and robust explanations. To this end, we presented LEMON: a sampling technique that
outperforms current state-of-the-art techniques by sampling surrogate transfer data directly
from the desired distribution instead of reweighting globally sampled transfer data. With
both a synthetic evaluation, and evaluation with real-world datasets, we have shown that
this sampling technique outperforms the state-of-the-art approaches in terms of faithful-
ness, measured in cosine similarity to the most optimal surrogate model, and W-coeFcient
between reference and surrogate model predictions respectively. LEMON results are more
robust, and less sensitive to changes in parameters such as kernel width.
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Appendix: Bounds on Gaussian distance kernel

Consider a point vand equip every point at distance pfrom vwith a weight given by the
kernel
Pp expEep %1 (8.10)

forsome ! We would like to fnd the radius of interest p such that the total weight of
the points within distance p is at least a fraction nof the total weight. Since the surface of
an I-dimensional ball is given by K dA”for some dimension-dependent constant kg, !
we have to nd the smallest p that satisfes the inequality

g uEhe wp
g ypAP mp °

We may rewrite the integrals to see that this is equivalent to fnding the smallest p such that

ka <
PAP dp n pPAP mp (811
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a Ca (812)
Let @ x q Q< rsA ’xp ¢ rd rdenote the incomplete gamma function and defne the gamma
functionas @ x @ xRecall (8.10),sothatthe change ofvariables r p”*  *toboth
integrals yields that the inequality is equivalent to
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Write s S @»—? s for the inverse of the incomplete gamma function. T us, we have to
fnd the smallest p such that

@6 ¢n@OO—, (8.14)

which is given by choosing
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9.1 Achievements

I n this dissertation, new methods for interactive visualization were presented and evalu-

ated. T ey all cover the broad topic of improving the understanding of complex machine

learning models. T e presented approaches, in the form of interfaces, prototypes and use

cases, helped to answer the research question: f+RZ FDQ ZH VXSSRUW GDWD VF
WHUSUHWDQG RSWLPL]J]HPDFKLQH OHDUQLQJPRGHOV XVL
LIDWLRQ DQG DXW R PQuw¢dearctWabdradced Thi Buestign from diferent
perspectives. An overview of the conclusions of chapters 3to 8 is presented below.

Visual Exploration of Machine Learning Explanations

In Chapter 3, we presented ExplainExplore: an interactive explanation system to assist
data scientists in understanding their models. It is built to support a wide variety of difer-
ent data sets and machine learning models. We demonstrated the value of the system with
a use case at a large insurance frm. T e participants efectively used explanations to diag-
nose a model and fnd problems, to identify areas where the model can be improved, and to
support their everyday decision-making process. For cases where automated techniques fall
short, they were able to refne surrogate parameters to improve the explanation and found
the closest good explanation that made intuitive sense. We hope that this technique helps to
alleviate some of the issues with current explanation techniques, to diagnose problems with
models, and help experts to make informed decisions.

Machine Learning Portability and Interoperability using PMML
In Chapter 4, we introduced . &' -)&+(('8(* " aPython package that providesimport
functionality to all major estimator classes of the popular machine learning library . $&$/8§
-) using PMML. T is enables portability and interoperability with a wide range of dif-
ferent languages, toolkits and enterprise sofware, which facilitates collaboration; ensures
wider applicability of post-hoc techniques and algorithms; and alleviates vendor lock-in. In
addition, we have shown the native implementation of our library greatly outperforms al-
ternative scoring libraries.

Machine Learning Interpretability through Contribution-Value Plots

In Chapter 5, we introduced Contribution-Value (CV) plots on two levels: local and global.
Local CV plots are a novel way of conveying feature contribution as a function of feature
values. Tis was previously only possible by combining multiple views, or by fallibly esti-
mating the slope of partial dependence curves, which is challenging and subject to errors.
Next, we introduced global CV plots to show a comprehensive overview of the full model be-
havior. T ese plots are information-dense and enable novel insights into a model. We have
addressed the uncertainty of the sensitivity analysis by interactively fading out lines, enabling
the validation of patterns for real data, and empowering an analysis workfow with linked
views. In a user study with 22 machine learning professionals and visualization experts, we
have shown that the visualizations support model interpretation by increasing correctness
and confdence, and reducing the time needed to obtain an insight compared to previous
techniques.
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Characterizing Data Scientists’ Mental Models of Feature Importance

In Chapter 6, we investigated local feature importance scores that quantify the importance
of the feature values to a prediction of a particular instance. Feature importance is an um-
brella term that captures various diferent techniques, each of which has diferent underlying
assumptions of what importance means.

We surveyed related work and present an overview of properties of local feature importance
approaches that may lead to misleading interpretations. We conducted a mixed-methods
survey to explore the expectations of data scientists in industry. We found that data scien-
tists have widely varying defnitions of feature importance and its values, especially regarding
the themes Locality, Explanandum and Underlying mechanism. Regarding the properties of
local feature importance, we found evidence that the identifed properties are indeed largely
expected by practitioners. However, data scientists also held intuitions that do not necessar-
ily match with existing techniques and contradict each other. We argue that this is a result of
fundamental diferences in how feature importance is derived (gradient and ablation-based)
and should be refected in communication about the technique. Hence, we propose to use
new terms to describe gradient-based and ablation-based feature importance, IHDW XUH VHQ
VLWdnd LMWDW X UH Dto/enmphdsizeXiw ikrit@cilable diference between the two
approaches.

Strategy Analysis for Machine Learning Interpretability

In Chapter 7, we presented StrategyAtlas: a visual analytics approach to enable a global
understanding of complex machine learning models through the identifcation and interpre-
tation of diferent model strategies. T ese model strategies are identifed in our projection-
based StrategyMap visualization. T is visualization enabled domain experts to ascertain the
validity of these strategies: feature values and contributions can be analyzed using heat maps,
density plots and decision tree abstractions. We explored the efectiveness of this approach
using two use cases. First, we analyzed a model for a home equity line of credit dataset
by FICO, and found groups of customers that are treated diferently by the model. Next,
in collaboration with a large insurance frm, we applied the system in a real-world project
for automatic insurance acceptance. T e participants in the study received the system pos-
itively, and reported StrategyAtlas helped them to understand the complex model. Te
study sparked a lively discussion on the choices made and potential improvements for the
production model.

Alternative Sampling for More Faithful Surrogate Model Explanations

In Chapter 8, we explored alternative sampling techniques in pursuit of more faithful and
robust explanations. To this end, we presented LEMON: a sampling technique that outper-
forms current state-of-the-art techniques by sampling directly from the desired distribution
instead of reweighting samples. With a synthetic evaluation and evaluation with real-world
datasets, we have shown that this sampling technique outperforms the state-of-the-art ap-
proaches in terms of faithfulness. LEMON results are more robust, and less sensitive to
changes in parameters such as kernel width.
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9.2 Reflection

Application of our systems in practice and interaction with data scientists at Achmea gave
us valuable insights with respect to the design of visual explanation systems. In this section,
we summarize our fndings and refect on lessons learned.

9.2.1 Integration and re-usability

T e techniques presented in this dissertation can be used in isolation to help data scientists
understand complex machine learning models from diferent perspectives. However, the
workfows of the individual techniques can also be combined to tailor for more complex
problems and specifc applications.

In Chapter 8 we discussed how the optimal parameter setting for explanation techniques
varies a lot per dataset and model combination. ExplainExplore can be used to fnd the
best parameter values by tweaking them on the fy and visually asserting the quality of the
ft in the context view. T ese parameters can then be used to confgure the explanation
techniques used in other approaches: it helps to create more faithful contribution-value plot
visualizations, and can be used in StrategyAtlas to increase the chances of fnding faithful
model strategies.

Next, visual elements of individual techniques can also be combined to provide multiple
perspectives (both local and global) in one interface.

For example, ExplainExplore mainly aims to explore individual explanations, but pro-
vides more context by enabling navigation around the selected instance, and adding several
visualizations to understand the neighborhood around the data point. In addition to under-
standing the efect of small input perturbations on the prediction, embedding Contribution-
Value Plots can help to understand how the H[ S O D @duld/dh&ng2 for small changes in
the input. T ese plots summarize the global model behavior for each feature separately, and
hence would nicely ft as a column in the feature view of ExplainExplore, see Figure 9.1A.
Likewise, Contribution-Value Plots can be embedded in StrategyAtlas (see Figure 9.1B)
as an alternative visualization to explore diferent strategy clusters in the feature contribution
values. Focusing on one feature at a time can help with identifying clusters.

Next, StrategyAtlas mainly aims to explain the model behavior globally, but does also en-
able inspection of single instances in the projection plots through an annotation on mouse-
over. T is local perspective can be expanded by providing more detail when selecting indi-
vidual instances through linked views; for instance by linking with the feature and context
view of ExplainExplore (see Figure 9.1C). In addition, adding a movable focal point in the
projection views, along with the context visualizations from ExplainExplore, can help to
show the efect of small input perturbations to provide more confdence in the stability of
the shown explanation.

Finally, the global overview provided by the StrategyMap projection in StrategyAtlas
could be embedded in ExplainExplore as an alternative visualization to provide context
around the selected instance. T e context view in ExplainExplore is only able to represent
a neighborhood around the selected instance. A StrategyMap can provide a more global
context by showing if the selected instance is classifed similar to all other instances or not.
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9.2.2 The role of Visual Analytics for Explainable Al

Explainable Al is an interesting Feld for visual analytics systems. T e visual analytics pro-
cess starts with data, which are mapped to visualizations and used to train analytical models
to understand the data. However, in (post-hoc) XAl, it is the model L W tht ©dssentially
the [data* we like to learn from. In that sense, the classical process of visual analytics can be
expanded as done in Figure 9.2. While we need visualizations of the underlying data, so too
do we need |visualizations* of the model, and (surrogate) models* trained to simplify the
model. T is repetition of data and model analysis is most salient in the interface of Strat-
egyAtlas, where we explicitly split the interface between a data (top) and model (bottom)
area. In these areas, the same visualizations and encodings are used but lead to very diferent
insights and knowledge*. We compare the visual data- and model-exploration processes:

Visualization* In principle, the visualizations* used for understanding models are not
much diferent from the ones used for understanding data. We can use hierarchical visualiza-
tion for tree-based models, or node-link or fow diagrams for neural networks. For model-
agnostic approaches, feature importance can be visualized as any other tabular dataset. How-
ever, diferent aspects are important for model visualization. In addition to the uncer-
tainty in the data, there are additional sources of uncertainty such as the imperfect ft of
the model and approximation in the explanation technique. Not properly conveying this
uncertainty can lead to misleading or incorrect insights. In addition, models are essentially
data-generating processes instead of a fxed dataset, which further necessitates interactive
explorative visualization. Finally, efective visualization of a model always requires insights
into the data the model was trained on; the two are intrinsically linked.

Figure 9.2: Visual Model-Exploration pipeline adapted from the visual analytics process diagram by Keim
et al. [102]. Models not only help us understand the data, but are also the subject of study in XAl.
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Model* Surrogate models* trained to help understand the reference model and models
trained to help understand the data are ofen diferent in nature. Surrogate models need
to provide a simple explanation of complex behavior, and typically do this by compromis-
ing accuracy (global) or general applicability (local). T e surrogate model L W heeti©td be
simple and comprehensible to explain the reference model, not the output of the surrogate.
Tis is in contrast with models to help understand the data, which provide predictions to
ultimately support an analytic goal, but (typically) do not need to be interpreted themselves.
In ExplainExplore, we could have used a complex local surrogate model that closely re-
sembles the reference model (i.e., very faithful). T e predictions of such a model can yield
insights into the dataset. However, when the surrogate itself is complex, we do not gain
much in terms of understanding the original reference model.

Knowledge* T e resulting knowledge* of this process is also diferent. T e knowledge
from the original visual analytics process serves the purpose of understanding the dataset,
while in the new process the knowledge serves to understand the reference model. However,
we note that these types of knowledge are intrinsically linked: when we want to understand
the model, it is important to also understand the data the model was trained on. T e classical
process of visual analytics does not clearly capture this relationship. For example, in Chap-
ter 7 our use case showed that StrategyAtlas enabled data scientists to identify diferent
model strategies: a model insight. T eir subsequent question was what type of customers
that model strategy applied to, which is a data insight. T e interplay between model and
data focus is what led to the success of this system.

Certainly, these additional steps add a lot of complexity to the process. We cannot just start
with a dataset, but have to make choices on preprocessing, choice of model and parameters,
and explanation technique and parameters, even before we can start with the visual analytics
process. T roughout our projects, we noticed this makes development and evaluation rather
complicated: for a generally applicable technique, not only do we need to support diferent
data types (e.g., categorical, ordinal, nominal), but also many diferent types of models and
surrogate models. To ease this process, more work is needed to support making parameter
choices to speed up the development and facilitate thorough evaluation.

Finding the balance between an accurate and simple surrogate model proves to be challeng-
ing. If we choose an explanation technique that is L W 8i#c0It to understand, it may raise
more questions, decrease trust, and subsequently require explanation itself. We end up in a
recursion, where we need explain the explanatory model with another explanatory process,
model and visualizations. T is misses the point of explanation, and hence we should strive
for simple explanation techniques.

9.2.3 Caution warranted

Explanation techniques are currently very popular, but the oversimplifed way they are ad-
vertised to data scientists (in both industry and academia) presents a problem. We noted that
explanation techniques are ofen assumed to work out-of-the-box, without much care for pa-
rameter values. Unfortunately, at the moment explanation techniques are simply not mature
enough to work in each setting, and require careful calibration of parameters to ensure no
misleading or incorrect explanation is generated. Current techniques do not advertise this
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risk clearly enough. T is is the main reason why we aim to support the data scientist, rather
than the decision-maker, with our approaches. We paid explicit attention to conveying un-
certainty details when designing ExplainExplore, which conveys this uncertainty through
Waand enables visually asserting the ft between the reference and surrogate model through
the class probability plots in the context view. In Contribution-Value plots, we conveyed a
diferent type of uncertainty, namely that of sensitivity analysis yielding out of distribution
efects. In that work, we introduced line-fading as an approach to hide efects resulting from
out-of-distribution data.

Next, feature importance warrants caution because the term ‘importance’ lacks clarity which
hides the underlying mechanisms and assumptions used to assert this importance. As we
showed in Chapter 6, those assumptions can have a signifcant efect on the resulting expla-
nation, and we think we should be more open and transparent about the underlying mecha-
nisms. All works in this dissertation support many diferent feature importance techniques,
exactly for the purpose of trying out these diferent techniques and to fnd out which tech-
nique best fts the use case. Personally, we have found gradient-based techniques (such as
our LEMON technique) to be most benefcial. Tese are faster to compute compared to
ablation-based approaches, and it is easier to explain how the importance scores are com-
puted. However, there are advantages and disadvantages with either technique, which we
discussed in more detail in Chapter 6.

An ofen mentioned goal for interpretable machine learning is to increase trust or confdence
in the machine learning model. At frst glance, this seems like a straightforward goal, but
it can be problematic. By evaluating or optimizing for trust without ensuring stakeholders
trustthe model IR U W K H U L, &t Enéddudabexihée QIS to deceive and mislead. Instead,
it may be a better goal to optimize for healthy skepticism: ensuring experts critically examine
their models before use.

While the visualization community has fully committed to the problem of interpretable
machine learning, work specifcally targeting neural networks for images seems overrep-
resented. In a recent state-of-the-art report [34], out of 198 surveyed visualization papers
to enhance trust in machine learning, 147 targeted neural network models, whereas only 44
ensemble models, and 97 other (could include other neural networks). I will not dismiss im-
age analysis as an important research direction. It can play an important role in for instance
the medical domain, and neural networks are uniquely capable of performing well with such
high dimensional data and are certainly complex black box models that need explanation to
be interpreted. However, we have to keep in mind that there are also many other application
areas out there. T e majority of datasets used in machine learning practices are still of tabu-
lar format [171]. Many businesses | have worked with (including Achmea which we closely
collaborated with) almost exclusively work with tabular data. In addition, neural networks
are rarely a good choice for tabular data, and ofen outperformed by simpler models [173].

Finally, the use of domain knowledge in visual explanation systems creates the risk of in-
troducing bias. Data scientists can tweak parameters in such a way as to yield explanations
confrming their personal biases. T is is not specifc to our approach but is inherent when
using expert domain knowledge. However, we should be cautious of this fact and clearly
show when explanations diverge from the real model (e.g., using faithfulness metrics).
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Figure 9.3: The main sentence describes our approach in this dissertation. Colors indicate different
directions for future research.

9.3 Directions for future research

Our research approached the research question from diferent perspectives, ranging from
local explanation of single predictions to global explanation of the entire model. We applied
a model-agnostic approach by using post-hoc explanation techniques, to support a wide
range of use cases. We argue this covers a broad spectrum of solutions to explain machine
learning models for tabular data, but there is plenty of room for future work (see Figure 9.3).

We note that the majority of XAl work (including the work in this dissertation) has focused
on supervised classifcation (111 out of 197 [34]). However, regression is also relevant and
has received much less attention (20 out of 197 [34]). While primarily targeting classifca-
tion, some of our solutions apply to regression as well. For instance, the heat maps in the
context view of ExplainExplore aim to show the local model behavior, but the output of a
regression model could just as easily be used. Next, Contribution-Value plots rely on feature
importance, which can be calculated for both classifcation and regression models. How-
ever, supporting regression in StrategyAtlas is more challenging, as it relies on fnding
model strategies for a particular class. A StrategyMap for regression would not show dis-
tinct clusters but a latent space that is difcult to interpret.

9.3.1 Beyond supervised learning

T ere are more modalities of machine learning that could beneft from visual explanations,
but are lef relatively unexplored in visualization literature.

Semi-supervised learning Semi-supervised learning (including one-shot and zero-shot
learning) aims to learn from only a small set of labeled data, and a larger body of data with-
out explicit ground truth. Explanation of such predictions may be even more benefcial than
supervised learning, as there is inherent uncertainty in learning from unlabeled data. Vi-
sual explanation can help understand the assumptions of the underlying model, and prevent
incorrect, biased or unfair decision-making.

Unsupervised learning Afer supervised learning, the next major category of machine
learning approaches is unsupervised learning (e.g., clustering algorithms), learning patterns
from completely unlabeled data. Several visual analytics systems [31, 55, 138] and visual
techniques [117] exploring cluster analysis have been proposed, but most focus on the inter-
active construction of the clusters. By actively involving experts in the clustering process, it
enables them to understand the meaning of each of the clusters. StrategyAtlas follows a
similar approach. However, the interpretation of clusters remains a labor-intensive process,
and a simple explanation of what a cluster means remains elusive. T ere has recently been
great work [64] helping to interpret projections using heat maps, which is a step in the right
direction of interpretable projection and clustering techniques.
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Reinforcement learning T e fnal major category of machine learning approaches is re-
inforcement learning, in which an autonomous agent tries to learn the best actions in an
(ofen dynamic) environment by using a trial-and-error approach. Reinforcement learning
is typically applied in scenarios that can be fully simulated, and hence do not directly seem
like a high-risk scenario in which explanations are typically benefcial. Nevertheless, some
great work has started exploring the explanation of agents’ actions in for instance playing
games [201]. Even though supervised learning is still most ofen used in machine learning
for decision-making, every sequential decision-making process can also be modeled with
reinforcement learning. As reinforcement learning is optimized to learn from interacting
with an unknown environment, this can help prevent bias and fairness issues in absence of
training data [69]. Take for instance hiring, which is rarely a single decision point, but rather
a cumulative series of small decisions [18, 168]. Explanations of such actions (i.e., hiring a
new employee) are important to ensure fair decision-making. Explainable Reinforcement
Learning (XRL) has recently seen some attention in the machine learning domain [156], but
visualization for XRL remains a largely unexplored research area.

9.3.2 Different stakeholders

Inthis dissertation, we have mainly focused on data scientists who work closely with decision-
makers. T eir familiarity with machine learning is vital for choosing the right parameters
for the explanation technique, and their domain knowledge and close cooperation with do-
main experts help to assess the quality of the explanation. T e domain expert is ofen the
Tnal decision maker who needs to beneft from machine learning explanations, but current
techniques are not reliable enough at the moment to apply without verifcation of the expla-
nations, which requires a technical understanding of the model and explanation technique.
Eventually, it would be great to be able to support the decision-maker or even subjects and
regulators directly. We have found these stakeholders prefer small and simple explanations,
and are not interested in complex visual analytics systems. Instead, work should be dedi-
cated to ensuring these simple explanations are correct and do not mislead the viewer based
on peculiarities of the underlying implementation.

An ofen overlooked stakeholder is the machine learning beginner trying to learn about
new techniques. In an educational setting, visual explanation can help to understand ma-
chine learning algorithms quicker. One example is the TensorFlow Playground that helps to
gain an intuition for the practical aspects of training a deep network [174]. T e activation
heatmaps help users build a mental model of the mathematics underlying deep networks,
and by progressively visualizing the model output, users can understand how the model
evolves throughout the training process. More model-specifc work to aid in learning about
models other than neural networks would also be interesting. T e machine learning be-
ginner could also beneft from visual explanations just to understand howthe H{SODQDWLR
W H F Ki@dlfwerks. In fact, the overlapping class probability plots in the context view
of ExplainExplore originated from doodles to explain how the LIME technique works
[160]. We iteratively improved this visualization, adding support for multi-dimensionality
and categorical variables, which led us to the fnal implementation. T e mechanism behind
Shapley-based feature importance remains challenging to grasp for novices, and could ben-
eft from visual explanation.
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9.3.3 Scalability

Explanation techniques are optimized to explain individual predictions. While recent work
[112], including ours in Chapter 5and 7, has started to aggregate local explanations to obtain
a global explanation of a model, the techniques used are not optimized to be computed for
an entire dataset. T is hinders interactive exploration of parameter settings for these tech-
niques, like we did manage to do for local explanations in Chapter 3. A useful direction for
future research would thus be to optimize the computation of explanation techniques for
larger subsets of the data. Faster computation enables us to build interactive visualizations
for more free-fowing exploration of data and explanations.

9.3.4 Completing the feedback loop

We have dedicated our dissertation to providing experts with insights to help them under-
stand machine learning models. Using these insights, machine learning models can be re-
fned and improved. However, we have considered the process of refning either completely
external to the system (e.g., in Chapter 5 and Chapter 7) or enabled by tweaking parame-
ters and completely retraining the model (in Chapter 3). An interesting direction for future
work would be to incorporate model refnement directly in a visual analytics workfow, and
support updating existing models rather than replacing them.

Consider Figure 9.4. Separate visual analytics systems exist for tuning (top), and under-
standing (bottom) models, but few combine these two. Combining these two would create
a feedback loop in which the model can be iteratively improved based on insights into the
model behavior.

Figure 9.4: Enabling experts to interactively tune machine learning models based on the insights ob-
tained from model explanation creates a feedback loop.

T isapproachisvery challenging because for many machine learning models it is not straight-
forward to update the model afer training. For instance, in tree-based models, updating one

of the nodes will afect all other downstream nodes, efectively retraining a large part of the

model. Since tree-based models are unstable (i.e., subsequent training may yield very difer-

ent models) a small change may unintentionally change the model a lot. Nevertheless, this

is an interesting problem for the machine learning domain to address. For example, can we

update the model to increase or decrease the importance of a feature? Or update the model

to ensure one instance is not classifed solely based on a sensitive feature (e.g., gender)?
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In terms of visualization, we envision two ways of incorporating human feedback based on
explanation-driven insights. Either G XU L QJ Wi.&J, Bdti@ legpriing) where the model
can iteratively provide examples for experts to label and in addition, experts could provide
feedback on which features they deemed were most relevant to their verdict. Next, DTH U
W U D (i.@,liredactive tuning) the model can be updated to refect the expert’s suggested
change. With such work, we should be careful to not accidentally enable experts to unjusti-
fably bias the model.

9.4 Wrapping up

To conclude, we have presented several interactive visualization approaches to interpret ma-
chine learning models from diferent perspectives, ranging from local explanation of single
predictions to global explanation of the entire model. We collaborated with Achmea, a large
insurance company in the Netherlands, to ensure our approaches were applicable and efec-
tive in practice. T ese use cases have shown that data scientists were enabled to interpret
and optimize machine learning models, and use these insights to improve their models.

Our work has also shown that parameters of explanation techniques should be carefully con-
sidered, and uncertainty should be clearly indicated. In this regard, there is ample opportu-
nity for future work: machine learning research to speed up the computation of explanation
for interactive visualization, and prevent failure cases in explanation techniques that yield
misleading explanations; human-computer interaction to understand exactly what stake-
holders require, and how explanations are interpreted; and visualization to efectively com-
municate explanations and prevent overwhelming less technical stakeholders, while remain-
ing accurate and faithful enough to prevent unfounded insights.

In short, with our research we have contributed novel solutions for interpretable machine
learning. Many issues remain to be solved, but that is what makes this such a fascinating
topic to work on.
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Summary

M achine learning has frmly established itself as a valuable and ubiquitous technique in
commercial applications. It enables businesses to make sense of their data and make
predictions about future events. Besides increasing accuracy, currently there is a strong de-
mand for understanding how specifc models operate and how certain decisions are made.
Understanding models is particularly important in high-impact domains such as credit, em-
ployment, and housing, where the decisions made using machine learning impact the lives
of real people. T e feld of eXplainable Artifcial Intelligence (XAl) aims to help experts un-
derstand complex machine learning models. In recent years, various techniques have been
proposed to open up the black box of machine learning. However, because interpretability is
an inherently subjective concept it remains challenging to defne what a good explanation is.
We argue we should actively involve data scientists in the process of generating explanations,
and leverage their expertise in the domain and machine learning. Interactive visualization
provides an excellent opportunity to both involve and empower experts.

In this dissertation, we explore interactive visualization for machine learning interpretation
from diferent perspectives, ranging from local explanation of single predictions to global
explanation of the entire model.

We frst introduce ExplainExplore: an interactive explanation system to explore expla-
nations of individual predictions (i.e., local). For each explanation, it provides context by
presenting similar predictions, and showing the impact of small input perturbations. We
recognize many diferent explanations may exist that are all equally valid and useful using
traditional evaluation methods. Hence, we leverage the domain knowledge of the data sci-
entist to determine which of these ft their preference. In a use case with data scientists from
the debtor management department at Achmea, we show the participants could efectively
use explanations to diagnose a model and fnd problems, identify areas where the model can
be improved, and support their everyday decision-making process. To ensure these contri-
butions can be broadly applied, we introduce a sofware library that enables interoperability
with a wide range of diferent languages, toolkits, and enterprise sofware.

Next, we propose the Contribution-Value plot as a new elementary building block for in-
terpretability visualization, showing how feature contribution changes for diferent feature
values. It provides a perspective in between local and global, as the model behavior is shown
for all instances, but visualized on a per-feature basis. In a quantitative online survey with
22 machine learning professionals and visualization experts, we show our visualization in-
creases correctness and confdence and reduces the time needed to obtain an insight com-
pared to previous techniques. T is work highlighted that a small diference in feature impor-
tance techniques can result in a large diference in interpretation, and warranted a follow-up
human-computer interaction contribution to characterize the data scientists’ mental model
of explanations, and explore the diferences between existing techniques.
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Finally, we introduce StrategyAtlas: a visual analytics approach to enable a global under-
standing of complex machine learning models through the identifcation and interpretation
of diferent model strategies. T ese model strategies are identifed in our projection-based
StrategyMap visualization. Data scientists are enabled to ascertain the validity of these strate-
gies through analyzing feature values and contributions using heat maps, density plots, and
decision tree abstractions. In collaboration with Achmea, we applied the system in a real-
world project for automatic insurance acceptance. T is showed that professional data sci-
entists were able to understand a complex model and improve the production model based
on these insights. As computing the local feature importance values for an entire dataset
is computationally expensive, we complement this work with an algorithmic contribution
called LEMON to improve the faithfulness of explanation results, which enables us to sig-
nifcantly speed up computations of StrategyMap projections.
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van der Linden, Vidya Prasad and Kirsten Maas. You are all doing great work and | wish
you the best of luck with your projects (may the odds be ever in your favor). I also thank the
colleagues from Delf whom we recently connected with: Faizan Siddiqui, Alexander Vieth,
Nicolas Chaves de Plaza, Marcos Pieras Sagardoy, for the ‘paper reading sessions’: a great
tradition we should defnitely keep going!

In retrospect, | was too late in deciding to start collaborating on papers. | wanted to avoid
arguments about authorship and equal contribution, but none of this turned out to be a
problem. I am very glad | decided to collaborate with Hilde Weerts, Pratik Gajane, and Joost
Jorritsma, all true experts in your respective Felds, which defnitely helped to get some of
the work in this thesis to the next level.

Daphne, you deserve a special spot in this section. Not only were you there for me every
step along the way, we also managed to collaborate on one of the papers in this thesis. You
were always prepared to listen to me ramble on about yet another idea or problem. You gave
constructive criticism when needed, and pushed me to make decisions when | am indecisive.
I hope | will manage to contribute to a similar degree to your PhD, we are a great team
together!

Last but not least, | would like to thank you, the reader, for your interest in the work that |
poured my heart and soul into for the past four years.
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