Abstracted Structure-Preserving Reduction of Interconnected Structural Models

Citation for published version (APA):

Document status and date:
Published: 01/01/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Sep. 2022
ABSTRACTED STRUCTURE-PRESERVING REDUCTION OF INTERCONNECTED STRUCTURAL MODELS

Luuk Poort1*, Rob H.B. Fey1, Bart Besselink2, Nathan van de Wouw1

1 Eindhoven University of Technology, Mechanical Engineering
PO Box 513, 5600 MB Eindhoven, The Netherlands
l.poort@tue.nl, r.h.b.fey@tue.nl and n.v.d.wouw@tue.nl

2 University of Groningen, Bernoulli Institute for Math., Computer Science and AI
PO Box 407, 9700 AK Groningen, the Netherlands
b.besselink@rug.nl

Keywords: Model Order Reduction, Structure-Preserving, Balancing, Coupled Problems

The large order of structural, finite element models necessitates the use of model reduction techniques to allow for dynamic analysis. These models, represented by the system of linear differential equations Σ, often consist of an interconnection of substructures Σ_j, $j = 1, \ldots, k$. In practice, model reduction is often performed on individual substructures Σ_j, by, e.g., component mode synthesis methods, because direct reduction of Σ is not computationally tractable. However, if the reduction of a substructure Σ_j to its reduced representation $\hat{\Sigma}_j$ does not take the dynamics of the other substructures into account, the accuracy of the interconnected, reduced-order model, $\hat{\Sigma}$, cannot be guaranteed.

In this presentation, we introduce the idea to improve the accuracy of $\hat{\Sigma}$ by reducing Σ_j in interconnection with a low-order approximation of the other substructures. Stated differently, instead of considering (and reducing) Σ_j in isolation, we consider the interconnection of Σ_j with an abstraction of its environment. Hereby, a reduction of Σ_j that takes this abstraction into account ensures that the reduced $\hat{\Sigma}_j$ is relevant in the scope of the overall structure.

Reduction of the interconnection of Σ_j and the corresponding abstraction using standard reduction methods, would destroy the interconnection structure and results in one unified, reduced model. Therefore, structure-preserving reduction methods, such as presented in [1], are employed to retain the interconnection structure and thus retain access to the reduced subsystems $\hat{\Sigma}_j$.

Initial results show that this method of abstracted reduction results in an error which is comparable to a more costly structure-preserving reduction of the complete model Σ [1]. This indicates that low-order abstractions are sufficient to capture the relation between Σ_j and Σ, while significantly improving computational tractability of the reduction.

REFERENCES