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Abstract 

Thin-walled structures are often used in light structure with a high load carrying capacity due to 
their favorable mass-stiffness ratio. The design of thin-walled structures encompasses a number 
of challenges. An axial statically loaded thin-walled structure may become unstable, i.e. it may 
buckle. In practice, however, thin-walled structures are often subjected not only to (quasi-) static 
but also to dynamic loads. The resistance of thin-walled structures to buckling as a result of a 
dynamic load is called the dynamic stability of the structure. In this thesis the dynamic stability 
of an archetype thin-walled structure is considered, viz. a slender beam with top-mass. The 
main objective of this thesis is to experimentally validate if the dynamic buckling behavior of 
this archetype thin-walled structure can be accurately predicted by modeling and nonlinear 
dynamic analysis based on a semi-analytic approach. The measured signals also will be used to 
identify some unknown parameters of the semi-analytical model (shaker parameters, damping 
parameters and geometric imperfection parameters). 

The experimental set-up used in this thesis consists of a slender steel beam with an axially 
guided top-mass, an electromagnetic shaker with power amplifier, a laser-vibrometer, a 
digital/analog converter and a laptop. The beam is oriented in vertical direction, clamped on 
both sides, and carries an adaptable top-mass. The electromagnetic shaker is positioned under 
the bottom clamp of the beam and excites the beam in axial direction. On the laptop an 
excitation signal is generated in Matlab/Simulink and provided to the power amplifier which 
supplies the electromagnetic shaker. In order to characterize the slender beam dynamics the 
transversal velocity of the beam is measured with the laser-vibrometer and stored on the laptop 
using also Matlab/Simulink. 

The semi-analytical model is based on the described practical situation, i.e. an 
electromagnetically excited beam with top-mass. The dynamics of the electromagnetic shaker 
can be divided in a mechanical and an electric part and is modeled by respectively a linear single 
degree of freedom mass-spring-damper system and a resistor-inductor system with an 
additional electromotive force. The beam is considered to be inextensible and to have 
imperfections in the initial geometry. Furthermore, because of the slenderness of the beam the 
transversal shear and axial inertia of the beam are neglected. The curvature of the beam and the 
inextensibility constraint are approximated by 3rd order Taylor series expansions. The 
transversal displacement field of the beam is discretized by one or multi-mode approximations. 
By using the potential energy function, kinetic energy function and an energy dissipation 
function the equations of motions of the coupled shaker-beam system are derived using the 
equations of Lagrange. Herein the energy dissipation function consists of a linear and quadratic 
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ABSTRACT 

viscous damping term for each included mode. This results in equations of motion which 
possess nonlinear stiffness terms, nonlinear inertia terms and nonlinear damping terms. 

In order to make a first comparison between the experimental and semi-analytical results the 
Frequency Response Functions (FRF's) of the linearized are used for both identification and 
validation. Firstly, the FRF's are used to identify the imperfections and linear viscous damping 
parameters of a linearized double-mode semi-analytic model. In addition, the Young's modulus 
is adapted to compensate the model inaccuracies. Next, the identified model is used for 
obtaining the semi-analytical FRF's. A good correspondence between the semi-analytical FRF's 
and the experimental FRF's is obtained. Accordingly, the identified imperfections are 
successfully validated by comparing the equilibrium-path of the static semi-analytic model with 
the experimentally obtained equilibrium-path. Conform to the main objective also the nonlinear 
semi-analytical model is identified and validated. The identification of the imperfections, viscous 
damping parameters and Young's modulus is performed by using a least squares method based 
on the periodic solutions. For this purpose the periodic solutions of the beam are obtained 
experimentally and numerically in the selected frequency range of interest. The identified 
semi-analytic model is validated by comparing the experimental and single-mode semi-analytical 
frequency-amplitude responses. In addition, the top-mass and the excitation amplitude are 
increased separately. This does not result in a significant decrease of resemblance between the 
semi-analytical and experimental results. Finally, the resemblance between the semi-analytical 
and experimental results can be improved further, both in a qualitative and in a quantitative 
sense, by expanding the semi-analytical model with a second mode. 

In conclusion, the semi-analytical model of this archetype beam structure with top-mass is 
successfully identified and validated. Consequently, the semi-analytical approach shows to be 
very efficient to study nonlinear dynamic buckling problems. 
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Chapter 1 

Introduction 

1.1 Motivation 

Thin-walled structures are often used in aerospace structures thanks to their favorable 
mass-stiffness ratio resulting in a light structure with a high load carrying capacity. A practical 
example is the thin-walled cylindrical shell of the Vega launch vehicle, which caries a satellite [4]. 
During a typical launch, the thin-walled structure is loaded in the longitudinal direction. Next to 
the dominant static loading also dynamic loads are present due to fluctuations. 

The design of thin-walled structures encompasses a number of challenges. An axial statically 
loaded thin-walled structure may become unstable i.e. it may buckle. This static buckling 
behavior strongly depends on imperfections both in geometry and loading. In the post-buckling 
regime the out-of-plane displacements can rapidly increase. Accordingly, nonlinear geometric 
behavior becomes significant. In practice, however, thin-walled structures are often subjected 
not only to (quasi-) static but also dynamic loads. The resistance of thin-walled structures to 
buckling as a result of a dynamic loads is called the dynamic stability of the structure. In this 
thesis a semi-analytical approach will be used to study the dynamic stability of an archetype 
thin-walled structure, i.e. a slender beam with top-mass. Although the geometry of the structure 
is simple, the nonlinear dynamic response may be (very) complicated. A practical example of a 
slender beam with top-mass subjected to a dynamic load is hard to find. Nevertheless, this 
archetype structure can be adopted to examine the accuracy of a semi-analytical approach for 
investigating the dynamic stability behavior of thin-walled structures. 

1.2 A base-excited slender beam with top-mass 

This study is concentrated on the dynamic stability behavior of a base-excited clamped-clamped 
slender beam axially preloaded below the first static buckling load, see Fig. 1.1. The beam 
considered is slender, not perfectly straight and oriented in vertical direction. Due to its vertical 
orientation and the presence of gravity, the slender beam is statically preloaded in axial direction 
by the weight of the top-mass. The weight of the top-mass alone is chosen so that in a static 
sense the system is stable, i.e. the beam does not buckle. In addition however, the slender beam 
is dynamically loaded by a harmonic base-excitation. 

1 



1. IN TRODUCTION 

�~� Slender beam 

Figure 1.1: Side-view of a base-excited clamped-clamped slender beam with top-mass. 

1.3 Objective of the thesis 

The main objective of this thesis is to experimentally validate if the dynamic buckling behavior 
of this archetype thin-walled structure can be accurately predicted by modeling and nonlinear 
dynamic analysis based on a semi-analytic approach. It must be mentioned, however, that 
measurement signals also will be used to identify some parameters of the semi-analytical model 
(shaker parameters, damping parameters, geometrical imperfections). 

1.4 Outline 

In Chapter 2 of this report a literature survey will be given. Next, in Chapter 3 the experimental 
set-up of the slender beam structure will be described. Based on this set-up a semi-analytical 
model of the slender beam structure will be derived in Chapter 4. Next, in Chapter 5 an 
experimental validation of the linearized dynamic model and static model will be performed. For 
this validation purpose the linear viscous damping and geometric imperfection parameters of 
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1. INTRODUCTION 

the linearized dynamic model will be identified based on the experimentally obtained frequency 
response functions. Subsequently, in Chapter 6 the (nonlinear) dynamic semi-analytical model 
will be validated based on experimentally obtained periodic solutions. For this purpose the 
viscous damping and geometric imperfection parameters of the semi-analytical model will be 
experimentally identified. Next, the numerical responses will be compared with experimentally 
obtained frequency-sweep responses. Finally, in Chapter 7 conclusions will be drawn and some 
recommendations will be given. 
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Chapter 2 

Literature survey 

In this chapter a literature survey will be presented. Firstly, in Section 2.1 and Section 2.2 a 
survey will be given about respectively static and dynamic stability. Next, in Section 2.3 an 
overview will be given ofliterature discussing semi-analytical modeling and analysis approach 
used in this thesis. Finally, a literature survey on experimental verification and identification of 
semi-analytical models will be presented in Section 2.4. 

2.1 Static stability 

In this section a literature survey about static stability will be given. The stability of a structure 
subjected to conservative loads (loads which completely can be derived from an energy potential 
function) is considered. The loss of the static stability of a structure subjected to axial 
conservative loads, is known as the static buckling of a structure. In addition, the stability of an 
elastic structure is called the elastic stability [40]. The elastic stability of a structure can be 
examined based on the properties of the total potential energy Junction [39 ]. This criterion can be 
explained with the potential energy curve of Fig. 2.1 where the total potential energy II is 
characterized by displacement parameter Q1. The total potential energy function of a (statically 
loaded) conservative system is defined as the sum of the strain energy and the potential energy 
of the conservative forces [n, 13]. The equilibrium states of an arbitrary statically loaded structure 
can be determined by setting the first derivative of the total potential energy at zero. In order to 
examine the stability criterion the statically load and the equilibrium states are substituted in the 
Hessian of the total potential energy function. In elastic stability problems the Hessian at an 
extreme of the potential energy is also called the tangent stiffness matrix [33]. Since this tangent 
stiffness matrix is a symmetric matrix its determinant is real [13]. Based on the 
Dirichlet-Lagrange and Lyapunov theorems the equilibrium state is stable if the tangent stiffness 
matrix is positive definite and unstable if one or more eigenvalues of the tangent stiffness matrix 
are smaller than zero. In addition, if the tangent stiffness matrix is singular the corresponding 
equilibrium state is called the critical state and the corresponding static load is called the critical 
load [13, 39]. In the elastic stability theory two critical states can be distinguished: limit points and 
distinct bifurcation points [39]. A limit point (also known as a saddle-node bifurcation) can be 
defined as an extreme where the stability suddenly changes and a distinct bifurcation point is a 
critical state where two or more equilibrium branches merge. In the pre-buckling state linear 
eigenvalue analysis can be adopted for stability analysis [8, 39]. However, since this method 
eliminates higher order information it is not valid for post-buckling analysis. 

5 



2. LITERATURE SURVEY 

II 

s 

Figure 2.1: Total potential energy curve with two stable (s) and one unstable (u) equi li brium 
state. 

Generally, in buckling problems the equilibrium analysis is performed by computing the 
deflection curves of (quasi-)statically loaded structures [13, 38). This curve is called the 
equilibrium path or the load-path and can be determined with numerical path-following 
algorithms as discussed in e.g. [14, 32 ). The load-path of an arbitrary structure strongly depends 
on both load and geometric imperfections [53]. The consequence of an initial imperfection is 
explained by considering a statically loaded pinned-pinned beam as the two cases depicted in 
Fig. 2.2(a), i.e. initially perfectly straight and initially curved. The displacement field is 
approximated by the deflection of the first mode, i.e. w = qcp with q as variable. The initially 
perfectly straight beam (wo = 0, thick solid and dashed curves in Fig. 2.2(b)) stays perfectly 
straight until the critical load is reached, viz. a distinct bifurcation point. At the distinct 
bifurcation point DP a second (post-buckling) load-path intersects with the fundamental 
load-path which becomes unstable if the statical load exceeds the critical load P;. The load-path 
of the initially imperfectly straight beam (wo = e¢, thin solid and dashed curves in Fig. 2.2(b)) 
shows a significant different behavior. Due to the imperfection no distinct bifurcation point 
occurs but a transition near 0.9P; after which q rapidly increases. Furthermore, the second 
load-path possesses a minimum at the limit point LP. 

2.2 Dynamic stability 

Obviously, a structure can also be loaded dynamically, i.e. it is loaded by a time-dependent load 
P(t). A dynamically loaded structure will not be in static equilibrium but a will experience a 
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p 

p 

I 

WO =0 

1 wo = ecp 
I~ 

L 

/ q 

(a) (b) 

Figure 2.2: a) An initially perfectly straight and an initially curved beam and b) the corre
sponding equilibrium paths (thick curves wo = 0, thin curves wo = e<p, solid curves: stable, 
dashed curves: unstable). 

time dependent response. The stability of a dynamically loaded system is classified as dynamic 
stability. Dynamic stability can be defined by the Budiansky-Roth criterion [9]. According to this 
criterion the load at which the response amplitude rapidly increased for a small variation of the 
dynamic load is called the dynamic buckling load Pd. Accordingly, the dynamic buckling load is 
the marginal load between the pre-buckling and post-buckling regime. In the literature also 
stochastically loaded [47) and shock/step loaded structures [36] are discussed. However, this 
thesis is restricted to structures subjected to a periodic load P(t + T) (where Tis the period time 
of the excitation). Dynamic buckling problems are generally classified as nonlinear. In contrast 
to the linear case a nonlinear steady-state response of a periodically loaded structure may not be 
unique and can have a different period time nT (where n is an integer multiplier) [30 ). If the 
period of the response is equal to T the response is called harmonic whereas if the period time 
is nT the response is indicated as a 1/n subharmonic of order n [14]. Since (sub)harmonic 
responses are summations of harmonics with frequencies which are multiples of the base 
frequency, periodically excited nonlinear systems may show super-harmonic resonances in 
which one of the higher harmonics gets into resonance [30). Periodic solutions are generally 
determined by adopting numerical algorithms, e.g. the (multiple) shooting method [29, 32], the 
finite difference method [14, 32] or the orthogonal collocation method [12, 22]. In addition, 
although the excitation is periodic, due to the nonlinearities the steady-state response may also 
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2. LITERATURE SURVEY 

be quasi-periodic or chaotic [34, 52 ]. 

The local stability of the periodic solutions of a periodically excited system can be examined by 
Floquet theory [29, 32]. Many codes have been written for parameter continuation of periodic 
solutions including stability analysis. In this thesis the software package AUT097 [12] is adopted 
for this purpose. The local stability of a periodic solution may change in a bifurcation point if a 
changing system parameter passes its bifurcation value [14]. In this thesis two types of 
bifurcations are regularly encountered, viz. the cyclic fold bifurcation and the period doubling 
bifurcation. A cyclic fold bifurcation (also called a turning point) is a bifurcation where a stable 
and an unstable solution branch merge into each other. Just after this bifurcation point no other 
local solution exists [14]. The period doubling bifurcation (or flip bifurcation) is a bifurcation 
point where the stability of a solution branch (with period time nT) is changed. At the 
bifurcation point, this solution branch is connected to a second branch (with period time 2nT) 
which may be stable or unstable [14]. 

Next to direct dynamic excitation also parametric excitation of a system may occur. The 
associated instability is referred to as parametric instability or parametric resonance [30, 47]. The 
parametric resonance is characterized by an exponential boost of the response amplitude. The 
region of parametric instability strongly depends on the excitation amplitude and the value of 
the linear damping parameter(s) [30, 47]. The dynamic stability of parametrically excited 
structures is a widely discussed subject in the dynamic buckling theory (1, 10, 50, 51]. A typical 
example of a parametrically excited structure occurs if the static load of Fig. 2.2(a) is replaced by 
a periodic dynamical load P(t ) with excitation amplitude r d, i.e. P(t) = rd cos(wt). The 
dynamics of such a system can be approached by a Mathieu type of differential equation [30, 47] 

q + w~(l - �~� cos(wt))q = 0 (2.1) 

where Pc is the critical static load, Wn is the first angular eigenfrequency (when P(t ) = 0). In the 
parameter space spanned by r d and w the trivial solution is q(t) = 0. However, in the following 
regions parametrical instability occurs, 

2wn 
w = - .- , i = 1,2, .. , 

i 

In this region the solutions are (by absence of damping) unbounded (47]. 

2.3 Semi-analytical approach 

(2.2) 

Stability analysis represents a fundamental problem in the design of thin-walled structures. 
Accordingly, to predict the stability behavior of these structures, design tools are developed in 
the past. A broad overview of the developments related to stability problems is given in [6]. Like 
other continuous phenomena the dynamic stability of thin-walled structures can be described by 
Partial Differential Equations (PD E's) with the continuous displacement fields as variables. 
These displacement fields themselves are functions of the spatial coordinates and time. In order 
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2. LI TERATURE SURVEY 

to solve these PD E's they are discretized in space resulting in a system of Ordinary Differential 
Equations (OD E's) [27]. Subsequently, the set of OD E's can be solved with numerical methods. 
A widely adopted discretization method in structural engineering is the Finite Element Method 
(FEM). In [7, 21] numerical applications are presented for a finite element approach for elastic 
dynamic stability problems. However, using this method a high accuracy requires a high 
number of DO F's which results in a high computation time, especially, for coupled nonlinear 
system equations and in the case of parameter studies as considered in this thesis. Therefore, in 
this thesis (for faster analysis of a slender beam structure) a semi-analytical model is used. 

In order to derive the set of equations of motion a number of assumptions is made. Generally, 
in buckling problems of slender beam structures the strain energy is derived based on the 
Euler-Bernoulli hypothesis, i.e. the beam is deformed due to bending only (the transversal shear 
is neglected) [8] . Note that the influence of transversal shear increases for higher modes and 
beams with a relatively low thickness-length ratio [20, 40). Beam models including transversal 
shear and rotational effects are compared with the Euler-Bernoulli beam model in [16]. In 
addition to the Euler-Bernoulli hypothesis, for relative large transversal deflections slender beam 
structures can be considered as inextensible (or incompressible) (13). In order to approximate 
the transversal deflection w of the beam the displacement field can be expressed as lineair 
combination of n modes <Pi with corresponding generalized coordinates Qi , i.e. 

n 

w(x, t) = L Qi(t) </>i (x), i = 1, 2, 3, ... , n (2.3) 
i = l 

This method is called the assumed modes method [ 42] and is strongly related to the Rayleigh-Ritz 
method [42 ]. Note that the accuracy of this method depends on the choice of the modes <Pi (these 
may be vibration modes, linear buckling modes, or other modes which fulfil the kinematic 
boundary conditions) and on the number of DO F's n. However, the required number of DO F's 
can strongly be reduced in comparison with Finite Element (FE) analysis to achieve the same 
level of accuracy. After the displacements are discretized the equations of motions can be 
derived in terms of ordinary differential equations. A widely adopted method for this purpose is 
the energy approach or Lagrangian approach [n, 20, 42]. This method is based on the kinetic as 
well as potential energy functions [20, 40]. The energy dissipation of slender beam structures is 
generally modeled as viscous. The non-conservative forces due to the viscous damping can then 
be taken into account by including the Rayleigh dissipation.function [42] in the semi-analytical 
model. 

2 .4 Experimental verification and identification 

In order to validate responses predicted by a mathematical model, and, therefore, also a 
semi-analytical model, preferably experiments are carried out. Indeed, i this thesis such an 
experimental validation will be carried out. However, in practice a perfect sinusoidal excitation 
force or prescribed acceleration is hard to realize. In general, an electromagnetic shaker is used 
for periodic excitation of the structure under test. In the experiments performed in this thesis, 
actually a sinusoidal excitation voltage will be sent to the shaker. Consequently, the 
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2. LITERATURE SURVEY 

semi-analytical model has to include the mechanical and electromagnetic dynamics of the 
shaker. In [25] the dynamics of an electromagnetic shaker are discussed and an experimental 
validation of this theory is performed in [43]. In addition, the dynamically interaction between 
the excited structure and electromagnetic shaker is investigated in [37, 48]. 

A comparison between an experimental and a theoretical single-mode response for a 
transversally excited clamped-clamped buckled beam is given in [19]. In [49] nonlinear analysis 
of a parametrically excited cantilever beam is performed both experimentally and 
semi-analytically. Herein the importance of the top-mass and quadratic damping is investigated 
and denoted as significant. The influence of the quadratic damping is confirmed by the 
experimental verification of nonlinear beam vibrations in [ 2 ]. Furthermore, this study is 
concentrated on the importance of the nonlinearity of the beam curvature. A beam model 
including linear and quadratic viscous damping and including nonlinear inertia term and 
assuming nonlinear curvature is experimentally verified in (54]. 

There will always be some parameters in the model which hardly can be predicted theoretically. 
For dynamic buckling problems these parameters are typically geometric imperfection 
parameters and damping parameters, see also [24].In [18] several experimental identification 
procedures for estimating the nonlinear parameters of a single-mode model are compared. In 
some cases experimental verifications and identifications are performed by tuning or identifying 
non-physical parameters of mathematical models. In this thesis physical imperfection and 
damping parameters will be experimentally identified. 
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Chapter 3 

Experimental set-up 

In this chapter two beam structure set-ups which are used in this thesis will be discussed. 
Firstly, in Section 3-1 the 'original' beam set-up will be described. Since for this original set-up 
some 'tilt' dynamics of the shaker disturbs the frequency-sweep responses, the original beam 
set-up has been improved. This 'improved' beam set-up will be described in Section 3.2. 

3.1 The original beam set-up 

In this section the beam set-up for frequency response analysis and static analysis will be 
discussed. The original beam set-up consists of a laptop, a D/A converter (TUeDACS AQI), a 
power amplifier (LDS PAlO00L), an electromagnetic shaker (LDS V 455), a laser-vibrometer 
(Ono Sokki, LV-150) and the steel beam structure with top-mass guided by three linear air 
bearings, see Fig. 3.1 and Fig. 3.2(a). The top-mass has a triangular shape. For experimental 
modal analysis, a random excitation signal is generated at the laptop using MATLAB/Simulink 
[17]. This excitation signal is provided to the power amplifier which is tuned to the maximum 
amplifier gain. Generally, a power amplifier has two modes, i.e. a current mode [25, 46] and a 
voltage mode [25, 43, 48]. Since on the LDS PAlO00L amplifier only a voltage mode is available, 
all experiments in this thesis are executed by using this voltage mode. Accordingly, theoretically 
the input voltage of the power amplifier is proportional to its output voltage. The considered 
beam is vertically oriented, clamped on both ends and carries an adaptable top-mass, see Fig. 3-1. 
Due to the linear air bearing the top-mass can slide freely in axial direction, i.e. the friction of 
the bearing is negligibly small. For the original beam set-up the geometric and material 
properties are listed in Table 3-1. In order to characterize the dynamic behavior of the beam 

Geometric properties Material properties 
Length (L) 0.215 [m] Young's modulus (E) 2.0 x 1011 [N /m:;] 
Width (w) 15 X 10-3 [m] Density (p) 7850 [kg/m3] 

Thickness ( h) 0.5 X 10-3 [m] 

Table 3.1: Geometric and material properties of the steel beam. 

structure the transversal deflection velocity is measured with the laser-vibrometer. The sensor of 
the laser-vibrometer can be oriented at three fixed distances from the foundation, viz. 1/4, 1/2 
or 3/4 times the beam length from the lower clamp. Consequently, since the sensor is placed at 
a fixed distance from the foundation the measurement position on the beam depends on the 
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3. EX PERIMENTAL SET- UP 

Adaptable top mass 

Laptop �~� Slender beam 

Laser-vibrometer 

D / A converter Power amplifi er 

Figure 3.1: Overview of the beam set-up. 

axial displacement of the beam (during exciting). The measured data is sent to the laptop and 
stored using Matlab/Simulink. 

For static analysis the laser-vibrometer is replaced by a Linear Variable Differential 
Transformer(LVDT, Scnaevits 500DC-E) assembled between the armature and the top-mass. 
Accordingly, an increasing axial shortening of the beam (due to its transversal deflection) can be 
measured while the top-mass is incrementally increased. Furthermore, the physical parameters 
of the original shaker set-up are estimated based on frequency response data, see Appendix A.I. 
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3. EXPERIM EN TAL SET-UP 
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Figure 3.2: The a) original beam set-up and b) the improved beam set-up. 

3.2 The improved beam set-up 

Fixation part 

Axial sledge via 
3 leaf springs 

Support 
structure 

Usually, an electromagnetic shaker possesses an axial sledge to guide the shaker armature in 
axial direction. However, in the considered electromagnetic shaker a linear sledge is missing. 
Consequently, the shaker dynamics possesses next to an axial vibration mode at f a ,::::; 15 [Hz] 
(Fig. 3.3(a)) a 'tilt' vibration mode at !ti lt,::::; 42 [Hz] (Fig. 3.3(b)) in the frequency region of 
interest. The frequency region of interest is defined as the region which includes the harmonic, 
super-harmonic and subharmonic frequency of the first mode, for the original beam setup from 
±fi/2.5 [Hz] up to ±2.5fi [Hz] (where Ji ,::::; 45 [Hz] is the first buckling mode). Moreover, the 
eigenfrequency of the tilt mode is in the area of the first buckling mode. In the experimentally 
obtained frequency response functions the influence of the tilt mode is negligibly small. 
However, the influence of the tilt mode is significant in the experimental frequency-sweep 
respons because its disturb the overlap of the first mode. Since the tilt dynamics will not be 
captured in the semi-analytical model which will be introduced in Chapter 4 the tilt dynamics 
has to be eliminated by improving the experimental beam set-up. 

In order to eliminate the influences of the tilt dynamics an axial sledge is added to the armature 
assembly, see Fig. 3.2(b). This additional sledge consist of a support structure, three leaf springs 
and a fixation part on the armature. The fixation part is actually an extension of the armature. 
The three leaf springs are mounted between the support structure and the fixation part 
separated from each other by angles of 120°. Note that similar sledge structures are 
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Figure 3.3: The a) axial mode and b) tilt mode of the shaker. 

implemented in many other electromagnetic shaker systems. Due to the leaf springs the tilt 
stiffness is significantly increased whereas the axial stiffness is only slightly increased. 
Consequently, the tilt mode becomes eliminated in the frequency range of interest. Due to the 
additional fixation part the distance between the upper and lower clamp is reduced. Accordingly, 
the beam length is reduced from L = 0.215 [m] to L = 0.180 [m]. Moreover, due to the 
modification a new identification of the modified shaker parameters is required, see Appendix 
A.2. For obtaining experimental frequency-sweep the transversal velocity the laser-vibrometer is 
oriented at the fixed distance from the foundation, initially L / 4 from the lower clamp. This 
position is chosen in order to measure the contribution in the response of both the first mode 
shape also the second mode shape. This will be clarified later in Chapter 5 

In order to realize experimental frequency-sweeps a sinusoidal excitation signal is generated in 
MATLAB/Simulink, 

E(t) = Eo sin (21r ft) . (3.1) 

Herein Eo is the excitation amplitude of the voltage offered to the power amplifier and f denotes 
the excitation frequency. The frequency-sweep is performed in the frequency interval [!1 , fu] in 
two stages (programmed in MATLAB/Simulink), viz. a sweep-down and a sweep-up. An 
experiment starts at the selected upper boundary fu• Subsequently, the excitation frequency is 
sequentially decreased by making small discrete frequency steps 6.f until the lower boundary !1 
is reached. Then, the frequency is sequentially increased again with 6.f until fu is reached. 
During this frequency-sweep, the periodic solutions are assumed to be steady-state after Npre 
excitation periods in which it is assumed that the transient associated with the small discrete 
frequency step 6.f has damped out. Under the 'steady-state' conditions N s-s periodic solutions 
are saved with sample frequency f s- In all the experimental frequency-sweeps the follow settings 
hold: 6.f = 0.5 [Hz], f s = 4000 [Hz], Npre = 75 [-] and Ns-s = 50 [-]. 
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Chapter 4 

Semi-analytical model 

In this chapter a semi-analytical model of the base-excited slender beam with top-mass coupled 
to the shaker will be derived. Firstly, in Section 4.r the electromagnetic shaker system will be 
modeled. For this purpose the shaker system will be split up in an electric part and in a 
mechanical part. Next, in Section 4-2 the kinematics of the slender beam will be modeled. 
Finally, in Section 4.3 the equations of motion of the coupled shaker-structure system will be 
derived. 

4.1 Shaker model 

A cross-section of a simplified electromagnetic shaker is shown in Fig. 4-r. The electromagnetic 
shaker consists of a cylindrical steel magnetic body housing, a permanent magnet, an armature 
assembly and a coil. The coil is attached to the armature assembly and driven by a voltage 
Eamp(t) (supplied by the power amplifier). A sinusoidal current through the coil will result in a 
vertical oscillating force. The voltage Eamp(t) is fed to a power amplifier which is set in the 
voltage mode. In order to describe the dynamics, the shaker system is split in a mechanical part, 
see Fig. 4.2(a) and an electric part, see Fig. 4-2(b). It is assumed that the dynamics of the 
mechanical part of the shaker can be captured with a linear one dof mass-spring-damper system: 

(4.1) 

where ma is the mass of the armature, ka is the stiffness of the armature, Ca is the linear viscous 
damping parameter, Fem(t) is the electromagnetic (Lorenz) force and ua(t) is the vertical 
displacement of the armature. Note that it is assumed that the body housing is rigid and 
connected to the fixed world, i.e. the body dynamics of the shaker support are neglected. 
Moreover, also the tilt dynamics are neglected. Models which include the body house dynamics 
are discussed in [48). The electromagnetic force Fem(t) is proportional to the current flow 
through the coil [25): 

Fem(t) = I(t)". (4.2) 
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4. SEMI-ANALYTICAL MODEL 

Armature 

Magnetic flux path 

Figure 4 .1: Cross section of an electromagnetic shaker with permanent magnet. 

Herein, ,-,, denotes the current-to-force constant which depends on the magnetic field and the 
length of the conductor. The electric part of the shaker system consists of the power amplifier 
and the electromagnetic shaker. Theoretically, in the voltage mode of the power amplifier the 
output voltage Eamp(t) is proportional to its input voltage E(t). However, most amplifiers 
contain input filters. Therefore a more general power amplifier model is assumed (in frequency 
domain), 

Eamp(s) = Gamp(s)E(s), (4.3) 

where s = jw (with j2 = -1) and G amp ( s) denotes the frequency dependent power amplifier 
gain. 

In order to capture the electrodynamics of the shaker the coil is modeled as a resistor-inductor 
system with an additional electromotive force Eemf(t), 

(4.4) 

Herein the current I is the time derivative of the electric charge ( I = Q c), Eamp ( t) is the voltage 
over the coil, R denotes the coil resistance and L is the inductance of the coil. Due to the motion 
of the coil in the magnetic field a voltage is induced, i.e. the electromotive force (emf) Eemf(t). 
The electromotive force (or back-voltage) depends on the velocity of the armature by 

(4.5) 

Note that the constant scaling factor,-,, is the same as in Eq. ( 4.2). 
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Figure 4. 2: Electromagnetic shaker: (a) mechanical model (b) electric model. 

4.2 Kinematic model of the base-excited clamped-clamped slender beam 

Fig. 4.3 shows a clamped-clamped slender beam with an initial geometric imperfection 
undergoing (relatively) large transversal displacements. In order to determine the kinematics of 
the system the relation between the axial displacement and transversal displacement has to be 
derived. Due to the slenderness of the beam a large transversal displacement will be dominated 
by changes in the curvature. Furthermore, it is assumed that the beam is inextensible in axial 
direction. The transversal displacement of the slender beam relative to the initial shape wo(Y ), 
describing the initial geometric imperfection of the beam, is denoted by w(t, y). The axial 
displacement relative to the armature displacement Ua is denoted by u(t, y), see Fig. 4-3- By 
using the engineering stress [26] 

ds 
E = - -1, 

dso 
(4.6) 

the relation between the transversal displacement and the relative axial displacement can be 
determined. The initial undeformed length of an infinitesimally small piece of the slender beam 
ds0 and the deformed length of infinitesimally small piece of the slender beam ds can be 
expressed in terms of the relative axial displacement u( t, y), the transversal displacement w( t , y) 
and the initial shape wo(y) of the beam, see Fig. 4+ Accordingly, the undeformed and 
deformed lengths can be described by 

(4.7) 
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Figure 4.3: Clamped-clamped slender beam with top-mass. 

where ,Y denotes the partial derivative -& . Based on the assumption of inextensibility of the 
slender beam (i.e. E = 0) the axial displacement is determined by setting the undeformed length 
equal to the deformed length. This leads to the following inextensibility constraint 

(4.8) 

The curve of the beam can be specified by a two dimensional plane curvature. In [15] the 
curvature is derived as K, = d¢ / ds = i / ~i, where ¢ denotes the tangential angle and s is the 
arc length. In the adopted Cartesian coordinates the centerline of the geometrically imperfect 
slender beam is described by the curve [X(t, y), Y(t, y)]. The transversal and axial 
displacements are respectively 

X(t, y) = wo(Y) + w(t, y) (4.9a) 

and 

Y(t, y) = y + ua(t) + u(t, y). (4.9b) 
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I (wo,, + w,,)dy 

dy + U,ydy 

w 

Figure 4.4: The initial undeformed length and the deformed length of a infinitesimally small 
piece of the slender beam. 

Accordingly, the curvature of the slender beam is described by 

"'= X(t, y),yY(t, y),yy - X(t, y),yyY(t, y) ,y 
(X(t, y )?v + Y(t, y )?y) . 

(4.10a) 

Substituting the transversal and axial displacements respectively Eq. ( 4.9a) and Eq. ( 4.9b) in 
Eq. (4.10a) results in 

( 4.10b) 

Depending on the maximum deflection of interest the inextensibility constraint Eq. ( 4.8) and 
the beam curvature Eq. ( 4.10a) can be approximated by an nth order Taylor expansion in w,y and 
wo,y• An example for approximation of the inextensibility constraint Eq. ( 4.8) and the curvature 
Eq. (4.10a) by using a 3rd order Taylor expansions in w,y and wo,y is: 

(4.lla) 

1( ) 2 1 2 "':::::: "'O - W,yy - 2 Wo,yy + W,yy w,y - W,yyWo,yW,y + 2Wo,yW,yy, ( 4.11 b) 

where "'o = -wo,yy + ~wo,yyW6,y is the initial curvature. Considering a clamped-clamped beam 
the follow boundary conditions hold: w(t, y = 0) = w(t, y = L) = 0 and 
w,y ( t, y = 0) = w,y ( t, y = L) = 0. A set of mode functions is admissible if the boundary 
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4. SEMI-ANALYTICAL MODEL 

mode 1 mode 2 mode 3 mode 4 

Figure 4.5: First four mode shapes for the approximation of the displacement fi eld of the 
clamped-clamped beam. 

conditions are satisfied, the mode functions are linearly independent and at least differentiable 
by the maximum order of differentials as presented in the energy integrals. Obviously, many 
mode functions which satisfy these criterions can be defined. Due to its simplicity the following 
approximations of the exact vibration modes are preferred, 

(
1r(i - l)y) (1r(i + l)y) . wi (Y) = cos L - cos L , z = 1, 2, 3, .. , N. ( 4.12) 

where i is the mode number and N is the number of dof s of the clamped-clamped beam. 
Fig. 4-5 shows the first four modes (Eq. ( 4.12) ). Note that the mode shapes are dimensionless. 
Note further that the modes are modeled as one-dimensional transversal displacement fields, i.e. 
torsional displacements are neglected. The geometric imperfection is modeled by using the 
same mode shapes of the beam 

N l 
wo(y) = L 2eihw(y) , (4.13) 

i=l 

where ei denotes the dimensionless imperfection parameter. 
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4. SEMI-ANALYTICAL MODEL 

4.3 Equations of motion 

In this section the equations of motion of the coupled shaker-structure model will be derived. In 
order to determine the equations of motion, the transversal displacement w(t, y) of the beam is 
discretized by 

N 

w(t, y) = L Qi(t)wi(Y), (4.14) 
i =l 

where Qi ( t) are the generalized coordinates. The generalized coordinates of the slender beam 
and the electromagnetic shaker are collected in Q = [Q1, .. , QN , ua, Qc]. Note that for the 
derivation of the equations of motion the electrical part and the mechanical part are described by 
the electric charge Qc (the time integrand of the current) and the axial displacement of the 
armature Ua, respectively. The kinetic energy T and potential energy V of the system can be 
determined with respectively, 

(4.15) 

beam with top-mass shaker 

and 

(4.16) 

beam with top-mass shaker 

Herein, h = / 2 wh3 , A = wh, Eis the Young's modulus ((not to be confused with the excitation 
voltage E(t)) and p denotes the mass density. Because the influence of the axial inertia of the 
beam on the dynamics of the system is negligibly small ( mt > > mbeam) the axial inertia 
(½pA f0L(ua + u)2dy) is eliminated in the kinetic energy term. Furthermore, due to the specific 
dimensions of the slender beam ( L > > h) it is justified to neglect the effect of the transversal 
shear of the beam. The energy storage by the induction of the coil and the self-induction is 
captured in the magnetic energy term, 

(4.17) 

The damping in the slender beam is modeled by a linear and a quadratic viscous damping 
parameter for each mode i, indicated by Ci and cq ,i respectively. The total energy dissipation 
function for the coupled shaker-structure system is 

( 4.18) 
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As mentioned before, the system is excited by Eamp(t). Accordingly, the virtual work 8Wnc of 
the system is, 

(4.19) 

The equations of motion of the coupled shaker-structure system can be derived by using the 
equations of Lagrange 

( 4.20) 

Herein, the Lagrangian £ denotes the kinetic energy plus the magnetic energy minus the 
potential energy (T + M - V) and q = [O, .. 0, 1 jT is a N + 2 dimensionless column. An 
example of the equations of motion is given for a single-mode (N = 1) 3 dof semi-analytical 
model containing a 3rd order Taylor-series approximation: 

( -4 ro Eh 1r
4 he1 _ 8 ro Eli, 11:

4 
Qi ) Q.. + (4 ro Eh 11:

2 + m ) ·· _ 
£3g L3g 1 L2g a Ua 

8 ro Eh 11:
4 Q. 2 _ .,. Q. + C U + k U = -4 ro Elf 11:

2 

£3g J •~ c a a a a L , 

L Q c + R Q c + 1'i, 'I.la = E ( t ). 

Herein, the dimensionless quantity 

mtg 
ro = Pc ' 

gives the ratio between the weight of the top-mass and Euler's first static buckling load 
Pc = 41r2 Eh/ L2

. Note that the dynamics of the slender beam structure are described by 

(4.21a) 

(4.21b) 

(4.21c) 

( 4.22) 

Eq. (4.21a) where Eq. (4.21b) and Eq. (4.21c) describing the dynamics ofrespectively the 
mechanical part and electrical part of the shaker. Obviously, all the dynamics are coupled as can 
be seen from the structure of the three equations. Note, that Q1 is excited by iia in a direct 
manner if e1 -=I= 0 and in a parametric manner, see Eq. ( 4.21a). In Appendix B the undamped 
semi-analytic model is validated by comparing its eigenfrequencies with the eigenfrequencies of 
a FE model and the neglection of the torsion dynamics is justified. 
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In this thesis 3rd order Taylor series expansions of the curvature and inextensibility constraint 
are used for the experimental validations of the dynamic semi-analytical models. In order to 
emphasize the importance of the higher orders of the curvature and inextensibility constraint in 
the post-buckling regime, the experimental validation of the static semi-analytic model (Section 
5.2) is performed with both a 3rd and 5th order model. In Chapter 5 a double-mode (N = 2) 
semi-analytical model is used for identification and validation purpose. The identification and 
experimental validation in Chapter 6 are performed with both a single-mode (N = 1) 
semi-analytical model and a double-mode (N = 2) semi-analytical model. 
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Chapter 5 

Experimental identification and vali
dation of the linearized dynamic and 
static model 

In this chapter an experimental identification and validation of the linearized dynamic and static 
semi-analytical model will be performed. Firstly, in Section 5,I the linearized dynamic 
semi-analytical model will be adopted to identify unknown viscous damping and geometric 
imperfection parameters. Moreover, the frequency response functions (FRF's) of the identified 
linearized semi-analytic model will be compared with experimentally obtained frequency 
response functions. Next, in Section 5.2 the identified imperfections will be used for the static 
analysis. 

5.1 Experimental identification and validation of the linearized dynamic 
model 

In order to give a first comparison between the results obtained using the semi-analytical model 
and the experimental results, the numerical and experimental frequency response functions will 
be compared. For this purpose the semi-analytical model is linearized around its static 
equilibrium point x0 . The linearized equations of motion can be written in a first order 
state-space formulation: 

x = Ax , with x = [ �~� ] . (5.1) 

Herein the Jacobian is defined as, 

A= of(x) I ' 
OX X Q 

(5.2) 

where xo is the stable static equilibrium state (the static buckling load is not exceeded, i.e. 
ro < 1) and f(x) are the nonlinear equations of motion Eq. (4.21), but now rewritten in first 
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order form. For determining the numerical FRF's a linearized double-mode (N = 2 in 
Eq. (4.12)) semi-analytical model is adopted based on a 3r d order expansion of the curvature 
Eq. (4.llb) and the inextensibility constraint Eq. (4.lla). Consequently, the model possesses two 
unidentified imperfection parameters (e1 and e2) and two unidentified linear viscous damping 
parameters (c1 and c2). Obviously, by linearizing the quadratic viscous damping parameters 
vanish. The clamping of the beam is assumed to be infinitely stiff on both sides. In practice, 
however, the clamps will have a finitely stiffness. In order to compensate this model inaccuracy 
the Young's modulus Eis chosen as an additional parameter to be identified. Obviously, the 
identified Young's modulus should not differ too much from its reference value. Note that the 
dimensionless top-mass ratio depends on the Young's modulus. Consequently, during the 
identification procedure ro has to be recalculated after each modification of the Young's 
modulus. Due to the presence of squared imperfections and products of the Young's modulus 
and imperfections in the linearized equations of motion we are dealing with a nonlinear 
identification problem. This can be seen for example ifEq. (4.21) is linearized. This nonlinear 
identification problem is solved by adopting a weighted least squares method (LSM) based on 
experimentally obtained FRF's. The corresponding objective function to be minimized is 

(5.3) 

where N denotes the number of FRF's that are considered, n is the number of sample points 
per FRF, (3,.,, and a µ are the weighting-factors. Furthermore, y and y are columns which contain 
the magnitudes of the numerical and the experimental FRF's, respectively. In order to 
compensate the magnitude differences in each FRF each residue is weighted by the 
corresponding experimental amplitude, 

(5.4) 

In other words, each frequency point in the FRF's is of equal relative importance. The run 
depended weight-factor (3,.,, is set on one. In other words, each FRF is of equal importance. By 
using Newton's method the nonlinear objective function is minimized which results in an 
estimation of the Young modulus, the two imperfection parameters and the two viscous 
damping parameters of the beam. In the identification procedure the search domain of the 
viscous damping parameters is restricted to positive values. The complete identification strategy 
is explained in Appendix D. In this chapter the identification strategy is performed for two 
beams with 'identical' dimension and material properties (see Chapter 3), i.e. 'Beam A' and 
'Beam B' both statically loaded with top-mass mt = 5.05 [kg] . ' Identical' is put between brackets 
to indicate that in principle both beams are of equal dimension. However, the geometric 
imperfections and maybe to a less extent the damping parameters are expected to be different. 
For both beams the original set-up is utilized to obtain three FRF's, i.e. for a velocity 
measurement at a height of respectively L / 4, L /2 and 3L / 4 from the foundation. 

As an example the convergence of the iterative parameter identification procedure for 'Beam A' 
is depicted in Fig. 5-1. The initial guesses and the identification results for 'Beam A' and 'Beam 
B' are listed in Table 5-1. Note that in both cases the Young's moduli are estimated lower than 

26 



5. EXPERIMENTAL IDENTIFICATION AND VALIDATION OF THE LINEARIZED DYNAMIC AND STATIC 

MODEL 

10 

10 20 30 40 50 60 70 80 

i 

Figure 5.1: Convergence of iterations i during the identification procedure of 'Beam A '. 

the initial guesses. This was more or less expected due the assumption of an infinite clamping 
stiffness. Since we are dealing with a nonlinear identification problem the identification results 

Parameters 
Beam A Beam B 

Initial guess Identification result Initial guess Identification result 
e1 [-] 1.00 1.21 1.00 1.04 

c1 [Ns/m] 0.10 0.15 0.10 0.21 
e2 [-] -0.2 -0.10 -0.2 -0.08 

c2 [Ns/m] 0.05 0.20 0.05 0.16 
E [N/m2] 2.0 X 1011 1.822 X 1011 2.0 X 1011 1.924 X 1011 

Table 5.1: Parameters identification results 

may (strongly) depend on the initial guess due to the possible existence of multiple extrema for 
<I>. In order to examine the robustness of the identification procedure three identifications are 
performed with different initial guesses for the imperfection and damping parameters, see Table 
5.2. Note that a slightly different initial guess also results in a slightly different identification 
result. Moreover, since the estimation procedure is based on the magnitude of the FRF always a 
reflected imperfection solution exists (compare first and third identification results in Table 5.2). 
Nevertheless, the correct identification result can simply be detected by comparing the phase 
plots of the experimental and numerical FRF's. In the second identification results e1 is 
identified higher and e2 and c1 both lower in comparison with the geometric reverse solutions of 
the first and third identification. Accordingly, two different local solutions (local minims of <I>) 
are found close to each other. 

The damped eigenfrequencies (f n) and the corresponding dimensionless modal damping 
coefficients (~n) of the identified models are listed in Table 5.3. The modal parameters fn and ~n 
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Beam A 
Parameters 

Initial guess Est. result Initi al guess Est. result Initi al guess Est. result 
e 1 [-] 1.00 1.21 1.5 1.33 -1.00 -1.21 

c1 [Ns/m] 0.10 0.15 0.10 0.15 0.10 0.15 
e2 [-] -0.2 -0.10 -0.5 -0.11 0.2 0.10 

c2 [Ns/m] 0.05 0.20 0.1 0.05 0.05 0.20 
E [N/m2

] 2.0 X 1011 1.822 X 1011 2.0 X 1011 1.829 X 1011 2.0 X 1011 1.822 X 1011 

ro [-] 0.25 0.27 0.25 0.27 0.25 

Table 5.2: Parameters estimation results 

are determined by calculating the imaginary (wn) and real part (µn) of the eigenvalues 
(Pn = µn ± jwn) of matrix A (Eq. (5.2)) including the identified parameters of Table 5-1. As can 
be seen, the linearized dynamics possess a highly damped axial mode (mode a) dominated by Ua 

(see Fig. 3.3(a)) and two lightly damped buckling modes (mode 1 and mode 2) dominated by Q1 

and Q2 (see Eq. (4.12), Eq. (4.14) and Fig. 4-5), respectively. The corresponding numerical FRF's 

Mode 
Beam A Beam B 

fn [Hz] ~n [%] f n [Hz] ~n [%] 
a 14.9 67.6 14.9 67.6 
1 45.7 2.0 47.7 2.1 
2 140.9 0.9 145.4 0.7 

Table 5.3: Modal parameters using the identification results of Table 5. 1 

are compared with the experimental FRF's in Appendix E. Note that the resonance of the second 
mode is not visible in the FRF based on measurements of L / 2 from the foundation. Obviously, 
this is caused since the deflection of the second mode can not be measured in the middle of the 
beam. As example the FRF's (for a measurement at a height of 3/4L from the foundation) are 
depicted in Fig. 5.2(a) and Fig. 5.2(b). In general, the plots show a good correspondence between 
the numerical and experimental FRF. However, in both plots some discrepancies occur in the 
peak of the second buckling mode (Beam Ah = 140.9 [Hz] and Beam B h = 145.4 [Hz] and). 
These discrepancies are due to a too high estimation of the linear viscous damping parameter c2 

of the second mode which was caused by the noisy area around the anti resonance near 
f = 175 [Hz]. 

5.2 Experimental validation of the static semi-analytic model 

In this part the experimentally obtained equilibrium-path of the slender beam is compared with 
the equilibrium path of the static semi-analytic model. In the static semi-analytic model of the 
'Beam B' the values of e1, e2 and E from Table 5-1 are used. The experimental results are 
obtained with 'Beam B' of Section 5.1 and the original set-up (see Chapter 3). During the static 
experiments the top-mass mt is incrementally increased. For each static equilibrium (i.e. for 
each different value of mt) the distance Ua - Ut between the shaker armature and the (sliding) 
top-mass is measured. The equilibrium path of the beam is depicted in Fig. 5.3 where the 
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Figure 5.2: Receptance a) 'Beam A ' and b) 'Beam B ' at height 3L/ 4. 

experimental results are denoted by 'o'. Note that the equilibrium path is characterized in terms 
ofro, see Eq. (4.22), and the scaled axial shortening Ut L ua [-]. 

For numerical static analysis, obviously Eo = 0 and all the time derivatives of the semi-analytical 
model are set to zero. The static load parameter r 0 is incrementally increased to follow the static 
equilibrium path. For this purpose a continuation method [ 14] is used. The equilibrium path is 
determined for a double-mode (N = 2 in Eq. (4.12)) semi-analytical model (4 dof). In order to 
examine the influence of the order of the Taylor serie expansion in the semi-analytical model on 
the accuracy of the response, the equilibrium path is determined for a 3r d and 5th order model 
(i.e. 3rd and 5t h order expansion of the curvature Eq. ( 4.10b) and the inextensibility constraint 
Eq. (4.8)). The approximate equilibrium equations for the a 3rd order Taylor series expansion 
based on N = 2 are given by: 

rop21 = K aua (5.5c) 

where Pi are constant terms. The static equilibrium of the beam structure is described by 
Eq. (5.5a) and Eq. (5.5b) whereas Eq. (5.5c) describes the static equilibrium of the shaker 
armature. So, since there is no coupling between the equations of the beam structure (Eq. (5.5a) 
and Eq. (5.5b)) and the equation of the shaker system (Eq. (5.5c)) the static responses ofboth 
systems may be considered separately. 

As stated before the semi-analytical responses are compared with the experimental response in 
Fig. 5.3. Note that for a perfectly straight beam Euler buckling occurs at ro = 1 via a pitchfork 
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Figure 5.3: Comparison of the numerical and experimental equilibrium path. 

bifurcation [46]. Since 'Beam B' is identified to have geometric imperfections no bifurcation 
occurs but a transition at ro ,::;;; 0.9 where the axial shortening rapidly increases. For r 0 < 0.9 
both semi-analytical responses show a good correspondence with the experimentally obtained 
results. Forro > 0.9 the 5th order model seems to give a better result, but note that this 
observation is based on only one measurement point. 
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Chapter 6 

Experi men ta I identification and va Ii
d at ion of the nonlinear dynamic model 

In this chapter an experimental identification and validation of the nonlinear dynamic 
semi-analytical model will be performed. Firstly, in Section 6.1 identification of damping and 
geometric imperfection parameters will be performed and the nonlinear semi-analytical 
response based on the model with the identified parameters will be compared with experimental 
data. The influence of some parameter variations (mt and Eo) on the correspondence between 
the semi-analytical response and the experimental results will be examined in Section 6.2. 
Finally, in Section 6.3 it will be shown that the correspondence between the theory and practice 
can be improved by expanding the model with an additional second mode. 

6.1 Validation of the semi-analytical model 

The single-mode semi-analytical model contains a number of parameters, i.e. an imperfection 
parameter and damping parameters of which may differ per beam prototype. Moreover, in the 
semi-analytical model the upper and lower clamping of the beam are modeled as infinitely stiff. 
As noted before in practice the clamping stiffness will be finite. In order to complete the 
semi-analytical model and in order to validate (later on) the mass and stiffness properties of the 
semi-analytical model, the imperfection and viscous damping parameters have to be identified. 
Furthermore, the stiffness inaccuracy of the upper and lower clamping is compensated by 
adapting the Young's modulus. In this section the identification computations are performed by 
using the following single-mode semi-analytical model based on a 3rd order Taylor series 
expansion of the curvature Eq. ( 4.11 b) and the inextensibility constraint Eq. ( 4.11 a), 

(P1 + roE (p2e12 + p3e1Q1 + p4Qi)) Q1 + roE (p5e1 + p5Q1) iia+ 
roE (p7e1 + p3Q1) Qr+ c1Q1 + Cq,1IQ1IQ1 + E (p15 + p15e/) Qf 
+E (p13e1 + P14e13) Qr+ E ( (pg - p10e12 + pue14) - P12ro) Q1 = rop17Ee1, 

L Qc + R Qc + "'Ua = GampEo sin(2nft). 
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where Pi are positive constants, E denotes the Young's modulus, e1 is the imperfection 
parameter (see Eq. (4.13)), and c1 and cq,l are the linear and quadratic viscous damping 
parameters, respectively. Note, that the dimensionless static load parameter ro depends on the 
Young's modulus. Consequently, during the identification procedure ro has to be recalculated 
after each modification of the Young's modulus. The nonlinear identification problem is now 
solved by adopting a weighted least squares method (LSM) based on experimentally obtained 
('steady-state') periodic solutions. Accordingly, the objective function is 

(6.2) 

where N denotes the number of periodic solutions, n is the number of time points per periodic 
solution, and {3/'i, and a µ are weighting-factors. Furthermore, fil'i,, µ and Yl'i,, µ are data at time-point 
µ of respectively numerical and experimental periodic solution "'· The numerical periodic 
solutions are obtained by using a collocation method [ 22 ]. Since the amplitude of the periodic 
solutions may strongly vary the summation of the residues is weighted by the solution 
dependent weighting-factor, 

(6.3) 

whereas the time-dependent weighting-factor a µ is set to one. By using Newton's method the 
nonlinear objective function <I> is minimized which results in identification of the Young 
modulus, the imperfection parameter and the viscous damping parameters of the beam. In the 
identification procedure the search domain for the viscous damping parameters is restricted to 
positive values. As mentioned before the complete identification strategy is explicated in 
Appendix D. 

For the parameter identification two frequency-sweeps are experimentally performed (a 
sweep-up and a sweep-down) by using the improved set-up (as discussed in Chapter 2) and two 
beams ('Beam C' and 'Beam D') with identical global dimensions and material properties (see 
Chapter 3). The frequency-sweeps are performed with excitation amplitude Eo = 0.03 [V] and 
(due to gravity) the beam is statically loaded by top-mass mt = 0.51 [kg]. From the experimental 
frequency-sweeps the selected 'steady state' periodic solutions (C: N = 11, D: N = 8 indicated 
by 'D' in Fig. 6.1) are used in Eq. (6.2). These periodic solutions are equally spread over the 
frequency range of interest. In the adopted identification strategy an initial guess for the 
unknown parameters is required. The initial guesses for the unknown parameters of both 
beams are listed in Table 6.1. As an example the convergence of the objective function, for 
identifying the model parameters of 'Beam D', is depicted in Fig. 6.2. The convergence plot 
shows a fast convergence during the first five steps. Subsequently, the objective function hardly 
decreased. Nevertheless, the last iterations steps are important for the correct identification of 
the viscous damping parameters. As mentioned before the geometric imperfection parameters 
and viscous damping parameters are identified based on periodic time-signals. A variation of 
the imperfection parameter results in an amplitude difference in the periodic time-signal 
(especially in the frequency range around the resonances peaks). A variation of the viscous 
damping parameters, on the other hand, results in a phase shift of the periodic time-signal (in 
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Figure 6.1: Comparison of the semi-analytical results with the experimental results of a) 
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2. 
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Figure 6.2: Convergence by i teration i during the identification procedure of 'Beam D '. 

the frequency range around the resonances peaks). Obviously, the phase shift between the 
experimental and numerical time-signal is relative small. Consequently, the influence of the 
viscous damping parameters on the objective function is much smaller than the influence of the 
geometric imperfection parameter. 

The numerical periodic solutions of the identified model are compared with the experimental 
periodic solutions of 'Beam D' in Fig. 6-3- The identified physical model parameters are listed in 
Table 6.r. Due to the assumption of an infinitely stiff clamping of the beam the Young's 
modulus is reduced to a value 2.5 - 4% lower than the initial guess which seems to be 
acceptable. In agreement with other studies [2 , 49] the quadratic viscous damping parameter is 
significant (see also Appendix F). Striking is the identification result for the linear viscous 
damping parameter of 'Beam D', viz. c1 = 0. Probably, the linear viscous damping of shaker is 
estimated slightly too high which influences the identification of the damping of the mode 
corresponding to Q1. Since we are dealing with a nonlinear identification problem (see 
Eq. (6.1)) the identification results may correspond to local extrema of <I> and depend on the 
initial guess, see Appendix F. Note that a reasonably accurate initial guess for the parameters to 
be identified is required. 

Parameters 
Beam C BeamD 

Initial guess Identifi cation result Initial guess Identification result 
e1 [-] 1.0 1.24 1.0 1.36 

c1 [Ns/m] 0.010 0.04 0.010 0.00 
cq,l [kg/m] 0.010 0.20 0.010 0.20 
E [N/m2

] 2.0 X 1011 1.92 X 1011 2.0 X 1011 1.95 X 1011 

Table 6.1: Initial guesses and the corresponding identification results. 
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Figure 6.3: Experimental 'o 'and semi-analytical '·'periodic solutions after the identification 
of 'Beam D '. 

The linearized dynamics of the identified single-mode semi-analytical model of 'Beam C' 
contains a highly damped mode dominated by Ua Ua = 18.1 [Hz], ~a = 0.489) and a lightly 
damped mode dominated by Q1 (Ji= 72.7 [Hz], 6 = 0.0034). The linearized dynamics of the 
identified single-mode semi-analytical model of 'Beam D' possesses besides a highly damped 
mode dominated by Ua Ua = 18.1 [Hz], ~a= 0.489), a lightly damped mode dominated by Q1 

(!1 = 73.1 [Hz] and 6 = 0.001). Note that although the linear viscous damping is identified to 
be c1 = 0 the mode dominated by Q1 has positive damping ratio. In order to examine the global 
correspondence the experimental and semi-analytical results are depicted in Fig. 6.1. For this 
purpose the semi-analytical responses are determined by numerical continuation [12] of the 
branches with periodic solutions. In Fig. 6.1, Fig. 6.4 and Fig. 6.8 the dynamics of the slender 
beams are characterized by, 

W = max [w(L/4 - Ua) ] - min [w(L/4 - Ua)], 
Tr Tr 

where Tr denotes the period time of the periodic response signal and w ( L / 4 - Ua) is the 
transversal velocity measured at a fixed distance of L / 4 from the foundation. Generally, a 
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displacement is preferred above a velocity to characterize the buckling dynamics. However, in 
this specific case it is justified by the perceptibility of some additional dynamical phenomena in 
the frequency-amplitude plots, see Appendix G. 

The amplitude-frequency plots of the numerically computed periodic solutions of the identified 
model are compared with the experimental results for 'Beam C' and 'Beam D' in Fig. 6.1. The 
experimental and semi-analytical responses show a 2nd super-harmonic resonance (2sph) at 
f �~� f i/2, a harmonic resonance (lh) at f �~� Ji and a strong 1/ 2 subharmonic resonance 
(l / 2sbh, period Tr = 2T) initiated at the two period doubling bifurcation points (indicated by 
'o') at f �~� 2fi. Cycle fold bifurcations are indicated by 'o'. Note that the 2nd super-harmonic 
resonances appears since a nonlinear harmonic response is a sum of harmonic oscillations (i.e. 
the response contains frequencies which are integer multiples of the excitation frequency). The 
super-harmonic and harmonic resonance are caused by direct excitation (by iia, term r 0Ep5e1 iia 
in Eq. (6.l a.)) whereas the 1/ 2 sub-harmonic resonance occurs due to the parametric excitation 
(term r0Ep6Q1iia in Eq. (6.l a.)) [30]. If e1 = 0 only parametric excitation would occur. 
Furthermore, the resonances show a softening behavior (peaks bend over to the left) due to the 
nonlinearity in the inertia function term in Eq. (6. l a.) [24]. Fig. 6.1 shows that the single-mode, 
3rd order semi-analytical model shows a good correspondence with the experimental results. 
However, in both fit results still discrepancies occur at high amplitudes in the harmonic and 1 /2 
subharmonic resonances of the first mode, i.e. an amplitude difference and the experimental 
respons contains some additional peaks. The additional peaks are caused by influences of 
higher modes. In order to improve the correspondence in Section 6.3 the semi-analytical model 
will be expanded with an additional mode. As shown in Appendix C use of higher order Taylor 
series expansion does not significantly improve the accuracy of the semi-analytical model. 

6.2 Parameter variation 

In the previous section the values for the excitation amplitude and the top-mass were equal for 
parameter identification and model validation. In this section the identified model is further 
validated by parameter variation. For this purpose experiments with an increased top-mass and 
an increased excitation amplitude are performed with 'Beam C'. Firstly, the influence of an 
increased excitation amplitude is examined. For this purpose experimental data is obtained with 
excitation amplitude Eo = 0.04 [V] and top-mass mt = 0.51 [kg]. Obviously, these settings are 
also used in obtaining the semi-analytical response. The experimentally obtained 
frequency-sweep responses are compared with the semi-analytical responses in Fig. 6.4(a). 
Note, that increasing the excitation amplitude results in a higher amplitude of the response. 
There are some discrepancies between the experimental and semi-analytical model, especially in 
the 1/ 2 subharmonic resonance. In the experimental case the 1/ 2 subharmonic resonance peak 
is shorter than in the semi-analytical case. Probably, in the experimental case the dynamics of 
higher modes in the 1/ 2 subharmonic resonance and the 'large' step-size in the stepped 
frequency-sweep (t::i.f = 0.5 [Hz]) makes it impossible to follow the branch completely. 

Secondly, the influence of an increased top-mass is examined. For this purpose new 
experimental data is obtained with Eo = 0.03 [V] and a total top-mass of mt = 1.01 [kg]. Note 
that the additional top-mass results in ±3% lower eigenfrequencies of the linearized system 
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Ua = 17.5 [Hz] and Ji = 65.1 [Hz]). The semi-analytical response is compared with the 
experimental frequency-sweep in the frequency-amplitude plot of Fig. 6.4(b). Since the 
frequency range of Fig. 6.4(b) is adapted a 3rd super-harmonic resonance (J �~� fi/3 [Hz]) is 
observed, both experimentally and semi-analytically. The semi-analytical response is slightly 
shifted with respect to the frequency ( ±2%) in relation to the experimental response. 
Furthermore, the experimental 1/2 subharmonic resonance peak is again shorter than the 
semi-analytical 1/2 subharmonic resonance peak (J �~� 2fi [Hz]). 

6.3 Model expansion 

From sections 6.1-6.2 it may be concluded that the single-mode semi-analytical responses 
already show a good correspondence with the experimental responses. However, there are still 
some discrepancies. In contrast to the semi-analytical response the experimental response of 
Fig. 6.1 (Bo= 0.03 [V], mt= 0.51[kg]) shows an additional peak in the harmonic resonance at 
f �~� 60 [Hz] and in the 1/2 subharmonic resonance at J �~� 119 [Hz]. In this section the 
correspondence between the experimental and semi-analytical results is improved in a 
qualitative sense by expanding the model with an additional mode. The results of the 
double-mode semi-analytical model are compared with the experimental results of 'Beam D' 
(with Bo = 0.03 [V], mt = 0.51 [kg]). In order to identify the additional peak in the harmonic 
resonance the experimental harmonic response at f = 58 [Hz] is compared with the 
experimental response in the unidentified peak at f = 60 [Hz]. These frequencies are indicated 
in experimental response of Fig. 6.7. The corresponding phase planes and Poincare maps of the 
two experimental periodic solutions are depicted in Fig. 6.5 and the corresponding power 
spectral density (PSD) plots are depicted in Fig. 6.9. Indeed the Poincare mapping and the PSD 
identify a harmonic response at f = 58 [Hz] whereas the response at f = 60 [Hz] can be 
classified as 1/2 subharmonic. In the additional peak in the 1/2 subharmonic resonance also a 
period doubling is observed (see Fig. 6.6 and Fig. 6.10), although now the 1/2 subharmonic 
response is changed to a 1/4 subharmonic in the additional peak. 

In order to explain these phenomena the semi-analytical model is expanded with an additional 
second mode w2, see Eq. (4.12) and Fig. 4.5. Moreover, the geometric imperfection term 
Eq. (4.13) of the semi-analytical model is expanded with an additional imperfection parameter 
e2 and the dissipation function Eq. (4.18) is expanded with a linear c2 and a quadratic cq,2 

viscous damping parameter. The identification of the additional imperfection parameter 
(e2 = 0.04) and viscous damping parameters (c2 = 0.04 and cq,2 = 0) is based on experimental 
data of the harmonic resonance of the second mode near 215 [Hz] (see Fig. 6.7). The linearized 
dynamics of this double-mode model possesses a highly damped mode dominated by Ua 

Ua = 18.1 [Hz] and ~a= 0.489 [-]), a lightly damped mode dominated by Q1 (11 = 73.1 [Hz] 
and 6 = 0.0009 [-]) and lightly damped mode dominated by Q2 (h = 215.8 [Hz] and 
6 = 0.0007 [-]). The (nonlinear) response of the double-mode semi-analytical model is 
depicted in Fig. 6.8. As with the single-mode response the double-mode response of the 
semi-analytical model is characterized by a 2nd super-harmonic resonance (at f �~� fi/2), a 
harmonic resonance (at f �~� Ji) and a 1/2 subharmonic resonance initiated by two period 
doubling bifurcations (J �~� 2fi). In addition however, the nonlinear response of Fig. 6.8 
possesses a second harmonic resonance (lh2) at f �~� h, which shows softening behavior, a 2nd 
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Figure 6.4: Comparison of the semi-analytical results with the experimental results of 'Beam 
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Figure 6. 8: Semi-analytical results for a double-mode beam model using the identified param
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super-harmonic resonance (2sph2) at f �~� hl2, a 3rd super-harmonic resonance (3sph2) at 
f �~� h l3 and a super-harmonic resonance (2l3sph2) in the subharmonic resonance of the first 
mode at f �~� jh. Note that due to the small frequency intervals in which these super-harmonic 
resonance peaks occur they hardly can be detected in the experimental frequency-sweep. Note, 
that there is a difference of ±3% between the 'eigenfrequencies'(harmonic resonance 
frequencies) of the experimental and semi-analytical results. Probably, this can be explained by 
the fact that in the discretization of the displacement field Eq. ( 4.14) not the exact vibration 
modes are used. Moreover, the influence of the transversal shear is larger for higher modes. As 
with the experimental results two period doubling bifurcations (PD) occur in the first harmonic 
resonance peak at f �~� ~hand in the l l 2 subharmonic resonance peak corresponding to the 
first mode at f �~� �~� h- However, the overhang of the additional peaks in the semi-analytical 
results is much larger than in the experimental results. These discrepancies can be explained by 
the fact that the quadratic viscous damping is set to zero in the semi-analytical model. Moreover, 
it is possible that in the experiments the transients introduced by the discrete frequency stepsize 
are too large to follow the branches. 

Note that there are some amplitude differences between the semi-analytical and experimental 
results in the top of the harmonic and l l2 subharmonic resonance peaks of the first mode. 
Accordingly, in the PSD plot (see Fig. 6.9 and Fig. 6.10) also an amplitude difference between 
the experimental and semi-analytical results is perceptible. Nevertheless, there is a clear 
correspondence in qualitative sense. In the semi-analytical PS D's the first two eigenfrequencies 
are indicated by vertical lines at hi f ex and hi f ex· The periodic doubling occurs due to 
interactions between the first and second mode. At f ex = 60 [Hz] and at f ex = 119 [Hz] the 
second mode is clearly excited (peaks in the PSD at respectively f I f ex = 712 and f I f ex = 714). 
Summarizing, it can be concluded that the correspondence between the experimental and the 
semi-analytical results can be improved in a qualitative and quantitative sense by expanding the 
single-mode model with the second mode. 
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Chapter 7 

Conclusions and recommendations 

7.1 Conclusions 

The main objective of this thesis is to experimentally validate if the dynamic buckling behavior 
of the considered archetype thin-walled structure can be accurately predicted by modeling and 
nonlinear dynamic analysis based on a semi-analytic approach. For this purpose experimental 
data is obtained with the experimental set-ups as described in Chapter 3. In these set-ups the 
beam structures are axially, harmonically excited by an electromagnetic shaker. Due to the 
shaker excitation in voltage mode the dynamic model of the shaker has to be coupled with the 
dynamic model of the slender beam structure with top-mass. The mechanic part of the 
dynamics of the electromagnetic shaker is captured with a linear 1 DOF mass-spring-damper 
system. In addition, the electromagnetic dynamics are modeled as a resistor-inductor system 
with an additional electromotive force. The parameters of this (linear) shaker model are 
identified and successfully validated based on frequency response functions (FRF's) of the 
separate shaker system. The slender beam is considered to be axially inextensible, initially not 
perfectly straight and to meet the Euler-Bernoulli hypothesis. The semi-analytical model of the 
coupled system is derived via Lagrange's equations of motion. Due to assumption oflarge 
transversal displacements and large rotations and inextensibility constraint, axial and transversal 
displacement fields are nonlinearly coupled and the expression for the beam curvature becomes 
nonlinear. The inextensibility constraint equation and the expression for the curvature are 
approximated using higher order Taylor series expansion. This leads to nonlinear inertia and 
static terms in the equation of motion, which also includes linear and nonlinear damping terms. 

The experimental linearized dynamic response (FRF's) and the static response of the beam 
structure are obtained with the original set-up (as described in Chapter 3). Based on the 
experimental FRF's the linear viscous damping parameters and the geometric imperfection 
parameters of the linearized double-mode semi-analytical model are identified. The 
experimental FRF's and the FRF's based on a linear semi-analytical model show a satisfactory 
correspondence. In addition, the identified imperfection parameters are used in the nonlinear 
static model to compare static response with the experimentally obtained nonlinear static 
response. From this it appears that the correspondence in the post-buckling regime strongly 
depends on the order of the Taylor series expansion of the curvature and inextensibility 
constraint. Nevertheless, in the pre-buckling regime already a 3rd order Taylor series expansion 
gives an acceptable result. 
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In order to identify the parameters of the nonlinear dynamic semi-analytical model based on 3rd 

order expansion a number of steady-state solutions of the sinusoidally excited beam structure is 
used. For this purpose the original set-up is improved so that the tilt dynamics of the 
electromagnetic shaker are eliminated. The nonlinear dynamic steady-state responses of the 
identified semi-analytical single-mode models show a good global correspondence with the 
experimental frequency-sweep responses. However, the experimental responses show some 
additional period doubling behavior in the harmonic resonance peak of the first beam mode and 
its corresponding 1/ 2 subharmonic resonance peak. These phenomena are not present in the 
steady-state responses of the identified single-mode models. It is shown, by investigating the 
steady-state responses of a double-mode semi-analytical model, that these extra solution 
branches emerging via period doubling bifurcations occur due to interactions between the first 
mode and the second mode. 

In conclusion, the semi-analytical model of this archetype beam structure with top-mass is 
successfully identified and validated by experiments, statically and dynamically. Consequently, 
the semi-analytical approach shows to be very efficient to study nonlinear dynamic buckling 
problems, including more complex structures like a thin cylindrical shell [23]. 

7.2 Recommendations 

Although the semi-analytical model is successfully validated several recommendations can be 
made. 

Firstly, the second mode dynamics of the semi-analytical model are shifted in frequency in 
comparison with the experimental results. Note that in the adopted semi-analytical model the 
transversal displacement field of the beam is discretized by using approximations of the exact 
vibration modes and that the shear effects are neglected. Moreover, in the semi-analytical model 
the upper and lower clamping of the beam are modeled as infinitely stiff. In practice, however, 
the clamping stiffness will be finite. In future research the correspondence between the 
experimental and semi-analytical results can be improved for example by using more accurate 
displacement functions, including shear effects or introducing elastic fixations of the beam. 

Secondly, in this thesis possible influences of the power amplifier are modeled by fitting rather 
than based on first principles because the dynamic behavior of the power amplifier could not be 
investigated separately. Moreover, the influences of the charge amplifier (of the accelerometer) 
are neglected in the parameters identification procedure of the electromagnetic shaker. Theories 
to include the dynamics of the charge amplifier, in the electromagnetic shaker model, are 
discussed in [25] and can be used to improve the parameter identification of the electromagnetic 
shaker. The quantitative correspondence between the semi-analytical and experimental results 
may be improved with a better understanding of the dynamic behavior of the charge/power 
amplifier. 

Thirdly, the considered system is exclusively used to validate the semi-analytical approach for 
nonlinear dynamic buckling analysis. However, practical applications for a pre-loaded slender 
beam in the pre-buckling regime are hard to find. There exist practical applications for 
pre-loaded slender beam applications in the post-buckling regime (3, 35, 45]. In [45] for example 
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the buckled beam serves as a vibration isolator. It is important to realize that in the 
post-buckling regime higher orders of the curvature and inextensibility constraint become 
significant. According to the experimental validation of the static semi-analytic model, a 5th 

order model is suitable for analysis in post-buckling regime. So, from an application point of 
view it seems interesting to use the semi-analytical approach to design and analyse vibration 
isolators based on buckled beams in the future. 
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Appendix A 

Identification of the shaker 

In Chapter 3 the original and improved beam set-up are described. In this appendix the physical 
parameters of the electromagnetic shaker are identified of two slightly different beam 
experimental set-ups. Firstly, the physical parameters of the original shaker set-up (used in 
Chapter 5) are identified. Next, the same identification strategy is performed to identify the 
physical parameters of the improved shaker set-up (used in Chapter 6). 

A.1 Original shaker set-up 

In order to identify the physical parameters of the shaker system the set-up of Fig. A.1 is used. 
The shaker system consists of a laptop, a D/A converter (TUeDACS AQI) in combination with a 
power amplifier (LDS P AlO00L) , an electromagnetic shaker (LDS V 455) and an accelerometer 
with charge amplifier (Bruell and Kjaer 4367). The additional mass (denoted by madd) is 
mountable for identification and validation purposes. At the laptop, a random excitation signal 
E(t) (not to be confused with the Young's modulus E) is generated and the measured 
acceleration response is stored using MATLAB/Simulink. 

In Chapter 2 the shaker dynamics are derived: 

(A.l a) 

(A.lb) 

where ma = mb + madd is the total mass of the armature structure. The excitation Eamp ( t) 
depends on the amplifier gain Gamp(s) and the generated voltage E(t). The power amplifier is 
defined in Laplace domain. This leads to the following expression for the amplified excitation 
voltage (s = jw): 

Eamp(s) = Gamp(s)E(s). (A.2) 

Unfortunately, it is not possible to measure the output signal of the power amplifier because it is 
missing an output connection for this purpose. Due to this the power amplifier gain can not be 
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Laptop 

.-------1 Accelerometer 

.. Mass madd 

--Armature mb 
r--------=------, Charge amplifi er 

D / A converter Power amplifier 

Figure A .1: Overview shaker system. 

identified separately. From Eq. (A.la), Eq. (A.lb) and Eq. (A.2) the frequency response 
function (FRF) from E to iia can be determined, 

(A.3) 

The discussed shaker system is used to obtain the experimental FRF for iia/ E . This is done for 
three situations, i.e. without an additional mass madd = 0 [kg], with madd = 0.56 [kg] and with 
madd = 2.18 [kg]. The first two FRF's are used to perform the shaker identification whereas the 
last FRF is used to validate the parameter identification. By dividing the experimental FRF iia/ E 
by -w2, the FRF ua/ Eis obtained. The experimental FRF's for the configurations mentioned 
above are depicted in Fig. A.2. These FRF's are the average of 10 measurements obtained with a 
sample frequency ls = 2048 [Hz]. At f �~� 100 [Hz] small resonance peaks are visible. These are 
modes of the supporting structure. Because the influence of these modes is very small, these 
dynamics are neglected in the shaker model. Since the coherence is good in the frequency range 
of interest ([20 - 200H z]) the FRF measurements are reliable. By using the MATLAB function 
invfreqs the transfer function 

H(s) = b1sn + b2sn-l + ... + bn+ l 
a1sm + a2sm-l + ... + am+l' 

(A.4) 

can be fitted based on the experimental results. The function invfreqs estimates the n + l 
numerator coefficients bi and m + 1 denominator coefficients ai by using a least square 
algorithm. Herein, the order of the numerator n and order of the denominator m are defined by 
the user. Note, that the coefficients ai and bi in Eq. (A.4) are not unique. Unique coefficients 
can be obtained by rewriting Eq. (A.4) to, 
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Figure A.2: Experimental FRF's of the shaker system. 

where A i and B i are unique coefficients. Before the orders m and n can be determined Camp has 
to be specified. As a first approach, the gain of the power amplifier is assumed to be constant, 

According to Eq. (A.3) and Eq. (A.6) the order of the numerator and denominator are 
respectively n = 0 and m = 3. However, with these setting no acceptable fit result can be 
obtained, see Fig. A.3 (where the FRF is depicted in terms of ii a/ E0). 

In order to improve the fit result the power amplifier gain is extended with a frequency 
depended term, 

(A.6) 

(A.7) 

By introducing this additional term the order of numerator is increased to n = l. This additional 
term results in an improvement of the fit result, see Fig. A+ Accordingly, it is plausible to 
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Figure A.3: Comparison between the experimental FRF (madd = 0) and the fit results for 
n = 0 and n = 1. 

assume that the power amplifier contains a frequency depended filter. Nevertheless, there have 
to be noted that the fit is based on only the first part of the frequency range of the shaker. Note 
further that the influence of the charge amplifier is neglected in the shaker model. By using the 
function invfreqs (n = 1 and m = 3) two unique numerator coefficient (Bi) and three 
denominator coefficients (Ai) are estimated. However, the physical parameters in the shaker 
model have to be identified. The resistance of the coil (R = 0.9 [D]) is given in the shaker 
specification. Accordingly, seven physical parameter have to be identified, viz. ma, ka, Ca, K,, L, 
Pamp and bamp· For this purpose the FRF's of madd = 0 [kg] and madd = 0.56 [kg] are adopted to 
estimate the 2 x 5 coefficients (of Eq. (A.5)). This minimization problem is numerically solved 
and results in an acceptable fit result, see Fig. A+ The physical parameters (all identified except 
for R) are listed in Table A.r. In order to validate the fit results, the estimated physical 
parameters are filled in Eq. (A.3) and the identified FRF is compared with the experimental FRF 
for madd = 2.18 kg, see Fig. A+ The good correspondence between the experimental and 
numerical FRF confirms the accuracy of the identification. 

A.2 Improved shaker set-up 

Since frequency-sweep experiments (obtained with the original set-up) showed an unexpected 
and undesired resonance in the frequency range of interest (a tilt mode of the shaker armature, 
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Parameters Original set-up Improved set-up 
ma [kg] 1.7 3.2 

ka [N/ m] 3.2 X 103 5.3 X 103 

Ca [kg/s] 273 278 
K, [N/A] 8.7 11.52 
R [O] 0.9 0.9 
L [H] 2.7 X 10-3 2.6 X 10- 3 

Pamp [-] 119 88 
bamp [s-1] 1.3 X 10- 2 1.4 X 10-2 

Table A .1: Identifi ed parameters (except for R) of the shaker model. 

see Fig. 3.3(b)) the experimental set-up is improved. In order to eliminate the tilt mode of the 
shaker an additional axial sledge is mounted on the armature. This axial sledge consists of three 
leaf springs which are mounted between the armature and a supporting structure (see 
Fig. 3.2(b)). Obviously, this additional structure will influence some of the physical model 
parameters to be identified, i.e. the armature mass and the axial armature stiffness will increase. 
The parameters of the improved model are identified using the same strategy as used for the 
original model. The fit result (with ma = 3.2 [kg]) is depicted in Fig. A.5 and the identified 
shaker parameters are listed in the last column of Table A.1. 

Obviously, the identified mass and the stiffness of the armature structure of the improved set-up 
are higher than for the original set-up. Also the current-to-force constant t,, is estimated higher 
whereas the amplifier gain Pamp is estimated lower. Note that due to the increased armature 
mass the static equilibrium position is changed. According to [25, 41] t,, depends on the static 
equilibrium position of the armature in the coil which may explain the increased value of t,,. 
Note further that the identified values of Ca, L, bamp and the product Pampt,,, present in the 
numerator of H 8 (see Eq. (A .3)), are approximately equal for both set-ups. 
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Appendix B 

Validation of 
analytic model 

the undamped 
by a FE model 

. 
semi-

In this appendix the undamped semi-analytic model is validated by comparing its 
eigenfrequencies with the eigenfrequencies of a Finite Element (FE) model. In the 
semi-analytical model like introduced in Chapter 4 the influence of torsion modes is neglected, 
i.e. the modes are chosen (wi, see Eq. (4.12)) as one-dimensional displacement fields. In order 
to validate this assumption the occurrence of the first torsion mode in the FE model will be 
examined in this appendix. 

This thesis concentrates on the frequency region up to the second bending mode. Accordingly, 
torsion may be neglected if the influence of the first torsion mode is negligible small in the 
region of interest. In order to determine the first torsion mode of the beam model the FE 
program MARC/MENTAT is used. For the considered beam model including shaker armature 
mass and stiffness the following parameter values are adopted: ro = 0.25 [-], L = 0.180 [m], 
w= 15 x 10-3 [m], h = 0.5 x 10-3 [m], p = 7850 [kg/m3], E = 2 x 1011 [N/m2], 

g = 9.81 [m/ s2], ka = 5.3 x 103 [N/m] and ma= 3.2 [kg]. The clamped-clamped beam 
structure is meshed using 40 x 8 (l x b) 8-node shell elements of type 72 [28], see Fig. B.r. This 
element takes transversal shear, axial strain and torsional effects into account. The FE model is 
preloaded axially (ro = 0.25 [-]) and the top and bottom elements are linked to each other in all 
directions. In Table B.1 the undamped eigenfrequencies (for different values of the 
imperfection parameters) of the FE model are listed and compared with the undamped 
eigenfrequencies of a single-mode and double-mode 3rd order semi-analytical model. 

Although the FE model includes axial strain of the beam and transversal shear effects in contrast 
to the semi-analytical model, the difference in the undamped eigenfrequencies in the axial mode 
Ua) and the first two bending modes (!1, h) is negligible small(< 1 %). This justifies the 
elimination of the shear and the use of the axial inextensibility assumption in the semi-analytical 
model. However, the difference between the FE and the semi-analytical eigenfrequencies 
increase for higher modes. Probably due to a increasing influence of the transversal shear which 
is neglected in the semi-analytical model. Moreover, the eigenfrequency of the first torsion mode 
is ft :=:::; 3.3h which makes it plausible that the influence of the torsion mode will be negligibly 
small in the region of interest all the more because this mode will be hardly excited. 
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B. VALIDATION OF THE UNDAMPED SEMI-ANALYTIC MODEL BY A FE MODEL 

ma 

Figure B.1: FE model of shell element type 72. 

model Imperfection fa [Hz] f1 [Hz] f2 [Hz] ft [Hz] 
1 DOF e1 = 0 18.4 49.6 - -
2 DOF e1 = e2 = 0 18.4 49.6 148.7 -

FEM, type 72 e1 = e2 = 0 18.3 49.5 147.1 500.9 
1 DOF e1 = 1 18.4 49.1 - -

2 DOF e1=l ,e2 =0 18.4 49.1 148.7 -

FEM, type 72 e1 = 1, e2 = 0 18.3 49.0 147.1 504.8 
2 DOF e1 = e2 = 1 18.4 49.1 138.3 -

FEM, type 72 e1 = e2 = 1 18.3 49.0 137.0 515.3 

Table B.1: Undamped eigenfrequencies of the pre-loaded beam structure, ro = 0.25 
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Appendix C 

Consequence of model • expansion 

In Chapter 4 is postulated that the model accuracy depends on the order of the Taylor expansion 
(of the curvature and inextensibility constraint) and the number of including modes. However, a 
higher order of the Taylor expansion and more modes will obviously results in more time 
expensive computations. In this appendix the influence of this model expansion will be 
examined by adopting the frequency-amplitude plots of the beam structure. Firstly, the influence 
of the order of the Taylor expansion of the curvature and inextensibility constraint will be 
examined. Next, he influence of the number of the including modes will be examined. 

For the considered beam structure in this appendix holds: ro = 0.25 [-], L = 0.215 [m], 
h = 15 x 10-3 [m], h = 0.5 x 10-3 [m], p = 7850 [kg/m3], E = 2 x 1011 [N/m2], 

g = 9.81 [m/ s2]. Furthermore, amplitude of the excitation voltage is E0 = 0.01 [V] and the 
shaker parameters of the original set-up (see Chapter 3) are adopted. The responses in this 
appendix are characterized by the beam deflection 

W = max [w(L/4 - ua)] - min [w(L/4 - ua)]. 
Tr Tr 

(C.l) 

To examine the influence of the expansion order a single-mode beam is adopted. The linearized 
dynamics of the considered beam possess a highly damped mode dominated by Ua 

(fa = 14.8 ~a = 0.489) and a lightly damped mode dominated by Q1 (Ji = 48.9 [Hz] and 
6 = 0.003). The nonlinear responses for a 3rd , 5th and 7th order single-mode model are 
depicted in Fig. C.1. The responses contain a harmonic resonance (h) at f �~� Ji, a 
super-harmonic resonance (2sph) at f �~� fi/2 and a subharmonic resonance (l/2sph) at 
f �~� 2fi. Between the responses of the 3rd and 5th expanded model no differences are 
perceptible. Furthermore the difference with the 7th order model is negligible small. 
Accordingly, there can be concluded that for this top-mass and excitation amplitude a 3rd order 
model can be adopted. In order to examine the influence of higher modes models on the 
nonlinear response and single-mode model is compared with a double and triple-mode model. 
For this purpose the imperfection parameter of the second and third mode are set on zero (i.e. 
e1 = e2 = 0 [-]) and a the linear viscous damping parameters of the modes are set on 
c 1 = c2 = 0.1 [N s/m]. Note, due to e1 = e2 = 0 [-] the second and third mode can only by 
excited parametrically. The double model possess, in addition to a single-mode model, a lightly 
damped mode dominated by Q2 (h = 148.7 [Hz] and 6 = 0.0042) and the triple-mode 
approach possess also a lightly damped mode dominated by Q3 (h = 297. 7 [Hz] and 
6 = 0.003). The nonlinear responses of the 3rd model for a single, double and triple-mode 
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Figure C.1: The stable '- ' and unstable '- ' response for different orders of model expansions 
(single-mode, ro = 0.25 [-], Eo = 0.01 [V ], e1 = 1 [-], c1 = 0.1 [Ns/ m] andcq,l = 0 [kg/ml) 

approach are depicted in Fig. C.2. Due to parametric excitation of the second mode ( Q2) an 
additional peak occurs (denoted by PD and with period time 4T) in the subharmonic resonance 
of the double and triple-mode model (see also Chapter 6). Moreover, the response of the 
triple-mode model contains an additional peak at h /2 and some additional peaks occurs in the 
harmonic and subharmonic resonance of the second mode. Due to the additional third mode 
the initiation of the 1/ 2 subharmonic resonance is slightly shifted (±1%) and the amplitude in 
the frequency range 80 - 160 [Hz] is slightly higher. However, since the harmonic resonance of 
the second mode also occurs in this range (at f = 148. 7 [Hz]) the influence of the third mode 
will not be significant for experimental validation. Note, in the frequency-amplitude plot of is 
not visible since the imperfection (e2 = 0) is set on zero. Accordingly, for experimental 
validation a 3rd order single-mode model will be used initially and in addition a 3rd order 
double-mode for explaining local dynamics. 
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Figure C.2: The stable '- ' and unstable '-' response for models including different numbers 
of modes (N) (3rd order, ro = 0.25 [-], Eo = 0.01 [V], e1 = 1 [-], e2 = e3 = 0 [-], 
CN = 0.1 [Ns/m] and Cq,N = 0 [kg/m]) 
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Appendix D 

Identification procedure 

In Chapter 5 and Chapter 6 the unknown model parameters (related to imperfections and 
damping) of the considered beam structure are identified. A method which is widely used for 
this purpose is the weighted least squares method [5, 31, 44]. In this method experimental 
results are compared with numerical results and the difference between them is weighted by 
weighting-factors. The model parameters can be estimated by minimizing the difference 
between the experimental and numerical data. The identification strategy can be explained by 
the flowchart presented in Fig. D.1. The experimentally obtained response data is collected in the 
column vector y and ordered as follows, 

Y = [[Y1 ,1, Y2,1, ···, Yn,1l, ···, [Y1 ,N, Y2,N, ... , Yn,N ]] T, (D.l) 

where n denotes the number of sample points per set and N is the number of experimental and 
numerical sets. The numerical data response is collected in y by using the same ordening as in 
Eq. (D.l) . The unknown model parameters are estimated by reducing the error between the 
experimental and numerical respons data. The weighted least squares error between the 
experimental and numerical data is defined as follows, 

(D.2) 

where aµ and /3;,, denote the weighting-factors and e are the weighted residuals. The unknown 
model parameters are captured in column vector 0 = [01, ... , 0m]T, where m is the number of the 
estimated parameters. By minimizing the objective function <I> the model parameters can be 
identified. For this purpose Newton's (2n d order) iteration method is used, 

<I>(0 + <50) �~� <I>(0) + <50T q(0) + <50T H (0)<50 + h.o.t., (D.3) 

where, 

q(0) = e~e = J(0f e, , (D.4) 
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Figure D. 1: Identification strategy. 

and 

H(0) = J(0f J(0) + h.o.t .. (D.5) 

Herein J is the Jacobian and His the Hessian of the objective function. According to Newton's 
method the a extreme of the objective function <I> can be found from the stationary condition, 

q(0) + H(0)b0 = 0. (D.6) 

The Gauss-Newton search direction pGN can be determined (for m parameters simultaneously) 
by substitute the Jacobian (J) and the Hessian (H) in the stationary condition, 

(D.7) 

Herein k denotes the iteration number. By using the Gauss-Newton search direction the model 
parameters are updated by 

(D.8) 

Herein CTk denotes a user defined step-size. After each updating iteration the objective function 
Eq. (D.2) and the search directions Eq. (D.7) are updated. This is repeated until the following 
stop-criterion is satisfied, 

(D.9) 
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where Eis a user-defined value. In Chapter 5 and 6 the used values values are respectively 
E = 1 x 10-4 and E = 1 x 10- 5 • Furthermore, the objective function is required to be 
monotonically decreasing, 

(D .10) 

If this condition is violated, a new estimation is performed by using a smaller step-size O"k · Note 
that in the discussed identification strategy an initial guess for the model parameters 0 is 
required. 
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Appendix E 

The frequency response functions of 
the slender beam 

In this Appendix the frequency response functions of the identified linearized model (using the 
parameters of Table 6.1) and the experimental frequency response functions of Chapter 5 are 
depicted. 

ro �~� �~� oo - rn - �~� �~� = 
f [H z] 

-~CT•- .:.:q :: I -.~IT .. ' IT: : I 
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 

J [H z] J [H z] 
( a) (b) 

Figure E. 1: Receptance of a) 'Beam A ' and b) 'Beam B ' measured at L / 4 from the founda
tion. 
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Figure E.2: Receptance of a) 'Beam A' and b) 'Beam B ' measured at L / 2 from the founda
tion. 
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Figure E.3: Receptance of a) 'Beam A ' and b) 'Beam B' measured at 3L/4 from the foun
dation. 
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Appendix F 

Additional identification results 

In Chapter 6 the imperfection and damping parameters of the (nonlinear) semi-analytical model 
are identified. Due to the nonlinearity of the parameter identification problem the identification 
results (strongly) depend on the initial guess. In this appendix some identification results will be 
shown for different initial guesses. Furthermore, by using the identification results, the 
importance of the quadratic viscous damping parameter Cq,l will be shown. 

In order to identify the imperfection and damping parameters for different initial guesses the 
periodic solutions indicated by 'O' in Fig. 6.r(a) corresponding to 'Beam C' are used. The 
identification results are listed in Table F.r. In Identification O the nonlinear viscous damping 
parameter cq,l is not taken into account. The conclusion can be drawn that the identification 
results of the Young's modulus and the imperfection parameter are nearly independent of the 
initial guess. Conversely, the identification results of the viscous damping parameters c 1 and cq,l 

strongly depend on the initial guess. Note, that both damping parameters influence the phase 
shift between the experimental and semi-analytical time signals and the hight of the resonance 
peaks. As can be seen in Table F. r, if the estimation of the linear viscous damping parameter c1 

decreases the quadratic viscous parameter cq,l increases and visa versa which is plausible. The 

Parameters 
Identification 0 Identification 1 

Guess Result Guess Result 
e1 [-] 1.0 1.24 1.0 1.24 

c1 [Ns/m] 0.01 0.09 0.01 0.04 
cq,l [kg/m] - - 0.01 0.20 
E [N/m2

] 2.0 X 1011 1.92 X 1011 2.0 X 1011 1.92 X 1011 

Identification 2 Identification 3 
Guess Result Guess Result 

e 1 [-] 1.2 1.25 0.80 1.25 
c1 [Ns/m] 0.05 0.05 0.10 0.07 
cq,1 [kg/m] 0.05 0.18 0.10 0.05 
E [N/m2

] 2.0 X 1011 1.92 X 1011 2.0 X 1011 1.92 X 1011 

Table F.1: Identification results for several ini tial guesses. 

corresponding (nonlinear) steady-state responses of these additional identification results are 
depicted in Fig. F.r. As stated before the difference between the identification results exist 
mainly of different values for the viscous damping parameters. Hence, the difference between 
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Figure F.1: Responses of the identified models 

the semi-analytical responses is limited to a difference in the heights of the peaks of the 
harmonic and 1/ 2 subharmonic resonances. As may be expected, the resonance peaks are the 
highest for the lowest value of the quadratic damping parameter Cq,l (I D .0) and the lowest for 
the highest cq,l (JD.l). 
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Appendix G 

Perceptibility of dynamic phenomena 

In Chapter 6 the nonlinear responses are depicted in terms of the transversal velocity. In this 
appendix this choice will be explained by using the fit results of 'Beam C'. 

The voltage signal of a laser-vibrometer (LV) is proportional to the transversal velocity of the 
measured beam location. Obviously, by integrating the velocity the transversal displacement can 
be obtained. Note that in general drift will occur: integration of a (positive) bias in the velocity 
will result in a (positive) ramp in the displacement. However, by adopting a high-pass filter this 
problem can be tackled. For this purpose a second order (high-pass) Butterworth filter with a 
cut-off frequency off= 1.6 [Hz] is designed, 

s2 

Hhp(s) = s2 + 14.14s + 100 (G.1) 

Now, two manners to characterize the deflection of the the beam are available. Firstly, the beam 
dynamics can be characterized by the peak-to-peak amplitude of transversal velocity, 

W = max [w(L/4 - ua)] - min [w(L/4 - Ua)], 
Tr Tr 

(G.2) 

where Tr denotes the period time of the response signal and w(L/4 - ua) is the transversal 
velocity measured at a fixed distance of L / 4 from the lower clamping of the beam. Secondly, the 
beam dynamics can be characterized by the peak-to-peak amplitude of transversal displacement, 

W = max [w(L/4 - Ua)] - min [w(L/4 - ua)], 
Tr Tr 

(G.3) 

where w(L/4 - ua) is the transversal displacement. 

In Fig. G.1 the same fit results of 'Beam C' are depicted using both the transversal velocity 
(Fig. G.1(a)) and transversal displacement (Fig. G.1(b)). Note, that in Fig. G.1(b) a scaled 
transversal displacement is depicted, i.e. the displacement is scaled by the beam thickness (h). 
Although the depicted beam dynamics in the plots are identical the dynamic bifurcation 
phenomena in the frames 'A' and 'B' in Fig. G.1(a) are hardly perceptible in Fig. G.1(b). Since 
these peaks are important for model validation, all nonlinear responses in this thesis are 
depicted in terms of W. 
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Figure G.1: Experimental results of 'Beam C' denoted by '.' and the stable '- ' and unstable 
'- ' solutions of the identified semi-analytical model 

The dynamic stability can be defined by the Budiansky-Roth criterion i.e. the dynamic buckling 
load is the load at which the response amplitude rapidly increased for a small variation of the 
dynamic load. In the the frequency-amplitude plot of Fig. G.1(b) not the axial dynamical load but 
the excitation frequency is varied. However, conform with the Budiansky-Roth theory there are 
regions (near the resonance peaks) where the axial displacement rapidly increased for a small 
variation of the excitation frequency. At these subjective locations the beam structures becomes 
dynamically unstable in sense of Budiansky-Roth criterion. However, from practical point of 
view the dynamic stability can be defined by a subjective threshold displacement. In Fig. G.1(b) 
the threshold displacement is set at one, i.e. the periodic solutions above the dashed line can be 
classified as dynamical unstable by the introduced (subjective) dynamic stability criterion. Note 
that obviously the periodic solution itself may be stable in this area. 
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