Chirality due to oxygen-18 substitution. Synthesis and chiroptical properties of (1S)-2,4-adamantanedione-4-18O

Citation for published version (APA):

DOI:
10.1021/ja00368a061

Document status and date:
Published: 01/01/1982

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 29. Sep. 2023
Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adaman-tanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.

Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adamantanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.

Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adamantanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.

Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adamantanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.

Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adamantanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.

Chirality due to 18O Substitution. Synthesis and Chiroptical Properties of (1S)-2,4-Adamantanedi0ne-18O

E. W. Meijer and Hans Wynberg*

Department of Organic Chemistry, University of Groningen
9747 AG Groningen, The Netherlands
Received October 22, 1981

The rigid adamantane skeleton has proved of special value in the interpretation of subtle effects in the circular dichroism spectra of chiral carbonyl compounds. In addition, the adamantane framework has shown its usefulness in the construction of chiral ketones whose chirality is due to isotopic substitution. Only one example is known of an optically active cycloalkanone, the 1,2-diketone α-18O(180)18O-fenchocamphorone quinone, whose chirality is solely due to oxygen-18 substitution. Two features interfere with studies of oxygen-18 labeled carbonyl compounds. First the available oxygen-18 starting materials necessarily accompany chloride 35Cl. Indeed, we believe that the origin of these results to the mechanisms and stereochemistries of reactions of nucleophiles with alkynes and aromatics will be reported in due course.1-13

Acknowledgment. This research was supported by National Science Foundation grants to K.N.H. and K.D.J. We are grateful to Professor J. A. Pople for the use of the GAUSSIAN 80 programs and the CMU VAX 11/780.

Registry No. Ethylene radical anion, 34527-91-8; fluoroethylene radical anion, 80069-98-9, 1,1-difluoroethylene radical anion, 77845-44-4; tetrafluoroethylene radical anion, 65338-13-8.
Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids

Stephen T. Wilson,* Brent M. Lok, Celeste A. Messina, Thomas R. Cannan, and Edith M. Flanigen*

Union Carbide Corporation, Tarrytown Technical Center
Tarrytown, New York 10591

Received October 27, 1981

A novel class of crystalline, microporous, aluminophosphate phases has been discovered that represents the first family of framework oxide molecular sieves synthesized without silica. The most widely known molecular sieves are the aluminosilicate zeolites and the microporous silica polymorphs. The novel aluminophosphate molecular sieves are similar to zeolites in some properties and may find many uses as adsorbents for separations of molecular species and as catalysts or catalyst supports.

The new family of aluminophosphate materials (\(\text{AlPO}_n\)) currently includes about 20, three-dimensional framework structures, of which at least 14 are microporous and 6 are two-dimensional layer-type materials. Most of the three-dimensional structures are novel; however, three appear to be structurally related to the zeolite family, with framework topologies of the erionite/offretite type (\(\text{AlPO}_5\)), the sodalite type (\(\text{AlPO}_4\)), and the analcime type (\(\text{AlPO}_4\)). One of the novel three-dimensional structures, that of \(\text{AlPO}_5\), has been determined by single crystal X-ray methods. \(\text{AlPO}_5\) has hexagonal symmetry with \(a = 1.372\) nm and \(c = 0.847\) nm and contains one-dimensional channels oriented parallel to the \(c\) axis and bounded by 16-membered rings composed of alternating \(\text{AlO}_6\) and \(\text{PO}_4\) tetrahedra. It has the framework topology of the hypothetical 4-connected three-dimensional net no. 81 (4.6.12) proposed by Smith.

The novel materials are synthesized hydrothermally at 100–250 °C from reaction mixtures containing an organic amine or quaternary ammonium salt (\(R\)) which becomes entrapped or clathrated within the crystalline products of composition: \(\text{X}:\text{Al}_2\text{O}_3\cdot(1.0 \pm 0.2)\text{P}_2\text{O}_5\cdot\text{yH}_2\text{O}\). The quantities \(x\) and \(y\) represent the amounts needed to fill the microporous voids within the neutral \(\text{AlPO}_4\) framework. The species \(R\) appears to fulfill an essential templating or structure-directing role in the synthesis of these novel microporous phases since without \(R\) dense \(\text{AlPO}_4\) structures or known hydrates, \(\text{AlPO}_4\cdot\text{nH}_2\text{O}\), form.

The direct relationship between the templating agent and the resulting structure is illustrated in the synthesis of \(\text{AlPO}_4\), with a proposed erionite framework topology, by using quinuclidine, neopentylamine, or cyclohexylamine. In each case chemical analysis corresponds to two template molecules per large cavity. Model building experiments indicate that (1) the three templating agents are similar in size, (2) two template molecules essentially fill the large cavity, and (3) there are no further voids in the erionite-type structure of sufficient volume to contain these templates. Similarly, tetramethylammonium hydroxide (TMAOH) templates the \(\text{AlPO}_4\)-20 sodalite framework topology with a template stoichiometry near 1 per sodalite cage. The spherical TMAOH molecule, with a 0.62-nm diameter, fits neatly into the sodalite cage.

Some structures are much less template specific. \(\text{AlPO}_4\) can be synthesized with 23 different amine and quaternary ammonium compounds. The large one-dimensional cylindrical pore system perhaps imposes fewer constraints on the template fit. Because of the neutrality of the \(\text{AlPO}_4\) network, the template is not needed as a charge-balancing agent; therefore, its incorporation into the structure is more a function of its size and shape relative to the channel volume to be filled.

Figure 1. Circular dichroism spectrum (solid line) of (1S)-2,4-adamantanedione-4-\(^{18}\text{O}\) (7) (concentration 2.1 g/L) in cyclohexane at room temperature. The spectrum is corrected to 100% optical and isotopic purity. The dotted line represents the spectrum recorded after oxygen exchange and should be regarded as the zero base line.

Thus the spectroscopic data were obtained with a sample of 7 which had a 41 ± 3% isotopic purity. On the assumption that no change in optical purity had occurred during the entire synthesis, the optical purity of 7 is identical to that of the 3R-acid 1, i.e., 76 ± 3%.

The circular dichroism spectrum (Figure 1) of the optically active (1S)-2,4-adamantanedione-4-\(^{18}\text{O}\) (7) is characterized by three bands at 320, 307, and 297 nm and small bands at lower wavelength. No immediate conclusion should be drawn about the considerable differences between the CD spectrum of 7 and that of the only other two optically active rigid 1,3-diketone, since temperature and solvent effects can influence these spectra strongly as has been clearly demonstrated by Lightner and was found for 7. It is reasonable to assume that the bands belong to different electronic transitions.

In the light of the fast reaction of enol ethers with oxygen, the high yield of 1,2-dioxetane, even when the "one-reaction" is possible, synthetic route is unique and could be generally useful in the preparation of oxygen-18 ketones. The route is especially useful for diketones in which one carbonyl is to be labeled with oxygen 18.

Supplementary Material Available: Physical properties and experimental details of the synthesis of 1–5 and 7 (5 pages). Ordering information is given on any current masthead page.

(13) The mass spectrum of 7 showed a percentage \(^{18}\text{O}\) of 41 ± 3 one night after the preparation of 7; storage of crystalline 7 at room temperature in a closed (\(^{18}\text{O}\)-containing air) vessel for 72 h provided material with a mass spectrum identical with the \(^{16}\text{O}\) analogue!n
(14) During the entire synthesis no crystallizations were performed.
(19) The CD spectrum of 7 was recorded in EPA (ether, isopentane, ethanol, 5:5:2) at room temperature and at 92 K, the amplitudes of several bands had changed dramatically and bands with negative signs appeared.
(20) For an excellent recent review on isotopically engendered chirality see: Barth, G.; Djerassi, C. Tetrahedron 1981, 37, 4123–4142.