Closed-loop system identification experiments of the C-III emission front response to deuterium fueling in TCV

Citation for published version (APA):

Document status and date:
Published: 17/06/2022

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 29. Nov. 2022
Closed-loop system identification experiments of the C-III emission front response to deuterium fueling in TCV

Assessing (non)linearity and compensating for controller influence

Jesse Koenders

J.T.W. Koenders1,3, M. van Berkel1, A. Perek2, C. Galperti2, B. Kool1,3, T. Ravensbergen4, B.P. Duval5, O. Février2, C. Theiler2, M. Bernert6, S. Wiesen6, M.R. de Baar1 and the TCV Team*

1DIFFER – Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
2École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
3Eindhoven University of Technology, Control Systems Technology, Eindhoven, The Netherlands
4ITER Organization, St. Paul Lez Durance Cedex, France
5Max Planck Institute for Plasma Physics, Garching, Germany
6Forschungszentrum Jülich GmbH, Institut für Energieforschung, Plasmaphysik, Jülich, 52425 Germany
*See author list of H. Reimerdes et al., Nucl. Fusion 62, 042018 (2022)
Motivation: heat exhaust challenge

EUROfusion roadmap mission-2: Heat-exhaust systems
• Capable of withstanding the large heat and particle fluxes
• Allow as high performance as possible from the core plasma.
• Achieved by producing ‘detached’ divertor conditions maintained by an active control system.

Controller design requires
• Understanding of the dynamics of the exhaust-plasma
• Control-oriented modelling of the to be controlled system

This contribution
• We use closed-loop system identification to identify the local dynamic response of the TCV exhaust plasma to deuterium (D$_2$) gas injection around different position operating points
• The results test the linearity of the dynamic response of the exhaust plasma.

Jesse Koenders | PSI-25 | Online | 12-17 June 2022 | Page 2
Introduction: System Identification

- **System Identification** is a range of statistical methods to obtain mathematical models of dynamics systems from measured data. These can be used for off-line controller design.
- One way is the use of periodic perturbations applied to the input of a system u, and measure the output of that system x, giving data points of its *local* response $\hat{H}(f[\text{Hz}])$.
- For non-linear system the response depends on the operating point.

Example:

5 Hz sinusoid u applied to x:

\[\frac{\delta x}{\delta t} = -x^3 + u \]

Local linearization:

\[\frac{\delta \hat{x}}{\delta t} = -3\bar{x}^2 \cdot \hat{x} + u \]

The response of the system to a 5 Hz sinusoid is shown, with the response increasing with the operating point \bar{x}.
Method: identification in closed-loop

- The C-III emission front location along the divertor leg is used as a measure of detachment progression, and can be controlled in real-time using the multi-spectral imaging diagnostic MANTIS [1,2].

- We use closed-loop system identification to identify the local dynamic response of the C-III front to deuterium (D$_2$) gas injection in the divertor at different position operating points.

- A controller is used to reach these operating points, we remove the controller influence on the results using the three-point method [4]:

 $$ u \quad d = \frac{1}{1 + HC} = S(f') $$
 $$ e \quad d = -\frac{H}{1 + HC} = -PS(f) $$

\[PS(f) \quad S(f) = H(f) \]

We need to take into account all facets of the control loop which introduce dynamics.
- Piezo-electric valve (V)
- Real-time image processing (RT)
- Collapsed into an equivalent controller \hat{C} and plant \hat{H}.

Control CIII front position to desired location from 0.8s
Perturbation introduced at 0.9s on the disturbance channel using multi-sine excitations.
Results

- Results shown in a Bodeplot: relative phase and amplitude of output to input over frequency.
- No strong changes in dynamics are observed over operating height of the CIII front.

Perturbation height

<table>
<thead>
<tr>
<th>Height</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09m</td>
<td>0.17m</td>
<td>0.23m</td>
</tr>
<tr>
<td>0.17m</td>
<td>0.22m</td>
<td>0.20m</td>
</tr>
</tbody>
</table>

openloop result [5]

Performed closed-loop system identification of the CIII front response to D$_2$ fueling in the TCV tokamak around different operating heights.

- In both L-mode and H-mode no significant change of dynamics is observed when changing operating height, indicating the response is (dominantly) linear over a large operating range for timescales up to 40 Hz.

- Implies a single (linear) controller is sufficient in a single scenario.

- Are these results extrapolatable to emission front control with impurities?

Conclusion