Solution to Problem 80-1: A determinant and an identity

Citation for published version (APA):

DOI:
10.1137/1023015

Document status and date:
Published: 01/01/1981

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

A Matrix Eigenvalue Problem

Problem 79-2, by G. Efroyman, A. Steger and S. Steinberg (University of New Mexico).

Let M_n denote the $n \times n$ matrix whose (j, k) entry $M_n(j, k)$ is given by

$$
\omega^{(i-1)(k-1)/\sqrt{n}}, \quad 1 \leq j, k \leq n,
$$

where $\omega = e^{2\pi i/n}$. Determine all the eigenvalues of M_n. The matrix M_n arises in some work on finite Fourier transforms.

A Determinant and an Identity

Problem 80-1, by A. V. Boyd (University of the Witwatersrand, Johannesburg, South Africa).

(a) Prove that

$$
\det |A_{rs}| = (-1)^{r+s}(2^{2n} - 2)B_{2n}/(2n)!
$$

where $r, s = 1, 2, \ldots, n$,

$$
A_{rs} = \begin{cases}
1/(2r - 2s + 3)! , & s \leq r + 1, \\
0, & s > r + 1,
\end{cases}
$$

and B_n is the Bernoulli number defined by

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n t^n}{n!}.
$$

(b) Prove that if n is odd,

$$
t^n = \sum_{m=0}^{(n-1)/2} \frac{1 - 2^{2m-1}}{n - 2m + 1} \binom{n}{2m} h^{2m-1} B_{2m} ((t + h)^{n+1-2m} - (t - h)^{n+1-2m}).
$$

Solution by O. G. Ruehr (Michigan Technological University).

From the given generating function for the Bernoulli numbers, the well-known expansion, $x \csch x = \sum_{n=0}^{\infty} q_n x^{2n}$, $q_n = (2 - 2^{2n}) B_{2n}/(2n)!$, is easily obtained. Part (a) is now an immediate consequence of Wronski’s determinant for the reciprocal of a power series, i.e.,

$$
\left[\sum_{n=0}^{\infty} q_n t^n \right]^{-1} = \sum_{n=0}^{\infty} c_n t^n \Rightarrow c_n = (\frac{-1}{q_n+1}) q_0^{n+1} \cdots q_n \begin{vmatrix}
q_1 & q_0 & 0 & \cdots & 0 \\
q_2 & q_1 & q_0 & \cdots & 0 \\
& \cdots & \cdots & \cdots & \cdots \\
q_n & q_{n-1} & q_{n-2} & \cdots & q_1
\end{vmatrix}.
$$

Part (b) results from the elementary identity

$$
[(xh \csch xh)/2h][e^{x(t+h)} - e^{x(t-h)}] = xe^{xt}.
$$
upon multiplying the series corresponding to the bracketed quantities and employing
the formula
\[
\sum_{m=0}^{\infty} A_m \sum_{n=0}^{\infty} B_n = \sum_{m=0}^{\lceil n/2 \rceil} A_mB_{n+1-2m}.
\]
The stated result (b) is correct for nonnegative integers \(n \), provided that \((n-1)/2 \) is
replaced by \(\lceil n/2 \rceil \) as the upper limit of summation.

Remark. This solver recently rediscovered the following generalization of Wronski's
determinant which had been quoted by Muir [1] without proof. Let
\[
\left(\sum_{n=0}^{\infty} q_n t^n \right)^{m} = \sum_{n=0}^{\infty} c_n(m) t^n.
\]
Then, \(c_n(m) = ((-1)^{n}/q_0^{n+m}) \det |A_{rs}(m)| \), where
\[
A_{rs} = \begin{cases} [(r-s+1)m + (s-1)]q_{r-s+1}/r, & s \leq r + 1, \\ 0, & s > r + 1. \end{cases}
\]
The proof [2], depends upon elementary properties of lower Hessenberg matrices and
uses the J. C. P. Miller formula [3].

REFERENCES

Solution by O. P. LOSSERS (Technische Hogeschool Eindhoven, the Netherlands).

a) Let
\[
D_n = \det |A_{rs}|, \quad D_0 = 1.
\]
Then by expanding the determinant by the last column and iterating this procedure, we
find
\[
D_n = \sum_{i=0}^{n} \frac{(-1)^{i-1}}{(2i+1)!} D_{n-i}
\]
i.e.,
\[
\sum_{i=0}^{n} \frac{(-1)^{i-1}}{(2i+1)!} D_{n-i} = 0.
\]
Since one easily checks the assertion for \(n = 1, 2 \) it is sufficient to see whether the
asserted value of \(D_n \) also satisfies (1), i.e., whether for \(n > 0 \) we have
\[
\sum_{i=0}^{n} \frac{(2n+1)(2(n-i) - 2)B_{2(n-i)}}{2i + 1} = 0.
\]
For the well-known Bernoulli polynomials, we have
\[
B_{2n+1}(t) = \sum_{k=0}^{2n+1} \binom{2n+1}{k} B_{2n+1-k} t^k
\]
\[
= \frac{1}{2} \binom{2n+1}{n} t^n + \sum_{i=0}^{n} \binom{2n+1}{2i+1} B_{2(n-i)} t^{2i+1}.
\]
Now substitute \(t = \frac{1}{2} \) and \(t = 1 \) in (3) and use \(B_{2n+1}(\frac{1}{2}) = B_{2n+1}(1) = 0 \) \((n > 0)\).

Then (2) follows by subtracting the two equations.

b) The right-hand side of (b) has the form

\[
\sum_{j=0}^{n} a_j h^j t^n - j.
\]

Clearly \(a_j = 0 \) if \(j \) is odd. For \(j \) even, we find

\[
a_j = \frac{1}{n} \left(\frac{n+1}{2j+1} \right) \sum_{m=0}^{j} (1 - 2^{m-1})(2j+1)2m B_{2m},
\]

which is 0 if \(j > 0 \) according to (2). Substituting \(h = 0 \), we find for the right-hand side

\[
\lim_{h \to 0} \frac{1 - 2^{-1} (t+h)^{n+1} - (t-h)^{n+1}}{n+1} = t^n.
\]

This proves (b).

Also solved by C. Givens (Michigan Technological University), A. A. Jagers (Technische Hogeschool Twente, Enschede, the Netherlands), S. L. Lee (University of Alberta) and the proposer.

Additionally, Lee provides the generalization

\[
\det |A_{rs}| = (-1)^{k(2n+k+1)/2} \det |B_{ij}|,
\]

where

\[
A_{rs} = 1/[2(r-s+k+1)]!, \quad r, s = 1, 2, \cdots, n-k+1, \quad k = 0, 1, \cdots, n
\]

\((1/p! = 0 \text{ for } p < 0)\), and

\[
B_{ij} = \beta_{2(n+2-i-j)}, \quad i, j = 1, 2, \cdots, k,
\]

where

\[
\beta_{2m} = (2^m - 2)B_{2m}/(2m)!.
\]

His proof uses Sylvester's identity and induction.

A Matrix Stability Problem

Problem 80-3, by K. Sourisseau (University of Minnesota) and M. F. Doherty (University of Massachusetts).

Let

\[
J = \begin{bmatrix}
A_1 & B_1 \\
C_2 & A_2 & B_2 \\
& \ddots & \ddots \\
& & C_n & A_n & B_n \\
& & & \ddots & \ddots \\
& & & & \ddots & B_{N-1} \\
& & & & & C_N & A_N
\end{bmatrix}
\]