A mean value approach for a single server queue where part of the work can be performed during an idle period

Citation for published version (APA):

Document status and date:
Published: 01/01/1983

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Jan. 2020
Memorandum COSOR 83-08
A mean value approach for a single server
queue where part of the work can be
performed during an idle period
by
Jan van Doremalen
Jan van der Wal

Eindhoven, the Netherlands
April 1983
A MEAN VALUE APPROACH FOR A SINGLE SERVER
QUEUE WHERE PART OF THE WORK CAN BE
PERFORMED DURING AN IDLE PERIOD

by

Jan van Doremalen

Jan van der Wal

Abstract.
This note considers a single server queue with Poisson arrivals. A customer's service requirement consists of two parts. For the first customer in a busy period the first part of the work starts already before his arrival at the beginning of the preceding idle period. Using that Poisson arrivals see time averages, Little's formula and the expected residual life time formula, the mean response time and the mean number of customers in the system are obtained.
1. Introduction

This note deals with a single server queueing system with Poisson arrivals. The workload of a customer consists of two parts, the first of which will be called the preparatory part. For the first customer of a busy period the server starts to work on the preparatory part at the beginning of the preceding idle period, so already before the customer is present. (The system is said to be in the busy period if at least one customer is actually present in the system, so the server may be working on a preparatory part, while the system is called idle.) If the preparatory part is completed before the customer arrives the server stops and waits for the customer to come. Only then the server starts to work on the second part of the job. So during an idle period work is done for one customer only.

The situation considered here is a special case of the problem treated by Welch [1964] who considers an M|C|1 queue where the first customer of a busy period has a different service requirement than the other customers in that busy period.

The purpose of this note is to give a simple derivation of the mean response time and the mean number of customers in the queue by means of the following three basic results.

(i) Property PASTA (Poisson Arrivals See Time Averages).
(ii) Little's formula.
(iii) The expected residual lifetime formula.

The line of reasoning we use is very similar to the one used by Oliver [1964] to obtain the Pollaczek-Khintchin formula.

One may easily give the derivation for the more general model of Welch. However, we prefer to give it for the special case of the service requirement consisting of two parts because of the example we have in mind.
2. Example

An example of such a queueing system is the following. In a container-terminal ships have to be unloaded. A huge crane takes a container out of the hold of the ship, the preparatory part, and puts it on a trailer, the second part of the job. Think of the crane as being the server and of the trailers as being the customers. It is assumed that the trailers are not coming for a specific container, so the preparatory part can be done before the trailer arrives, and that the crane waits until a trailer arrives, if the preparatory part has been executed. If, finally, it is assumed that the trailers arrive according to a Poisson process, then we have just an example of the system described in the introduction.

3. Notations

The arrival rate of customers is \(\lambda \). The work for each customer consists of two parts. A preparatory part with distribution function \(G_1 \) and a second part with distribution \(G_2 \). Further the first and second moments of \(G_1 \) and \(G_2 \) are denoted by \(\omega_1 = \int x dG_1(x) \), \(\omega_1^{(2)} = \int x^2 dG_1(x) \), \(I = 1,2 \). The fraction of time the server is working on part 1 and part 2 of a job is denoted by \(\rho_1 = \lambda \omega_1 \) and \(\rho_2 = \lambda \omega_2 \). The fraction of time the server is not working is consequently \(1 - \rho_1 - \rho_2 \).

Finally, let \(L \) denote the average number of customers actually present in the system (in queue and in service) seen by a random observer and \(S \) the average response time of a customer, i.e. time in the system.

4. Derivation of mean queue length \(L \) and mean response time \(S \)

In order to obtain \(L \) and \(S \) we have to exploit property PASTA. PASTA, established under quite general conditions by Wolff [1982], implies:

(i) The average number of customers in the system seen by an arriving customer is equal to the average number of customers seen by a random observer, hence equal to \(L \).

(ii) The probability that an arriving customer sees the server performing part \(i \) of the service of some customer is \(\rho_i \), \(i = 1,2 \). The probability that the server is not working at all, so finished with a part 1 service and waiting for a customer to arrive, is \(1 - \rho_1 - \rho_2 \).
(iii) If an arriving customer finds the server busy with part i then the average remaining part i service time is $\frac{w^{(2)}_1}{2w_1}$, according to the well-known result of the mean excess lifetime of a renewal process. These three observations enable us to write down the following expression for the expected response time of an arriving customer.

\[
S = (L + 1)(w_1 + w_2) + \rho_1 \left(\frac{w^{(2)}_1}{2w_1} + w_2 - w_1 - w_2 \right) + \rho_2 \left(\frac{w^{(2)}_2}{2w_2} - w_1 - w_2 \right) + (1 - \rho_1 - \rho_2)(w_2 - w_1 - w_2).
\]

The first term on the right hand side is the mean response time if for none of the customers present nor for the arriving one any work has been done already. However, by points (ii) and (iii) we know that this need not be the case. The other three terms are the necessary corrections of the first one. For example, the second term takes into account that if the arriving customer finds the server busy with part 1 then for one of the customers (already present or just arrived) the remaining expected service time is $w^{(2)}_1 / 2w_1 + w_2$ instead of $w_1 + w_2$. The last term says that if upon arrival the server is idle, thus ready with part 1 and waiting for a customer to come, then the arriving customer has remaining expected service time w_2 instead of $w_1 + w_2$.

Further we have Little's formula to relate the mean number in the queue to the mean response time (cf. Little [1961]).

\[
L = \lambda S.
\]

Solving (1) and (2) for L and S yields

\[
S = \frac{1}{1 - \rho_1 - \rho_2} \left[(1 - \rho_2)w_2 + \rho_1 \frac{w^{(2)}_1}{2w_1} + \rho_2 \frac{w^{(2)}_2}{2w_2} \right],
\]

\[
L = \frac{\lambda}{1 - \rho_1 - \rho_2} \left[(1 - \rho_2)w_2 + \rho_1 \frac{w^{(2)}_1}{2w_1} + \rho_2 \frac{w^{(2)}_2}{2w_2} \right].
\]

So the three aforementioned basic results: PASTA, Little's formula and mean excess lifetime, allow for an easy derivation of the mean response time and the mean number of customers in the queueing system.
5. References

Little, J.D.C. (1961), A proof on the formula \(L = \lambda W \), Oper. Res. 9, 383-387.

Oliver, R.M. (1964), An alternative derivation of the Pollaczek-Khintchin formula, Oper. Res. 12, 158-159.

Welch, P.D. (1964), On a generalized \(M|G|1 \) queueing process in which the first customer of each busy period receives exceptional service, Oper. Res. 12, 736-752.