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Chapter 1

Introduction

Computational geometry is an area of research on algorithms involving geometric
objects, such as points, lines and polygons. These geometric objects may repre-
sent objects in the physical world, such as streets and rivers in a car navigation
system, or a robot which has to be moved between obstacles. Geometric objects
can also be abstract, such as an entry in a database consisting of the age, year of
employment and salary of a person. This entry can be represented by a point in
three dimensions. There are many application areas — for instance geographical
information systems, computer graphics, robotics, databases, and astrophysics —
where problems can be defined in terms of geometric queries on a set of objects.
In computer graphics rendering all objects in the set can be very time consu-
ming. One wants to render only those objects which are visible for the viewer.
The geometric query for this example could be: ”Which objects are within the
viewing volume?”. An interactive country map might offer the possibility to re-
trieve information on a city by selecting it with the mouse. The geometric query
asked in this example could be: ”Which city (or, more generally, area of the map)
is underneath the hot spot of the mouse?”.

Many data structures have been developed to answer a wide range of geo-
metric queries. Some of the data structures are very specialized and can answer
only a single type of query, for instance finding points contained in a halfplane.
Such specialized data structures are usually unable to answer seemingly similar
queries efficiently. A data structure for reporting all points contained in a half-
plane usually cannot efficiently report all points contained in a box (which is
defined by a set of 2d halfplanes) or in a disk. Similarly, many data structures
can only store one type of objects. For instance, they can store line segments but
not disks, or disks but not line segments. Other data structures are able to answer
several types of geometrical queries and can store several types of objects. These
data structures — we call them multifunctional geometric data structures — are
often used in practice. However they have not been studied extensively from a
theoretical point of view. This is the topic of this thesis: to perform a fundamental
study of the efficiency of multifunctional geometric data structures.
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2 Introduction

The flexibility which is offered by multifunctional geometric data structures
comes at a cost of a (theoretical) loss in query efficiency. In Section 1.1 we men-
tion some important queries that multifunctional geometric data structures can
answer. How the theoretical query efficiency of a data structure is determined is
briefly discussed in Section 1.2.1. The theoretical analysis of the query efficiency
often considers the worst possible input which can be given to the data structure.
This input might not resemble the input observed in practice, so the theoretical
analysis of an algorithm might be too pessimistic. In order to obtain a realistic
efficiency estimate for an algorithm, assumptions can be made on the input stored
in the data structures and the queries asked. These assumptions are captured by
realistic input models, which are explained in Section 1.2.2.

The existing multifunctional geometric data structures can roughly be classi-
fied in two classes, space partition structures (SPS) and bounding-volume hier-
archies (BVH). The first class of multifunctional geometric data structure recur-
sively partitions the space into smaller parts such that there is one or only a few
objects in each part of the space. In this thesis we are mainly interested in a spe-
cial subclass of the space partitioning structures, the binary space partition (BSP).
The second class of multifunctional geometric data structures builds a hierarchy
of objects by joining objects recursively into larger groups until all objects are in
one group. With each group we store a bounding volume that encloses all objects
in the group. The binary space partition and the bounding-volume hierarchy are
introduced in more detail in Section 1.3.

We conclude this introductory chapter with an overview of the results obtained
in this thesis.

1.1 Geometric queries

There are several types of geometric queries on a set S of n objects in Rd which
can all be answered using a single multifunctional geometric data structure. In
this section we give a short introduction to the most important types of queries;
for an excellent survey on geometric queries we refer the reader to the survey
by Agarwal and Erickson [3]. Geometric queries can be answered exactly or
approximately. The theoretical bounds on the query times in the former case are
usually bad. In the latter case the theoretical bounds are much better, but one
has to tolerate an error in the answer. The error can be specified for every query
separately and the theoretical bound depends on that error.

1.1.1 Exact queries

We are interested in the following two types of exact geometrical queries, inter-
section queries and proximity queries. Answering these queries is quite similar
for both classes of multifunctional geometric data structures. Both BVHs and
SPSs are structured as a tree T . A node ν ∈ T is associated with some part of the
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Q

Figure 1.1: A range searching query asks for all objects intersecting the query
range. All objects except the two circles intersect the query range Q.

space, which we denote by R(ν). We only need the tree structure and the regions
associated with the nodes to answer the queries presented in this section.

Intersection queries

Intersection queries are queries where one wants to find (or count, or compute
some function on) all objects intersecting the query. Intersection queries are for
instance used in geographical information systems and computer graphics. The
following queries are examples of intersection queries.

Range searching queries. Compute the subset of all objects in a set S intersec-
ting the query range Q, see Figure 1.1. More formally, we want to compute the
set S∗ := {o ∈ S : o ∩ Q 6= ∅}. Data structures have been developed for many
types of query ranges, such as for axis-parallel queries, halfplane queries, simplex
queries and disk queries. For answering range searching queries we start at the
root of a tree T and recursively visit its children whose regions intersect Q; at a
leaf we return the object o stored there if o intersects Q.

Range aggregate queries. Suppose each object oi ∈ S has a weight ω(oi). The
task is to compute an associative and commutative function

⊕
o∈S∗ ω(o) where

S∗ is the set of objects in S for which o ∩ Q 6= ∅. To let the query time be
independent of the number of objects intersecting Q, one stores at every node
ν the result of that function on the objects below ν. We say that a function is
duplicate-insensitive if x ⊕ x = x for any x. For example MAX is a duplicate-
insensitive functions while + is not. If the construction of the multifunctional
geometric data structure can not guarantee that an object is stored at exactly one
leaf then only duplicate-insensitive functions can be computed efficiently with a
range aggregate query. For answering a range aggregate query we start from the
root of T and traverse the tree as in a range searching query, while keeping a
running aggregate. As opposed to a range searching query we do not recursively
visit the children of some node µ if R(µ) is completely within Q. Instead, we
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q

Figure 1.2: A nearest-neighbor query asks for an object which is closest to the
query. The light gray triangle is the object which is closest to the query point q.

apply⊕ to the running aggregate and the (pre-computed) outcome of
⊕

o∈S∗ ω(o)
stored at µ, where S∗ is the set of objects in the subtree rooted at µ. A range
aggregate query can, for instance, be used to determine the maximum weight of
an object in Q or to count the number of points within the query.

Point (location) queries or inverse range queries. Compute the set of objects
in S containing a query point q. This is basically a degenerate case of the range
searching query, but due to its importance it deserves to be mentioned separately.
Answering a point query is done similar to answering a range searching query.

Proximity queries

The second type of exact queries are proximity queries. The answer of this type of
query involves the distance from the query to the objects in S. Proximity queries
are for instance used in motion planning [14] and pattern recognition [35]. The
following two queries are proximity queries.

Nearest-neighbor queries. Find an object in S closest to the query Q, or more
formally, return an object o for which δ(o,Q) = mino′∈S δ(o′, Q), where δ(A,B)
is the distance between A and B for some distance measure, see Figure 1.2. The
nearest-neighbor query can be generalized to the case that the k closest objects
should be returned. The query is then called a k-nearest-neighbor query. For
answering a nearest-neighbor query we use a priority queue Q in which we store
some nodes of the tree T . The priority of a node is inversely proportional to the
minimum distance between its region and the query. We first add the root of T to
Q, set the current minimum distance δ to infinity and continue as follows. Let ν
be the node in Q with the highest priority. While Q is not empty and the distance
from the region of ν to the query is smaller than δ we extract ν from Q. If ν is
a leaf we determine the distance between Q and the object(s) stored at ν and if
necessary update the shortest distance δ and the nearest-neighbor found until now.
Otherwise we add each child of ν to Q.
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Furthest-neighbor queries. Find an object in S furthest from the query Q, or
more formally, return an object o for which δ(o,Q) = maxo′∈S δ(o′, Q) where
δ(A,B) is the distance between A and B for some distance measure. As in a
nearest-neighbor query we use a priority queueQ to store some nodes of the tree.
The priority of a node ν in the priority queue is in this case proportional to the
maximum distance between the region of ν and the query. We add the root of T
to Q and set the current maximum distance δ to 0. Again let ν be the node in Q
with the highest priority. While Q is not empty and the distance from the furthest
point in the region of ν to the query is larger than δ we extract ν from Q. If ν is
a leaf we determine the distance between Q and the object(s) stored at ν and if
necessary update the largest distance δ and the furthest neighbor found until now.
Otherwise we add each child of ν to Q.

It can be shown that the time to answer an Euclidian nearest-neighbor query on
an SPS or BVH is the same, up to an O(log n) factor, as the time needed to answer
a range query with an empty disk. For an Euclidian furthest-neighbor query on
an SPS or BVH it can be shown that the cost is the same, up to an O(log n) factor,
as the time needed to answer a aggregate range query with a disk. Hence we will
concentrate on analyzing the time for range searching in most chapters of this
thesis.

1.1.2 Approximate queries

Exact range searching either uses non-linear storage or incurs super-logarithmic
query time [30]. It is therefore natural to seek for approximate solutions. The con-
cept ε-approximate range searching was introduced by Arya and Mount [13]. Let
diam(Q) be the diameter of a query range Q. In ε-approximate range searching
one considers, for a parameter ε > 0, the ε-extended query range Qε, which is
the locus of points lying at distance at most ε · diam(Q) from Q, see Figure 1.3.
For a set S of n objects in Rd, approximate queries similar to the exact queries of
the previous section can be defined.

Range searching in the approximate setting returns a set S∗ such that {o ∈
S : o ∩ Q 6= ∅} ⊆ S∗ ⊆ {o ∈ S : o ∩ Qε 6= ∅} and the approximate range
aggregate query computes

⊕
o∈S∗ . Proximity queries can also be answered in the

approximate setting. An approximate nearest neighbor query returns, for a query
Q, an object o ∈ S such that δ(o,Q) ≤ (1 + ε)δ(o∗, Q), where o∗ is the true
nearest neighbor of Q and δ(A,B) is the minimum distance between A and B for
some distance measure.

1.2 Algorithm analysis
Usually the efficiency of an algorithm is not stated in milliseconds running time.
The stated running time would be outdated quickly, since the hardware gets faster
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ε · diam(Q)

Q

Qε

Figure 1.3: The approximate query range Qε of the query Q.

all the time. Therefore a different measure is used to express the running time
of an algorithm, the number of elementary operations it performs. The number
of elementary operations depends on the input size n, output size k and possibly
on some property of the input. Usually the efficiency of an algorithm is given
for the worst-case, the largest number of elementary operations needed before the
algorithm terminates.

The running time of algorithms is analyzed asymptotically. We want to know
how the running time roughly is affected by a change in the input size, output size
or possibly the property of the input. Suppose the running time of an algorithm
A only depends on the input size. The asymptotic running time for A is denoted
by O(f ′(n)) if there are positive constants c, n0 such that f(n), the number of
elementary operations performed by A, is at most c ·f ′(n) for any n ≥ n0. When
analyzing an algorithm the asymptotic running time of an algorithm is expressed
as close to the actual running time as possible and in as little terms depending on
n. For instance if the actual running time is given by f(n) = 12n2 − 4n + 3 then
the asymptotic running time is denoted by O(n2) since for c = 12 and n0 = 1
the relation f(n) ≤ c · f ′(n) holds.

Models of computation define the elementary operations used in the analysis
of an algorithm. Fixing a computational model allows one to compare two al-
gorithms objectively. Input models are used to describe properties of the input
to the algorithm. Without assumptions on the properties the worst possible input
has to be taken into account during the analysis, even when this input is never
encountered in practice. Using the assumptions on the input or the queries ma-
kes it possible to develop more efficient data structures or the assumptions might
explain why theoretically bad data structures perform well in practice.

1.2.1 Models of computation

The two computational models which are used in this thesis are introduced briefly
in this section. For a discussion on other computational models we refer the reader
to the survey by Van Emde Boas [39].
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B

M

P

head

Figure 1.4: In the external-memory model the processor P can only do computa-
tions on data in internal memory of size M . If the data is not in internal memory
it is transferred from disk to internal memory in blocks of size B.

Random Access Memory model

The internal memory algorithms are analyzed in the Random Access Memory mo-
del [9, 39], or RAM-model for short, with uniform cost criterion. The RAM-
model with uniform cost criterion is also called real RAM-model.

In the RAM-model there is an unlimited amount of memory available. The
algorithm is able to access an arbitrary part of the memory at unit cost. In the
RAM-model the following arithmetic instructions are considered to be elementary
operations: addition, subtraction, multiplication and division. The uniform cost
criterion states that the cost of an operation does not depend on the number of
bits used for storing the operands. This implies that arithmetic operations on real
numbers can be handled with infinite precision in constant time.

External-memory model

The external-memory model introduced by Aggarwal and Vitter [8] has become
the standard model for external-memory algorithms. In this model, a computer
has an internal memory of size M and an arbitrarily large external memory (disk),
see Figure 1.4. In external memory, data is stored in blocks of size B. Whenever
an algorithm wants to work on data not present in internal memory, the block(s)
containing those data are read from external memory. Writing data to external
memory is also done in blocks. The complexity of an algorithm in this model, the
I/O-complexity, is measured in terms of the number of I/O-operations—reading or
writing a block from or to external memory—it performs. Any computation in the
internal memory is for free and therefore does not influence the I/O-complexity.
This is justified by the fact that accessing data on a disk takes several orders of
magnitude longer than accessing data in internal memory.

An overview of I/O-efficient algorithms and techniques in computational ge-
ometry can be found in the survey by Breimann and Vahrenhold [28]. As usual,
we assume that B ¿ M < N , where N is the input size.
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1.2.2 Models of input
Many data structures developed in computational geometry are developed with
a worst-case input in mind. However, this worst-case input might not occur in
practice at all. Input models can be used to capture a property of the input, which
can be exploited in the development of data structures. For instance, an input
model can stipulate that the objects in the input have a restriction on their shape
(such as fatness, see below) or that they are distributed in a certain way (such as
density, see below). In general, the models assign a parameter to the input that
describes how well the input satisfies the model – how fat they are, or how dense
the scene is. The analysis of the algorithm is then done in terms of the input size,
n, the output size k, and this parameter.

In this section the models of input occurring in this thesis are briefly described.
Other models include unclutteredness [19], simple cover complexity [64] and dis-
persion [73, 89].

Fatness

Fatness is probably the best known realistic input model. There are many defi-
nitions for fatness [5, 57, 64, 81]. We will use the following definition [24], see
Figure 1.5. Let β be a constant with 0 < β ≤ 1. Let B be a ball whose center is
inside an object o and which intersects the boundary of o. The object o is β-fat if
for any such ball B the intersection of o and B covers at least a fraction β of the
ball, or more formally, vol(o ∩ B) ≥ β · vol(B), where vol denotes the volume.
Sometimes the fatness-parameter β is omitted and an object is called fat if it is
β-fat for some not too small constant β. A set S is said to be β-fat if all objects
in S are β-fat.

B

π/8

Figure 1.5: This object o is 1/16-fat, but not β-fat for any β > 1/16.

Low stabbing number

Input objects are sometimes disjoint or they do not overlap too much. This pro-
perty is quantified by the stabbing number. The stabbing number of a set S of
objects is a measure for how many objects in S intersect in a single point of the
space, see Figure 1.6. The stabbing number σ(p, S) of a point p is the number
of objects from S it intersects. A set S is said to have stabbing number σ(S) if
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no point in the space has stabbing number larger than σ for the objects from S,
or more formally σ(S) = maxp∈Rd σ(p, S). A set of disjoint objects thus has a
stabbing number of one.

Figure 1.6: This scene has a stabbing number of 3, since there is no point inter-
sected by more than three objects.

Low density

The notion of low density was introduced by Van der Stappen [81, 82]. The
density of a set S is the smallest number λ such that the following holds: any ball
B is intersected by at most λ objects o ∈ S with ρ(o) > ρ(B) [24], where ρ(o)
is the radius of the smallest enclosing ball of o. If S has density λ, we call S a
λ-low-density scene.

B

Figure 1.7: This scene is a 4-low-density scene. The ball B intersects 4 objects
for which ρ(o) > ρ(B) holds.
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1.3 Multifunctional geometric data structures
In the database community multifunctional geometric data structures are often
called access methods, or index structures [61, 67]. In the past decades many
index structures have been proposed, to organize the spatial objects stored in the
database so that a geometrical query can be answered efficiently. See the survey
by Gaede and Günther [44] and the book by Samet [78].

Existing multifunctional geometric data structures can be roughly catego-
rized into bounding-volume hierarchies (BVHs) and space-partitioning structures
(SPSs). In this thesis we are interested in a specific class of SPS, the binary space
partition (BSP) which is introduced in the next section. BVHs are introduced in
Section 1.3.2.

1.3.1 Binary space partitions
A binary space partition tree, or BSP tree, for a set S of n objects in Rd is an SPS
where the subdivision of the underlying space is done in a hierarchical fashion
using hyperplanes (that is, lines in case the space is R2, planes in R3, etc.) A
BSP tree is a binary tree T with the following properties — see Figure 1.8 for an
example in R2.

• Every (internal or leaf) node ν corresponds to a subset R(ν) of Rd, which
we call the region of ν. These regions are not explicitly stored with the
nodes. When ν is a leaf node, we sometimes refer to R(ν) as a cell. Thus
the term region can be used both for internal nodes and leaf nodes, but
the term cell is strictly reserved for regions of leaf nodes. The root node
corresponds to Rd.

• Every internal node ν stores a hyperplane h(ν), which we call the splitting
hyperplane (splitting line when d = 2) of ν. The left child of ν then corre-
sponds to R(ν) ∩ h(ν)−, where h(ν)− denotes the half-space on one side
of h(ν), and the right child corresponds to R(ν) ∩ h(ν)+, where h(ν)+ is
the half-space on the other side of h(ν). The hyperplane h(ν) is said to in-
duce a balanced split when both children of ν store at most β|Sν | objects,
for some 0.5 ≤ β < 1, where Sν is the set of objects stored in the subtree
rooted at ν.

• Every leaf node µ stores a list L(µ) of all objects in S intersecting the
interior of R(µ).

Note that we do not place a bound on the number of objects stored with a leaf. In
the BSP trees discussed in this thesis, however, this number will be constant.

BSP trees are used for many purposes. For example, they are used for range
searching [3, 25], for hidden surface removal with the painter’s algorithm [42],
for shadow generation [33], for set operations on polyhedra [65, 87], for visibility
preprocessing for interactive walkthroughs [84], for cell decomposition methods
in motion planning [15], and for surface approximation [7].
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Figure 1.8: A BSP in the plane, and the corresponding tree. With the leaves we
have shown the fragments inside the corresponding cell, although normally just a
pointer to the object is stored.

In some applications—hidden-surface removal is a typical example—the effi-
ciency is determined by the size of the BSP tree, as the application needs to
traverse the whole tree. Hence, several algorithms have been proposed which
construct small BSP trees in various settings [4, 6, 19, 21, 71, 72, 86]. For
instance, Paterson and Yao [71] proved that any set of n disjoint line segments
in the plane admits a BSP tree of size O(n log n). Tóth [85] showed that this is
close to optimal by exhibiting a set of n segments for which any BSP tree must
have size Ω(n log n/ log log n). Paterson and Yao also proved that there are sets
of n disjoint triangles in R3 for which any BSP tree must have quadratic size, and
they gave a construction algorithm that achieves this bound.

Next we introduce two special types of BSPs. The first BSP is the kd-tree
which can answer exact orthogonal range queries efficiently and the second BSP
is the BAR-tree, which can answer approximate range queries efficiently.

kd-trees

The kd-tree was described for the first time in 1975 by Bentley [18]. Usually
kd-trees are used to store a set of points in Rd. The kd-tree uses axis-aligned
splitting hyperplanes to divide the point set into two (almost) equal sized sets. The
resulting sets are split recursively. In the standard kd-tree the dimension along
which to split the point set alternates in a round-robin fashion, see Figure 1.9 a)
for a partitioning of the plane by a standard kd-tree. So in R3 the point set is
first split along the x-axis, then along the y-axis, then along the z-axis and then
again along the x-axis, and so on. A rectangular range query Q in a kd-tree takes
O(n1−1/d + k) time where k is the number of points within Q. A rectangular
aggregate query can be answered in O(n1−1/d) time and a point-location query
in O(log n) time. A nearest-neighbor query takes O(n) time in the worst case, but
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a) b)

Figure 1.9: A partitioning of the plane by a) a standard kd-tree. b) a LSF-kd-tree.
A point on a splitting line ` is always considered to be right of ` and below `.

Friedman et al. [41] argued that, under certain assumptions, a nearest-neighbor
query takes logarithmic expected time.

A variant of the standard kd-tree is the longest-side-first kd-tree (LSF-kd-tree).
In the LSF-kd-tree the splitting plane at a node ν is chosen such that it cuts the lon-
gest side of the region of ν, where ties are broken arbitrarily. See Figure 1.9 b) for
an example of a partitioning of the plane by a LSF-kd-tree. Dickerson et al. [36]
showed that the LSF-kd-tree can answer approximate nearest-neighbor queries in
O(ε1−d logd n) time and approximate range queries in O(ε1−d logd n + k) time,
where k is the number of objects returned.

Robinson [75] introduced an external-memory variant of the kd-tree. The
number of I/O-operations needed to answer an axis-aligned range query in his
K-D-B-tree on N points is O((N/B)1−1/d + k/B), where B is the number of
points which can be stored in a block.

BAR-trees

The BAR-tree was introduced by Duncan et al. [38, 37]. The regions associated
with nodes in the BAR-tree have the following properties. The regions are convex,
they have aspect ratios bounded by some constant α, and their boundary con-
sists of a constant number of vertical, horizontal, and diagonal line segments, see
Figure 1.10 for a partitioning of the plane by a BAR-tree. Duncan et al. [38, 37]
proved that under these constraints for any α ≥ 3d, using two splits, any R(ν)
can be partitioned into 3 cells, such that the number of points in any cell is at most
a constant fraction β of the number of points in R(ν). Thus the height of the tree
can be bounded by O(log n). Note however that some nodes in a BAR-tree may
not store a hyperplane which induces a balanced split, since sometimes the first
split may have to partition the points in R(ν) into two subsets with drastically
different cardinalities.

A BAR-tree uses linear space, and because of the properties of the regions,
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Figure 1.10: A partitioning of the plane by a BAR-tree. A point on a splitting line
` is always considered to be right of ` and below `.

the number of nodes visited during a query can be effectively bounded using a
packing argument [13]. An approximate range query takes O(log n + εγ + kε)
time for any query range Q, where γ = 1 − d for convex ranges and γ = −d
otherwise, and kε is the number of points inside the extended query range Qε.
An approximate aggregate query can be answered in time O(log n+ εγ), a point-
location query in O(log n) time and a nearest-neighbor query or furthest-neighbor
query in O(log n + ε1−d log(1/ε)) time.

As noted by Haverkort et al. [50], the query time of an exact range query
in a BAR-tree can be bounded by O(log n + minε{εγ + kε}) since Qε is only
used in the analysis and not by the query algorithm, which only uses Q to visit
T and always reports the correct answers P ∩ Q. Hence for range searching the
notion of approximate range searching in fact just stipulates that we are using ε
and kε to bound the running time, rather than the traditional “exact” output size
k = |P ∩Q|.

1.3.2 Bounding-volume hierarchies

The second class of multifunctional geometric data structures is the bounding-
volume hierarchy (BVH), see Figure 1.11. A BVH on a set S of n objects is a
tree structure whose leaves are in a one-to-one correspondence with the objects
in S and where each node ν stores some constant-complexity bounding volume
of the set of objects corresponding to the leaves in the subtree of ν. A BVH has
size O(n) by definition, and it can store any kind of object. A query with a range
Q is answered by traversing the BVH in a top-down manner, only proceeding to
those nodes whose bounding volumes intersect Q. For each leaf that is reached,
the corresponding object needs to be checked against Q. In principle one can
perform the search with any kind of range Q. To speed up the test whether the
range Q intersects the bounding volume of some node, however, the range itself
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Figure 1.11: A BVH on objects in the plane, and the corresponding tree.

is often also replaced by a bounding volume. Hence, the possibly expensive test
with the original range Q only has to be performed with the objects found at the
leaf level. Note that there is a trade-off in the type of bounding volume used:
simple bounding volumes make the intersection test fast, but they often fit the
underlying objects less tightly so that more nodes in the tree are visited.

A very popular bounding volume is the axis-aligned bounding box. The
reason for this is that intersection tests between bounding boxes are very fast
and easy to implement. BVHs that use bounding boxes as bounding volumes—
such BVHs are called box-trees—have been investigated from a theoretical point
of view by De Berg et al. [22], Agarwal et al. [2], and Haverkort et al. [50].
Agarwal et al. showed how to construct a box-tree for a set S of n input boxes
in Rd such that a range query with an axis-aligned query box Q can be answered
in time O(n1−1/d + k), where k is the number of input bounding boxes intersec-
ting Q. They also showed that this is optimal in the worst case, even if the input
boxes are disjoint; this is also implied by the results of Kanth and Singh [55].
For inputs that consist of disjoint axis-aligned bounding rectangles in the plane,
Agarwal et al. [2] present another box-tree, which achieves a query time of
O(
√

n log n+k) for queries with axis-aligned rectangles, and O(log2 n) for point
queries. In Haverkort’s thesis [49], the bound for rectangle queries is improved to
the optimal O(

√
n + k).

As noted above, a simple bounding volume such as a bounding box may not
fit the underlying objects or the query range very well. Suppose, for instance,
that we want to find all objects intersecting a query line segment and suppose
that the objects are not too large and are distributed on a line ` whose slope is 1,
see Figure 1.12. The bounding boxes enclose some space in the neighborhood of
`. When we query with a segment s whose slope is also close to 1, then, even
when s is not approximated with a bounding box, the query has to visit many
nodes without returning a single answer. Indeed, the box-trees of Agarwal et al.
[2] (or any box-tree, for that matter) cannot give any (sublinear) worst-case gu-
arantees for queries with non-rectangular ranges or in non-rectangular data. The
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s

Figure 1.12: A query with a line segment may visit many axis-aligned bounding
boxes without intersecting an object.

fact that bounding boxes may not always fit well, inspired research on BVHs
that use different, more tightly fitting bounding volumes [40, 46, 58, 80]. The
types of bounding volumes suggested include spheres [51, 68], oriented boun-
ding boxes [16, 46], and discretely oriented polyhedra [43, 52, 56, 90].

Below we introduce the R-tree, a well known external-memory BVH.

R-trees

The R-tree, originally introduced by Guttman [47] in 1984, is a height-balanced
multi-way tree similar to a B-tree. An R-tree is a bounding-volume hierarchy
with axis-aligned boxes as the bounding volume. Let B be the size of a disk
block. Every internal node of an R-tree has degree Θ(B), except for possibly
the root whose degree is at least two. Every internal node, including the root,
stores for every child a smallest enclosing axis-aligned box. Every leaf contains
Θ(B) boxes, each enclosing an object from the input set, with possibly a pointer
to the original object. An R-tree on N objects is stored in Θ(N/B) (disk) blocks
and has height Θ(logB N). R-trees are constructed by repeated insertion or by
bulk-loading.

When R-trees are constructed by repeated insertion, the objects in the input
set are inserted in the R-tree one at a time. An update of an R-tree changes the
bounding boxes stored in some internal nodes. The query efficiency of an R-tree
depends on the amount of overlap between the bounding boxes stored in the tree.
Therefore many R-trees have been developed [17, 47, 54, 79] using different heu-
ristics for the updates. The cost of updating an R-tree is usually O(logB N). The
cost of the construction of an R-tree is thus O(N logB N). Bulk-loading algo-
rithms consider the whole set of objects at once during the construction of an
R-tree. The cost of most bulk-loading construction algorithms [11, 45, 53, 59] is
O((N/B) logM/B(N/B)).

R-trees are heuristic-based structures and have no good guarantees on the
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query performance. It was shown [2] that in the worst case, a query has to visit
Ω((N/B)1−1/d + k/B) blocks using any R-tree variant built on N points in Rd,
where k is the output size. This lower bound is reached by a recently developed
R-tree variant, called the PR-tree [11], but the result holds only if both the queries
and objects are axis-parallel hyperrectangles.

For an overview of the theory and applications of R-trees the reader is referred
to the book by Manolopoulos et al. [60].

1.4 Overview of this thesis
This thesis is divided into two parts. The first part is dedicated to binary space
partitions and the second part to bounding-volume hierarchies.

In Chapter 2, we study the use of binary space partitions for queries with so
called discretely oriented polygons (DOP) in a set of points in Rd. A DOP is a
convex polygon whose edges have an orientation from a set of a constant number
of predefined orientations. We introduce a new BSP for this family of queries
which has approximately the same query time as an axis-aligned range query in
a kd-tree. Next we develop a framework that converts a BSP on points to a BSP
on line segments in Chapter 3. Using this framework we give a BSP which can
answer approximate range-searching queries efficiently. In Chapter 4 we give a
BSP of linear size for a set of objects in a low-density scene, which we call the
oBAR-tree. This data structure is able to answer approximate range-searching
queries as efficiently as the BAR-tree. In the last chapter of this part we extend
both the BAR-tree and the oBAR-tree to the I/O-efficient setting.

In the second part we are interested in bounding-volume hierarchies. Usu-
ally bounding-volume hierarchies use axis-aligned bounding boxes as bounding
volumes. By using DOPs, however, one can get bounding volumes that fit more
tightly. Investigating such BVHs, which we call DOP-trees, is the topic of the se-
cond part. In Chapter 6 we give a lower bound on the query cost in a DOP-tree.
We also give an algorithm to construct a DOP-tree achieving this bound. In the
same chapter we develop a DOP-tree for scenes with a low stabbing number which
can answer a range query with a DOP at almost the (theoretically) optimal cost as
an axis-aligned query in a kd-tree. In the second and last chapter of this part
we experimentally investigate the influence of using more orientations to describe
the underlying objects in the external memory setting. We also compare these
external-memory DOP-trees with the PR-tree.

Chapter 8 concludes this thesis with an overview of the results presented and
some open problems.

The work presented in this thesis is based on my research of the last four years.
The results, except for the experimental study in Chapter 7, have been presented
in [23, 26, 27, 83].
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Chapter 2

c-Oriented Range Queries in
Point Data

Recall from Section 1.1 that in the range searching problem we want to find the
objects from a set S that intersect a given region called the query range. We
want to preprocess S into a data structure D such that D can be used repeatedly
for determining the objects intersecting a query range efficiently. In practice the
overhead in storage used for D should be kept as small as possible. We are there-
fore interested in data structures which needs linear storage.

Range searching is an important topic in computational geometry. In the
past a lot of research has been done on special instances of the range searching
problem. These instances include orthogonal range searching [29, 30, 76, 77],
simplex range searching [31, 34, 63] and halfspace range searching [32, 62]. In
this chapter we are interested in another special instance, convex-polytope range
searching for which the orientations of the facets of the polytope come from a pre-
determined set of c orientations. We call this problem the c-DOP range-searching
problem. Note that axis-aligned range searching is an instance of c-DOP range
searching.

A c-DOP is more formally defined as follows. Let C be a set of c non-parallel
hyperplanes having orientations o1 . . . oc. We say that two hyperplanes have the
same orientation if they are parallel. Thus the set C defines c orientations. We say
that a hyperplane, or a (d − 1)-dimensional facet of a d-dimensional polytope,
is c-oriented if it has one of the c orientations defined by C. We call a convex
polytope a c-DOP if all of its facets are c-oriented. Hence, a c-DOP has at most 2c
facets. We assume that the set C is fixed, and terms like c-DOPs, c-oriented, and
so on, always refer to this set C. Moreover, when we speak of a DOP, we always
mean a c-DOP.

In the first section of this chapter we describe two existing SPSs for which
there is a bound on c-oriented range searching. The first SPS has a good bound
on the query time when the query is a DOP, but cannot guarantee a better bound

19
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when the query is a point. The second structure is a BSP and has a good bound
on the query time with points. The bound for DOP-queries, however, is high. In
Section 2.2 we develop a new data structure which has good query times for both
point and DOP-queries. It answers point queries in O(log n) time and DOP-queries
in O(n1−1/d+ε + k) time where k is the number of points in the query and ε is
an arbitrary constant larger than 0. This bound holds for any set C of a constant
number of orientations.

2.1 Existing solutions
A c-DOP-query can be answered by decomposing the query in simplices and then
query with each simplex. In Section 2.1.1 we briefly describe a data structure by
Matoušek [63] which has the best query time for simplex range searching. One
would hope that small queries can be answered more efficiently than large queries.
The time bound for point queries can be used as an indication for the query time
of small queries. Unfortunately this structure does not have a good query bound
for point queries (that is, the query time for point queries is not better than the
query time for simplex queries).

Section 2.1.2 discusses how the kd-tree, a well-known data structure for axis-
aligned range searching which has a good point query time, can be extended to
support c-oriented range queries. The resulting kd-tree, however, does not have a
very good DOP-query time.

2.1.1 Partition trees

Figure 2.1: A simplicial partition of size 6.

The partition tree by Matoušek [63] is a data structure with the best known
bound for simplex range searching. It is constructed using a recursive application
of a simplicial partitioning, see Figure 2.1. Let S be a set of n points in Rd and
let r be a positive integer at most n. A simplicial partition of size r for the set S
is a set of pairs Ψ(S) = {(S1,∆1), . . . , (Sr, ∆r)}, where the Si form a disjoint
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partition of S, each ∆i is a simplex containing Si, and |Si| 6 2n/r for all i. The
crossing number of Ψ(S) is the maximum number of simplices intersecting any
hyperplane. Matoušek [63] has shown that any set of points admits a simplicial
partition of size r with crossing number O(r1−1/d).

The partition tree answers a simplex-query in O(n1−1/d logO(1) n) time and,
hence, it can be used to answer DOP-queries in the same time bound. However
for point queries no better bound is known.

2.1.2 c-oriented kd-tree
One way to extend a kd-tree to support c-DOP-queries is to lift the point set S to
c dimensions and then build an axis-aligned kd-tree T in c dimensions. More
precisely let O be the origin. We map every point p ∈ S in Rd to a point
p′ = (x1 · · ·xc) in Rc, where xi is defined as the signed distance1 from O to the
projection of p on a line through O whose orientation is oi. Let Slabi(x−i , x+

i )
be the slab in Rd bounded by two hyperplanes with normal oi at distance x−i and
x+

i fromO. Any DOP D is defined by
⋂c

i=1 Slabi(x−i , x+
i ) where Slabi(x−i , x+

i )
is the smallest slab enclosing D, see Figure 2.2. In Rc a query-DOP D now cor-
responds to an axis-aligned box D′ =

⋂c
i=1[x

−
i , x+

i ]. Note that any point in Rc

contained in D′ corresponds to a point contained in D in Rd and vice versa. We
can thus answer a DOP-query Q in Rd by mapping it to an axis-aligned box D′ in
Rc in constant time and then query the T with D′ in O(n1−1/c) time. Similarly a
point query q can be answered in O(log n) time.
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Figure 2.2: A 4-DOP defined by defined by
⋂4

i=1[x
−
i , x+

i ].

Alternatively the set of axis-aligned orientations used in the kd-tree construc-
tion can be replaced by the set C. The resulting kd-tree is basically the same as
in the first approach (assuming that the order in which the orientations are used

1The signed distance between two points is defined as the distance between the points with an
additional sign. This sign indicates the order of the two points when projected on the x-axis (or y-axis
when both points have the same projection on the x-axis). The sign is negative when the projection of
the second point has a lower abscissa.
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to cut the remaining set is the same), since the mapping preserves the order of the
points along each orientation.

2.2 c-grid BSP

In this section we show how to construct a c-oriented BSP for S with properties
similar to the simplicial partition of Matoušek: every cell in the BSP contains at
most n/r points, there are O(r) cells, and every c-oriented hyperplane intersects
O(r1−1/d) cells.

One important difference with the result of Matoušek is that we only bound
the crossing number with respect to c-oriented hyperplanes, not with respect to
arbitrary hyperplanes. In this sense, our result is weaker than Matoušek’s result.
On the other hand, our partitioning is a c-oriented BSP whereas Matoušek uses
arbitrary simplices that can even intersect. This means that the crossing number
of a point—the maximum number of cells containing the point—is 1 for our par-
titioning, whereas no better bounds than O(r1−1/d) are known for Matoušek’s
partitioning. An additional advantage is that our partitioning algorithm is much
simpler.

Lemma 2.1 Let S be a set of n points in Rd. For any r ≤ n and constant c > d
there exists a c-oriented BSP for S with the following properties:

i) each cell in the BSP contains at most n/r points

ii) the number of cells in the BSP is O(r)

iii) the depth of the corresponding BSP tree is O(log r)

iv) any hyperplane h with an orientation in C intersects at most O(r1−1/d) cells
in the BSP.

The partitioning can be constructed in O(n log r) time when the points of S are
given as c lists S1, ..., Sc, where Si contains all points of S sorted by their projec-
tions on a line orthogonal to the i-th orientation in C.

Proof: The basic idea is the following, see Figure 2.3. Consider the i-th orienta-
tion, oi, in C. Take a setHi of r1/d−1 splitting hyperplanes with that orientation,
such that there are n/r1/d points from S in each of the slabs defined by the hyper-
planes.2 Do this for each of the c orientations. The hyperplanes fromH1∪· · ·∪Hc

together define a “grid” with O(r) cells. In the second stage, we partition each
cell that contains more than n/r points into cells with at most n/r and at least
n/(2r) points. It is not difficult to see that we can get a BSP from this strategy
with properties (i)–(iv). The main complication is to achieve the desired running
time of the construction. Next we describe the details.

2For simplicity we assume here and in the sequel that the set of points is in general position. More
precisely, we assume that no two points lie on a common line with one of the c orientations.
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a) b)

Figure 2.3: An example of the partitioning of R2 by a c-grid BSP on a set of 40
points with r = 16. In a) the grid is shown which is created in the first step of
the construction. Some cells in the partitioning are empty and some contain more
than 40/16 < 3 points. A cell C containing too many points is depicted in gray.
b) shows the partitioning of C in the second step.

Stage 1. We first scan, for each i ∈ {1, . . . , c}, the list Si to find an ordered
set Hi of r1/d − 1 splitting hyperplanes such that the slabs between two
consecutive hyperplanes inHi (and the “slabs” before the first and after the
last hyperplane inHi) each contain at most n/r1/d points. We then re-order
the hyperplanes from each Hi: we construct a balanced binary tree Ti on
Hi, and output the hyperplanes in the order given by a pre-order traversal
of Ti. We still use Hi to denote the re-ordered set.

Next we start the construction of the BSP. We initialize a BSP tree T consis-
ting of a single leaf node. We then insert the hyperplanes from H1, . . . ,Hc

one by one. (It is not important that all of the hyperplanes from H1 are
inserted before we start with H2, etc. One can also treat the sets Hi in a
round-robin fashion, as long as the ordering within each Hi is respected.)
To insert a hyperplane h, we traverse T top-down to locate all the leaf cells
that are intersected by h, as follows. Each (internal or leaf) node ν of the
BSP corresponds to a region R(ν) in Rd: the root corresponds to Rd, the
left and right child of the root to the half-spaces to the left resp. right of the
splitting hyperplane at the root, etc. When we arrive at a node ν during the
traversal, we make sure that we have h ∩ R(ν) available. If h ∩ R(ν) does
not intersect the splitting hyperplane h(ν) stored at ν, then we continue the
traversal in the appropriate child, otherwise we use h(ν) to cut h ∩ R(ν)
into two pieces and continue the traversal in both children with the appro-
priate piece. Note that since the regions are c-DOPs, the pieces h ∩ R(ν)
have constant complexity, so each node is handled in O(1) time. Each leaf
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that we reach is replaced by a node with splitting plane h and two leaves as
children.

Stage 2. We first distribute the points of S to the resulting cells by searching in
the BSP with each point. When a cell contains more than n/r points—we
say that it is overfull—we construct a balanced BSP on those points using
parallel hyperplanes with an arbitrary orientation from C, until the number
of points in each subcell drops below n/r. Note that this implies that each
subcell created in this manner has at least n/(2r) points. We let this tree
replace the leaf of T corresponding to the overfull cell.

This BSP has property (i) by construction. Property (ii) follows from the fact
that the first stage produces O(r) cells, and the second stage produces only cells
with at least n/(2r) points.

For property (iii) consider the tree T ′i obtained by taking the nodes in the BSP
which have a partition plane of orientation oi ∈ C and connecting the nodes if
one is a descendant of the other. Since the hyperplanes are inserted according to
a pre-order on Ti, any path in T ′i corresponds to a path in Ti, with maybe some
nodes removed from this path. The tree T ′i thus has at most the same depth as
Ti, namely O(log r). Since this holds for all orientations, the tree resulting after
Stage 1 has depth O(c log r) = O(log r). The balanced binary trees created in
the second step, which replace the leaves of the BSP corresponding overfull cells,
also have depth O(log r) and so the property follows.

To prove property (iv), we note that the number of cells intersected by any
c-oriented hyperplane h after the first stage is bounded by the complexity of the
arrangement on h induced by the partitioning, which is O(((c − 1)r1/d)d−1) =
O((c − 1)d−1r1−1/d). It remains to account for the increase in the number of
intersected cells due to the second stage. To this end, we observe that the total
number of points in the intersected cells is at most n/r1/d, since h lies inside one
of the slabs induced by the splitting hyperplanes parallel to h. Because the second
stage only produces cells with at least n/(2r) points, this implies that there cannot
be more than 2r1−1/d such cells.

We are now left with proving the construction time of the partitioning. Scan-
ning the sorted lists Si to obtain the sets Hi, building the c binary trees Ti, and
doing the pre-order traversal of each of them takes O(cn) time in total. Initializing
the BSP tree T takes constant time. Since the depth of the BSP tree T is O(log r),
inserting a hyperplane h takes O(mh log r) time, where mh is the number of lea-
ves where h has to be inserted. Since this number is equal to the total complexity
of the arrangement induced on h by the previously inserted hyperplanes, we have
mh = O(r1−1/d). Hence, in total we spent O(r log r) time, so Stage 1 takes
O(n + r log r) time.

The distribution of the points of S to the resulting cells can subsequently be
done in O(n log r) time using the BSP. Let nj be the number of points in a cell
j of the partitioning. The construction of the BSPs for the overfull cells takes∑

i O(ni) = O(n) time, where the sum is over all overfull cells. The overall
construction time is O(r log r + n log r) and since r ≤ n the bound follows. 2
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To obtain a BSP that can answer DOP-queries efficiently, we recursively apply
Lemma 2.1 (with a suitable value of r—see below) to each cell in the partitioning
that contains more than one point. This is similar to the way simplicial partitions
are used to construct partition trees.

Theorem 2.2 Let S be a set of n points inRd. For any ε > 0, there is a c-oriented
BSP tree T that has size O(n), has depth O(log n), and can answer DOP-queries
in O(n1−1/d+ε +k) time, where k is the number of reported points. The BSP tree
T can be constructed in O(n log n) time.

Proof: Think about the tree not as a BSP, but as a tree with fan-out O(r): the root
of the tree has O(r) children, each corresponding to a cell in the partitioning of
Lemma 2.1, each of these children has O(r) children corresponding to the cells
in the recursively created partitionings, and so on. Since r is a constant—see the
end of the proof—the conversion to a binary tree does not influence the asymptotic
bounds. By property (i) of Lemma 2.1, this tree has depth O(logr n) = O(log n),
and it is easy to see that its size is O(n).

To analyze the query time, we distinguish between nodes whose associated
region is contained in the query range and nodes whose region is intersected by
the boundary of the range. The number of nodes of the former type is O(k).
To bound the number of nodes of the latter type, we formulate a recurrence for
Q(n), the number of nodes whose region is intersected by a fixed facet f of the
query range; multiplying this number by 2c then gives the bound. By Lemma 2.1,
the facet f intersects at most a · r1−1/d regions of the children of the root node,
for some constant a. Each such region contains at most n/r points, so we have
Q(n) 6 1+ar1−1/d ·Q(n/r). For r = a1/ε, this solves to Q(n) = O(n1−1/d+ε).

During the construction of the partitioning as in Lemma 2.1 it is easy to keep
the points in the cells in sorted order for all c orientations. The preprocessing
step thus has to be performed only once. From the same lemma we know that a
partitioning on ni points can be constructed in O(ni log r) time. At each level a
point can be in only one node, so the construction time of all partitionings at a
level i is

∑
j O(nj log r) ≤ O(n log r). Since there are O(logr n) levels in the

tree the construction time is O(n log n). 2

We call the BSP constructed as described above a c-grid BSP.

Remark 2.3 The recurrence for Q(n) still solves to O(n1−1/d+ε) if any single
region of a child of root may contain more than n/r points, but the regions that
intersect f together still contain at most n/r1/d in total—that is, when we have
Q(n) 6 1 +

∑j
i=1 Q(ni) with j 6 ar1−1/d and

∑j
i=1 ni 6 n/r1/d. There-

fore we can maintain the same query times if, in the partitioning algorithm of
Lemma 2.1, we only build the grids, and omit the second stage of subdividing
cells containing more than n/r points by means of parallel hyperplanes.
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Chapter 3

A Framework for BSPs on
Line Segments

In this chapter we describe a general technique to construct a BSP for a set S of
n disjoint line segments in the plane, based on a BSP on the endpoints of S. The
technique uses a segment-tree like approach similar to, but more general than, the
deterministic BSP construction of Paterson and Yao [71]. The range-searching
structure of Overmars et al. [70] also uses similar ideas, except that they store
segments spanning the entire region of a node in an associated structure, so they
do not construct a BSP for the segments.

The following theorem summarizes the result of this chapter. It is proved in
Sections 3.1 – 3.3.

Theorem 3.1 LetR be a family of constant-complexity query ranges inR2. Sup-
pose that for any set P of n points in R2, there is a BSP tree TP of linear size,
where each leaf stores at most one point from P , with the following property:
any query with a range Q from R intersects at most v(TP , Q) cells in the BSP
subdivision. Then for any set S of n disjoint segments in R2, there is a BSP tree
TS such that

(i) the depth of TS is O(depth(TP ))

(ii) the size of TS is O(n · depth(TP ))

(iii) any range query Q from R visits at most O((v(TP , Q) + k) · depth(TP ))
nodes from TS , where k is the number of segments intersecting Q.

The BSP tree TS can be constructed in O(n · depth(TP )) time.

In Section 3.4 we give two instantiations of the framework. The first instanti-
ation yields a BSP on line segments for c-oriented range searching and the second
a BSP for approximate range searching.
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s

R(ν)

h(ν)

Figure 3.1: The segment s is short in the region R(ν) of a node ν. The splitting
line h(ν) stored at ν cuts s in two. There is no endpoint of s in the new dark gray
region and so s is long for that region. In the light gray region s is still short.

3.1 From BSP-trees on points to BSP-trees on line
segments

Let S be a set of n disjoint segments in R2, let P be the set of 2n endpoints of the
segments in S, and let TP be a BSP tree for P . We assume that TP has size O(n),
and that the leaves of TP store at most one point from P . Below we describe
the global construction of the BSP tree TS on S. Some details of the construction
are omitted here; they are described when we discuss the time needed for the
construction.

The BSP tree TS for S is constructed recursively from TP , as follows. Let ν be
a node in TP and let R(ν) denote the region associated with ν. We call a segment
s ∈ S short at ν if R(ν) contains an endpoint of s, see Figure 3.1. A segment
s is called long at ν if (i) s intersects the interior of R(ν), and (ii) s is short at
parent(ν) but not at ν. Note that a long segment spans the interior of R(ν) that
is, it intersects two edges of R(ν). In a recursive call there are two parameters:
a node ν ∈ TP and a subset S∗ ⊂ S, clipped to lie within R(ν). The subtree
rooted at ν is denoted by TP (ν). The recursive call constructs a BSP tree TS∗ for
S∗ based on TP (ν). Initially, ν is the root of TP and S∗ = S. The recursion stops
when S∗ is empty, in which case TS∗ is a single leaf.

We make sure that during the recursive calls we know for each segment (or
rather, fragment) in S∗ which of its endpoints lie on the boundary of R(ν), if
any. This means we also know for each segment whether it is long or short.
This information can be maintained during the recursive calls without asymptotic
overhead.

Let L ⊆ S∗ be the set of segments from S∗ that are long at ν. The recursive
call is handled as follows.

Case 1: L is empty. Let h(ν) be the splitting line stored at node ν in TP . We
first compute Sl = S∗ ∩ h(ν)− and Sr = S∗ ∩ h(ν)+. If both Sl and Sr are
non-empty, we create a root node for TS∗ which stores h(ν) as its splitting line.
We then recurse on the left child of ν with Sl to construct the left subtree of the
root, and on the right child of ν with Sr to construct the right subtree of the root.
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h(ν) h(ν)

a) b)

h(µ)

Figure 3.2: Illustration of the pruning strategy. The black squares indicate end-
points of input segments. a) There is a T-junction on h(ν): a splitting line in the
subtree h(µ) ends on h(ν). Removing h(ν) would partition the empty part of
the region, which might have a negative effect on the query time. b) There is no
T-junction on h(ν), and h(ν) can therefore be removed.

If one of Sl and Sr is empty, it seems the splitting line h(ν) is useless in TS∗

and can and should therefore be omitted in TS∗ , because otherwise the size of the
tree becomes too large. We have to be careful, however, that we do not increase
the query time: the removal of h(ν) can cause other splitting lines, which used
to end on h(ν), to extend further. Hence, we proceed as follows. Define a T-
junction, see Figure 3.2, to be a vertex of the original BSP subdivision induced by
TP ; in other words, the T-junctions are the endpoints of the segments h(µ)∩R(µ),
for nodes µ in TP . To decide whether or not to use h(ν), we check if h(ν) ∩ R
contains a T-junction in its interior, where R is the region that corresponds to the
root of TS∗ . If this is the case, we do not prune: the root node of TS∗ stores the
splitting line h(ν), one of its subtrees is empty, and the other subtree is constructed
recursively on the non-empty subset. If h(ν) ∩ R does not contain a T-junction,
however, we prune: the tree TS∗ is the tree we get when we recurse on the non-
empty subset, and there is no node in TS∗ that stores h(ν).

Case 2: L is not empty. Now the long segments partition R into m := |L|+ 1
regions, R1, . . . , Rm. We take the following steps.

(i) We split S∗\L into m subsets S∗1 , . . . , S∗m, where S∗i contains the segments
from S∗ lying inside Ri.

(ii) We construct a binary tree T with m − 1 internal nodes whose splitting
lines are the lines containing the long segments. We call these free splits
because they do not cause any fragmentation. The leaves of T correspond
to the regions Ri, and become the roots of the subtrees to be created for the
sets S∗i . To keep the overall depth of the tree bounded by O(depth(TP )),
we make T weight-balanced, where the weights correspond to the sizes of



30 A Framework for BSPs on Line Segments

`r−1

`r

τ1

τ2Rr

ν

µ

Figure 3.3: Construction of the weight balanced tree T . Splitting lines `r−1 and
`r are two long segments which are stored in segment nodes, respectively the root
of T and at the root of the right child of T . In the subtrees τ1 and τ2 long segments
might have to be inserted. The regions associated with τ1 and τ2 contain each at
most half of the short segments in R(T ). The root node for Rr must be a partition
node.

the sets S∗i , as in the trapezoid method for point location [74]. The tree T
is constructed as follows. Let `i ∈ L separate the regions Ri and Ri+1. If∑m

i=1 |S∗i | = 0 simply build a balanced binary tree on the long segments,
otherwise determine the integer r such that

∑r−1
i=1 |S∗i | < |S∗ \ L|/2 and∑r

i=1 |S∗i | ≥ |S∗\L|/2. The long segment `r−1 is then stored at ν, the root
of T , and `r is stored at the root of the right child µ, see Figure 3.3. The left
child of ν, τ1, and the right child of µ, τ2 are constructed recursively. Note
that both R(τ1) and R(τ2) contain at most |S∗ \ L|/2 short segments. The
tree TS∗ then consists of the tree T , with, for every 1 6 i 6 m, the leaf of T
corresponding to Ri replaced by a subtree Ti for S∗i . More precisely, each
Ti is constructed using a recursive call with node ν and S∗i as parameters.

Next we prove bounds on the size and depth of the tree TS .

Lemma 3.2 The size of TS is O(n · depth(TP )).

Proof: The tree TS has two types of nodes: partition nodes, which store splitting
lines from nodes in TP , and segment nodes, which store free splits along a long
segment.

A segment can only be cut when it has an endpoint in a region of a node in TP ,
so it is cut into O(depth(TP )) fragments. Hence, the number of segment nodes is
O(n · depth(TP )).

For a partition node µ, we either have that both subtrees contain a segment
fragment, or h(µ)∩R(µ) contains a T-junction. The number of partition nodes of
the former type is bounded by O(n · depth(TP )) because the number of segment
fragments is O(n · depth(TP )). The number of partition nodes of the latter type
is bounded by O(n) due to the size of TP .
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It follows that the total number of nodes is O(n · depth(TP )), as claimed. 2

Lemma 3.3 The depth of TS is O(depth(TP )).

Proof: This follows more or less from standard arguments [74], but not directly,
since our process is not fully recursive in the sense that we must use the given tree
TP . This means that we may “inherit” splitting lines in a subtree that are good
splitters in TP but not in the subtree. Hence, we give a short proof.

As in the proof of the previous lemma, we distinguish between partition nodes
and segment nodes. The number of partition nodes on any path in TS is bounded
by depth(TP ). It remains to bound the number of segment nodes on any path.
There are two cases to consider. In the first case there are no more segments to
be inserted and a balanced binary tree is created on the long segments which has
depth O(log n). In the second case we look at the process of replacing a multi-
way node with a binary subtree, and establish an invariant that proves the bound.
Call an edge in TS from a node ν to a node µ black when the number of (short)
segments in R(µ) is at most half the number of (short) segments in R(parent(ν)).
An invariant that is maintained when we replace a multi-way node by a subtree
is then: there cannot be more than two consecutive segment nodes on any path in
TS without a black edge in between—see Figure 3.3 where the black edges are
drawn fat. Note that the subtree for Rr must have a partition node as root node.
On any path, after two consecutive segment nodes either there is a black edge or
the next node on a path is a partition node. Since by the definition of a black edge
there can be no more than O(log n) black edges on any path and the number of
partition nodes on any path is bounded by depth(TP ) = Ω(log n), the bound on
the number of segment nodes is O(depth(TP )). 2

3.2 Analysis of the query time
A node in a BSP tree is visited by a query range Q if Q intersects R(ν). Next we
bound the number of visited nodes, in terms of the number of visited nodes in TP

when we would query TP with Q.

Lemma 3.4 Let Q be a constant-complexity query range, and let v(TP , Q) be the
number of visited leaves in TP when we query TP with the range Q. When we
query with Q the number of visited nodes in TS is bounded by O((v(TP , Q) + k)·
depth(TP )), where k is the number of segments intersecting Q.

Proof: We distinguish two categories of visited nodes: nodes ν such that R(ν)
is intersected by ∂Q (the boundary of Q), and nodes ν such that R(ν) ⊂ Q.

We first bound the number of leaves of the first category, that is, the number
of cells intersected by ∂Q. Note that the number of cells intersected by ∂Q is
at most one more than the number of intersections between cell boundaries and
∂Q. We made sure that the pruning step in our construction did not cause splitting



32 A Framework for BSPs on Line Segments

‘lines’ to be extended. All cell boundaries intersected by ∂Q, except for new cell
boundaries due to the inserted segments, were thus already intersected in the sub-
division induced by TP . The number of segments in S intersected by ∂Q is O(k)
and hence, the total number of leaf cells intersected by ∂Q is O(v(TP , Q) + k).
Because the depth of TS is O(depth(TP )), the total number of nodes in the first
category is O((v(TP , Q) + k) · depth(TP )).

Nodes in the second category are organized in subtrees rooted at nodes ν
such that R(ν) ⊂ Q but R(parent(ν)) 6⊂ Q. Let N(Q) be the collection of
these roots. Note that the regions of the nodes in N(Q) are disjoint. For a node
ν ∈ N(Q), let ks(ν) denote the number of segments that are short at ν, and kl(ν)
the number of segments that are long at ν. Then the size of the subtree TS(ν)
is O(kl(ν) + ks(ν) · depth(TS(ν))) since a short segment is split into at most
O(depth(TS(ν))) fragments and a long segment by construction is not split at
all. Hence, the total number of nodes in the subtrees TS(ν) rooted at the nodes
ν ∈ N(Q) is bounded by

∑
ν O (kl(ν) + ks(ν) · depth(TS(ν)))

= O(
∑

ν kl(ν)) + O(depth(TP ) ·∑ν ks(ν)).

The first term is bounded by O(k · depth(TP )), because a segment is long at
O(depth(TP )) nodes. The second term is bounded by O(k · depth(TP )), because
the regions of the nodes in N(Q) are disjoint which implies that a segment is
short at at most two such nodes (one for each endpoint).

Adding up the bounds for the first and the second category, we get the desired
bound. 2

A bound on the number of visited nodes does not directly give a bound on the
query time, because at a node ν we have to test whether Q intersects the regions
associated with the children of ν. These regions are not stored at the nodes and,
moreover, they need not have constant complexity.

One way to handle this is to maintain the vertices of the regions R(ν) of all
visited nodes in a red-black tree in order along the boundary. From R(ν) and the
splitting line h(ν), we can then compute the regions of the left and right child of
ν in O(log |R(ν)|) time, where |R(ν)| denotes the number of vertices of R(ν).
If Q is polygonal and of constant complexity, we can then also test whether Q
intersects R(ν) in O(log |R(ν)|) time; if Q has constant complexity but is not
polygonal we can do the test in O(|R(ν)|) time.

Assuming that Q is convex, an alternative is to store with each node ν some
additional information. In particular, we store two lines that are tangent to R(ν)
at the two endpoints of h(ν) ∩ R(ν). When we come to a node ν such that R(ν)
intersects Q, we can then proceed as follows. If Q intersects h(ν) ∩ R(ν)—this
segment can be computed from h(ν) and the two additional lines stored at ν—
then we recurse on both children. Otherwise we can use the two additional lines
to decide which child need not be visited. With this approach, the query time for
convex ranges is asymptotically the same as the number of visited nodes. The
storage requirements of the BSP tree increases by about a factor two, however.
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Figure 3.4: Example of a trapezoidal decomposition of the segments clipped to a
region. The trapezoids inside the region are shaded.

3.3 An efficient construction algorithm

Next we discuss how the construction described in Section 3.1 can be performed
efficiently.

To do the construction efficiently, we need to maintain some extra information
during the recursive calls. First of all, we need to know for the partition lines
whether they contain T-junctions. To this end we compute all T-junctions in TP

during preprocessing in O(n · depth(TP )) time. We maintain which T-junctions
lie in the current region during the recursive calls. We can do the maintenance
by spending time linear in the number of T-junctions during each recursive call,
giving O(n · depth(TP )) time in total.

Secondly, we maintain a trapezoidal decomposition of the current region R
induced by the segments in S∗, where S∗ is the current subset we are dealing with.
We clip this trapezoidal decomposition to lie within the current region. Note that
the region boundary does not play a role in the trapezoidal decomposition besides
that it is used to shorten the vertical extensions; in particular the boundary is re-
placed by a single segment between intersection points of the vertical extensions
of segments in the region and its boundary, see Figure 3.4. Computing the initial
trapezoidal decomposition takes O(n log n) time. It is stored as its dual. The
dual of the trapezoidal decomposition is a graph G(S∗) whose nodes correspond
to trapezoids in the trapezoidal decomposition. There are arcs between neigh-
boring trapezoids. Maintaining the dual of the trapezoidal decomposition during
a recursive call boils down to splitting the dual with a line, which we can do in
linear time. Hence, the total time for maintaining the trapezoidal decompositions
is O(

∑
(|S∗|)), where the sum is over the sets S∗ arising in all recursive calls.

Recall that L ⊆ S∗ is the set of segments from S∗ that are long at ν. We
consider the two cases of the algorithm:

Case 1: L is empty. Computing Sl and Sr takes O(|S∗|) time. Since any
segment in S∗ has an endpoint in R(ν) in this case, we account for this time
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by charging O(1) to each endpoint in TP (ν). This way an endpoint is charged
O(depth(TP )) times, so the overall time is O(n · depth(TP )).

The other time consuming part is the test whether h(ν) ∩ R contains a T-
junction. Recall that we maintain the T-junctions lying inside the current region
R. It remains to check whether any one of them lies on h(ν), which can be done
brute-force in time linear in the number of T-junctions, which does not increase
the time bound asymptotically.

We conclude that the total time taken to perform this case over all recursive
calls is O(n · depth(TP )).

Case 2: L is not empty.

(i) We have to determine the order of the long segments on the splitting line
h(parent(ν)), and we have to distribute the short segments over the regions
induced by the long segments. By traversing G(S∗) we know the order of
the long segments. Delete all arcs crossing the long segments and label
each node incident to such an arc by the region containing it. Now we com-
pute the connected components which corresponds exactly to the regions
induced by the long segments. Since at least one node in each component
is labeled by the region in which it is contained, we obtain for each region
the set of short segments and the graph G(S∗i ). This whole procedure takes
linear time.

(ii) Construct the weight balanced tree. The previous step gives us the weights
needed to organize the long segments into a weight-balanced tree. It can be
argued [74] that then the construction of the weight-balanced trees over all
recursive calls can be done in O(n · depth(TP )) in total.

We conclude that the time for this case over all recursive calls is bounded by
O(

∑
(|S∗|) + n · depth(TP )), where the sum is over all recursive calls. This is

bounded by O(n · depth(TP )).
The following lemma summarizes the discussion above, and finishes the proof

of Theorem 3.1.

Lemma 3.5 The construction of the BSP tree TS from the tree TP can be done in
O(n · depth(TP )) time.

3.4 Instantiations
Several of the known data structures for range searching in point sets are actually
BSP trees. For example, if we use the partition tree of Haussler and Welzl [48] as
underlying structure we can get a BSP on a set of n disjoint line segments whose
query time is O(n2/3+ε + k log n).

In this section we focus on the following two applications. The first applica-
tion is for c-oriented range searching in a set of line segments in the plane. For
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this application we use the c-grid BSP developed in Section 2.2. The second appli-
cation is approximate range searching in a set of line segments in the plane. For
this we use a BAR-tree [38].

Both trees are BSPs, where all splitting lines have orientations that come from
a fixed set of predefined possibilities. For example, a BAR-tree on points in the
plane uses as orientations the horizontal, vertical, and the two diagonal directions
(45◦ and 135◦). Hence, the regions in both BSPs have constant complexity. This
also holds for the regions we get when we build either of these BSPs on the end-
points of a set of segments and transform it into a BSP for the segments; such
regions can only be twice as complex as the original regions since the boundary
of the cell cannot have two consecutive edges which are on an input segment.

We can extend the result for both BSPs to get BSPs for disjoint constant-
complexity curves in the plane, if we allow the BSP to use splitting curves in
the partitioning. For the construction algorithm to work we have to ensure that
any splitting line can intersect a curve only once. We do this by cutting the curve
at every point where the orientation of its tangent is one of the possible orienta-
tions of the splitting lines. These pieces are then used in the construction of TS .
Since the curves have constant-complexity and there are only a constant possible
orientations, a curve is cut at most into a constant number of pieces.

3.4.1 c-grid BSP

The c-grid BSP developed in Section 2.2 answers DOP range queries in O(n1/2+ε)
time and has depth O(log n), see Theorem 2.2. The number of cells of the c-grid
BSP subdivision intersected by the boundary of a DOP-query can trivially be boun-
ded by O(n1/2+ε) as well. Using the c-grid BSP in the general framework we thus
obtain the following result.

Corollary 3.6 Let S be a set of n disjoint constant-complexity curves in R2.
In O(n log n) time one can construct a BSP for S of size O(n log n) and depth
O(log n) such that any DOP range query Q can be answered in time O(n1/2+ε +
k log n), where k is the number of curves intersecting Q.

3.4.2 BAR-tree
The main strength of a BAR-tree is that it produces regions with bounded aspect
ratio: the smallest enclosing circle of a region is only a constant times larger
than the largest inscribed circle. This ensures that a BAR-tree has excellent query
time for approximate range queries—see Duncan’s thesis [37] for details. In the
plane one can construct BAR-trees with logarithmic depth, such that the num-
ber of leaves visited by a query with a convex query range Q is bounded by
O(1 + (1/ε) + kε), where kε is the number of points inside the extended query
range. The extended query range Qε is the locus of points lying at distance at
most ε · diam(Q) from Q, where diam(Q) is the diameter of Q. As noted by
Haverkort et al. [50], Qε is only used in the analysis of the approximate range
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query time and not by the query algorithm. The analysis therefore holds for any
ε > 0 and we obtain the following corollary.

Corollary 3.7 Let S be a set of n disjoint constant-complexity curves in R2. In
O(n log n) time one can construct a BSP tree for S of size O(n log n) and depth
O(log n) such that an exact range query with a constant-complexity convex range
can be answered in time O(minε>0{(1/ε) log n + kε log n}), where kε is the
number of curves intersecting the extended query range Qε.



Chapter 4

The oBAR-tree: a BSP on
General Objects

The lower bound of Ω(n log n/ log log n) by Tóth [85] on the size of a BSP on
line segments in the plane shows that for general objects not all input sets admit
a linear-size BSP. In practice even a super-linear storage might be too large, but
still BSPs are widely used. Hence, despite the super-linear lower bound, BSPs in
practice seem to have linear size. Realistic input models, see Section 1.2.2, can
account for this gap between theory and practice. In this chapter we develop a
BSP using a realistic input model.

De Berg [19] studied BSP-trees for so-called uncluttered scenes. He proved
that uncluttered scenes admit a BSP-tree of linear size, in any fixed dimension.
Unfortunately, his BSP-tree can have linear depth, so it is not efficient for range
searching or point location. However, by constructing additional data structures
that help to speed up the search in the BSP-tree, he showed it is possible to per-
form point location in O(log n) time in uncluttered scenes. Range searching
in low-density scenes can be done in O(log n) time as well [19]—again using
some additional structures—but only if the diameter of the query range is about
the same as the diameter of the smallest object in the scene. In this chapter we
improve these results.

Recall from Section 1.2.2 that the density of a set S of objects is the smallest
number λ such that the following holds: any ball B is intersected by at most λ
objects o ∈ S with ρ(o) > ρ(B) [24], where ρ(o) is the radius of the smallest
enclosing ball of an object o. If S has density λ, we call S a λ-low-density scene.

In this chapter we develop a linear-size BSP, based on the BAR-tree described
in Section 1.3.1, for λ-low-density scenes without any additional structures, which
supports approximate range searching in O(log n+ε1−d+kε) time and point loca-
tion in O(log n) time where kε is the number of objects intersecting the extended
query range. The extended query range Qε is the locus of points lying at distance
at most ε · diam(Q) from Q, where diam(Q) is the diameter of Q. Our overall
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σ

Figure 4.1: A 4-guarding set of size 5n for a set of n disjoint discs against squares.

strategy, also used by de Berg [19], is to compute a suitable set of points that will
guide the construction of the BSP-tree. The construction of a suitable set of points
is the topic of Section 4.1. How this set is then used to construct a BSP-tree is
explained in Section 4.2.

4.1 A guarding set against BAR-tree cells
A guarding set [20] for a collection of objects can be seen as a set of points that
approximates the distribution of the objects. More precisely, let S be set of objects
in Rd, let R be a family of subsets of Rd called ranges (for instance hypercubes).
A set G of points is called a κ-guarding set for S against R for some positive
integer κ, if any range from R not containing a point from G intersects at most κ
objects from S. See Figure 4.1 for an example of a guarding set against squares
for disjoint disks in the plane.

In the next section we construct a BAR-tree on a suitable guarding set of S to
obtain a linear-size BSP whose leaves store a constant number of objects and can
answer an approximate range query efficiently. We cannot use the bounding-box
vertices of the objects in S as a guarding set as done by De Berg [19], because
that does not work in combination with a BAR-tree. What we need is a set G of
points with the following property: any cell in a BAR-tree that does not contain a
point from G in its interior is intersected by at most κ objects from S, for some
constant κ. We call such a set G a κ-guarding set [20] against BAR-tree cells, and
we call the points in G guards.

First we describe how to construct a guarding set for λ-low-density scenes in
Rd. The constants in this construction are however large: κ = (5d)dλ, and the
dependency on d in the size is more than 23d(d−1). Using the special properties of
(corner-cut) BAR-tree cells, we give a much smaller guarding set against BAR-tree
cells for the planar case in Section 4.1.2.
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H

v(H)

f f∗ f ′

Figure 4.2: The guards for a facet f of a hypercube H in R2.

4.1.1 Construction of a guarding set
We base our guarding set on the following construction by De Berg et al. [20]
against β-fat convex ranges.

Let H be a hypercube. The vicinity v(H) of H is the hypercube obtained by
scaling H by a factor of 5 around its center, see Figure 4.2. Let f be a facet of
H and f ′ be the corresponding facet of v(H). Let f∗ be a translated copy of f ′

inside v(H) such that it is midway between f and f ′. The facet f∗ is subdivided
into a regular grid G of Md−1 cells where

M = 1 +
⌈

5d−1(d− 1)(2d+1 − 2)(3/2)d

ωdβ

⌉

and ωd a constant such that the volume of a hypersphere of radius r in Rd is
ωdr

d. The guarding set for f are the (M + 1)d−1 vertices of the grid on f∗.
The guarding set GH for H is the union of all 2d guarding sets of its facets.
De Berg et al. prove the following lemma, which gives an upper bound on the
fatness of a convex region R which does not contain a guard from GH and which
is not fully contained in v(H).

Lemma 4.1 [20] Let H be a hypercube in Rd, let v(H) be its vicinity, and let
GH be the set of guards defined for H as described above. Let R be a convex
β′ ≤ β-fat range intersecting H and not fully contained in v(H). Then

β′ ≤ 5d−1(d− 1)(2d − 2)(3/2)d

ωdMd
.

Using this lemma we can now prove the following theorem.

Theorem 4.2 Let S be a λ-low-density scene of n objects in Rd. In O(n) time
one can compute a (5d)dλ-guarding set of size 2d(M + 1)d−1n for S against
BAR-tree cells.
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Proof: Let H(o) be the smallest hypercube enclosing an object o and let GH(o)

be the set of 2d(M + 1)d−1 guards for H(o) obtained as described above, where
for β we use the minimum fatness of a BAR-tree cell. GH(o) can be constructed
in constant time for constant d. The guarding set for S is obtained by taking the
union of GH(o) for each o ∈ S. The bound on the construction time and the size
of the guarding set follow immediately.

By the choice of M the fatness of any BAR-tree cell is larger than the upper
bound of Lemma 4.1 and therefore a BAR-tree cell C, that intersects o but does
not contain a guard from GH(o), is completely contained within v(H(o)), and
thus we get:

ρ(C) ≤ ρ(v(H(o))) ≤ 5ρ(H(o)) ≤ 5
√

dρ(o).

We cover C with balls having radius ρ(C)/5
√

d. We overestimate the number
of balls we need by covering the smallest hypercube HB that contains C by the
largest hypercube Hb that is contained in a ball of radius ρ(C)/5

√
d. The edge

length of HB is rB = 2ρ(C) and rb = 2ρ(C)/5d is the edge length of Hb. We
need at most (rB/rb)d = (5d)d hypercubes. Any object o intersecting C will
intersect one of the balls, and ρ(o) will be at least the radius of that ball. Because
S has density λ, this implies that the number of objects intersecting C is bounded
by (5d)dλ. 2

In the next section we describe for R2 a smaller guarding set against BAR-tree
cells.

4.1.2 A small guarding set in the plane
Let S be a λ-low-density scene in R2. Our guarding set G has 12 guards for each
object o ∈ S (denoted Go), which are generated as follows. Let σ be a bounding
square of o of minimal size. For each edge e of σ, we place a square of the same
size as σ that shares e but lies on the opposite side. The 12 guards for o are the
vertices of the five squares—see Figure 4.3 a).

Lemma 4.3 Let C be a corner-cut BAR-tree cell that intersects an object o, but
does not contain any guard from Go in its interior. The radius of the largest
inscribed circle L in C is at most

√
2ρ(o).

Proof: Assume without loss of generality that the bounding square σ used in the
construction of Go has edge length 1. This means that ρ(o) > 1/2, so it suffices
to prove that L has a radius of at most 1

2

√
2. Let ξ be the cross-shaped polygon

having the guards of o as vertices, see Figure 4.3 a).
If the center of L is contained in ξ, then the radius of L is at most 1

2

√
2 since

otherwise L would contain at least one guard of o. For the remainder of this proof
let the center of L be outside ξ. Since BAR-tree cells are convex, there is an edge
e of ξ which is intersected by two edges of C, c1 and c2, whose extensions `1
and `2 enclose L. Note that when `1 and `2 are not parallel they, together with (a
part of) e, form an isosceles right triangle, because a BAR-tree only uses splitting
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a) b)

`1 `2 `1
`2

h1 = `1

`2
h2

c)

Figure 4.3: Creating a guarding set against BAR-tree cells. a) An object o with its
guards. The bounding square σ(o) of o is drawn with a dotted line. The union ξ
of the squares placed at each edge of the bounding square is drawn with a dashed
line. b) An example of a cell whose largest inscribed ball has radius

√
2ρ(o). c)

The three possible ways a cell can intersect the boundary of ξ. For each possibility
one of the dashed edges of the square is an edge of σ(o).

lines that are horizontal, vertical or diagonal. There are three possibilities, see
Figure 4.3 c):

1. `1 and `2 are parallel. The radius of L is at most 1/2 in this case since the
distance between `1 and `2 is at most 1.

2. `1 and `2 intersect inside ξ. In order to intersect o the cell C also has to
intersect an edge f of the bounding square containing o. Both f and e are
edges of one of the squares attached to the bounding square. No isosceles
right triangle can stick out of a square when there is an edge of the triangle
which is completely on an edge of the square. Hence, this case cannot
actually occur, since we assume that C intersects o.

3. `1 and `2 intersect outside ξ. Let h1 and h2 be the lines perpendicular to
e intersecting e at the same point as `1 and `2, respectively. The isosceles
right triangle formed by `1, `2 and e lies between these two lines and there-
fore L also lies between them. Since the distance between h1 and h2 is at
most 1 the radius of L is at most 1/2.

2
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a) b)

Figure 4.4: a) The possible shapes of the BAR-tree cells fitting in a disk D of
radius ρ. The square shaped cell C is the largest cell possible in D. b) An example
of a covering of C by 72 disks of radius ρ/(6

√
2). The largest BAR-tree cell C

has edge length
√

2ρ. The largest enclosing square in a disk of radius ρ/(6
√

2)
has edge length ρ/6, so we need 72 such squares to cover C.

In Figure 4.3 b) a BAR-tree cell whose largest inscribed circle has radius√
2ρ(o) is given. So the given bound on the radius of the largest inscribed cir-

cle is tight.
Using Lemma 4.3 and the bounded aspect ratio of BAR-tree cells, we can

prove that G is a good guarding set.

Theorem 4.4 Let S be a λ-low-density scene of n objects in R2. In O(n) time
one can compute a 72λ-guarding set of size 12n for S against corner-cut BAR-tree
cells.

Proof: Any cell C in a BAR-tree has bounded aspect ratio: for any α ≥ 3d = 6,
we can ensure that ρ(C)/ρI(C) 6 α, where ρ(C) is the radius of the smallest
enclosing circle of C and ρI(C) is the radius of the largest inscribed circle of
C [38]. Using the previous lemma, we get the following, if we choose α = 6, for
any object o intersecting a cell C not containing a guard from Go:

ρ(C) 6 α · ρI(C) 6 α(
√

2ρ(o)) = 6
√

2ρ(o).

We now cover C by 72 disks of radius ρ(C)/(6
√

2), see Figure 4.4. Any object o
intersecting C will intersect at least one of the 72 disks, and ρ(o) will be at least
the radius of that disk. Because S has density λ, this implies that the number of
objects intersecting C is bounded by 72λ. 2

4.2 A linear-size BSP on objects
In this section we show how to construct a BSP-tree for S that has linear size
and very good performance for approximate range searching if the density of S
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is constant. Our method combines ideas from de Berg [19] with the BAR-tree of
Duncan et al. [38]. We will call our BSP-tree an object BAR-tree, or oBAR-tree
for short. The following theorem summarizes our result.

Theorem 4.5 Let S be a λ-low-density scene consisting of n objects inRd. There
exists a BSP-tree TS for S such that

(i) the depth is O(log n)

(ii) the size is O(λn)

(iii) an approximate range query with a convex range Q takes O(log n + λ ·
{(1/ε)d−1 + kε}) time, where kε is the number of objects intersecting the
extended query range Qε.

The BSP-tree can be constructed in O(λn log n) time.

We begin by describing the construction algorithm.

1. Construct a κ-guarding set G for S, as explained in Section 4.1, where
κ = 72λ for d = 2 and κ = (5d)dλ for d ≥ 3. The construction of the
guarding set is done by generating guards for each object o ∈ S, so that the
guards created for any subset of the objects will form a κ-guarding set for
that subset. We will use object(g) to denote the object for which a guard
g ∈ G was created.

2. Create a BAR-tree T on the set G using the algorithm of Duncan et al. [38],
with the following adaptation: whenever a recursive call is made with a
subset G∗ ⊂ G in a region R, we delete all guards g from G∗ for which
object(g) does not intersect R. This pruning step, which was not needed in
the paper by De Berg [19], is essential to guarantee a bound on the query
time.

3. Search with each object o ∈ S in T to determine which leaf cells are inter-
sected by o. Store with each leaf the set of all intersected objects. Let TS

be the resulting BSP-tree.

We will first bound the depth, size, query time and the construction time in
terms of the size of the guarding set G. In section Section 4.1 we showed how to
construct a guarding set of size O(n) such that Theorem 4.5 follows.

Lemma 4.6 Let TS be an oBAR-tree on a set S of n objects in Rd built as
described above. The depth of TS is O(log |G|), its size is O(κ · |G|), and it
can be constructed in O(κ · |G| log |G|) time.

Proof: The first two statements follow immediately from the construction and
the bounds on BAR-trees. As for the construction time, the guarding set G can
be constructed in linear time, see Theorems 4.2 and 4.4, and the construction of
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the BAR-tree takes O(|G| log |G|) time [38]; the pruning of guards whose objects
do not intersect the current region R can also be done within this bound. The
time to search with an object from S is O(log |G|) times the number of intersec-
ted leaf cells. Since there are O(κ · |G|) cell-object incidences, the total time is
O(κ · |G| log |G|). 2

We are now left with proving a bound on the query time.

Lemma 4.7 An approximate range query in TS with a constant-complexity con-
vex query range Q takes O(log |G|+ κ · {(1/ε)d−1 + kε}) time, where kε is the
number of objects intersecting the extended query range Qε.

Proof: Since TS is a BAR-tree, its regions have O(1) complexity, so the total
query time is linear in the number of visited nodes. Let R(ν) be the region
associated with the node ν. We distinguish two categories of visited nodes: nodes
ν such that R(ν) is intersected by ∂Q (the boundary of Q), but where R(ν) 6⊂ Qε,
and nodes ν such that R(ν) ⊂ Qε.

From the analysis of the BAR-tree it follows that the number of leaves in the
first category is O(1/εd−1) and that the number of internal nodes is O(log |G|+
1/εd−1). (This proof is based on a packing argument, and not influenced by our
pruning of guards.) At each leaf we spend O(κ) time to check the objects, so in
total we spend O(log |G|+ κ/εd−1) time.

Nodes in the second category are organized in subtrees rooted at nodes ν such
that R(ν) ⊂ Qε but R(parent(ν)) 6⊂ Qε. Let N(Q) be the collection of these
roots. For a node ν ∈ N(Q), let k(ν) denote the number of objects in the subtree
of ν. The number of nodes in the subtree is linear in the number of guards in R(ν).
Because we delete guards of objects not intersecting a region during the recursive
construction, the number of guards in R(ν) is O(k(ν)). Since the regions of the
nodes in N(Q) are disjoint, an object has guards in only O(1) regions. This
means that the overall number of nodes in the second category is O(kε). Since
we have to check at most κ objects at each leaf, the total time spent in these nodes
is O(κ · kε). 2



Chapter 5

BAR-B-tree: an I/O-efficient
BAR-tree

In spatial databases building efficient spatial indexes for range searching is a
central problem. The R-tree, see Section 1.3.2, has been a popular spatial index
thanks to its simplicity, ability to answer various queries, and the flexibility to
store spatial objects of different shapes. However, the R-tree is known to be a
heuristic-based structure and no guarantees can be made on its query performance.
Also many theoretical index structures have been proposed to provide worst-case
guarantees, but they either use non-linear storage or incur super-logarithmic query
costs.

In this chapter, two disk-based indexes for approximate range searching are
introduced which are as versatile as the R-tree, use linear storage and at the same
time provide good guarantees on the query performance, albeit in the approximate
sense. More precisely, our first index, the BAR-B-tree, stores a set of N points in
Rd. It answers an approximate range search query Q by accessing O(logB N +
εγ +kε/B) disk blocks for any ε, where B is the block size, γ = 1−d for convex
queries and γ = −d otherwise, and kε is the number of points lying within the
extended query range. The extended query range Qε is the locus of points lying
at distance at most ε · diam(Q) from Q, where diam(Q) is the diameter of Q. Our
second index, the oBAR-B-tree, is able to store spatial objects of arbitrary shapes
and provides similar query guarantees if the objects form a low-density scene,
see Section 1.2.2. Both our indexes can be bulk-loaded efficiently as well. In
addition, we believe that they are also simple enough to be of practical interest.

Approximate range searching. Given the fact that exact range searching either
uses non-linear storage or incurs super-logarithmic query time, it is natural to
seek for approximate solutions. In Section 1.1.2 the following approximate range
searching queries were defined for a set of points P :

45



46 BAR-B-tree: an I/O-efficient BAR-tree

• Approximate range searching. Return a set P ∗ such that {o ∈ P :
o ∩ Q 6= ∅} ⊆ P ∗ ⊆ {o ∈ P : o ∩Qε 6= ∅}.

• Approximate range aggregate. Suppose each point p ∈ P is associated
with a weight ω(p) ∈ R, compute

⊕
p∈P∗ ω(p) for some P ∗ such that

P ∩Q ⊆ P ∗ ⊆ P ∩Qε. The operator ⊕ should be associative and com-
mutative. It could for instance be MAX, and then the query will report the
maximum-weight point in P ∗. If we set ω(p) = 1 for all p ∈ P choose
⊕ to be + (summation), then the query counts the number of points in P ∗.
We say that the function is duplicate-insensitive if x⊕x = x for any x. For
example MAX is a duplicate-insensitive function while + is not.

• Approximate nearest neighbor. For a query point q, return a point p ∈ P
such that d(p, q) ≤ (1 + ε)d(p∗, q), where p∗ is the true nearest neighbor
of q and d(p, q) is the (Euclidean) distance between p and q.

These problems were first considered by Arya and Mount [13], who proposed
the BBD-tree. Later, a similar, but simpler structure, called the BAR-tree was
proposed by Duncan et al. [38]. In this chapter, we extend the BAR-tree to
external memory. Furthermore, we generalize the structure to accommodate arbi-
trary shapes rather than just points, so that our index can serve as an alternative to
R-trees.

Our structures are based on the BAR-tree, which is described in Section 1.3.1.

The I/O-model and previous work. For the analysis of external memory data
structures, the standard I/O model by Aggarwal and Vitter [8] is often used, see
Section 1.2.1. In this model, the memory has a limited size M but any com-
putation in memory is free. Only the number of I/O-operations is considered
when analyzing the cost of an algorithm. In one I/O-operation a disk block of B
items is read from or written to the external memory. The size of a data struc-
ture is measured in the number of disk blocks it occupies. Many fundamental
problems have been solved in the I/O model. For example, sorting N elements
takes sort(N) = Θ((N/B) logM/B(N/B)) I/O-operations. Please refer to the
comprehensive surveys by Vitter [88] and Arge [10] on I/O-efficient algorithms
and data structures.

There has been some work on an efficient disk layout of the BAR-tree. Using
standard techniques such as a breadth-first blocking scheme and I/O-efficient pri-
ority queues, it is pretty straightforward to lay out a BAR-tree on disk such that
approximate range aggregate and approximate nearest neighbor can be answered
with O(logB N+εγ) and O(logB N+ε1−d(1+ 1

B logM/B(1/ε))) I/O-operations,
respectively.

In his thesis [37] Duncan gave an I/O-efficient variant of the BAR-tree, which
uses a breadth-first blocking scheme. The number of I/O-operations for the con-
struction is O((N/B) log N) and the number of I/O-operations to answer an ap-
proximate range searching query is claimed to be O(logB N +εγ +kε/B). How-
ever Duncan made the implicit assumption that all blocks contain Θ(B) nodes,
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BAR-B-tree
Size O(N/B)

bulk-load O(sort(N))
apxRS O(logB N + εγ + kε/B)
apxRA O(logB N + εγ)
apxNN O(logB N + ε1−d(1 + 1

B logM/B(1/ε)))
Update O(logB N + 1

B logM/B(N/B) log(N/B))

Table 5.1: Summary of our results for the BAR-B-tree on a set of N points in
Rd for approximate range searching queries (apxRS), approximate range aggre-
gate queries (apxRA) and approximate nearest-neighbor queries (apxNN). For
approximate range searching queries and approximate range aggregate queries,
γ = 1− d if the range is convex, and −d otherwise. The update bound is amorti-
zed. The dimensionality d is assumed to be a constant.

which is not necessarily the case. Some leaves may contain a small number of
points and the query cost is in fact O(logB N + εγ +kε) in the worst case. For an
approximate range searching query that has a potentially large output, it is crucial
to have an output term of O(kε/B) rather than O(kε). As typical values of B
are on the order of hundreds to thousands, the difference between O(kε/B) disk
accesses and O(kε) disk accesses can be significant.

Agarwal et al. [1] gave a general framework for externalizing and dynamizing
weight-balanced partitioning trees such as the BAR-tree. They describe how a
weight-balanced partition tree can be constructed in the optimal O(sort(N)) I/O-
operations. Like Duncan [37], they use a breadth-first blocking scheme for storing
the resulting tree on disk. To remove the assumption made by Duncan they group
blocks together which contain too few nodes. As a result there is at most one
block containing too few nodes. This improvement ensures that the resulting
layout only uses O(N/B) disk blocks, but the approximate range searching cost
is still O(logB N + εγ + kε), since there can be Θ(B) blocks each containing
one (or a few) subtrees of constant size whose stored points have to be reported.
In the worst case Θ(kε) blocks have to be loaded, each containing O(1) points
inside the query.

Our results. Two main results are obtained in this chapter. We first give a new
blocking scheme for the BAR-tree that yields the first disk-based index structure,
the BAR-B-tree, which answers all of the aforementioned approximate queries
efficiently. In particular, the BAR-B-tree answers an approximate range searching
query in the desired O(logB N + εγ + kε/B) I/O-operations, i.e., achieving
an O(logB N) search term and an O(kε/B) output term simultaneously. Such
terms are optimal when disk-based indexes are concerned. Unfortunately it seems
difficult to reduce the error term O(εγ). The bounds for the costs of other queries
and operations match the previous results on externalizing BAR-trees [37, 1], in
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oBAR-B-tree
Size O(λN/B)

bulk-load O(sort(λN))
apxRS O(logB N + dλ/Beεγ + λkε/B)
apxRA O(logB N + dλ/Beεγ)
apxNN O(logB N + dλ/Beε1−d(1 + 1

B logM/B(1/ε)))

Table 5.2: Summary of our results for the oBAR-B-tree on a set of N objects
in Rd for approximate range searching queries (apxRS), approximate range ag-
gregate queries (apxRA) and approximate nearest-neighbor queries (apxNN). For
approximate range searching queries and approximate range aggregate queries,
γ = 1 − d if the range is convex, and −d otherwise. The cost of approxima-
te range aggregate queries holds only for duplicate-insensitive aggregates. The
dimensionality d is assumed to be a constant.

particular we can also bulk-load and update the BAR-B-tree efficiently. Please see
Table 5.1 for the detailed results.

Next, we generalize the BAR-B-tree to the oBAR-B-tree, which indexes not
just points, but arbitrary spatial objects of constant complexity. The approximate
range searching queries, approximate range aggregate queries, and approximate
nearest-neighbor queries are generalized to objects as follows. Let S be a set of
objects in Rd and Q the query range. For an approximate range searching query
and an approximate range aggregate query, we return a subset S∗ ⊆ S (or the
aggregate

⊕
o∈S∗ ω(o)) where S∗ includes all objects in S that intersect Q, does

not include any object that does not intersect Qε, and may optionally include
some objects that intersect Qε but not Q. For an approximate nearest-neighbor
query, the definition remains the same with the distance definition between an
object o and the query point q being d(o, q) = minp∈o d(p, q). Our idea is based
on range searching data structures for low-density scenes [24]. The density of S
is the smallest number λ such that the following holds: any ball b is intersected
by at most λ objects o ∈ S with ρ(o) > ρ(b) where ρ(o) denotes the radius of
the smallest enclosing ball of o, see Section 1.2.2. It is believed that for many
realistic inputs, λ is small. For instance, if all objects of S are disjoint and fat,
then λ is a constant. The oBAR-B-tree exhibits the same performance bounds as
the BAR-B-tree if λ is a constant, and the costs grow roughly linearly with λ for
most operations. Unfortunately, we do not have a bound on the update cost for the
oBAR-B-tree, but we expect the actual cost to be small in practice. Please refer to
Table 5.2 for the detailed costs of various operations. Another nice feature of the
oBAR-B-tree is that it will automatically reduce to the BAR-B-tree if all the objects
are points (λ = 1 for a set of points).

To summarize, with the BAR-B-tree and the oBAR-B-tree, we present a disk-
based spatial indexes that is as versatile as the R-tree and in addition provide
provable guarantees on various operations. In particular, the query costs on range
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searching are, except for the O(εγ) term, similar to that of the B-tree answering
one-dimensional range queries on points. In addition, these two spatial indexes
are not difficult to implement, and we expect them to be fairly practical as well.
It would be interesting to compare them with R-trees to see how well they behave
in practice.

5.1 An I/O-efficient BAR-tree on points
In this section we describe the BAR-B-tree, an efficient layout for the BAR-tree on
disk that achieves all the desired bounds listed in Table 5.1. We introduce our two-
stage blocking scheme in Section 5.1.1, and analyze its query cost when answer-
ing an approximate range searching query in Section 5.1.2. The query costs for an
approximate range aggregate query and an approximate nearest-neighbor query
follow from Agarwal et al. [1] and Duncan [37]. Finally we give an efficient bulk-
loading algorithm in Section 5.1.3, and talk about updates. For the remainder of
this chapter we assume that T has at least B/2 nodes, otherwise the solution is
trivial.

5.1.1 The blocking scheme
For any node µ ∈ T , let Tµ be the subtree rooted at µ, and we define |Tµ|, the size
of Tµ, to be the number of nodes in Tµ (including µ). At every node we store the
size of both its subtrees. Our blocking scheme consists of two stages. In the first
stage the tree is blocked such that for any µ ∈ T , Tµ is stored in O(d|Tµ|/Be)
blocks. As we will see, this property will guarantee the O(kε/B) term in the
bound on the query cost. However, a root-to-leaf path in T may be covered by
Θ(log N) such blocks. In the second stage we make sure that any root-to-leaf
path can be traversed by accessing O(logB N) blocks.

Tree-blocks. In the first stage we block the tree T into tree-blocks such that T is
stored in O(d|T |/Be) blocks. The blocking procedure is detailed in Algorithm 1.
We traverse the tree T in a top-down fashion, and keep in a set S all nodes µ
for which a block will be allocated such that µ is the topmost node in the block.
Initially S only contains the root of T . For any node µ ∈ S , we find a connected
subtree rooted at µ to fit in one block using an adapted breadth-first strategy with
a queue Q. Throughout the blocking algorithm we maintain the invariant that
|Tµ| ≥ B/2 for any µ that is ever added to S or Q. The invariant is certainly true
when the algorithm initializes (line 1).

For a node µ ∈ S , we fill a block with a top portion of Tµ by an adapted
breadth-first search (BFS) (line 4–23). The BFS starts with Q = {µ} (line 4),
which is consistent with the invariant since µ is a node from S . For each node ν
encountered in the BFS search, we distinguish among the following three cases.
(a) If |Tν | ≤ B, then we allocate a new block to store the entire Tν (line 7–9).
Note that this block contains at least B/2 nodes by the invariant. (b) Let ν1, ν2 be
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Algorithm 1: Algorithm to construct tree-blocks
Input: a binary tree T
Output: a set of tree-blocks stored on disk

initialize S := {root of T }, and a block B := ∅;1

while S 6= ∅ do2

remove any node µ from S;3

initialize a queue Q := {µ};4

while Q 6= ∅ do5

remove the first node ν from Q, let ν1, ν2 be ν’s children;6

if |Tν | ≤ B then7

put Tν in a new block B′;8

write B′ to disk;9

else if |Tν1 | ≥ B/2 and |Tν2 | ≥ B/2 then10

add ν to B;11

add ν1, ν2 to Q;12

else13

suppose |Tν1 | < B/2;14

if |B|+ |Tν1 |+ 1 ≤ B then15

add ν and Tν1 to B;16

add ν2 to Q;17

else18

add ν to S;19

if |B| = B then20

write B to disk and reset B := ∅;21

add all nodes of Q to S;22

set Q := ∅;23

if |B| 6= ∅ then24

write B to disk and reset B := ∅;25

the two children of ν. If both Tν1 and Tν2 have more than B/2 nodes, then we add
ν to the block and continue the BFS process (line 10–12). It is safe to add ν1, ν2

to Q as we have ensured the invariant. (c) Otherwise, it must be the case that one
of the subtrees is smaller than B/2 nodes while the other one has more than B/2
nodes. Without loss of generality we assume |Tν1 | < B/2, and then check if Tν1

plus ν itself still fit in the current block. If so we add ν and the entire Tν1 to the
current block, add ν2 to Q (notice that |Tν2 | > B/2) and continue the BFS; else
we put ν into S . Note that when a node is extracted from S , the current block B is
always empty and ν can thus always be stored in it; in particular line 19 is never
executed for ν. Hence each node is inserted in S and extracted from S at most
once. Please refer to Figure 5.1 for an illustration of this blocking algorithm.
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ν

µ

Figure 5.1: Three tree-blocks (white, light gray and dark gray) obtained using the
blocking scheme for B = 8. The black triangles denote the existence of a subtree
of size at least B/2. The right subtree of ν is placed completely in the white
block. The node µ and its right subtree do not fit in the light gray block so a new
block must be started at µ. Note that depending on the subtrees, the light and dark
gray block could store some nodes of the subtrees.

Lemma 5.1 For any µ ∈ T , the nodes in Tµ are stored in O(d|Tµ|/Be) blocks.

Proof: First consider the case where µ is the topmost node in some block, i.e.,
µ has been added into S. Suppose a tree-block B contains less than B/2 nodes
of the tree Tµ. There is at least one block below B since by the invariant the
subtree of T rooted at the topmost node in B has size at least B/2. We claim
that at least one block B′ directly below B contains at least B/2 nodes. Now
suppose for a contradiction that no block directly below B contains more than
B/2 nodes. Let B′ be a block below B containing less than B/2 nodes and let
ν be the highest node in B′. The node ν was not placed in B either because the
size of Tν was between B and B/2 (case (a)) or because the size of one of its
subtrees, say Tν1 , was less than B/2 (case (c)). The former case immediately
leads to a contradiction. The latter case also leads to a contradiction since Tν1 ,
together with ν, fits in B and would then have been placed in B. So there must
be a block B′ below B whose size is at least B/2. We charge B to B′. Each
block containing at least B/2 nodes is charged at most once, namely by the block
directly above it. The number of tree-blocks is thus O(d|Tµ|/Be).

Next consider the case where µ ∈ B but µ is not the topmost node in B.
Let µ1, . . . , µt be the nodes of Tµ stored immediately below B. By the blocking
algorithm’s invariant, we have |Tµi | ≥ B/2, so |Tµ| > t ·B/2, or t = O(|Tµ|/B).
Applying the case above, the number of blocks used to store the tree Tµ is thus
1 + O(

∑t
i=1(d|Tµi |/Be)) = O(d|Tµ|/Be+ t) = O(d|Tµ|/Be). 2
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ν

µ

Figure 5.2: A bad example for tree-blocks. The block nodes are nodes of which
one child, depicted in gray, has size B/2 − 1. The black triangles represent the
subtrees of a gray node. All white triangles represent subtrees of sufficiently large
size. The leftmost path L will be split into Θ(log N) blocks, since ν and µ cannot
be placed in one block.

Remark 5.2 It might be conceptually simpler to use a bottom-up approach to
block the tree T such that Lemma 5.1 also holds. However, our top-down ap-
proach is in fact easier to implement, especially when used in the top-down bulk-
loading algorithms for BAR-trees. Please see Section 5.1.3 for details.

The blocked BAR-tree resulting after the first stage might have depth as bad as
Θ(log N), as illustrated by the following example. Consider a root-to-leaf path
L in a BAR-tree T of length Θ(log N). We say a node ν is balanced if both
subtrees below ν have size at most β|Tν | for some fixed 0 < β < 1. In a BAR-tree
every other node on L may be unbalanced. In particular each unbalanced node
might have one subtree, say Tν1 , of size B/2 − 1 (see Figure 5.2). Consider an
unbalanced node ν. The algorithm will always store every unbalanced node ν and
its subtree Tν of size B/2−1 in one block. If two such nodes ν and µ on L would
be stored together in one block B, all nodes on the path from ν to µ would be
stored in B as well. This path contains at least one node other than ν and µ. The
total number of nodes in B would thus be at least 2(1+ (B/2− 1))+ 1 = B +1.
This cannot happen, since the algorithm would never put B + 1 nodes in one
block. So every unbalanced node on L is stored in a different block.

In the second stage we introduce path-blocks which ensure that O(logB N)
blocks have to be accessed in order to visit all nodes on any root-to-leaf path.

Path-blocks. To identify the places where a path-block has to be introduced
we visit T , in a top-down fashion. The algorithm for constructing path-blocks
is given in Algorithm 2. We keep in a set S all nodes µ for which we consider
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Algorithm 2: Algorithm to construct path-blocks
Input: a binary tree T stored in tree blocks
Output: a set of tree and path-blocks stored on disk

initialize a stack S := {root of T };1

while S 6= ∅ do2

remove any node µ from S;3

initialize a queue Q := {µ};4

T̂µ = ∅;5

(* Get log B levels of T starting at µ *)6

while height T̂µ ≤ log B do7

remove ν from Q, let ν1, ν2 be ν’s children;8

if Adding ν to T̂µ does not increase its depth then9

add ν to T̂µ;10

add ν1, ν2 to Q;11

else12

add ν to Q;13

(* Check if T̂µ should be stored in a path-block *)14

if Any path of the tree in T̂µ crosses more than c blocks then15

remove nodes in T̂µ from the tree-blocks storing them;16

store T̂µ in a new block B and write B to disk;17

(* Consider only subtrees of size at least B *)18

while Q 6= ∅ do19

remove a node ν from Q;20

if |Tν | > B then21

add ν to S;22

the tree T̂µ consisting of the first log B levels of T encountered by a BFS starting
at µ. We check all root-to-leaf paths in T̂µ. If there is at least one such path that is
divided among more than c tree-blocks for some integer constant c ≥ 2, then we
introduce a path-block that stores T̂µ. We also remove all nodes of T̂µ from the
tree-blocks where they are stored. The queue Q used in the BFS is then emptied
by moving a node ν in Q to S if it is the root of a subtree Tν whose size is larger
than B. We continue until S is empty. This completes our two-stage blocking
scheme. With the introduction of path-blocks, now we have the following.

Lemma 5.3 Any root-to-leaf path in T can be traversed by accessing O(logB N)
blocks.

Proof: Let L be a root-to-leaf path in T . We divide L in two parts. The first part
consists of all nodes which are the root of a subtree of size at least B. The second
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part consists of all other nodes. All nodes in the first part of L are placed in some
T̂µ during the construction of the path-blocks. Any root-to-leaf path in any T̂µ, if
it does not reach a leaf of T , is at least log B long. Therefore, we can traverse the
first part of L by accessing O(logB N) blocks. For the second part of L we argue
that the top-most node in this part is the root of a subtree of size at most B. By
Lemma 5.1 this tree, and therefore the second part of L, is stored in O(1) blocks.
Therefore we need to access O(logB N) blocks in total when traversing L. 2

Since any path-block has at least B/2 nodes, it is easy to see that Lemma 5.1
still holds. In particular, we obtain the desired space bound for the BAR-B-tree.

Theorem 5.4 A BAR-B-tree on N points in Rd takes O(N/B) disk blocks.

Since our blocking scheme has no redundancy, i.e., each node of T is stored in
only one block, after the two-stage blocking process we can group blocks together
such that all of them are at least half-full. So the space utilization of the BAR-
B-tree can be at least 50%.

5.1.2 Analysis of the range searching cost
Since no node is stored in multiple blocks we can use the standard query algorithm
for BSPs, that is, we start from the root, and visit all nodes µ of T where the
region associated with µ intersects with the query range Q. The traversal can be
performed either breadth-first or depth-first, with the use of an I/O-efficient stack
or queue such that the extra overhead is O(1) I/O-operations per B nodes. So we
only need to bound the number of blocks that store all the visited nodes.

Theorem 5.5 An approximate range searching query Q in a BAR-B-tree can be
answered by accessing O(logB N + εγ + kε/B) blocks.

Proof: Note that the region of any visited node must intersect Q. Next, we make
a distinction between (a) nodes whose regions also intersect the boundary of Qε

and (b) those whose regions are completely contained in Qε.
We start by proving a bound on the number of blocks containing the type-

(a) nodes. Duncan [37] proved that the number of such nodes is O(log N + εγ).
The O(log N) term comes from a constant number of root-to-leaf paths in T . By
Lemma 5.3 these nodes are covered by O(logB N) blocks. So in total we need to
access O(logB N + εγ) blocks for nodes of type (a).

Next we give a bound on the number of blocks that cover all the type-(b)
nodes. These nodes are organized in t disjoint subtrees Tµ1 , . . . , Tµt , such that
R(µi) ⊆ Qε and R(p(µi)) 6⊆ Qε, where p(µi) denotes the parent of µi and R(ν)
denotes the region associated with the node ν. We will in fact bound the number
of blocks covering all these t subtrees. Note that since R(µi) is contained in Qε,
R(p(µi)) must intersect the boundary of Qε, i.e., a type-(a) node. Each parent
p(µi) has only one child whose region is inside Qε, since otherwise R(p(µi))
would be completely inside Qε. From Duncan et al. [37, 38] we know that
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there are in total O(εγ) type-(a) nodes who have a child associated with a region
completely inside Qε, hence t = O(εγ).

Note that the subtree Tµi
stores at least |Tµi

|/2 points of P inside Qε. By
Lemma 5.1 Tµi is stored in O(d|Tµi |/Be) blocks. Thus the total number of blocks
covering all the t subtrees is

O

(
t∑

i=1

d|Tµi |/Be
)

= O

(
t +

t∑

i=1

|Tµi |/B

)

= O(εγ + kε/B).

2

5.1.3 An efficient construction algorithm

We are left with giving an I/O-efficient bulk-loading algorithm to build a BAR-
B-tree with a set of N points in Rd. We use the “grid” method introduced by
Agarwal et al. [1], which we briefly review here. The grid method can be used
to construct a class of space partitioning structures I/O-efficiently, including the
BAR-tree. The idea is to first build a grid G of size Θ((M/B)c) in memory for
some constant 0 < c ≤ 1/2, as in the c-grid BSP of Section 2.2. This grid G is
then used to build the top Θ(log(M/B)) levels of the BSP. We know for each cell
of G how many points are contained within them. This knowledge is used in the
placement of the splitting hyperplane h of some node in the BSP. For the recursive
construction we only need to scan that part of the data set which is contained in
the cells of G which were intersected by h.

Next the point set is partitioned into subsets that correspond to the subtrees
below the Θ(log(M/B)) levels. This process can be completed with a con-
stant number of scans of the data set. Finally we recurse to build the subtrees.
The recursion stops when we have less than M points to deal with, for which
we just build the entire subtree in memory. The overall cost is then O(N/B ·
log(N/B)/ log(M/B)) = O(sort(N)) I/O-operations.

Observing that each recursive call to the grid method must still have at least B
points to deal with, since M/(M/B)c ≥ B, our top-down blocking scheme for
the tree-blocks (Algorithm 1) is very easy to couple with the also top-down grid
method. Consider one round in the construction of T using the grid method. Let
T̂ be the Θ(log(M/B)) levels of T constructed in that round. The grid method
gives us all the sizes of the subtrees which are going to be built recursively, see [1],
so we can run Algorithm 1 while constructing T̂ . However, we have to be careful
at the bottom of T̂ . If we need to create a new block B for some node ν and there
are not enough nodes to fill B within the subtree Tν rooted at ν within T̂ , we do
not add ν to T̂ . At a later stage we start a recursive call of the grid method with
ν. Note that with this adaptation of the grid method T̂ still has Θ(log(M/B))
levels of T since we construct O(log B) levels less by the early termination of
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the construction of T̂ . This modification to the grid method has no influence on
the asymptotic bound of the construction cost.

After we have constructed all the tree-blocks, we build the path-blocks as
described above in Section 5.1.1. We first note that the queue Q in Algorithm 2
stores a reference to a node ν and not ν itself, because ν could be stored in a block
which is not in memory. To obtain the size of the subtree rooted at ν without
using any I/O-operations in lines 16–19 of Algorithm 2 we also store the size of
the subtree in Q. During the construction of the tree-blocks we can store at every
node the sizes of its subtrees without any additional I/O-operations.

To build one path-block, a top subtree of some Tµ with O(log B) levels needs
to be read, and this subtree may spread across several tree-blocks. To bound the
number of read-operations on all tree-blocks we argue as follows. Let V be the
set of nodes in T which are the roots of the Tµ’s considered, i.e. the nodes which
were at one point placed in the stack S of Algorithm 1. Any tree-block B is read
at most 1 + tB times where tB is the number of nodes of V contained in B, i.e.,
once for the tree T̂ containing the top-most node of B and once for each of the tB
nodes. The total number of read-operations is thus

∑
(1 + tB) = O(N/B + |V |)

where the sum is over all blocks. By Algorithm 1 the nodes stored in S are the
root of a subtree of size at least B/2, so |V | = O(N/B). Since there are O(N/B)
path-blocks and every tree-block is written at most as many times as it was read,
it takes O(N/B) I/O-operations to build all the path-blocks. This completes the
analysis of our bulk-loading algorithm.

Theorem 5.6 It takes O(sort(N)) I/O-operations to bulk-load a BAR-B-tree on a
set of N points in Rd.

5.1.4 Updating the BAR-B-tree.
Since we have an efficient bulk-loading algorithm, we can use the partial rebuil-
ding technique [69, 1]. In the next paragraph we describe how to handle inserti-
ons. Deletions can be handled similarly. A node ν in a BAR-tree is out of balance
when the size of a subtree rooted at a grandchild of ν is more than β times the
size of the subtree rooted at ν for some constant 0.5 ≤ β < 1.

BAR-B-tree update algorithm. To insert a point into the BAR-B-tree T , we
first follow a root-to-leaf path to find the leaf block where the point should be
located. According to Lemma 5.3 this takes O(logB N) I/O-operations. After
inserting the point we check the nodes on this path to see if any of them is out
of balance. Among all the nodes which are out of balance, we rebuild the whole
subtree Tν rooted at the highest such node ν in block B. Let T ′ν be the BAR-
B-tree built on the points in Tν . Algorithm 1 has to be adapted slightly for the
construction of the tree-blocks of T ′ν . The construction differs from Algorithm 1
in that in line 1 a new block is not initialized, but B, from which ν and its de-
scendants are removed, is used instead. In the second step, the construction of
the path-blocks, we only consider tree-blocks which store nodes of T ′ν . Using
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standard analysis, it can be shown that the amortized cost of these two steps is
O( 1

B logM/B(N/B) log(N/B)) I/O-operations. Unless T ′ν fits completely in B,
we introduce a new block B′, which we call a semi-path-block. We start at the
highest node in B and visit, as in a BFS, the first log B levels of the subtree consis-
ting of the nodes in B and T ′ν . We move the visited nodes to B′. The construction
of a semi-path-block takes O(1) additional I/O-operations. In total the amortized
cost of an update is O(logB N + 1

B logM/B(N/B) log(N/B)).

Next we will show that the bounds on the number of blocks which stores the
tree and the number of blocks which need to be accessed for the traversal of any
root-to-leaf path still hold. For this discussion we assume that T ′ν does not fit in
B, since otherwise there is no change in the number of blocks.

Number of blocks in which the BAR-B-tree is stored. The blocking scheme
ensures that T ′ν is stored in O(|T ′ν |/B) blocks. The block containing ν might
have less than B/2 nodes after the partial rebuild while it had more than B/2
before the rebuild, but we can charge B to one of the blocks below B storing
nodes of Tν . This block Bs contains at least B/2 nodes using a similar argument
as in Lemma 5.1. The semi-path-block which was introduced next might increase
the total number of blocks by one; we charge this extra block to Bs. Any block
containing at least B/2 nodes of T ′ν is charged at most twice. The updated BAR-
B-tree is thus stored in O(N/B) blocks.

Number of blocks which need to be accessed for the traversal of any root-
to-leaf path. To support updates we weaken the restriction that for any root-to-
leaf path L in a BAR-B-tree one has to access at most c blocks for every log B
consecutive nodes of L. We sometimes allow c + 1 blocks to be accessed, but
only if the following invariant holds.

Invariant 5.7 Let L be any root-to-leaf path in a BAR-B-tree T and let B1 . . .Bp

be the blocks which need to be accessed for the traversal of L. If there is an i > 1
such that Bi . . .Bi+c store less than log B nodes of L then Bi−1 is a semi-path-
block.

The initial BAR-B-tree satisfies Invariant 5.7 since at most c blocks have to be
accessed for traversing log B nodes of any root-to-leaf path. Let B be the block
storing the highest node ν which is out of balance after an update. Let B′ be the
semi-path-block constructed during the update and let L′ be any path within B.
Note that B′ contains the same nodes of L′ if L′ has length at most log B and
does not contain ν. Also note that if L′ is larger than log B and does not contain
ν then L′ is stored in two blocks.

Suppose that after an update Invariant 5.7 does not hold and let L be a root-
to-leaf path which invalidates the invariant. The block B′ can never be part of
that part of L which invalidates the invariant, because B′ either contains as many
nodes of L as B did or at least log B nodes. In both cases the invariant holds.
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The only place were the invariant can be invalidated is directly below B′. Since
B′ is a semi-path-block the invariant can only be invalidated because one has to
access c + 2 blocks in order to traverse log B nodes below B′. This however is
impossible; if L contains nodes from T ′ν then one has to access at most c + 1
blocks by construction and otherwise B′ contains the same nodes as B because all
nodes in B of L are moved to B′. So at most c + 1 blocks need to be accessed.
After an update the invariant thus must hold. From the invariant it follows that
any root-to-leaf path can be traversed by accessing O(logB N) blocks.

5.2 Storing objects: the oBAR-B-tree
In this section we show how to externalize the object BAR-tree (oBAR-tree), see
Chapter 4, for a set S of objects of constant complexity with density λ. We first
review the oBAR-tree briefly below.

The oBAR-tree is based on the idea of guarding sets [20, 66]. For a subset
X ⊆ S, we call a set of points GX a guarding set of X if the region associated
with any leaf in the BAR-tree constructed on GX intersects at most O(λ) objects of
X . To build the oBAR-tree on S, we first compute for each object o ∈ S a constant
number of points, called the guards of o, with the property that the guards of any
subset X of S form a guarding set for X . Let G be the set of all guards. We build
the oBAR-tree by first constructing a BAR-tree T on G, with the adaptation that
whenever we are going to build a subtree for a region R with a subset G′ ⊂ G,
we delete all guards from G′ whose objects do not intersect R. Then we store at
each leaf of T all objects of S that intersect the region associated with the leaf.
We showed in Chapter 4 that each leaf stores O(λ) objects, and an approximate
range searching query can be answered in time O(log N + λ · {εγ + kε}).

5.2.1 Building the oBAR-B-tree
We first compute all the guards with one scan over S as explained in Section 4.1.
Next we build the BAR-B-tree on the set of all guards G using our bulk-loading
algorithm of Section 5.1.3. The adaptation of removing guards during the con-
struction as described above can be easily accommodated in the algorithm, and
we can build and lay out the tree T on disk in O(sort(λN)) I/O-operations. Du-
ring the process we can also compute for each leaf ν of T , the set of at most O(λ)
objects that intersect the region R(ν). We omit the technical details.

Finally, for each leaf block B of T , we store all the intersecting objects conse-
cutively on disk. More precisely, consider a block B and let L be the set of leaves
stored in B. The objects intersecting the regions of the nodes in L are stored
together in one list as follows. Let ν1, · · · , ν|L| be the leaves in L ordered accor-
ding to an in-order traversal of T . We first store the objects intersecting R(ν1),
then the objects intersecting R(ν2), and so on. Note that an object might be stored
more than once in the list. At every leaf νi we store a pointer to the first and last
object in the list intersecting R(νi). Since each leaf has O(λ) intersecting objects,
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each such list occupies O(λB/B) = O(λ) disk blocks, so the overall space usage
of these lists is O(λN/B) blocks. This completes the description of the oBAR-
B-tree. Note that the oBAR-B-tree automatically reduces to the BAR-B-tree when
all the objects are points.

Theorem 5.8 Let S be a set of N objects in Rd with density λ. An oBAR-B-tree
on S takes O(λN/B) blocks and any root-to-leaf path can be traversed by acces-
sing O(logB N) blocks. It can be constructed using O(sort(λN)) I/O-operations.

5.2.2 Analysis of the range searching cost
In this section we prove the bounds stated in Table 5.2. The cost of approxi-
mate range aggregate queries and approximate nearest neighbor queries can be
analyzed in the same way as for the BAR-B-tree, leading to the same number of
visited leaves; the only difference is that for every visited leaf ν, we now have to
check the dλ/Be blocks containing the objects intersecting R(ν). However, note
that since in an oBAR-B-tree an object might be stored at several leaves, we can
only handle duplicate-insensitive aggregates.

For approximate range searching queries we have to be careful not to report an
object more than once. We adapt the query algorithm as follows. For every object
in a leaf ν intersecting the approximate query range Qε we do the following. We
compute a unique reference point p in the intersection of the object o and Qε, for
instance inR2 the upper left most point of o contained in Qε. We report o only if p
is contained in R(ν). We now bound the cost for an approximate range searching
query.

Theorem 5.9 Let S be a set of N objects of constant complexity in Rd with
density λ. An oBAR-B-tree for S answers an approximate range searching query
Q using O(logB N +dλ/Beεγ +λkε/B) I/O-operations, where kε is the number
of objects intersecting the extended query range Qε.

Proof: The query cost of answering a range searching query Q consists of two
parts: the cost to visit the nodes of T and the cost to read the object lists. Since
T is a BAR-B-tree with possible removal of guards during construction, which
only reduces the number of nodes, the cost of visiting T can still be bounded by
Theorem 5.5. So we only concentrate on the cost of reading the object lists of the
visited leaves.

Note that the region of any visited leaf must intersect Q. Next, we make a
distinction between leaves whose regions also intersect the boundary of Qε and
those whose regions are completely contained in Qε. There are at most εγ leaves
of the former type [37]. For these leaves we can check all objects intersecting
their regions using O(dλ/Be) I/O-operations each.

The latter type of leaves can be covered in t disjoint subtrees Tµ1 , . . . , Tµt ,
such that R(µi) ⊆ Qε and R(p(µi)) 6⊆ Qε, where p(µi) denotes the parent of µi.
Note that there are O(εγ) such subtrees following the same reasoning in the proof
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of Theorem 5.5. For any µi, let k(µi) denote the number of objects that intersect
R(µi) and have at least one guard in R(µi). Since Tµi is a BAR-tree (with pru-
ning) built on the O(k(µi)) guards of these objects, we have |Tµi

| = O(k(µi)).
Furthermore, since each object intersecting Qε has guards in at most a constant
number of these subtrees, we have

∑t
i=1 k(µi) = O(kε).

By Lemma 5.1 we know that the leaves of any Tµi
are stored in O(d|Tµi

|/Be)
blocks. Let ν1, ν2, . . . be the leaves of Tµi ordered according to an in-order traver-
sal of T . From our blocking algorithm we know that these leaves are partitioned
into O(d|Tµi |/Be) subsets, each stored in a block. Since in a block, the objects in-
tersecting consecutive leaves are also stored consecutively in the object list, the to-
tal number of I/O-operations to read these objects is O(d|Tµi

|/Be+λ|Tµi
|/B) =

O(dλ|Tµi |/Be). Thus, the overall cost for reading the object lists for all the leaves
whose regions are completely inside Qε is

O

(
t∑

i=1

⌈
λ|Tµi

|
B

⌉)
= O

(
t +

t∑

i=1

λ|Tµi
|

B

)

= O

(
t +

t∑

i=1

λk(µi)
B

)

= O(εγ + λkε/B)

I/O-operations.
Computing the unique reference point in the intersection of an object and the

query range and checking whether this point is contained in the cell can all be
done in main memory, so the bound on the query cost follows. 2

Updating the oBAR-B-tree. The oBAR-B-tree can be updated by first updating
the BAR-B-tree T , followed by updating the object lists. Since each object only
has a constant number of guards, the cost of the former can be effectively boun-
ded as in Table 5.1. Unfortunately, we do not have a worst-case or amortized
bound for the latter, as one object may intersect many regions of the leaves of T .
Nevertheless, since on average an object only intersects O(λ) such regions, we
expect the actual update cost to be small in practice.
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Chapter 6

Bounding-Volume Hierarchies
on c-DOPs

A bounding-volume hierarchy (BVH), see Section 1.3.2, on a set S of n objects is
a tree structure whose leaves are in a one-to-one correspondence with the objects
in S and where each node ν stores some constant-complexity bounding volume
of the set of objects corresponding to the leaves in the subtree of ν. In this chapter
we use a c-discretely oriented polytope, or c-DOP as a bounding volume. As
in Chapter 2 let C be a fixed set of c non-parallel hyperplanes. A c-DOP is a
convex polytope and each of its facets is parallel to some hyperplane in C. Hence,
a c-DOP has at most 2c facets. When we speak of a DOP, we always mean a
c-DOP. The bounding DOP stored at ν is denoted by bdop(ν). The better bdop(ν)
approximates the set of objects stored below ν the less unnecessary nodes in the
hierarchy are visited.

In this chapter we first describe how to construct a BVH for arbitrary c-DOPs in
arbitrary dimensions with optimal worst-case query time. Secondly, we describe a
BVH for c-DOPs in the plane that yields better query times when the input c-DOPs
do not overlap each other too much. The second structure uses the first structure
as a plug-in to handle configurations of overlapping c-DOPs locally.

6.1 A worst-case optimal DOP-tree
In this section a generalization of the cs-boxtree by Agarwal et al. [2] is described
to obtain a DOP-tree with optimal query time. More exactly we show the follo-
wing.

Theorem 6.1 For any set of (possibly intersecting) c-DOPs in Rd (c ≥ d ≥ 2),
there is a constant-degree DOP-tree such that DOP-queries can be answered in
time O(n1−1/c + k), where k is the number of reported answers. Moreover, the
bound on the query time is optimal when convex bounding volumes are used. This
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f1

f2

f
+
3

f
−

3

f1

f2

Figure 6.1: An example on how to construct the c-DOP for Rd which is used to
generate a worst-case input set for c = 6 and d = 3. On the left a regular 10-gon
is shown. (Note that 2c + 4 − 2d = 10.) The vertices between the matched
edges are highlighted. On the right the resulting 6-DOP after taking the Cartesian
product of the 10-gon with the interval [0, 1] for the third dimension. The edges
between two matched facets are highlighted. Note that the facets f1 and f2 which
were matched on the left are no longer matched on the right. The facet f1 is now
matched with the top-facet f+

3 and f2 with the bottom-facet f−3 .

is true even for point queries: for any n, there is a set S of n c-DOPs such that
for any constant-degree DOP-tree T on S there is a query point p not contained in
any DOP from S such that a query with p visits Ω(n1−1/c) nodes in T .

Below we prove the two statements in the theorem separately. The lower
bound is proved in Lemma 6.2 and the upper bound in Lemma 6.4.

Lemma 6.2 For any n, c and d with c ≥ d ≥ 2, there is a set S of n c-DOPs in
Rd, such that for any constant-degree BVH T using convex bounding volumes on
S there is a point, not contained in any DOP from S, such that a query with this
point visits Ω(n1−1/c) nodes in T .

Proof: We first explain how to construct a set S = {D1, . . . , Dn} as in the
Lemma by making n modified copies of a d-dimensional polyhedron D defined
as follows.

In the plane D is a regular 2c-gon. In higher dimensions D is construc-
ted as follows, see Figure 6.1 for an example in R3. We start with a regu-
lar (2c + 4− 2d)-gon on a 2-dimensional plane, and we extend this polygon in
the remaining d − 2 dimensions by taking the Cartesian product of the polygon
with the interval [0, 1] for every dimension. Note that an interval for dimension
2 < i ≤ d used in the Cartesian product defines two hyperplanes, H−

i and H+
i ,

which bound D in this dimension.
The DOPs D1, . . . , Dn are constructed by moving the facets of D slightly in

certain ways. For this we need a perfect matching of the (d − 1)-dimensional
facets of D that matches every facet to an adjacent one. We find such a matching
by first determining a perfect matching of the edges of the (2c + 4 − 2d)-gon
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(which is trivial). Then, for each 2 < i ≤ d in order, we add the hyperplanes
H−

i and H+
i , which bound D in the i-th dimension. Let f−i and f+

i be the facets
defined by these hyperplanes. We cannot add the pair (f−i , f+

i ) to the current
matching, since f−i and f+

i are not adjacent. But both facets are adjacent to all
facets in the current matching, so we can choose any pair (f1, f2) from the current
matching, and match up f1 with f+

i and f2 with f−i .
The set S is constructed by making copies of D in which the defining half-

spaces have been offset slightly from their original positions—choosing the off-
sets small enough to ensure that all DOPs have 2c non-degenerate (d− 1)-dimen-
sional facets, and keeping all facets parallel to the original facets. When we fix
the exact position of the affine hull of any (d − 2)-dimensional facet f of such
a variation D′, this fixes the exact position of the two halfspaces that define the
(d − 1)-dimensional facets adjacent to f . We can therefore uniquely specify a
DOP D′ by fixing, for each of the c pairs (f1, f2) in the matching, the intersection
point of f1∩f2 and a plane A orthogonal to it. For the DOPs in S, we restrict those
intersection points to a discrete set of n1/c points on a line whose normal is the
sum of the normals of the intersections of f1 and f2 with A. For an example in R2

see Figure 6.2. By selecting the points such that they lie close enough to D, we
guarantee that any DOP D′ that adheres to these restrictions has 2c non-degenerate
(d− 1)-dimensional facets.

The set S consists of n different DOPs that are defined by taking all possible
combinations of defining points from c sets V1, V2, ..., Vc on c lines `1, `2, ..., `c

of n1/c points each.
We now prove that for any constant-degree BVH on S there is a point query

without answers that visits Ω(n1−1/c) nodes. Each set of defining points Vi di-
vides the line `i in n1/c − 1 bounded segments and two partially unbounded seg-
ments. Let P be a set of c(n1/c − 1) points with one point in the interior of each
bounded segment of each line—see Figure 6.2. Note that the points in P are not
contained in any DOP in S. Now any constant-degree BVH on S contains Θ(n)
bounding volumes B that each contain at least two DOPs from S. Any two DOPs
from S differ in the defining point from at least one set Vi and therefore their
convex bounding volume contains at least one point of P on `i. Hence any con-
vex bounding volume in B contains at least one point of P . There are Θ(n) such
bounding volumes and only O(n1/c) points in P . It follows that there exists a
point p ∈ P which is contained in at least Θ(n)/O(n1/c) = Ω(n1−1/c) bounding
volumes. If we query with this point p we thus have to visit at least Ω(n1−1/c)
nodes. 2

This lower bound shows that in general we cannot hope for a better point-
query time than O(n1−1/c). Next we describe a DOP-tree—we call this DOP-
tree a CSP-DOP tree—achieving this bound even for range queries with c-oriented
ranges. The CSP-DOP tree is simply a c-dimensional CS-priority-box tree [2, 49]
since any DOP D is defined by

⋂c
i=1 Slabi(x−i , x+

i ) where Slabi(x−i , x+
i ) is the

smallest slab enclosing D, see Section 2.1.2. The construction of a CSP-DOP tree
is therefore similar to the construction of a CS-priority-box tree. For complete-
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Figure 6.2: Some of the input DOPs for the lower bound example in the plane for
point-containment queries in bounding DOP hierarchies where c = 3. The input
DOPs shown in the figure only differ at one defining point in V . The defining
points of the input DOPs are depicted as points and the possible point-containment
queries as crosses.

ness, we briefly describe the construction.
Let S be the set of n DOPs. We map every DOP in S to a point p in R2c, which

we call the configuration space, with coordinates (x−1 , . . . , x−c , x+
1 , . . . , x+

c ). We
then build a BSP on these points. This intermediate BSP T is built recursively,
starting at the root: at every node ν we store the 2c points that have the largest
value of x+

i or the smallest value of x−i of the current set of points for some
i ∈ {1, ..., c} and we store these extreme points at ν; we then split the remaining
points with an axis-parallel hyperplane such that approximately half of the points
lie on either side, like in a kd-tree, and distribute these points among the children
of ν. The orientations of the splitting planes are chosen as in a kd-tree, cycling
through all orientations on any path down the tree.

Next we replace every point in the intermediate BSP T by its corresponding
DOP. At every internal node ν we store a bounding DOP containing all DOPs
below ν. The DOPs corresponding to the 2c extreme points are stored in a priority
leaf directly below ν. Note that a DOP corresponding to such a point is extreme
in the direction of one of the normals of the c orientations.

The intermediate BSP is technically not a real 2c dimensional kd-tree (because
at every step we take out some extreme points) but it is easy to see that our tree
has the same size (O(n)), depth (O(log n)) and construction time (O(n log n))
as an ordinary 2c dimensional kd-tree. For the analysis of the query time in the
CSP-DOP tree we use the following fact about kd-trees, which also holds for the
intermediate BSP. This fact is given here without proof.

Lemma 6.3 The number of cells in a c-dimensional kd-tree that intersect an axis-
parallel f -flat (0 ≤ f ≤ c) is O(nf/c).
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Lemma 6.4 The number of visited nodes by a DOP-query Q in a CSP-DOP tree
is O(n1−1/c + k).

Proof: Let Q =
⋂c

i=1 Slabi(x−i (Q), x+
i (Q)) where Slabi(x−i (Q), x+

i (Q)) is
the smallest slab enclosing Q. We define the weight of a node ν to be the number
of DOPs stored in the subtree rooted at ν. In the remainder of this proof we only
consider internal nodes of weight at least 2c as the total number of visited nodes is
at most a constant constant factor off. Let ν be a visited node of weight at least 2c.
We distinguish two cases: either Q intersects at least one DOP stored in a priority
leaf of ν, or Q does not intersect any DOP stored in a priority priority leaf of ν.

There are O(k) nodes of the first case. For the second case we argue as fol-
lows. The DOPs stored in the priority leaves of ν are separated from Q by a
hyperplane h through a facet f of Q. Not all DOPs can be separated by the same
h otherwise h would also separate the DOP that extends furthest in the direction
of the inner normal of f . This would contradict the fact that the query with Q
visits ν. We therefore have at least two distinct hyperplanes through facets of Q
separating a DOP in the subtree of ν from Q.

Assume w.l.o.g. that xi = x−i (Q) is one of these separating hyperplanes, and
let D be the input DOP it separates from Q. Then we have x+

i (D) ≤ x−i (Q),
but there is also a DOP D′ with x+

i (D′) > x−i (Q), otherwise bdop(ν) would not
intersect Q. The points in configuration space on which D and D′ are mapped
thus lie on or on opposite sides of the hyperplane x+

i = x−i (Q). Consequently
the hyperplane x+

i = x−i (Q) intersects the cell in configuration space of the
node in the kd-tree corresponding to ν. The same argument is applicable to the
second hyperplane xj = x−j (Q) or xj = x+

j (Q). Therefore there is a hyperplane
in configuration space with points on or on opposite sides of x+

j = x−j (Q) or
x−j = x+

j (Q), respectively.
We can conclude the following. If Q visits a node ν of the second case then in

configuration space there is a pair of hyperplanes, both of the form x+
i = x−i (Q)

or x−i = x+
i (Q) and both intersecting the cell in configuration space of the node

in the intermediate BSP corresponding to ν. This cell is then also intersected by
the intersection of these two hyperplanes, which is a (2c− 2)-flat. By Lemma 6.3
there are only O(n1−1/c) of such nodes. 2

6.2 A framework for DOP-trees on input with low
stabbing number

In this section we consider the setting that is probably most relevant in practice:
the DOPs may intersect, but not too much. To quantify this we use the so-called
stabbing number of the input set S, see Section 1.2.2. This is the smallest number
σ such that no point in the plane is contained in more than σ DOPs from S. For
example, if the DOPs in S are disjoint, then σ = 1. In practice, especially when
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`a) b)

Figure 6.3: Transforming a BSP-node with a splitting line ` into a 6-DOP-node
with 12 priority leaves containing the gray DOPs.

the DOPs from S are bounding DOPs of an underlying set of disjoint objects, one
may expect that σ is some small constant.

6.2.1 From BSP-trees to DOP-trees
In this section we describe and analyze a general method for creating a DOP-tree
on a set S of c-DOPs in the plane from a c-oriented BSP on a set of representative
points. Our method creates a DOP-tree of branching degree at most 2c + 3, which
can be turned into a binary DOP-tree as a postprocessing step. The method works
as follows.

1. Pick an arbitrary representative point in each DOP in S. Let P be the resul-
ting set of representative points.

2. Construct a c-oriented BSP TP on the set P .

3. Next, transform the BSP TP into a BVH TS , see Figure 6.3, by inserting the
DOPs from S into TP in a top-down manner, starting at the root of TP with
the complete input set S. A recursive call proceeds as follows. We get as
input a set of DOPs Sν ⊆ S which is to be inserted into the subtree rooted
at a node ν. Instead of the splitting line `ν stored at ν, we store at ν the
bounding DOP bdop(ν) := bdop(Sν) of all DOPs in Sν , thus converting a
BSP-node into a BVH-node. We then split Sν into three sets. The set S−ν
contains all DOPs in Sν that lie completely to the left of `ν , the set S+

ν

contains all DOPs in Sν to the right of `ν , and S×ν contains the DOPs in Sν

that are intersected by `ν .

(i) The set S−ν (if non-empty) is inserted recursively into the left child
ν− of ν, and the set S+

ν (if non-empty) is inserted recursively into the
right child ν+ of ν.
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(ii) Recall that C is the set of lines defining the c orientations of the split-
ting lines used by the BSP TP (and the DOPs). Remove the line parallel
to `ν from C, to obtain a set C∗. Construct a DOP-tree for the set S×ν (if
non-empty) by calling a subroutine CreateSubTree(S×ν , C∗) and make
this tree a subtree of ν.

Note that the algorithm above can create nodes of degree one when only one
of the subsets for which a subtree is created is non-empty. We contract these nodes
with their only child in a postprocessing step. Next we describe the CreateSubTree
subroutine.
CreateSubTree(S∗, C∗) is a recursive subroutine, which works as follows.

1. If C∗ = ∅, we return a CSP-DOP tree for S∗ as described in Section 6.1.
Otherwise, proceed with steps 2–4.

2. Create a root node µ for the tree to be constructed. Define Sµ := S∗ and
Cµ := C∗. Store the bounding DOP bdop(Sµ) at µ.

3. Let {−→n1, . . . ,
−→n2c} be the normals to the lines in C (not only the lines in

C∗). Note that for every line we have normals in both directions. For each
normal −→ni in turn, we remove from Sµ the DOP Di extending furthest in
the direction −→ni , and store it in a leaf µi directly below µ. We call such
leaves priority leaves. Note that a DOP stored in a priority leaf because it is
extreme in some direction −→ni is not considered when we look for extreme
DOPs in subsequent directions −→nj with j > i.

4. Let S′ := Sµ \ {D1, . . . , D2c} be the remaining DOPs in Sµ. If S′ is not
empty, we find a splitting line `µ parallel to the first line in Cµ, such that
`µ splits the set of representative points of the DOPs in S′ in two sets of
roughly equal size. Now we create three sets of DOPs S−µ , S+

µ , and S×µ
that contain the DOPs in S′ that lie completely to the left, completely to the
right, or across `µ, respectively.

(i) Construct two subtrees of µ by calling CreateSubTree(S−µ , Cµ) and
CreateSubTree(S+

µ , Cµ), respectively. (If S−µ or S+
µ is empty the cor-

responding call is skipped.)
(ii) Let C∗µ be the set Cµ with its first line, which is parallel to `µ, remo-

ved. Create a subtree of µ for S×µ (if this set is non-empty) by calling
CreateSubTree(S×µ , C∗µ).

This finishes the description of the construction algorithm. In the next two
sections we prove bounds on the properties and the performance of the DOP-tree
created with the algorithm above.

6.2.2 Properties of the DOP-tree
We first need to introduce some definitions. Any node which was already present
in the original BSP TP is called a c-node. For 0 6 m < c, an m-node ν is any
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node constructed in step 1 or 2 of a call to CreateSubTree(S∗, C∗) with |C∗| = m.
An m-tree is a subtree rooted at an m-node-node; thus an m-tree only contains
m′-nodes for m′ 6 m. The k-parent of an m-node ν, for some m < k 6 c, is its
lowest ancestor that is a k-node.

We start with two easy lemmas on the size and the depth of TS .

Lemma 6.5 TS uses O(n) storage.

Proof: The complete structure is a bounding-volume hierarchy that stores n
DOPs in O(n) leaves. All nodes have degree at least two. Hence the total number
of nodes in the hierarchy is O(n), and each of them uses only O(1) storage. 2

Lemma 6.6 The depth of TS is O(depth(TP )).

Proof: Consider any c-node ν which had height h in TP . The number of DOPs
stored below ν is therefore at most 2h. When traversing any path from the ’middle
child’ ν× of ν down to a leaf below ν×, the number of nodes stored below the
current node is reduced by a factor at least two with each step, except, possibly,
when we go from an m-node to an (m− 1)-node (for 0 < m < c). The total
height of the subtree rooted at ν× is therefore at most h + c − 1. It follows that
by the transformation from TP to TS , the height of ν increases by at most an
additive term c. The depth of TS must therefore be at most depth(TP ) + c =
O(depth(TP )). 2

Lemma 6.7 Given BSP TP , the BVH TS can be constructed in O(n · depth(TP ))
time.

Proof: We first analyse how much time it costs to distribute the DOPs Sν that have
to be stored under an m-node ν (0 < m < c) among the children of ν. Suppose
the DOPs in Sν are given sorted by the coordinates of their representative points,
when projected on a line orthogonal to the first line in Cν—that is the line which
is parallel to the splitting line `ν that is chosen for ν. In O(|Sν |) time, we can find
the bounding DOP bdop(ν) of ν, we can find the DOPs that have to be placed in
the priority leaves, choose a splitting line `ν that divides the representative points
of the remaining DOPs into subsets of roughly equal size, and distribute the DOPs
among the three subtrees of ν, while keeping them sorted. A c-node can obviously
be constructed in the same time bound, since a c-node requires less work (c-nodes
have no priority leaves, and the splitting line is already known).

Note that any DOP is routed through at most one node on every level of TS .
Since the depth of the tree is O(depth(TP )) and there are n DOPs, the total time
needed for distributing the DOPs is O(n · depth(TP )), plus the time needed for
sorting. Every m-node whose parent is an m-node as well, gets its set of DOPs
from its parent in the correct order. However, when an m-node gets its DOPs from
its (m + 1)-parent, they have to be sorted. Thus, every DOP undergoes sorting
c = O(1) times, so the total time spent sorting is O(n log n).
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This accounts for the cost for distributing the DOPs over the priority leaves and
0-trees. To finish off, the 0-trees are built in O(n log n) total time as described in
Section 6.1.

Adding these bounds proves the bound on the total construction time. 2

6.2.3 Analysis of the query time
In this section we prove the bounds on the number of nodes in TS visited by a
point query and a DOP-query. To this end, we associate a region of the plane with
every node ν in TS . Consider all the ancestors of ν. At each such ancestor µ,
we used a splitting line `µ to guide the construction; the node ν can either lie in
the subtree corresponding to the subset lying completely in one of the half-planes
defined by `µ, or not. (In the latter case ν is a priority leaf directly below µ, or ν
lies in the subtree created for S×µ .) The region of ν, denoted R(ν), is defined as
the intersection of all half-planes corresponding to ancestors of the former type.

Observation 6.8 For any node ν in TS the bounding DOP bdop(ν) is a subset of
R(ν).

Proof: Suppose this is not the case, then at least one object in Sν is (partially)
outside R(ν). This object thus intersects one of the splitting lines of an ancestor
µ of ν, or it lies completely to the ‘wrong’ side of such a splitting line. But such
an object would not be an object in Sν , by construction. 2

Corollary 6.9 The number of visited c-nodes in TS is at most the number of
nodes that would be visited by the same query in TP .

We now analyse the number of nodes visited by a point query. Here we make
use of the fact that any 0-tree stores O(σ) DOPs in the worst case—we prove this
in Section 6.2.5 (Theorem 6.26)—, where σ is the stabbing number of the input
set.

Lemma 6.10 The number of nodes visited by a point query in TS is O(σ1−1/c ·
depth(TP ) · logc−1 n + k).

Proof: In TP a point query q visits O(depth(TP )) nodes, so by Corollary 6.9
q is contained in the bounding DOPs of at most O(depth(TP )) c-nodes in TS .
For each such node, its (c − 1)-subtree may also contain bounding DOPs that
contain q. A point query in an m-tree (0 < m < c) is contained in the bounding
DOPs of O(log n) m-nodes, since the depth of an m-tree is O(log n). At each
m-node, its (m−1)-subtree may also contain bounding DOPs that contain q. Thus,
an m-tree on n DOPs contains at most T (n,m) = O(log n)(1 + T (n,m − 1))
bounding DOPs that contain q in total, where T (n, 1) = O(log n). This solves
to T (n,m) = O(logm n), and the total number of nodes visited in TS , excluding
0-trees, is therefore O(depth(TP ) · logc−1 n). For each visited 1-node ν, we may
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Figure 6.4: A 4-DOP whose orientations are axis-parallel and the two diagonals.
The edges e2 and e4 are not adjacent since there is a diagonal orientation between
the horizontal and the vertical orientation in the cyclic ordering. All other edges
sharing a corner are adjacent.

need to visit its 0-subtree Tν . By Theorem 6.26 such a subtree Tν stores only
O(σ) DOPs, and by Theorem 6.1 it can be queried by visiting O(σ1−1/c + kν)
nodes, where kν is the number of answers found in Tν . Thus we visit O(σ1−1/c ·
depth(TP ) · logc−1 n + k) nodes in total. 2

Next we analyse the number of internal nodes visited by a DOP-query in TS ;
the number of leaf-nodes is at most a constant factor more. To this end we
introduce the notion of defining segments. The set of defining segments of an
m-node ν, denoted DefSeg(ν), is the intersection of bdop(ν) with the splitting
lines `µ of all k-parents µ of ν (for every k ∈ {m + 1, ..., c}). Note that any DOP
in the subtree rooted at ν intersects all defining segments of that node.

In the following we say that two edges of a query range Q (or some other
c-DOP) are adjacent if their outward normals are adjacent in the cyclic ordering
of all 2c possible outward normals, see Figure 6.4. Hence, if Q has 2c edges
then this corresponds to the usual definition. If, however, some of the possible
outward normals are not used by Q, then two edges may be non-adjacent in the
above sense of the word, even when they are incident to the same DOP-vertex.

We distinguish the following types of visited nodes:

inner nodes are nodes ν such that bdop(ν) is completely contained in Q;

side nodes are nodes ν such that bdop(ν) intersects only one edge of Q;

stabbing nodes are nodes ν such that bdop(ν) intersects at least two edges of
Q (but no vertex), and have a defining segment that intersects at most one
edge of Q;

embracing nodes are nodes ν such that all defining segments DefSeg(ν) and
bdop(ν) intersect the interiors of at least two non-adjacent edges of Q;

corner nodes are nodes ν such that bdop(ν) contains at least one vertex of Q;
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Observe that a visited node that is not an inner node, must intersect at least
one edge of Q. If it intersects only one edge, it is a side node. If it intersects two
adjacent edges, then (by our definition of adjacency) it must also intersect their
common vertex, so it is a corner node. Otherwise it intersects at least two non-
adjacent edges and is therefore a stabbing node or an embracing node, depending
on the defining segments. Thus, together these types cover all nodes whose boun-
ding DOPs intersect Q. Note that some embracing nodes might be corner nodes
as well. Also note that, in the definition of embracing nodes, the condition that
bdop(ν) intersects the interiors of at least two non-adjacent edges of Q is implied
by the condition that the defining segments in DefSeg(ν) intersect the interiors
of at least two non-adjacent edges of Q when DefSeg(ν) is not empty; so the
condition on bdop(ν) is only needed for the case where ν is a c-node for which
DefSeg(ν) is empty.

Lemma 6.11 The number of inner nodes, side nodes, and stabbing nodes visited
by a DOP-query Q in all m-trees (m < c) of TS together is O(k).

Proof: The bound on the number of inner nodes is easy to see, so we concentrate
on the side and stabbing nodes. Let Sν be the set of DOPs stored below some
node ν.

bdop(ν)

Q

D

e

~n

q

p

Figure 6.5: The bounding DOP bdop(ν) of a side node ν intersects only one edge
e of the query Q. The DOP D is extreme in the direction of ~n, the inward normal
of e.

First we bound the number of side nodes. Let ν be a side node and let e be
the edge of Q it intersects. Let H be the halfplane that contains Q and is bounded
by the line that contains e. Let −→n be the direction of the inward normal of e—
see Figure 6.5. Let p be any point inside bdop(ν) ∩ Q, and let q be the point
that extends furthest in direction −→n , in the DOP D ∈ Sν that extends furthest
in that direction. Obviously, the line segment pq lies inside H , and if q would
not lie in Q, the segment pq ∈ bdop(ν) would intersect another edge of Q than
e—contradicting the definition of a side node. Hence, D intersects Q. Since D
is the DOP of Sν which extends furthest in the direction of a normal to one of the
orientations from C, it is stored in a priority leaf at ν. We charge ν to that priority
leaf. By definition, only O(k) priority leaves contain DOPs that intersect Q, and
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bdop(ν)

s

Q

D

e

`

~n

Figure 6.6: The edge e of a query Q intersects bdop(ν) of a stabbing node ν, but
not s, one of the defining segments of ν. The DOP D is extreme in the direction
of ~n, the normal of e directed from s towards `.

each priority leaf is charged at most once (namely by its parent). Therefore the
total number of side nodes is O(k).

It remains to bound the number of stabbing nodes. Let ν be a stabbing node.
Let s and e be a defining segment of ν and an edge of Q, such that e intersects
bdop(ν) but not s—see Figure 6.6 for an example. By the definition of stabbing
nodes, such a pair exists. Let ` be the line that contains e. Since bdop(ν) is convex
and by definition does not include any vertex of e, no line segment inside bdop(ν)
can intersect ` without intersecting e. This implies that s must lie completely on
one side of `. Let D be the DOP stored below ν that is extreme in the direction of
the normal−→n of e that is directed from s towards `. Since any DOP stored below ν
intersects all defining segments of ν, the DOP D must intersect s in some point p.
Furthermore, since bdop(ν) intersects `, the DOP D must contain a point q on the
other side of `. Since D is convex, it contains the line segment pq that intersects
`; hence D intersects e, and in the immediate neighborhood of that intersection,
D intersects Q. Again, we charge ν to the priority leaf that contains D, and find
that the total number of stabbing nodes is O(k). 2

We now bound the number of corner nodes.

Lemma 6.12 The number of corner nodes visited by a DOP-query Q in TS is
O(σ1−1/c · depth(TP ) · logc−1 n + k).

Proof: The number of corner nodes visited by a DOP-query Q in TS is the
number of nodes ν whose bounding DOPs bdop(ν) contain at least one vertex of
Q, which are exactly the nodes visited while doing a point query for each vertex
of Q. The bound thus follows directly from Lemma 6.10. 2

We are now left with proving a bound on the number of embracing nodes. We
start by characterizing the places where they may be found in the tree.

Observation 6.13 All ancestors of embracing nodes are embracing nodes.

Proof: Once a node has a defining segment that intersects less than two edges
of Q, all its descendants have a defining segment that intersects less than two
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bdop(ν−)

s
Q

s
′

`
bdop(ν+)

Figure 6.7: The query Q intersects bdop(ν) of an embracing node ν. The split-
ting line ` stored at ν separates the bounding DOPs of its children bdop(ν+) and
bdop(ν−). The part s′ within Q of the defining segment s cannot be completely
contained in both bdop(ν+) and bdop(ν−).

edges of Q, and once a node’s bounding DOP intersects less than two edges of
Q, all its descendants intersect less than two edges of Q. So all descendants of
inner nodes, side nodes, and stabbing nodes must be inner nodes, side nodes, or
stabbing nodes, so no embracing node can have an inner, side or stabbing node
as an ancestor. With the same reasoning as for side nodes, a corner node cannot
have any embracing descendants either, unless it happens to be an embracing
node itself. It follows that every ancestor of an embracing node is an embracing
node. 2

Lemma 6.14 An m-tree (1 6 m < c) on n DOPs whose root is an embracing no-
de contains O(logm n) embracing nodes—excluding embracing nodes in 0-trees.

Proof: Let ν be an embracing m-node. Since m < c, the node ν has at least
one defining segment s, and since ν is an embracing node, s intersects two edges
of Q—see Figure 6.7. Let s′ := s ∩Q. Since the bounding DOPs bdop(ν−) and
bdop(ν+) of the left and right child of ν are disjoint, they cannot both contain s′

completely. Any child that does not contain s′ completely, has a defining segment
that intersects less than two edges of Q and therefore cannot be an embracing
node. Hence, at most one of ν− and ν+ can be an embracing node. In addition,
the child created for S×ν may be an embracing (m− 1)-node. The maximum
number of embracing nodes in an m-tree on n DOPs is therefore

T (n,m) 6 1 + T (n/2,m) + T (n,m− 1),

where T (n,m) = 1 for n 6 2c, and T (n, 0) = 0 for any n. This recurrence
solves to T (n,m) = O(logm n). 2
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Lemma 6.15 The number of embracing nodes visited by a DOP-query Q in the
tree TS , excluding its 0-trees, is O(tna(TP , Q) + tna disj (TP , Q) logc−1 n),
where tna(TP , Q) is the number of regions in TP that intersect at least two non-
adjacent edges of Q, and tna disj (TP , Q) is the maximum size of a set of such
cells that are pairwise disjoint.

Proof: By Observation 6.13 the embracing nodes together form a subgraph T ′
of TS that is a tree rooted at the root of TS .

First consider the c-nodes of T ′. By Observation 6.8, the number of such
nodes is at most the number of cells in TP that intersect at least two non-adjacent
edges of Q, which is O(tna(TP , Q)) by definition.

The other nodes of T ′ are grouped into subtrees. The roots of these trees are
(c− 1)-nodes that have a c-node in T ′ as parent. By Lemma 6.14 any such sub-
tree has O(logc−1 n) nodes. It remains to bound the number of subtrees. We just
argued that the number of c-nodes in T ′ is O(tna(TP , Q)) by definition, leading
to a bound of O(tna(TP , Q)) on the number of subtrees. We now strengthen the
bound on the number of subtrees to O(tna disj (TP , Q)). Let µ be an embracing
(c− 1)-node in T ′ and let ν be its parent. The only defining segment of µ, the
splitting line used at ν clipped to bdop(ν), must intersect two non-adjacent edges
of Q by definition. Then the left and right child of ν in TP also intersect those
two non-adjacent edges of Q. We now bound the number of embracing nodes
in TP having two embracing child nodes. Consider the subgraph T ′P of TP that
consists of all embracing nodes in TP . Since the cells at the leaves of T ′P are
disjoint, T ′P has O(tna disj (TP , Q)) leaves and as many nodes of degree two.
The number of subtrees of T ′ whose root is an embracing (c− 1)-node is thus
O(tna disj (TP , Q)). Together with Lemma 6.14 this implies that the total size
of the subtrees we are considering is O(tna disj (TP , Q) logc−1 n). Adding up
the bounds proves the lemma. 2

Lemma 6.16 The total number of embracing nodes in 0-trees visited by a DOP-
query Q is O(σ1−1/c · depth(TP ) · logc−1 n + k).

Proof: The number of embracing nodes in 0-trees that are also corner nodes is
bounded to O(σ1−1/c · depth(TP ) · logc−1 n + k) by Lemma 6.12. It remains to
bound the number of embracing nodes in 0-trees that do not contain any vertex
of Q. Let ν be such a node, let e be an edge of Q that intersects bdop(ν), and let
s be the defining segment of ν that is parallel to e. From here we can follow the
proof on the number of stabbing nodes, Lemma 6.11, and find that there are only
O(k) such nodes. 2

The following theorem, which follows from the preceding lemmas, summari-
zes the performance of our DOP-tree construction algorithm.
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Theorem 6.17 Let S be a set of n c-DOPs in the plane such that no point is
contained in more than σ DOPs from S, and let TP be a c-oriented BSP on the set
of representative points of S. Then there is a BVH TS on S such that:

(i) a point query in TS visits O(σ1−1/c · depth(TP ) · logc−1 n + k) nodes;

(ii) a DOP-query in TS with a DOP Q visits
O(tna(TP , Q) + (tna disj (TP , Q) + σ1−1/c · depth(TP )) · logc−1 n + k)
nodes,

where:

• k is the number of DOPs in S that intersect Q;

• tna(TP , Q) is the number of cells in TP that intersect at least two non-
adjacent1 edges of Q ;

• tna disj (TP , Q) is the maximum size of a set of such cells that are pairwise
disjoint.

This BVH can, given TP , be constructed in O(n · depth(TP )) time.

Proof: The point query time is given by Lemma 6.10. For the DOP-query time,
add up the bounds for the number of visited nodes in the c-tree (Corollary 6.9), for
inner nodes, side nodes, and stabbing nodes (Lemma 6.11), for embracing nodes
(Lemma 6.15 and Lemma 6.16), and for corner nodes (Lemma 6.12). Finally, the
bound on the construction time is proven in Lemma 6.7. 2

6.2.4 Instantiations
In Section 6.2.1 we explained how a BVH for n c-DOPs in the plane can be con-
structed from a BSP on a set of n points P . The bounds on the query time of the
BVH depend on the chosen BSP. In this section we give bounds for BVH’s based
on standard kd-trees, kd-trees with longest sides cut first [36], our c-grid BSP’s
from Section 2.2, and BAR-trees [37].

Theorem 6.17 gives bounds on the query time of the BVH that depend on
properties of the BSP TP , more specifically on tna(TP , Q), tna disj (TP , Q), and
depth(TP ).

Standard kd-trees A kd-tree on n points has depth(TP ) = O(log n),
tna(TP , Q) = O(

√
n), and, trivially, tna disj (TP , Q) 6 tna(TP , Q) = O(

√
n).

Corollary 6.18 Let S be a set of n axis-parallel rectangles in the plane such that
no point is contained in more than σ rectangles from S. Then there is a BVH TS

on S such that:
1Recall that in our definition of adjacency the outward normal of the two edges must be adjacent

in the cyclic ordering of all 2c possible outward normals
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(i) a point query in TS visits O(
√

σ log2 n + k) nodes;

(ii) an axis-parallel rectangle query Q in TS visits O(
√

n log n+
√

σ log2 n+k)
nodes,

where k is the number of DOPs in S that intersect Q. Such a tree TS can be
constructed in O(n log n) time.

The BVH constructed is in fact a slightly simplified version of the kd-interval-
tree of Agarwal et al. [2] (the original kd-interval-tree has more priority leaves).
We obtain the same bounds as in their paper. In his thesis [49] Haverkort improved
the analysis by exploiting the fact that kd-trees are well-balanced and that the
lowest levels of the tree cannot contain roots of big 0-trees. This refined analysis
also applies in our case. The bounds are then O(

√
σ log2(n/σ) + k) for point

queries and O(
√

n +
√

σ log2(n/σ) + k) = O(
√

n + k) for rectangle queries.

kd-trees built with longest sides cut first We also have depth(TP ) = O(log n).
Dickerson et al. [36] give an upper bound of O(α log n) on the number of disjoint
cells intersected by a query range with aspect ratio α. Clearly this is also an upper
bound on tna disj (TP , Q). Furthermore, we observe that

tna(TP , Q) 6 tna disj (TP , Q) · depth(TP ) = O(α log2 n).

Corollary 6.19 Let S be a set of n axis-parallel rectangles in the plane such that
no point is contained in more than σ rectangles from S. Then there is a BVH TS

on S such that:

(i) a point query in TS visits O(
√

σ log2 n + k) nodes;

(ii) a rectangle query in TS with an axis-parallel rectangle Q with aspect ratio
α visits O((α +

√
σ) log2 n + k) nodes,

where k is the number of DOPs in S that intersect Q. Such a tree TS can be
constructed in O(n log n) time.

The BVH constructed is in fact a slightly simplified version of the lsf-interval-
tree of Agarwal et al. [2] and we obtain the same bounds as in their paper.
Again, a refined analysis by Haverkort [49] applies such that a point query visits
O(
√

σ log2(n/σ)+k) nodes and a range query with a box of aspect ratio α visits
O(α log2 n +

√
σ log2(n/σ) + k) nodes.

c-grid BSPs We have depth(TP ) = O(log n), for any ε > 0 we have by
Theorem 2.2 and its proof tna(TP , Q) = O(n1/2+ε), and, trivially,

tna disj (TP , Q) 6 tna(TP , Q) = O(n1/2+ε).
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Corollary 6.20 Let S be a set of n c-DOPs in the plane such that no point is
contained in more than σ DOPs from S. Then for any ε > 0 there is a BVH TS on
S such that:

(i) a point query in TS visits O(σ1−1/c logc n + k) nodes;

(ii) a DOP-query in TS with a c-DOP Q visits O(n1/2+ε + σ1−1/c logc n + k)
nodes,

where k is the number of DOPs in S that intersect Q. Such a tree TS can be
constructed in O(n log n) time.

Approximate range searching (BAR-trees). One hopes to achieve a polylo-
garithmic DOP-query time, but unfortunately this is impossible for exact queries.
However, such results can be achieved if one is willing to settle for ε-approximate
range searching, as introduced by Arya and Mount [13]. From Section 1.1.2 recall
that one considers, for a parameter ε > 0, the ε-extended query range Qε, which
is the set of points lying at distance at most ε · diam(Q) from Q, where diam(Q)
is the diameter of Q. Objects intersecting Q must be reported, while objects in-
tersecting Qε (but not Q) may or may not be reported; objects outside Qε are not
allowed to be reported. One BSP with a good query bound for approximate range
searching is the BAR-tree [37]. A BAR-tree has O(log n) depth and can answer
any convex approximate query in R2 in O(ε−1 + kε +log n) time where kε is the
number of DOPs in Qε. The query algorithm can easily be adapted such that only
objects that actually intersect Q are reported; the number of objects intersecting
Qε is then only used for the analysis. The BAR-tree can thus answer any exact
convex query in R2 in O(minε>0{ε−1 + kε}+ log n) time [50].

Theorem 6.17 cannot be applied to BAR-trees directly, because a BAR-tree
does not give non-trivial bounds on tna(TP , Q) and tna disj (TP , Q). However,
we can apply the DOP-tree construction algorithm of Section 6.2.1 without modifi-
cations, and with a few small changes in the analysis we can still derive non-trivial
bounds on the query time of the resulting DOP-tree.

The necessary changes are the following. For the analysis of the point and
DOP-query time we still classify visited nodes as inner, side, stabbing, embracing
or corner nodes, but inner nodes are now defined as nodes ν with bdop(ν) com-
pletely contained in Qε (rather than Q). Side, stabbing, embracing and corner
nodes are now defined as nodes that fit the original definitions (with respect to
Q) and are not completely contained in Qε. For instance, a side node is a node ν
such that bdop(ν) intersects only one edge of Q and is not completely contained
in Qε. It is easy to verify that the full analysis leading to Theorem 6.17 still
goes through, with k replaced by kε, except the proof of Lemma 6.15. There
we need to replace tna(TP , Q) by tnaε(TP , Q): the number of cells in TP that
intersect at least two non-adjacent edges of any query range Q and are not com-
pletely contained in Qε. Furthermore, we cannot argue anymore that an embra-
cing (c− 1)-node with a c-node as parent must have two embracing ‘siblings’ in
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the BSP, and so the number of such nodes can only be bounded to tnaε(TP , Q)
instead of tna disj (TP , Q).

We can thus apply Theorem 6.17 with k replaced by kε, and tna(TP , Q) and
tna disj (TP , Q) both replaced by tnaε(TP , Q). Duncan [37] defined a corner-
cut BAR-tree, which uses four evenly spaced cutting directions. He proved that
for a corner-cut BAR-tree TP we have depth(TP ) = O(log n), and that for convex
query ranges Q, there are only O(1/ε+log n) nodes in TP whose region intersect
Q but do not lie completely inside Qε. Clearly this is also an upper bound on
tnaε(TP , Q). We obtain the following result:

Corollary 6.21 Let S be a set of n 4-DOPs in the plane, where the set of orienta-
tions C is a set of 4 evenly spaced orientations, and no point is contained in more
than σ DOPs from S. Then there is a BVH TS on S such that:

(i) a point query in TS visits O(σ3/4 log4 n + k) nodes;

(ii) an exact DOP-query in TS with a DOP Q visits
O(σ3/4 log4 n + minε>0{ε−1 log3 n + kε}) nodes,

where kε is the number of DOPs in S with at least one point at distance at most
ε · diam(Q) from Q, where diam(Q) is the diameter of Q. Such a tree TS can be
constructed in O(n log n) time.

Remark 6.22 The results in Corollary 6.21 hold for 4-DOPs for which the set of
orientations C is a set of 4 evenly spaced orientations. Since boxes are 4-DOPs
we can use the same argument as in Theorem 5.2.13 of Haverkort’s thesis [49]
to obtain the following result for constant-complexity query ranges of arbitrary
shape.

Let S be a set of n 4-DOPs in the plane as in Corollary 6.21. Then there
is a BVH TS on S such that a constant-complexity query range Q in TS visits
O(minε>0{ε−1σ3/4 log4 n + kε}) nodes.

6.2.5 The number of DOPs in a 0-tree
In Lemma 6.10 we used that only O(σ) DOPs can end up in any single 0-tree,
where σ is the stabbing number of the input set. In this section we prove this.
Recall that all DOPs ending up in the 0-tree rooted at some node ν intersect all
defining segments of ν. Thus we can bound the number of DOPs in any single
0-tree by solving the following combinatorial-geometry problem: what is the
maximum size of any set D of DOPs in the plane with the following properties:

(P1) There is a set L of c lines such that every edge of any DOP in D is parallel
to some line in L;

(P2) (the interior of) each DOP in D intersects every line in L;

(P3) no point in the plane lies in the interior of more than σ DOPs from D.
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For a given set L, we call a DOP admissible if it has all edges parallel to lines in
L and intersects every line in L. We start with a simple lemma.

Lemma 6.23 The interiors of any two DOPs in a D intersect each other.

Proof: Suppose two DOPs in a D are disjoint. Then they can be separated by a
line ` parallel to an edge of one of the DOPs and, hence, by a line parallel to a line
in L. However, this contradicts that every DOP intersects all lines in L. 2

Corollary 6.24 If the DOPs in the input set D are interior-disjoint, then |D| = 1.

We continue with a simple proof for a special, but interesting case.

Lemma 6.25 LetD be a set of DOPs that are bounding DOPs of some underlying
set of disjoint objects and satisfying properties (P1)–(P3). Then |D| 6 4cσ + 1.

Proof: It follows from Lemma 6.23 that any two DOPs in D intersect. Fur-
thermore, for any two intersecting DOPs D, D′ ∈ D there must be a vertex from
D inside D′, or vice versa. This follows since D and D′ are bounding DOPs of
disjoint objects. We charge the intersection between D and D′ to this vertex. By
property (P3), any vertex can be charged at most σ times. Since a DOP has at most
2c vertices we can have at most 2c|D|σ intersections, otherwise a vertex would
be charged too often. On the other hand, any two DOPs inD intersect, so there are(|D|

2

)
= |D|(|D|−1)/2 pairwise intersections. Hence, |D|(|D|−1)/2 6 2c|D|σ,

which implies |D| 6 4cσ + 1. 2

Bounding the size ofD for the general case, where the DOPs inD can intersect
in an arbitrary manner, is a lot more difficult. We can show that in the worst case
|D| = Ω(cσ), but we have not been able to prove a matching upper bound for
variable c. Nevertheless we can prove a bound that is linear in σ.

Theorem 6.26 Let D be a set of DOPs satisfying properties (P1)–(P3). Then |D|
is Ω(cσ) and O(c4σ) in the worst case.

It follows that for constant c, the number of c-DOPs in any single 0-tree is O(σ).
In the remainder of this section we first prove the lower bound of this theorem,
and then the upper bound.

Lemma 6.27 Let D be a set of DOPs satisfying properties (P1)–(P3). Then |D|
is Ω(cσ) in the worst case.

Proof: We construct a set D of size at least cbσ/2c as follows. Let L be a set of
c lines in general position. From every line of L, take a segment that intersects all
other lines from L and inflate it to a narrow DOP that contains those intersections
in its interior, see Figure 6.8. If the DOPs are narrow enough, each intersection
among lines in L now lies in exactly two DOPs (those constructed from the lines
intersecting in that point) and no point lies in more than two DOPs. To get a set
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`1

`2 `3

Figure 6.8: A lower bound example for c = 3. On every line there are bσ/2c
DOPs. Every intersection point between two lines are thus covered by σ DOPs.

D of size cbσ/2c, we put bσ/2c copies of each of these c DOPs in D. It is easily
verified that this set satisfies properties (P1)–(P3). 2

We now prove the upper bound. We need the following observation.

Observation 6.28 Suppose all lines in C intersect in a single point p. Any DOP D
that does not contain p, must be separated from it by a line `′ parallel to a line `i

in C. Then `′ also separates D from `i, and therefore D is inadmissible. Hence, if
all lines in C intersect a single point p—which is always the case if c = 2—every
admissible DOP must contain p, and there can be only σ such DOPs in S.

For the case that the lines in L do not have a common intersection, we prove
Theorem 6.26 as follows. We first prove that for each DOP D ∈ D there is a cell
in the arrangement AL induced by the lines in L such that D intersects at least
three edges of that cell. It follows that it intersects three edges of a cell in the
arrangementA′ of the three lines from L that contain those edges ofAL. We then
prove that for any such arrangementA′, there is a set of at most 4c+1 points—we
call them guards—such that if a DOP intersects all edges of any three-edge cell in
A′, it must contain at least one guard. It follows that the total number of DOPs in
D cannot exceed

(
c
3

)
(4c + 1)σ = O(c4σ), thus proving the theorem.

Lemma 6.29 If there is no single point where all lines in L intersect then for any
D ∈ D there is a, possibly unbounded, cell in the arrangement AL such that D
intersects at least three edges of that cell.

Proof: Suppose for a contradiction that D intersects at most two edges of any
cell in AL. We distinguish two cases.

Case (i): D contains an intersection point p of two or more lines in L. Now
D intersects two edges of every cell in AL incident to p. If D does not intersect a
third edge of at least one of those cells then, since not all lines intersect in p, some
line in L does not intersect D, contradicting (P2).
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v

u

G

Figure 6.9: The nodes in the graph G represent the cells intersected by D. There
is an edge between two nodes if the edge between the corresponding cells is
intersected by D.

Case (ii): D does not contain an intersection point p of two or more lines in
L. Consider the graph G whose nodes represent the cells in AL intersected by D,
and with an arc (u, v) between two nodes u and v if and only if D intersects the
edge in AL between the cells Cu and Cv represented by u and v, see Figure 6.9.

The degree of any node u in G is the number of edges of Cu in AL that are
intersected by D. If D intersects at most two edges of any cell inAL, the graph G
must be a path. (Since D is convex and does not contain a vertex ofAL, it cannot
be a cycle.) If this path would contain less than c arcs, D would intersect less
than c lines from L, contradicting (P2). So we may assume that the path contains
c arcs and c + 1 nodes.

Let p and q be points of D in the cells at the ends of this path. Without loss
of generality, assume that the line segment pq is vertical and oriented upwards.
Let C0, ..., Cc be the cells in AL represented by the nodes on this path, so that p
lies in C0 and q lies in Cc, and let `π(i) be the line containing the edge between
Ci−1 and Ci, where π is a permutation of 1 . . . c which defines the order of the
orientations of the c intersected lines.

Let H−1, ...,H−c,H1, ...,Hc be the halfplanes such that H−1 ∩ ... ∩H−c ∩
H1 ∩ ... ∩ Hc = D and each Hi is bounded by a line hi parallel to `π(|i|) that
touches D. Let ei be the edge of D that is defined by Hi, that is, the intersection
of hi with the boundary of D (some of these ‘edges’ may in fact be vertices
of D). Without loss of generality, assume that the edges appear in the order
e1, ..., ec, e−1, ..., e−c on a clockwise walk along the boundary of D. Denote
this set of 2c edges by E.

Note that for any i ∈ {0, ..., c} and j ∈ {1, ..., c}, the edges e−j and ej cannot
both intersect Ci (or its boundary) since then `π(|j|), which lies between e−j and
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Figure 6.10: A cell Ci such that the halfplane A, bounded from below by `π(i−1),
and the halfplane B, bounded from above by `π(i), are each intersected by more
than half of the edges of D. This leads to a contradiction, as `π(k) passes between
e−k and ek and therefore it must intersect Ci.

ej , would pass through Ci, contradicting the fact that Ci is a single cell of AL. It
follows that at most half of the edges in E intersect the closed halfplane bounded
from above by `π(1) (and thus, C0). Symmetrically, at most half of the edges in
E intersect the closed halfplane bounded from below by `π(c) (and thus, Cc). As
a consequence there is an i ∈ {1, ..., c− 1} such that more than half of the edges
in E intersect the closed halfplane A bounded from below by `π(i−1) and more
than half of the edges in E intersect the closed halfplane B bounded from above
by `π(i)—see Figure 6.10.

Consider the edge ej in E that intersects A such that its predecessor in the
clockwise ordering of edges does not intersect A. Because more than half of
the edges in E intersect A, edge e−j intersects A. But since ej and e−j cannot
both intersect Ci, edge e−j lies above `π(i). Next consider the edge ek in E that
intersects B such that its predecessor in the clockwise ordering of edges does not
intersect B. Observe that ek lies on the path clockwise along the boundary of
D from e−j to ej . Now e−k must intersect B (because more than half of the
edges intersect B) and A (because it lies clockwise between ej and e−j). Hence
it intersects Ci, as does ek, which contradicts the observation that ek and e−k

cannot both intersect Ci.
In both cases there cannot be an admissible DOP D which intersects at most

two edges of any cell inAL. So there has to be a cell inAL of which at least three
edges are intersected by D. 2

We now prove that a bounded cell in an arrangement of three lines can be
guarded by c + 1 guard points such that when a DOP intersects all edges of this
cell it must contain a guard. After that we show how to reduce the case of an
unbounded three-edge cell to the case of a bounded cell.
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Lemma 6.30 For any arrangement A′ of three lines from L, there is a set of at
most c + 1 guard points, such that if a DOP intersects all edges of the bounded
three-edge cell in A′, it must contain at least one guard.

Proof: Let D = H−1 ∩ ...∩H−c ∩H1 ∩ ...∩Hc be a DOP, where the boundary
lines of the halfplanes h−i and hi are parallel to the line `i ∈ L. Assume D
intersects all three edges of the triangle 4 that is the bounded face of A′.

Without loss of generality, let `1, `2 and `3 be the lines that define the boun-
ded cell 4, such that s1, s2 and s3 are the sides of 4 that lie on `1, `2 and `3,
respectively, in counterclockwise order around 4. For i ∈ {1, 2, 3}, let vi be the
vertex of4 which is not on `i. Without loss of generality, let `1 be horizontal and
bound 4 from below—see Figure 6.11 a).

We define for every line `i ∈ L a set of vertices Vi. For i ∈ {1, 2, 3}, we
define Vi = {v1, v2, v3} \ {vi}, and for i ∈ {4, ..., c}, the set Vi consists of the
unique vertex of4 such that a line through that vertex and parallel to `i intersects
the interior of 4. The set of guards is now defined as follows. For every line
`i ∈ L we define `′i to be a line through the vertices in Vi, and parallel to `i. We
place a guard gi at the midpoint of the segment defined by `′i ∩4. We also place
a guard g0 at the center point of D.

Note that g1, g2 and g3 form a triangle 4′ which is isomorphic to 4 and on
whose edges the guards gi for i ∈ {4, ..., c} are placed. For i ∈ {1, 2, 3}, let s′i be
the edge of 4′ which is parallel to `i. Observe that D must intersect at least two
edges of 4′.

We prove that D contains a guard by deriving a contradiction from the as-
sumption that it does not. Let ei be the edge of D that is defined by Hi.

If 4′ would have an edge s′i that lies completely inside D or is intersected
by only one edge of D, it would follow that one of the endpoints of s′i lies in D.
Since both endpoints are guards, this would contradict our assumptions. So any
edge s′i from 4′ is intersected either by no edge of D, or by two edges of D.
Without loss of generality, assume that s′1 is one of the edges of4′ that intersects
two edges of D. Let ej be the left edge (that is: the one whose intersection with
s′1 is closest to g3), and let ek be the right edge. For readability we write Vj and
gj instead of V|j| and g|j|.

We distinguish the following six cases (some of them overlap).

1. v1 ∈ Vj and v1 ∈ Vk (see Figure 6.11 b)).

Note that gj and gk both lie on s′1. The guard gj must lie to the right of the
intersection of s′1 with ej since otherwise s3 would be separated from D by
the line that contains ej . By the assumption that D does not contain a guard,
ek must intersect s′1 to the left of gj . Hence, Hk, and thus D, is contained
in the halfplane H ′

k that lies left of the line through gj and parallel to `k. By
a similar argument, we find that D is contained in the halfplane H ′

j that lies
right of the line through gk and parallel to `j . Let p be the bottommost point
of the intersection H ′

j ∩ H ′
k of those halfplanes. Observe that the triangle

gkpgj is congruent with gjv1gk—in particular, both triangles are exactly
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Figure 6.11: Illustrating the case analysis for Lemma 6.30

half as high as 4. The point p must therefore lie on s1, so H ′
j ∩H ′

k ⊃ D
lies completely above `1, which contradicts our assumptions.

2. v1 ∈ Vj and v2 ∈ Vk (see Figure 6.11 c)).

The proof for this case is very similar to that of the previous case. Again,
Hk, and thus D must be contained in the halfplane H ′

k that lies left of the
line through gj and parallel to `k. Since Vk = {v2}, the part of H ′

k that
intersects `1 is in fact contained in the halfplane H ′

3 that lies left of the line
through gj and parallel to `3. From here we can follow the same argument
as for the previous case, with k replaced by 3.

3. v3 ∈ Vj and v1 ∈ Vk.

This case is symmetric to the previous case.

4. v3 ∈ Vj and v2 ∈ Vk (see Figure 6.11 d)).

Clearly, the bottommost point of the intersection of Hj and Hk must lie in
4′, so that D must lie completely above `1, which contradicts our assump-
tions.
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5. v3 ∈ Vk (see Figure 6.11 e)).

Since Hk separates D from the upper half of s2, the DOP D must intersect
the lower half of s2, and therefore also s′3. Let em be the first edge of D
that intersects s′3 when we walk along the boundary of D in clockwise order
from ek. Note that Vm cannot contain v1, since Hm would then separate D
from the lower half of s2. Furthermore, Vm cannot contain v2, since that
would imply that D has a reflex vertex on the clockwise walk from ek to
em. So Vm = {v3}.

Now s′3 must be intersected by a second edge em′ of D. If Vm′ contains v3

or v1, we can treat this case as case 1 or 2, respectively, on s′3 instead of
s′1. Otherwise, that is, if Vm′ = {v2}, we repeat the above argument on s′3
instead of s′1, and find that D intersects not only s′1 and s′3, but also s′2.

Since by assumption, D does not contain the center g0 of4 (and4′), there
must be a line through g0 such that D lies completely on one side of that
line. Clearly, any such line separates D from one of the six edges of 4 and
4′, contradicting our assumptions.

6. v2 ∈ Vj .

This case is symmetric to the previous case.

Since the above covers all cases and each of them leads to a contradiction, we
must conclude that D contains a guard. 2

Finally we show how to place guards in an unbounded three-edge cell such
that when a DOP intersects all three edges it must contain a guard.

Lemma 6.31 Let A′ be an arrangement of three lines from L. An unbounded
three-edge cell C in A′ can be guarded by c + 1 points such that if any DOP D
intersects all edges of C, then D contains a guard.

Proof: Let 4 be such an unbounded cell, and let v and w be its vertices. Draw
a line `v through v with one of the given c orientations such that ` intersects the
unbounded edge of 4 incident to w at a point x that is as far away from w as
possible—see Figure 6.12. From the choice of `v it follows that D must intersect
the segment wx. If x coincides with w, it follows that D contains x = w and one

v w

`v

x
C

Figure 6.12: Reducing the case of an unbounded cell to that of a bounded cell.
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guard at x = w suffices. Otherwise, note that D must also intersect vx since it
intersects the unbounded edge of 4 incident to v. Hence, D intersects all three
sides of the triangle vwx. This triangle can be guarded with c + 1 points, as we
have seen before. 2

Note that for every unbounded three-edge cell inA′ one of the guards, the one
in the middle of vw, was already added for the bounded cell of A′, so we need c
extra guards for each of the three unbounded three-edge cells. The total number
of guards for A′ is thus 4c + 1.

Combining Observation 6.28 and the Lemma’s 6.29, 6.30 and 6.31, we find
that the total number of admissible DOPs cannot exceed

(
c
3

)
(4c+1)σ, thus proving

the upper bound of Theorem 6.26.
Although this amounts to bounds of 13σ for c = 3 and 68σ for c = 4, a

careful look at these simple cases would reveal that many guards coincide or are
redundant. For c = 3 we would find that 3 guards suffice, and for c = 4 we can
do with 12 guards, see Figure 6.13.

a) b)

Figure 6.13: a) Guards for c = 3 b) Guards for c = 4



Chapter 7

Experimental Results on
External-Memory DOP-trees

In Chapter 6 we introduced a framework for constructing a bounding-volume hier-
archy based on a c-oriented BSP1 for a set of objects in R2 that fits in internal
memory. We called the resulting BVH a DOP-tree. It uses a c-discretely oriented
polygon, or c-DOP as a bounding volume. We gave a theoretical bound on the
query time using the query time in the BSP and the stabbing number of the boun-
ding DOPs of the input set. Recall from Section 1.2.2 that the stabbing number of
a scene is the maximum number of objects intersecting in any point in the plane.
It is believed that many realistic scenes have a low stabbing number.

In this chapter we experiment with queries in DOP-trees on very large input
sets. The DOP-trees do not fit in internal memory and are therefore stored on disk.

In the first section we describe an external-memory variant of the DOP-trees.
In Section 7.2 we address the experimental setup for the three sets of experiments.
The results of these experiments are given in Section 7.3. In the first experiment
we consider the effect on the query cost of the number of items that can be stored
in a single block. The experiment shows that when the block size is increased by
some factor f the query cost is decreased by a factor less than f . In the second set
of experiments we investigate the effect of increasing the number of orientations
used for describing the bounding DOP on the query cost. In some experiments
using more orientations decreases the cost of a range query in a set of objects, in
other experiments it does not help to use more orientations. Furthermore we show
that the leaf blocks have the largest influence on the total cost of a query. In the
third and final experiment we compare the DOP-trees to the PR-tree by Arge et al.
[11].

The O-tree [80] is an external-memory BVH which uses an axis-aligned boun-
ding box and a bounding box whose sides are parallel to the diagonals. The O-tree

1A BSP is c-oriented when all splitting lines stored at the nodes of T have an orientation in a fixed
set of c orientations.

89
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thus basically uses 4-DOPs as bounding volume. As far as we know the O-tree is
the only external-memory BVH which uses a specific DOP as bounding volume.
We do not compare our DOP-trees to the O-tree, because the O-tree is built using
repeated insertions while the DOP-trees are bulk-loaded.

7.1 An external-memory DOP-tree
In this section we describe how we have constructed the external-memory DOP-
trees used in our experiments. We make a distinction between blocks which only
store the input objects, content blocks, and blocks which store only internal nodes
with bounding volumes of the objects below, navigation blocks. A block is either
a content block or a navigation block, we do not allow any other type of blocks.
A content block stores at most Bc input objects and a navigation block at most
Bn DOPs. During the construction the objects in the input set are approximated
by a bounding c-DOP. In the content blocks, however, they are stored without the
bounding volume.

In Chapter 6 an internal-memory DOP-tree is constructed by first computing
a representative point for each object of the input set. On the resulting set a
c-oriented BSP TP is constructed. Finally the DOPs in the input set are inserted
into TP and TP is converted into a BVH as follows. We start at the root ν of TP

and store the bounding DOP of the input set and for every orientation the most
extreme DOP at ν. Next the input set is split in three sets, one set of DOPs which
intersect the splitting line ` stored at ν and two sets containing DOPs completely
on either side of `. The latter two sets are inserted recursively. On the first set an
auxiliary tree, a (c− 1)-tree, is built which becomes the third child of ν.

The external-memory DOP-tree construction in this chapter differs from the
construction described in Chapter 6 in the use of priority leaves. In the external-
memory version of the DOP-tree we do not store the most extreme DOP for each
orientation in C at the node ν, but we store the B most extreme DOPs for each
orientation in a separate content block. We call these content blocks priority
blocks. A further adaption to the DOP-tree construction algorithm is that we add
priority leaves not only to the (c−1)-trees, but also to the main tree. These priority
blocks were added because a preliminary experiment showed that the query cost
decreases when priority blocks are also used for the main tree.

The DOP-trees are constructed I/O-efficiently using a bulk-loading algorithm
based on the “grid” technique introduced by Agarwal et al. [1]. Let T be the
c-oriented BSP we want to construct. In the grid technique Θ(log(M/B)) levels
of T are constructed using a c-grid BSP of size Θ((M/B)c1) residing in memory
for some constant c1 ≤ 1/c. Let T̂ be the Θ(log(M/B)) levels. Next the input
set is partitioned into subsets that correspond to the subtrees below each leaf of T̂ .
While partitioning the input set we also transform T̂ into a DOP-tree for which we
keep track of the B most extreme DOPs in each of the c orientations and the DOPs
intersecting the splitting line at every node in T̂ . This process can be completed
with a constant number of scans of the input set. Finally we recurse to build
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the subtrees. The recursion stops when we have less than M DOPs to deal with,
for which we just build the entire subtree in memory. The overall cost is then
O(N/B · log(N/B)/ log(M/B)) I/Os.

During the construction a navigation block B has an out-degree of at most
3+2c, that is, below B there are at most 2c priority blocks and 3 navigation blocks
for the three subtrees. If there is at least one navigation block below B then the 2c
priority blocks contain in total 2cBc input objects. The total number of navigation
blocks is thus bounded by O(N/Bc). In a post-processing phase we group the
navigation blocks bottom-up so that the number of navigation blocks becomes
O(N/(BcBn)). The grouping is done as follows. We check every navigation
block B′ directly below some block B. If B can accommodate all nodes in B′
then we move all nodes from B′ to B. We continue until there is no block below
B whose nodes can all be accommodated for by B.

As a second postprocessing step we merge content blocks containing less
than Bc input objects below one navigation block. We group the content blocks
together as follows. Consider a navigation block B. At B we count the number of
objects in each content block below B. We sort the content blocks by the number
of objects which still fit in the block. For each non-full block we try to find a
sibling content block such that after merging the two blocks the number of free
places is minimized. After the second postprocessing step the navigation block
can have more than one reference to a content block, but a content block is always
referred to by one navigation block.

7.2 Experimental setup
In this section we describe the experimental setup of our experiments. For the
DOP-tree framework, introduced in Chapter 6, we have to choose which c-oriented
BSPs we would like to use and which orientations we will use. Next we describe
the input sets on which the DOP-trees are built and how they are constructed. We
then address how the queries were chosen to determine the cost of querying the
DOP-trees. We conclude with a description of the software and hardware used in
the experiments and the settings of the software.

Binary Space Partitions. For our experiments we used two BSPs in the DOP-
tree framework. The first BSP is the c-grid BSP as described in Section 2.2. The
second BSP is an adaptation of the well-known LSF-kd-tree, see Section 1.3.1.
The construction of the adapted LSF-kd-tree is as follows. We start with a region
R which is the bounding DOP of the objects in the input set. For every orientation
ci ∈ C we calculate the minimum distance δi between two halfplanes that enclose
R and have orientation ci. The longest side of R is defined as an orientation cj

for which δj = maxi δi with ties broken arbitrarily.
The region R is then cut by a splitting line ` whose orientation makes the

largest angle with cj of all ci ∈ C such that ` splits the point set in half. An adapted
LSF-kd-tree is constructed recursively on the resulting two sets until there are Bc
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points left in a region. Note that for c = 2 we have an ordinary LSF-kd-tree and
when we use it in the framework we obtain the longest-side-first KD-interval-tree
by Agarwal et al. [2, 49].

Orientations of splitting lines. The set of orientations C used in the experi-
ments are those of a regular 2c-gon where the first orientation is always horizon-
tal. For c = 2 we thus use splitting lines that are axis-aligned and for c = 4 we
use orientations that are axis-aligned or diagonal. For the experiments we used
c ∈ {2, 3, 4, 5, 6}.

Input objects. Each input set contains 12,000,000 points, segments or squares
all contained within the unit square. We used three distributions for the objects in
the experiments, UNIFORM, DIAGONAL, CIRCLE, see Figure 7.1.

These distributions of the input are chosen in such a way that we can investiga-
te the behavior of the DOP-trees. The UNIFORM distribution has been chosen for
the case that the input is without structure. The DIAGONAL distribution represents
the case that the input is distributed along a line. The line is oriented diagonally
to be able to investigate the influence of the input being distributed along a line
resembling one of the splitting orientations for c = 4. The CIRCLE distribution
eliminates this possible dependency.

For the results we will use the following color-coding for the distributions:

 

 
Uniform
Diagonal
Circle

Construction of the input sets. The points in the UNIFORM distribution are
picked randomly. The DIAGONAL distribution of points consists of points picked
randomly such that the distance to the diagonal is at most 0.01. The CIRCLE set
contains points in a band of width 0.05 around a circle of radius 0.3. A sample of
the point data sets is given in Figure 7.1 a)– c).

For the experiments with line segments we picked a point as in the construc-
tion of the point sets and then picked a segment with an arbitrary orientation going
through this point. See Figure 7.1 d)– f) for an impression of the input sets. The
set consists of segments of variable length. The length l of a segment is chosen
arbitrarily using the following formula: l = 212∗rnd−16 where rnd is a random
real number between 0 and 1. All segments in the set are fully contained in the
unit square.

The squares are constructed as follows. We start by picking the side length l

arbitrarily using the following formula: l = 212∗rnd−16 where rnd is a random
real number between 0 and 1. We then picked a point p as described in the con-
struction of the point sets. The square is then positioned such that p is the center



7.2 Experimental setup 93

a) b) c)

d) e) f)

g) h) i)

Figure 7.1: The input sets used in the experiments. a) A uniformly distributed
point set. b) A point set distributed along a diagonal line. c) A point set distributed
along the boundary of a circle. d) A uniformly distributed line segment set. e)
and f) are sets of line segments distributed along a diagonal line respectively the
boundary of a circle. g)-i) A set of boxes from left to right: uniformly distributed,
distributed along a diagonal line and distributed along the boundary of a circle.
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of the square. In Figure 7.1 g)– i) an impression of the resulting distribution is
given. All squares are fully contained in the unit square.

Queries. The data structures were queried with rectangle queries (or more pre-
cise square queries), since rectangle queries of some reasonable aspect ratio are
the standard type of query. The queries are chosen such that they follow the un-
derlying distribution of the objects. More precisely we choose a random object o
from the input and construct a query Q such that the lower left-most point of o is
the center of Q. For each distribution we created two query sets containing 100
squares. The squares in the first set have side length 0.01 and in the second set
0.1. The results in the next chapter are an average over the 100 queries in a set.

The queries were themselves not approximated by a c-DOP since the queries
are simpler than the DOP that would have been obtained otherwise.

Software and hardware. The DOP-trees are implemented in C++ using the
external memory library TPIE [12]. As experimental platform we used a Dell
Optiplex GX280 with one Pentium IV/3.0GHz processor running WindowsXP. A
local 120 GB IDE disk was used to store all necessary files: input, DOP-trees and
all temporary files.

A point is stored as two floats for its position and one unsigned integer as its
identifier. Both a line segment and a box are stored using two points. A DOP
also uses an unsigned integer as its identifier and 2c floats for the position of the
halfplanes which define the DOP.

Block size. In TPIE [12] one has to set the number of items per block manually.
In our case an item is a bounding DOP or an input object. This enabled us to
store less items in a block than would have fit otherwise. This is convenient for
us since in practice not only the tree is stored, but also satellite data and we can
now easily investigate the effect of storing satellite data in a block by considering
large blocks (which can contain many items) and small blocks (which can contain
fewer items because of the satellite data). Because we can use the same input
set for DOP-trees with and without satellite data, we can make a fair comparison
between the number of blocks accessed by a query in a DOP-tree without satellite
data and with satellite data, see Section 7.3.1.

We use a PR-tree for a comparison with the DOP-trees in Section 7.3.3. The
implementation of the PR-tree can handle only one size for the blocks. We set the
size of the large content blocks such that our DOP-trees and the PR-tree store the
same number of objects in a content block. Since the number of DOPs which can
be stored in a navigation block is different for every bounding DOP, we simply
set the number of DOPs in a block to the maximum possible for each c. This
maximum for Bn is given by

⌊
16384 · size of(word)

2c · size of(float) + size of(unsigned integer) + size of(pointer to block)

⌋
,
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navigation content
2 3 4 5 6

Large 2340 1820 1489 1260 1092 1638
Small 585 455 372 315 273 400

Table 7.1: The number of DOPs which fit in a navigation storing c-DOPs and the
number of input objects which can be stored in a content block. The size of the
large content block is dictated by the number of objects which can be stored in the
PR-tree while the size of the navigation block is the maximum number of DOPs
which can be stored in a navigation block.

where the size of a float, a word and an unsigned integer are the same and the size
of a pointer to a block is twice as large. The size of the small blocks are set to be
(about) one forth of the size of a large block. The number of items which can be
stored in a large (without satellite data) and a small (with satellite data) block is
given in Table 7.1.

7.3 Experiments
In the first set of experiments we investigate the effect on the query time when a
large part of the block is used to store satellite data. Next we investigate the effect
of more tightly fitting bounding volumes for two types of DOP-trees. Finally we
compare the two DOP-trees and the PR-tree.

7.3.1 Effect of block size

In experiments it is often assumed that a navigation block only stores the boun-
ding DOP of the blocks below and references to other blocks and a content block
only the objects. In practice however often additional, or satellite, data is stored
with the bounding DOP or object, for instance the cost of an object and the maxi-
mum or total cost of all objects stored in the block below. In this experiment we
investigate the effect of storing satellite data in a block. In Table 7.1 the number
of bounding DOPs or objects is given which is stored in a block when satellite data
is not present and when it is present. The difference in the block size has been
exaggerated for this experiment.

In our experiments the number of objects and DOPs stored in a block with
satellite data is roughly one forth of the number of items stored in a block without
satellite data. One would expect that the average number of blocks visited by
a query would be a factor of four larger when the blocks contain satellite data,
because a query has to visit more blocks to report all objects in the query range.

In the experiment we used two sets of GRID-DOP-trees. The first set of GRID-
DOP-trees are stored using large blocks; we denote this set of DOP-trees by Slarge.
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Figure 7.2: Average number of blocks accessed by a query for blocks with satellite
data divided by the average number of blocks accessed without satellite data. In
both cases the GRID-DOP-tree is used.

The second set of GRID-DOP-trees, Ssmall, is stored using small blocks to mimic
the existence of satellite data. Both sets of GRID-DOP-trees contain a GRID-DOP-
tree for each of the nine input sets described in Section 7.2. For each input set we
constructed two query sets based on the input set as described in Section 7.2.

We queried the GRID-DOP-tree on an input set with the corresponding query
sets. We then divide the average number of blocks accessed by a query in a
tree T ∈ Ssmall by the average number of block accessed by a query in a tree
T ′ ∈ Slarge on the same input set. The results for the GRID-DOP-tree are shown in
Figure 7.2. We did the same for LSF-DOP-trees, but the results were very similar
and are therefore not shown here.
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When the tree is stored in a small block the average number of accessed blocks
is increased by a factor less than four. This shows that storing satellite data has
less negative influence than one would expect, but also that increasing the num-
ber of items, which can be transferred between disk and memory, does not incur a
decrease in the number of I/O-operations by the same fraction. One explanation is
that content blocks intersecting the boundary of the query can store more objects,
which do not intersect the query. This makes accessing this block relatively ex-
pensive.

For large queries the increase is closer to the expected factor than for small
queries. This can be explained by the fact that more content blocks are completely
contained in a large query than in a small query. For every content block in a tree
T ∈ Slarge which is completely contained in the query Q there are roughly four
content blocks contained in Q in the T ′ ∈ Ssmall on the same input set as T .

We observe that the factor of increase is not the same for each value of c for a
specific setting. As a result the optimal number of orientations for a setting might
depend on the number of items which can be stored in a block.

7.3.2 Effect of a tighter bounding DOP

In this section we investigate the effect of more orientations for the bounding
DOP of the underlying objects. For this end we constructed DOP-trees based on
the c-grid BSP and the adapted LSF-kd-tree. We then query these DOP-trees with
100 squares of size 0.01. In the previous experiment we made the observation that
the optimal number of orientations used in the construction of the DOP-tree might
be dependent on the number of items which can be stored in a block. We therefore
investigate the effect of using a tighter bounding DOP for DOP-trees stored in both
small and large blocks.

The number of accessed navigation and content blocks and the total of the two
depends on the distribution of the input set. In order to investigate the effect of a
tighter bounding volume we remove this dependency by normalizing the results.
We set the outcome for the 2-GRID-DOP-tree and the 2-LSF-DOP-tree to 1. Next
we discuss the results presented in Figures 7.3 – 7.8.

Accessed navigation blocks. In most cases the average number of accessed
navigation blocks increases when c is increased for both classes of DOP-trees.
This can be explained be the fact that a tighter bounding DOP takes more space
in a block and therefore less DOPs can be retrieved using a single I/O-operation.
In some cases however the number of accessed navigation blocks decreases first
and then increases; for small blocks see the UNIFORM and CIRCLE distribution in
Figure 7.4 and for large blocks see the CIRCLE distribution in Figure 7.8. In these
cases a tighter bounding volume is able to successfully exclude some part of the
DOP-tree for a query despite of the fact that less bounding DOPs can be stored in
a navigation block, as one would hope.
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Figure 7.3: The effect of a tighter bounding volume for GRID-DOP-trees on points.
Left for small blocks, right for large blocks. The top row shows the effect on the
relative number of accessed navigation blocks, the middle row the relative number
of content blocks and the bottom row the relative number of accessed navigation
and content blocks.
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Figure 7.4: The effect of a tighter bounding volume for LSF-DOP-trees on points.
Left for small blocks, right for large blocks. The top row shows the effect on the
relative number of accessed navigation blocks, the middle row the relative number
of content blocks and the bottom row the relative number of accessed navigation
and content blocks.
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Figure 7.5: The effect of a tighter bounding volume for GRID-DOP-trees on seg-
ments. Left for small blocks, right for large blocks. The top row shows the effect
on the relative number of accessed navigation blocks, the middle row the relative
number of content blocks and the bottom row the relative number of accessed
navigation and content blocks.
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Figure 7.6: The effect of a tighter bounding volume for LSF-DOP-trees on seg-
ments. Left for small blocks, right for large blocks. The top row shows the effect
on the relative number of accessed navigation blocks, the middle row the relative
number of content blocks and the bottom row the relative number of accessed
navigation and content blocks.



102 Experimental Results on External-Memory DOP-trees

box query (0.01)
Small block Large block

2grid 3grid 4grid 5grid 6grid
0

1

2

3
Square data

N
av

 b
lo

ck
 / 

an
sw

er

2grid3grid4grid5grid6grid
0

0.5

1

1.5

2
Square data

N
av

 b
lo

ck
 / 

an
sw

er

2grid3grid4grid5grid6grid
0

0.5

1

1.5
Square data

C
on

t b
lo

ck
 / 

an
sw

er

2grid3grid4grid5grid6grid
0

0.5

1

1.5
Square data

C
on

t b
lo

ck
 / 

an
sw

er

2grid3grid4grid5grid6grid
0

0.5

1

1.5
Square data

T
ot

. b
lo

ck
s 

/ a
ns

w

2grid3grid4grid5grid6grid
0

0.5

1

1.5
Square data

T
ot

. b
lo

ck
s 

/ a
ns

w

Figure 7.7: The effect of a tighter bounding volume for GRID-DOP-trees on
squares. Left for small blocks, right for large blocks. The top row shows the
effect on the relative number of accessed navigation blocks, the middle row the
relative number of content blocks and the bottom row the relative number of ac-
cessed navigation and content blocks.
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Figure 7.8: The effect of a tighter bounding volume for LSF-DOP-trees on squares.
Left for small blocks, right for large blocks. The top row shows the effect on the
relative number of accessed navigation blocks, the middle row the relative number
of content blocks and the bottom row the relative number of accessed navigation
and content blocks.
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Figure 7.9: The DIAGONAL distribution is depicted as the gray area. In the figure
a part of the partitioning induced by a 4-grid BSP (left) and a 5-grid BSP (right) is
shown. The cells in the partitioning on the left are skinnier than the cells in the
partitioning on the right.

Accessed content blocks versus total number of accessed blocks. There is
hardly a difference in the effect when we compare the effect on using a tighter
bounding DOP for the content blocks to the effect for the total number of accessed
blocks. The effect of a tighter bounding DOP on the total number of accessed
blocks is thus largely determined by the number of accessed content blocks. This
is as expected since the number of accessed navigation blocks is only a fraction of
the number of accessed content blocks. It is thus important, as one would expect,
to keep the number of content blocks accessed by a query as low as possible.

Total number of accessed blocks. In most cases the DOP-trees with c = 2 have
the lowest cost. In some settings however using a tighter bounding volume does
have an advantage, see Figure 7.3 for a nice example when the DOP-tree is stored
in small blocks and the UNIFORM distribution in Figure 7.6 for large blocks.

Peak for 4-GRID-DOP-trees for DIAGONAL distribution. For the GRID-DOP-
tree there is a peak at c = 4 for the diagonal line distribution, especially in the
case for the point and segment input set. One possible explanation is that the
bounding volumes of the priority blocks of a 4-GRID-DOP-tree are very skinny
and very close to each other, see Figure 7.9 for a possible partitioning induced
by one level in a 4-grid BSP. A query then intersects many priority blocks, while
only a few objects are intersected by the query. A similar peak would then also be
expected for 4-LSF-DOP-tree and 6-GRID-DOP-tree, because both DOP-trees also
store the most extreme objects in priority blocks with the same orientation as the
distribution. The absence of large peaks for these two DOP-trees contradicts this
explanation.

Another, more plausible, explanation is that during the construction of a 4-grid
BSP many skinny regions are constructed. A query can intersect many skinny
regions while no or only a few objects intersect the query. The resulting DOP-
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tree therefore also will have many bounding volumes intersecting the query. The
4-LSF-kd-tree tries to keep the regions in the BSP fat, which results in less boun-
ding DOPs being intersected by the query in the 4-LSF-DOP-tree. This would
explain the absence of a peak at c = 4 in Figure 7.4 and Figure 7.8.

7.3.3 Comparison between DOP-trees
In this section we compare the cost of querying with a square in DOP-trees on
points, segments and squares. We also compare the DOP-trees with the PR-tree.
Since the PR-tree can only handle large blocks we use in this section only large
blocks. The DOP-trees on segments are not compared with a PR-tree because the
implementation of the PR-tree can not handle segments. The cost for querying in
a 2-LSF-DOP-tree are set to 1. The results are shown in Figures 7.10 – 7.11.

Small queries. For small queries in a point set all LSF-DOP-trees perform equal-
ly well. The GRID-DOP-trees are slightly worse than the LSF-DOP-trees, but are
better than the PR-tree, especially for the UNIFORM distribution. The 2-LSF-
DOP-tree is the best DOP-tree for segments and squares, except for the DIAGO-
NAL distribution in squares. In this case the PR-tree and the c-LSF-DOP-tree for
c ∈ {3, 5, 6} are slightly better.

Large queries. The difference in the query cost in the DOP-trees and in the
PR-tree are smaller for large queries than for smaller queries, because many con-
tent blocks are completely contained in a large query, while for small queries this
is not the case. The average number of accessed blocks per answer decreases
when more content blocks are completely contained in the query. The 6-LSF-
DOP-tree has the lowest average cost of the trees on points. The 2-LSF-DOP-tree
and the 6-LSF-DOP-tree on segments perform equally well for large queries. For
squares the PR-tree is slightly better than the 4-LSF-DOP-tree and the 6-LSF-DOP-
tree. Overall the 6-LSF-DOP-tree is the tree with the lowest average query cost for
large queries.

LSF-DOP-tree versus GRID-DOP-tree. When we compare a c1-LSF-DOP-tree
with a c1-GRID-DOP-tree for some 2 ≤ c1 ≤ 6 the LSF-DOP-tree usually has the
lower cost. This could be explained by the fatness of the region of the BSPs. The
LSF-kd-tree tries to keep the region fat by splitting along the longest side. For the
GRID-DOP-tree the regions are not considered at all. This results in very skinny
regions especially in the DIAGONAL distribution when the diagonal orientations
are used for the bounding DOPs.

PR-tree. For large queries the PR-tree performs equally well as the best DOP-
tree for points and squares. For small queries the PR-tree has a remarkable large
difference between the relative cost for the UNIFORM distribution and the other
two distributions, especially for points. This could be explained by the density of
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Figure 7.10: Relative cost of querying DOP-trees and PR-tree with a small square.
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Figure 7.11: Relative cost of querying DOP-trees and PR-tree with a large square.
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the objects in the input sets. In the UNIFORM distribution the objects are equally
distributed over the entire unit square, for the other two distributions however the
same amount of objects is distributed over a small area of the unit square. So
in the UNIFORM distribution relatively few objects intersect a small query and
therefore only a few blocks might be contained in the query. For the other two
distributions more objects intersect the query and therefore it is more likely that
a content block contains many objects intersecting the query, which reduces the
average number of blocks accessed per answer.

Line segment query. In Figure 7.12 the DOP-trees are compared using 100
queries with line segments of length 0.05. The segment queries are construc-
ted by taking a random point from the input stream. This point is used as one
of the endpoints of the segment. We use an arbitrary orientation for the line seg-
ment. As with the square queries the GRID-DOP-trees perform worse than the
LSF-DOP-trees. For line segment queries in segment and square data a tighter
bounding volume is usually better, but how many orientations should be used for
the best result is unclear. For point data the 5-LSF-DOP-tree is the best choice
when answering line segment queries.

7.4 Conclusions
In this chapter we have investigated the practical use of more tightly bounding
volumes in a bounding-volume hierarchy. In our first set of experiments we
investigated the effect of the block size on the average number of accessed blocks
by a query. We showed that increasing the block size by a factor of four does not
decrease the number of accessed blocks by the same factor. We also showed that
the decrease in the number of accessed blocks is not the same for every type of
bounding volume. The main conclusion of this experiment is that the block size
can influence the optimal bounding volume.

In a second experiment we investigated the effect of using a tighter boun-
ding DOP. We showed that a more tightly bounding DOP can reduce the cost of
querying with a box. Unfortunately the optimal bounding DOP cannot be pre-
dicted in advance, since the optimal bounding DOP is different for every type of
input, distribution, size of the query and size of the blocks. This experiment also
shows that the number of accessed blocks in a DOP-tree is largely dominated by
the number of accessed content blocks.

In the last experiment we compared the DOP-trees and where possible the
PR-tree. For small queries the 2-LSF-DOP-tree performs best, except for squares
which are distributed along the diagonal. In this case the PR-tree and the 3, 5, 6-
LSF-DOP-tree are slightly better. For large queries the 6-LSF-DOP-tree perform
best, except for square data. For square data and large queries the PR-tree is
slightly better than the 6-LSF-DOP-tree. Overall the LSF-DOP-trees seem to per-
form better than the PR-tree, in some cases even much better. However further
experimentation is needed to verify this claim.
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Figure 7.12: Relative cost of querying DOP-trees with a small line segment.
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Chapter 8

Conclusions and Open
Problems

In this thesis multifunctional geometric data structures are investigated. In this
chapter some of the conclusions of this thesis are given. Existing multifunctional
geometric data structures can be roughly categorized into bounding-volume hier-
archies and space-partitioning structures. The first part of this thesis focused on
binary space partitions (BSPs), which are a special type of space partitioning struc-
tures. In the second part of this thesis we focused on the other type of important
multifunctional geometric data structure, the bounding-volume hierarchy (BVH).

We started in Chapter 2 with an investigation of c-oriented range searching in
a BSP on a set of points. We introduced the first partitioning in Rd such that any
c-oriented hyperplane intersects O(r1−1/d) cells of the partitioning and any point
only one cell. We used this partitioning to obtain a BSP, the c-grid BSP, which has
the best known bound on the query time for a query with a c-DOP. A DOP-query in
a c-grid BSP is answered in O(n1−1/d+ε) time, which is optimal up to a factor of
nε. An open question is whether there exists a partitioning into disjoint cells such
that any hyperplane intersects O(r1−1/d) of its cells. A related open question is
if there exists a BSP which can answer a range query with an arbitrary triangle in
O(n1−1/d) time.

In Chapter 3 a framework for converting a BSP for points to a BSP for segments
or curves in the plane was introduced. This framework gives us a family of BSPs
on segments or curves, whose query time is about as good as the query time for
the BSP for points. An extension of this framework to higher dimensions remains
open.

We gave for two applications an instantiation of the framework. Let n be
the number of segments or curves in the input. In the first application the c-grid
BSP was used in the framework to obtain a BSP on segments for c-oriented range
searching. The resulting BSP can answer range searching queries in O(n1/2+ε +
k log n) time where k is the number of segments or curves intersecting the query.

111
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For the second application we applied the BAR-tree to the framework, and ob-
tained a BSP which can answer approximate range queries in O((1/ε) log n +
kε log n) time, where kε is the number of segments or curves intersecting the ex-
tended query range. This is the first result on approximate range searching for
disjoint segments in the plane.

In the following chapter we focused on sets of general objects in low-density
scenes in Rd. Let n be the number of objects in the scene. We introduced a
BSP data structure, the oBAR-tree, which has size O(n) and supports approximate
range searching in O(log n+ε1−d +kε) time and point location in O(log n) time
where kε is the number of objects intersecting the extended query range. This
result is more general than the result of Haverkort et al. [50], as they only have
a performance guarantee for boxes as input. Moreover, our time bound is better
by several logarithmic factors, and our result holds in any dimension. It remains
open how efficient the oBAR-tree is in practice.

The oBAR-tree is constructed using a BAR-tree on a set of guarding points.
These points were chosen such that not too many objects intersect the leaves of
the BAR-tree. This set of points is large for d > 2. One open question is to give a
smaller set of guards for objects in Rd for d > 2.

In the last chapter on binary space partitions we described how the BAR-
tree and the oBAR-tree can be extended to the external-memory setting. We first
showed that existing schemes for dividing the BSP into disk blocks do not work
for BAR-trees and we then introduced a new scheme. We called the resulting
I/O-efficient data structures the BAR-B-tree and oBAR-B-tree. We proved that
to answer an approximate range query in a BAR-B-tree on N points we need to
access O(logB N + εγ + kε/B) disk blocks where kε is the number of points
intersecting the extended query range, B is the number of nodes which are stored
in a disk block and γ = 1 − d if the range is convex, and −d otherwise. For the
oBAR-tree we need to access O(logB N + dλ/Beεγ + λkε/B) blocks where λ is
the density of the input set. It would be interesting to experimentally compare the
various schemes for dividing BSPs into disk blocks. Another interesting question
is how well the oBAR-B-tree would do in practice compared to the various existing
external-memory data structures.

Chapter 6 is the first chapter on bounding-volume hierarchies. The first result
in this chapter is a BVH on n c-DOPs which can answer a query with a c-DOP
in O(n1−1/c + k) time where k is the number of DOPs intersecting the query.
We showed that this BVH is optimal in the worst case. As a second result we
gave a framework for constructing a BVH for a set of n objects in the plane with
low stabbing number using a BSP on points. We gave for several applications
an instantiation of this framework. One of the applications is c-oriented range
searching. We used the c-grid BSP in the framework to obtain a BVH which can
answer a query with a c-DOP in O(n1/2+ε+σ1−1/c logc n+k) time where k is the
number of c-DOPs intersecting the query and σ is the stabbing number of the set.
Another application is approximate range searching. In this case the BAR-tree was
used in the framework. We obtained a BVH which can answer a 4-DOP-query in
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TS with a DOP Q visits O(σ3/4 log4 n+ ε−1 log3 n+ kε) where kε is the number
of 4-DOPs intersecting the extended query range.

To prove the query bound we needed to solve the following combinatorial-
geometry problem: what is the maximum size of any set D of DOPs in the plane
with the following properties:

(P1) There is a set L of c lines such that every edge of any DOP in D is parallel
to some line in L;

(P2) (the interior of) each DOP in D intersects every line in L;

(P3) no point in the plane lies in the interior of more than σ DOPs from D.

We were able to prove that |D| is Ω(cσ) and O(c4σ) in the worst case. A nice
open problem is to close the gap between the lower and the upper bound. We
suspect that |D| = Θ(cσ).

In Chapter 7 we implemented an external-memory variant of the bounding-
volume hierarchy of Chapter 6. We investigated the effect of the number of
orientations used for the bounding DOP on the query cost. In a first experiment we
investigated the effect of the block size, the number of items which can be stored
in a block, on the query cost. This experiment showed that when the block size is
increased by some factor f the query cost is decreased by a factor less than f and
that this factor is not the same for every type of bounding volume.

We therefore investigated the effect on query cost for two different block sizes.
We used two BSPs in the experiment. The first is the c-grid BSP, introduced in
Section 2.2, and the second is an LSF-kd-tree which was adapted to handle more
orientations than the two axis-aligned orientations. We showed that there is no
general rule of thumb to predict how many orientations to use to obtain the DOP-
tree with the lowest query cost. Another outcome of this experiment is that the
cost of a query in the DOP-tree largely depends on the number of accessed blocks
containing the objects of the input set.

In a third experiment we compared the two types of DOP-trees. In most cases
the 2-LSF-DOP-tree has the least cost for small queries and the 6-LSF-DOP-tree
for large queries. Furthermore the experiment showed that the GRID-DOP-trees
are in general worse than the LSF-DOP-trees. One reason that the LSF-DOP-trees
are perform better than the GRID-DOP-trees could be that the LSF-DOP-trees try
to keep the regions of the nodes in the BSP as fat as possible, where this is not the
case for the GRID-DOP-trees. It would be nice to verify this explanation by using
a BAR-tree as the BSP in the DOP-tree framework, since the BAR-tree ensures that
all regions are fat.

Dickerson et al. [36] proved for the LSF-kd-tree that they can answer approxi-
mate range queries in polylogarithmic time. An open question is whether this is
also true for our adapted LSF-kd-tree.
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Summary
Multifunctional Geometric Data Structures

Many computational problems can be stated in terms of geometric queries on a set
of objects, such as: ‘Which objects in the set are contained within this region?’.
This query is an example of a range searching query. If a set of objects is often
queried then it is beneficial to build a data structure on these objects such that
the queries can be answered faster. This can be a very specific data structure,
that only answers one specific type of geometric query. However, it can also be a
general data structure, that answers many different queries and stores many types
of objects. The latter type of data structures we call multifunctional geometric
data structures and these are the topic of this thesis. Two widely used multi-
functional geometric data structures are the binary space partition (BSP) and the
bounding-volume hierarchy (BVH).

In this thesis the main focus is on c-oriented range searching and approximate
range searching in BSPs and BVHs. In c-oriented range searching the sides of the
query range have orientations from a predefined set of c orientations. The well-
studied axis-aligned range searching is a, rather limited, example of c-oriented
range searching. In approximate range searching one considers an extended query
range in order to obtain a better theoretical bound. However, the bound is then
based on the number of objects in the extended query range instead of in the
original query range. One generally assumes that there are not too many objects
intersected by the larger query range, which are not intersected by the original
query range.

In the first part of this thesis BSPs are investigated. In Chapter 2 c-oriented
range searching in a set of points is considered for which a new BSP, the c-grid
BSP, is introduced. The c-grid BSP is the first BSP on a set of points, which
answers a c-oriented range-searching query in the same time, up to a factor O(nε),
as the query time for axis-aligned range queries in the well-known kd-tree.

In the next chapter the focus is shifted to BSPs on segments. A framework
is introduced for converting a BSP on the endpoints of the segments to a BSP on
the segments. The framework is used to obtain the first BSP on line segments
for c-oriented range searching and the first BSP on line segments for approximate
range searching. By initializing this framework with the c-grid BSP of the pre-
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vious chapter the BSP on line segments is obtained for c-oriented range searching.
The BSP for approximate range searching is obtained by initializing the frame-
work with another known BSP, the BAR-tree. Both instantiations answer a range
query in a set of segments in approximately the same time as the same query in a
set of points.

Chapter 4 introduces a BSP of linear size for a set of general objects that forms
a so-called low-density scene. It is believed that in practice many sets of objects
form low-density scenes. This BSP is based on the BAR-tree and is called the
oBAR-tree. It answers approximate range-searching queries in a set of objects in
the same time as the query time of a BAR-tree on a set of points. The oBAR-tree
is the first BSP for range searching on general objects.

When handling very large sets the size of the internal memory becomes a
bottleneck. The objects and the data structure no longer fit in memory and to
perform the necessary computations for answering the query parts of the data
structure have to be transferred from external storage, for instance a hard disk, to
internal memory. These transfers dominate the total query time. In Chapter 5 a
new storage method is introduced for the BAR-tree and the oBAR-tree. This me-
thod is the first whose bound on the number of transfers between external storage
and internal memory for answering approximate range queries in the BAR-tree
and the oBAR-tree is theoretically optimal.

The second part of this thesis deals with c-oriented range searching in BVHs.
In Chapter 6 a BVH is introduced which can answer c-oriented range queries in a
set of c-oriented polygons. The query time in this BVH is optimal in the worst-
case. For the worst-case example the input has to intersect a lot. In practice,
however, this type of input is hardly encountered. Therefore in the remainder
of Chapter 6 only sets of objects, which do not intersect too much, are conside-
red. For these sets a framework is introduced for constructing BVHs on objects
using a BSP on points. The BVH obtained after instantiating the framework are
called DOP-trees. We instantiate this framework with the c-grid BSP and obtain
the GRID-DOP-tree, that answers c-oriented range-searching queries in almost the
same time as the query time of the same query range in the c-grid BSP on a set
of points. In the last chapter experiments with external-memory variants of two
types of DOP-trees show that more orientations sometimes lower the query cost.
These experiments are the first experiments with an external-memory BVH which
uses c-oriented bounding volumes. The experiments also show that DOP-trees
need less transfers between external storage and internal memory than PR-trees,
one of the theoretically optimal BVHs for external memory.



Samenvatting
Multifunctionele Geometrische Gegevensstructuren

Veel computationele problemen kunnen geformuleerd worden in termen van geo-
metrische vragen over een verzameling van objecten, zoals: ‘Welke objecten in
de verzameling bevinden zich in dit deel van de ruimte?’. Deze vraag is een
voorbeeld van een gebiedsdoorzoekingsvraag. Als er veel vragen gesteld worden
over een verzameling, dan is het vaak voordeliger een gegevensstructuur te bou-
wen op die verzameling, zodat vragen sneller beantwoord kunnen worden. Deze
gegevensstructuren kunnen erg specialistisch zijn, waardoor ze slechts één type
vraag snel kunnen beantwoorden. Er bestaan echter ook gegevensstructuren die
meerdere typen vragen kunnen beantwoorden en verzamelingen met verschillen-
de typen objecten kunnen opslaan. Deze laatste soort gegevensstructuren noemen
we multifunctionele geometrische gegevensstructuren en deze zijn het onderwerp
van dit proefschrift. Twee vaak voorkomende soorten multifunctionele geome-
trische gegevensstructuren zijn de binary space partition (BSP) en de bounding
volume hierarchy (BVH). Beide gegevensstructuren hebben een boomstructuur.
Bij BSP’s wordt de verzameling objecten in twee delen gesplitst door een vlak
(in twee dimensies door een lijn). Dit vlak wordt opgeslagen in een knoop ν van
de boom. De twee resulterende verzamelingen worden recursief verder gesplitst
totdat er zich één of een constant aantal objecten overblijven. Bij de knoop ν
worden verwijzingen opgeslagen naar de bomen die ontstaan door de recursieve
opsplitsing. Bij BVH’s worden objecten gegroepeerd. Deze groepen worden weer
recursief gegroepeerd totdat uiteindelijk alle objecten in één groep zitten. Bij
elke knoop in de boom wordt een omvattend volume (Engels: bounding volume)
opgeslagen en een verwijzing naar de groepen die zijn samengevoegd.

De resultaten in dit proefschrift hebben voor het grootste deel betrekking op
c-geörienteerde gebiedsdoorzoeking en benaderde gebiedsdoorzoeking in zowel
BSP’s als BVH’s. In c-geörienteerde gebiedsdoorzoeking komen de richtingen van
de zijden van het gebied dat doorzocht moet worden, uit een van te voren gedefini-
eerde verzameling van c richtingen. Een veel bestudeerde vraag is het vinden van
alle objecten in een gebied waarvan alle randen parallel zijn aan een van de assen.
Deze vraag is een (vrij beperkt) voorbeeld van een c-geörienteerde gebiedsdoor-
zoekingsvraag en wordt een as-parallelle gebiedsdoorzoekingsvraag genoemd.
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Bij benaderde gebiedsdoorzoeking wordt voor de analyse van de antwoordtijd een
gebied gebruikt dat groter is dan het gevraagde gebied om een betere theoretische
begrenzing op de antwoordtijd te geven. De begrenzing is dan wel afhankelijk
van het aantal objecten dat in dit grotere gebied ligt. Over het algemeen wordt
aangenomen dat er niet veel meer objecten in het grotere gebied liggen dan in het
gevraagde gebied.

In het eerste deel van dit proefschrift richt de aandacht zich op BSP’s. In
hoofdstuk 2 wordt c-geörienteerde gebiedsdoorzoeking in een verzameling pun-
ten bekeken. Hiervoor wordt een nieuwe BSP geı̈ntroduceerd, de c-grid BSP.
De c-grid BSP is de eerste BSP, die voor een verzameling van n punten een
c-geörienteerde gebiedsdoorzoekingsvraag kan beantwoorden in dezelfde tijd, op
een factor O(nε) na, als de tijd die nodig is voor het beantwoorden van een as-
parallelle gebiedsdoorzoekingsvraag in de bekende kd-tree .

In het derde hoofdstuk wordt er gekeken naar BSP’s op lijnstukken. Er wordt
een raamwerk geı̈ntroduceerd voor het omzetten van een BSP op eindpunten van
lijnstukken naar een BSP op lijnstukken zelf. Met dit raamwerk wordt de eerste
BSP op lijnstukken voor c-geörienteerde gebiedsdoorzoeking verkregen en de
eerste BSP op lijnstukken voor benaderde gebiedsdoorzoeking. Als in het raam-
werk de c-grid BSP van het vorige hoofdstuk wordt gebruikt, dan wordt een BSP
voor c-geörienteerde gebiedsdoorzoeking verkregen. Een BSP voor benaderde
gebiedsdoorzoeking wordt verkregen door het raamwerk te initialiseren met een
andere, al bekende, BSP: de BAR-tree. De tijd die nodig is voor het beantwoor-
den van een gebiedsdoorzoekingsvraag is voor beide instanties van het raamwerk
vrijwel gelijk aan de tijd die nodig is voor het beantwoorden van dezelfde vraag
in een verzameling punten.

In hoofdstuk 4 wordt een BSP van lineaire grootte voor een verzameling van
objecten, die tezamen een scène met een lage dichtheid vormen, geı̈ntroduceerd.
Over het algemeen wordt aangenomen dat scènes die vaak in de praktijk voor-
komen een lage dichtheid hebben. Deze BSP is gebaseerd op de BAR-tree en wordt
oBAR-tree genoemd. De oBAR-tree kan benaderde gebiedsdoorzoekingsvragen
beantwoorden in de tijd die nodig is voor het beantwoorden van dezelfde vraag
over een verzameling punten in een BAR-tree. De oBAR-tree is de eerste BSP voor
gebiedsdoorzoeking in een verzameling van objecten.

Bij zeer grote verzamelingen kunnen de verzamelingen niet meer in het werk-
geheugen worden opgeslagen. Deze verzamelingen moeten opgeslagen worden
op een extern opslagmedium, bijvoorbeeld een harde schijf of CD. Om de geo-
metrische vragen toch te kunnen beantwoorden moeten delen van de gegevens-
structuur en de objecten zelf van het extern opslagmedium verplaatst worden naar
het werkgeheugen. Deze verplaatsingen domineren de tijd die nodig is voor het
beantwoorden van de vragen. De kosten voor het beantwoorden van een vraag
worden daarom uitgedrukt in het aantal benodigde verplaatsingen. In hoofdstuk 5
wordt een methode geı̈ntroduceerd om de BAR-tree en de oBAR-tree op te slaan in
het extern opslagmedium zodanig dat de kosten voor het beantwoorden van een
gebiedsdoorzoekingsvraag minder zijn dan bij bestaande methoden.

De tweede helft van het proefschrift richt zich op c-geörienteerde gebieds-
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doorzoeking in de tweede soort multifunctionele geometrische gegevensstruc-
turen, de BVH. Als eerste wordt er een BVH gedefinieerd die c-geörienteerde
gebiedsdoorzoekingsvragen over een verzameling van c-geörienteerde veelhoe-
ken kan beantwoorden in een tijd, die optimaal is voor het slechtste geval. In
het slechtste geval overlappen de veelhoeken veelvuldig. In de praktijk zal dit
echter niet vaak gebeuren. Daarom beschouwen we in het restant van hoofdstuk 6
verzamelingen van c-geörienteerde veelhoeken die niet te veel overlappen. Voor
deze verzamelingen wordt er een raamwerk gegeven voor de constructie van BVH,
waarbij gebruik gemaakt wordt van een BSP op punten. De resulterende BVH
wordt een DOP-tree genoemd. Het raamwerk wordt geı̈nitialiseerd met de c-grid
BSP, waardoor de GRID-DOP-tree ontstaat. De GRID-DOP-tree beantwoordt een
c-geörienteerde gebiedsdoorzoekingsvraag in ongeveer dezelfde tijd die nodig is
voor het beantwoorden van dezelfde vraag in de c-grid BSP voor een verzameling
punten.

In het laatste hoofdstuk wordt er geëxperimenteerd met een variant van de
DOP-trees die wordt opgeslagen op een extern opslagmedium. In de experimenten
worden twee verschillende BSP’s gebruikt voor de initialisatie van het raamwerk.
De experimenten tonen aan dat meer richtingen in de beschrijving van het om-
vattend volume, waardoor de groepen eronder beter benaderd worden door het
omvattend volume, de kosten voor het beantwoorden van een gebiedsdoorzoe-
kingsvraag verminderen. Deze experimenten zijn de eersten waarbij het om-
vattend volume een c-geörienteerde veelhoek is en waarbij de BVH op een extern
opslagmedium wordt opgeslagen. De kosten voor het beantwoorden van een ge-
biedsdoorzoekingsvraag van de DOP-trees worden ook vergeleken met die van
de PR-tree. De PR-tree is een van de theoretisch optimale BVH’s voor externe
opslagmedia. De experimenten tonen aan dat het aantal verplaatsingen tussen het
opslagmedium en het werkgeheugen voor het beantwoorden van gebiedsdoorzoe-
kingsvragen bij de DOP-trees minder is dan bij de PR-tree.
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J. Ketema. Böhm-Like Trees for Re-
writing. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathema-
tics and Computer Science, RU. 2006-
08

B. Markvoort. Towards Hybrid Mo-
lecular Simulations. Faculty of Bio-
medical Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermi-
nistic and Probabilistic Choices. Fa-
culty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fa-
culty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal me-
thods and protocol standardization.
Faculty of Mathematics and Compu-
ter Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical

Engineering, Mathematics & Compu-
ter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Compu-
ter Science, UT. 2006-17

B. Gebremichael. Expressivity of Ti-
med Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Mathe-
matics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Im-
plementation and Composition. Fa-
culty of Mathematics and Natural Sci-
ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for strea-
ming DSP applications. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous



Distributed Systems. Faculty of Ma-
thematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applicati-
ons of Process and Program Algebra.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-

gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Scien-
ce, TU/e. 2007-07


