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Abstract

The solidi�cation of water and, vice versa, the melting of ice lies at the root of many geophysical
landscapes all over the world. A key role in this process is played by the dynamical interaction
of the water-body temperature and ow in freezing conditions. Especially within the context of
global warming, more knowledge on these processes is imperative.

In this study we considered fresh water (low concentration of salt and other impurities) in
a Rayleigh-B�enard (RB) setup with the top plate temperature below zero and a varying bottom
plate temperature (Tb). Fresh water contains a maximum density anomaly (at critical temperature
Tc � 4 �C) which results in di�erent levels of strati�cation instability in the RB setup, depending
on the thermal driving at the bottom. The study’s aim was to examine the e�ect of mixed
convection on the ice formation in a water-body in freezing conditions, where a horizontal water
current (caused by pressure gradients in the water or atmospheric winds) disturbs the natural
convection. To this end, the no-slip bottom wall was put in motion creating a Couette ow. By
varying the wall shear and Tb, we observed the heat ux as a result of turbulent convection and
its impact on the ice growth.

We performed 2D simulations in a square domain with a Lattice Boltzmann Method (LBM)
code, extended with an enthalpy-based scheme for phase change. It was found that Tb is crucial in
a�ecting the shear ow impact on the ice growth. For low to moderate bottom plate temperatures
(5 � Tb � 7 �C) the convection dominated regime is slightly disturbed leading to 5� 10 % more
ice growth for mild horizontal advection (0 < Re � 200). This is followed by a sudden complete
suppression of convection for higher shear ows (Re > 200) and the system is then dominated by
conduction, leading to substantially more ice growth (80 � 90% of the system height). Warmer
water (Tb � 10 �C), remains convection dominated and is relatively una�ected by the shear ow:
negligible di�erence in ice growth was found compared to pure natural convection cases.
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Chapter 1

Introduction

The solidi�cation of water and, vice versa, the melting of ice lies at the root of many geophysical
landscapes all over the world. Landscapes that are characterized by frozen layers of water on the
surface of oceans, lakes or landmasses. Their ecological [1][2] and climatological [3][4][5] import-
ance cannot be overstated. Apart from its direct impact on the environment, this fundamental
phenomenon in nature can have large societal rami�cations as well. These range from the need for
global mitigation e�orts of the rising sea level [6][7], a result of the drastic shrinking of the Artic
Ocean’s sea ice [3] and melting of Antartica’s ice shelves [8], to small scale consequences like the
very limited annual freezing of the Dutch water canals in the winter. Something that has caused
an ongoing "national trauma" since it has been 25 winters since the legendary speed skating race
the Elfstedentocht was held for the last time [9][10]. All linked to the continuing rise in global
temperatures.

Temperature clearly plays a crucial role among a myriad of other factors that can a�ect ice
and melt formation. These processes are made even more intricate by the peculiar properties of
the density of water. Whereas most liquids become denser with decreasing temperature, water
has a density-peak at a critical temperature Tc (around 4 �C). Water expands when it is colder
than Tc, which is the reason why generally speaking, ice oats on water: It is simply lighter than
the surrounding uid. Water-containing impurities like salt, pollutants and microscopic organisms
can inuence this behaviour as they tend to increase the density of the uid [11]. Fresh warmer
water though, will sit on top in non-freezing weather conditions. During sub- or close to zero
conditions, colder water with a temperature under Tc will oat to the top and the warmer water
will sink. Eventually, the top layer of the water body will solidify and form a layer of ice.

An example of the impact of temperature on freezing and melting is the Beaufort Sea, a sea
adjacent to the Arctic Ocean. It has been warming up signi�cantly in the last few decades and it
was observed in 2007 that the sea ice growth was unexpectedly sparse in the autumn [12]. This ice,
which highly reects incoming sunlight, melts into open water in spring, now greatly absorbing
heat. During the summer of that year, the temperature of the upper part of the sea had increased
by 5 �C [13]. In the following autumn, when freezing conditions arrive, this warmer water on top
is replaced by colder lighter water which releases its heat to the atmosphere and subsequently
freezes. But due to the summer water getting warmer and warmer, the ice formation is a�ected
and retarded signi�cantly. The temperature increase has been delaying the sea ice growth during
the autumn and winter freeze-up to the extent that the late autumn and winter ice coverage is
now far below the mean of 1979-2000 [12].

As most of the relevant factors in freezing are all coupled interactions, the topics of geophysics
and climatology are incredibly complex. Still, it is worth exploring this convoluted network of
phenomena. Knowledge on timescales of ice formation, ice thickness and morphology is more
important and relevant than ever before within the context of climate change. This research tries
to shine a light on the role of water-body currents in the solidi�cation of water. To what extent
does the ow of water under subzero conditions inuence the formation of ice? More speci�cally,
our primary topic of interest is the heat ux in the ice-water system and how it is a�ected by uid
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CHAPTER 1. INTRODUCTION

currents.
The work of [14] has laid the foundation for this research by uncovering the rich coupling

dynamics of the ice-water interface and the ow underneath when the uid starts out from rest.
In their experiments and simulations, the ice-water system was simpli�ed to a three-dimensional
Rayleigh-B�enard (RB) convection model. This model is comprised of a horizontal heated bottom
and cooled top plate with a uid con�ned inbetween. A primary objective in the RB setup is
to relate the change in heat transport to the temperature di�erence between the plates [15], an
objective that over the last couple of decades has revealed itself to still contain great challenges,
despite the deceiving simplicity of the setup. The reason that this setup has earned extensive
attention in the sciences of geo- and astrophyics is that many forms of thermal convection in
nature can be remarkably well approximated with the RB setup. Many natural ows in the
atmosphere [16][17], oceans and interior of planets and stars are driven by this process.

In the case of the research of [14], the top plate was set at a temperature below the freezing
point and the bottom at a temperature that is typical for water in winter (in the range 0 � 15 �C)
[14]. If the bottom temperature, Tb, is su�ciently high, meaning above the critical temperature
Tc (� 4 �C), the buoyancy e�ects can lead to convection and even convective turbulence, which
substantially increases the heat transfer in the system. With combined usage of laboratory-scale
experiments, simulations and a theoretical model (based on the classic Stefan problem) they
identi�ed regimes that were dominated merely by di�usion, and regimes where full-on convective
turbulence was prevalent. In cooperation with the authors, this research was set up, continuing
on their �ndings by looking at the inuence of wind and water-body currents. These currents
can be the result of horizontal winds in the atmosphere or just simple pressure gradients in the
water. They can greatly disturb convective heat transfer in systems leading to large enhancements
(forced convection) or even complete depletion depending on the wind intensity [18][19].

The basis of this work is a continues on the setup of [18], whose research has produced very
insightful knowledge on a RB setup disturbed by a longitudinal wind, and the freezing RB setup
of [14]. First, a one-dimensional model (1D-model) is developed to investigate the ice growth in a
RB setup where the system starts out with the uid at rest. Then, to examine in a coarse manner
what e�ects the aforementioned heat ux disturbances have on the ice growth, the 1D-model is
modi�ed to include the phenomenological heat transfer model from [18]. The setup is modi�ed
accordingly to either include a horizontal pressure-gradient or a moving bottom wall. Concluding,
the lattice-Boltzmann method (LBM) is used to investigate the e�ects of heat transfer disturbances
by wind or uid currents on the growth of ice. The RB setup of [14] is modi�ed sligthly by
incorporating a moving bottom wall that creates a wall shear on the con�ned uid. This Couette
ow is implemented to mimic the inuence of horizontal uid advection.

An overview of the relevant physical phenomena and governing equations is given in chapter 2.
In addition, this chapter also includes the theoretical model and the discription of the 1D-model.
The computational method is elaborated in chapter 3, which includes a short introduction to
the lattice-Boltzmann method itself, the extension that we used by adding a thermal part with
phase change and the applied boundary conditions. The results of the 1D-model are presented
in chapter 4. This chapter is divided in a conductive regime, a convective regime and �nally a
part that incorporates the forced convection. Following the 1D-model results are the results of
the simulations carried out with the LBM model, chapter 5. This chapter contains a validation of
the simulation results against analytical solutions and experimental data, to the extent that these
are possible and available. The �rst section exhibits the results within a setup that corresponds
to the setup used in [14]: a lateral wall bounded domain, with a static bottom boundary. This
is followed by the results from the simulations done with a periodic domain setup. Finally, the
conclusions are given in chapter 6 and ending with the outlook in chapter 7, which lists suggestions
and recommendations for further future research.
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Chapter 2

Phenomenology and Modeling

2.1 An overview of the phenomena involved

Heat transfer plays a major role in the solidi�cation of water. The mode of heat transfer, con-
ductive or convective (radiative heat transport by incoming light as well but is not taken into
account in this study), is one of the main factors that impacts the ice thickness and growth rate.
Depending on the atmospheric conditions and temperatures in the water-body, instabilities can
occur and even lead to convective turbulence. The morphology of the ice (curvature) is easily af-
fected in those cases. Another type of turbulence can arise as a result of applying a shear ow. All
these phenomena are coupled to eachother and have an inuence on the freezing process, one way
or another. In this chapter these phenomena are elaborated on, including the relevant governing
equations.

2.1.1 The solidification of water

For a liquid to undergo a phase-change and solidify or for a solid to melt, a �nite amount of
thermal energy is involved, referred to as the latent heat L. In the case of the solidi�cation of a
liquid, like the freezing of water, the latent heat needs to be removed from the liquid at a speci�c
temperature. This will cause the initial liquid phase to transform into the solid phase, which is then
energetically favorable. The temperature at which this happens is the phase-change temperature
T�, which depends highly on pressure. Water at atmospheric pressure freeze at T� = 0 �C. In the
case of melting, the latent heat L needs to be added to the solid, causing the atoms to gain energy
and escape their �xed positions in the solid lattice struture.

Properties like the viscosity, heat capacity and thermal di�usivity of the liquid usually vary
smoothly with temperature. However, they exhibit relatively sudden changes at when the liquid’s
temperature reaches the phase-change temperature, T�. This is most evident in the density of the
material with variations in the range of 5 % to 10 % [20].

The Stefan problem

Heat transfer plays a major role in the phase-change of a material as the latent heat L needs
to be added or removed at the phase-change temperature to undergo a phase-transition. In this
section, heat transfer in both the solid and liquid is assumed to be isotropic and conductive. All
the material properties of ice are indicated with an I subscript, all properties with a w subscript
correspond to properties belonging to water. Because ice is a solid and ow is absent in the
material, the heat di�usion equation is the only relevant equation regarding ice. This is described
by

@TI
@t

= �Ir2TI ; (2.1)
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where �I is the thermal di�usivity of ice and the TI the temperature. In the water layer we have

@Tw
@t

= �wr2Tw (2.2)

where the temperature in the water layer is given by Tw and the thermal di�usivity by �w.
Freezing conditions will remove the latent heat L from the water so that it crystallizes into

a solid lattice structure. This energy from the water layer is conductively transferred upwards,
through the ice and released into the atmosphere. The system is now part solid and part liquid
with a phase-transition region separating the two, visualized in �gure (2.1). This region consists
of solid and liquid water coexisting and is called the interface. This is normally not more than
� 4�5 molecular diameters thick which is approximately � 1 nm [21]. This thickness is negligible
and we can think of the interface as a sharp front surface [20]. The average spatial position
of the ice-front is denoted by h0(t). Determining the location of the interface is known as the
Stefan problem. This is a classical problem in mathematics because it presents a system of partial
di�erential equations with a boundary condition that moves with time.

Figure 2.1: Schematic representation of a two-dimensional freezing system where the moving
interface is denoted with h0(t). At t = 0, the system is completely liquid and starts with Tw =
T� = 0 �C. When the atmospheric temperature is below zero, the latent heat L is transferred from
the water layer, through the ice and into the atmosphere. This causes the liquid state to break
down and ice will form until the conductive heat uxes in both layers are balanced.

This boundary condition is the moving interface in our system. It progresses through the
system in time (in this case vertically downwards) a�ecting every part of the water body that is at
or below T� (water that is in a thermodynamically metastable state). This continues until there
is an energy balance between the heat ux through the ice and the heat ux through the water.
The system has then reached a state where it is in a statistical equilibrium. The phase- change
and resulting movement of the interface is captured in the Stefan condition:

L�I
dh0(t)
dt

= kI
@TI(z; t)

@z
jz=h0(t)+ � kw

@Tw(z; t)
@z

jz=h0(t)� ; (2.3)

where L is the latent heat of solidi�cation and kI ; kw, the thermal conductivity of respectively ice
and water. The �rst term on the right side represents the ice heat ux qI and the second term the
water heat ux qw. The partial derivatives are evaluated at the upper side (z = h0(t)+) and lower
side (z = h0(t)�) of the interface, respectively. The Stefan condition states that any imbalance in
the heat uxes in the ice and water layer is equal to the latent heat L multiplied by the change in
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CHAPTER 2. THEORY 2.1. AN OVERVIEW OF THE PHENOMENA INVOLVED

the position of the interface per unit time dh0
dt . To put it di�erently, the latent heat released due

to the displacement of the interface per unit time equals the heat ux jump across the interface.
Consequently, when there is no jump in heat ux across the interface and the ice and water layer
are energetically balanced, the interface does not move.

Many Stefan-type problems, especially two- and three-dimensional ones do not admit a classical
solution as the interface gets mathematically complex in multiple dimensions. However, in 1D is
a solution possible if the problem consists of only one active phase. The solution to equation (2.3)
of the interface position h0(t) is based on similarity variables and called the Neumann solution:

h0(t) = 2�
p
�wt (2.4)

where � satis�es the transcendental equation

� Ste =
1
p
�
e��

2

erf �
; (2.5)

where Ste is the Stefan number, an important control parameter related to the phase- change
de�ned as

Ste =
L

Cp;I(T� � Tt)
; (2.6)

with Cp;I the isobaric heat capacity of ice. The Stefan number relates the importance of the latent
heat L relative to the heat capacity Cp;I . The Stefan number remains at Ste � 20 during the
simulations. The solution for the temperature in the liquid is

Tw(z; t) = TI � (TI � T�)
erf z=(2

p
�t)

erf �
(2.7)

The energy equation (2.2) needs an additional source term to incorporate the phase-change.
This can be done by separating the enthalpy in two contributing parts: a sensible heat term and
a latent heat term:

H = CpTw + L�l; (2.8)

where Cp is the heat capacity of water, L the latent heat of solidi�cation and �l the liquid-phase
fraction. If the system consists of purely solid material, the liquid-phase fraction �l = 0, while
�l = 1 for a pure liquid.

In the case where the heat transfer in the liquid is not purely conductive and isotropic, uid
ow may occur and instead of energy equation (2.2), one obtains

@Tw
@t

+ u �rTw = �wr2Tw (2.9)

where the temperature in the water layer is given by Tw and the thermal di�usivity by �w. The
velocity vector u is given by u = uex +v ey +wez, with u; v; w the three velocity components in a
Cartesian coordinate system and unit vectors ex; ey; ez. The continuity equation, which describes
the conservation of mass is as follows

@�w
@t

+ r � (�wu) = 0; (2.10)

where the density of water is given by �w. The �rst term, @�w=@t, is equal to zero due to the fact
that water is considered to be an incompressible uid in our conditions and the small perturbations
in density due to temperature are assumed to be negligbly small.

Equation (2.9) with the extra source term becomes

@Tw
@t

+ u �rTw = �wr2Tw �
L
Cp

@�l
@t

(2.11)
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The Navier-Stokes equation with the Boussinesq approximation is now needed to describe the
conservation of momentum:

@u
@t

+ u � ru = �
1
�w
rp+ �wr2u + ��gjTw � Tcjqez; (2.12)

Where u; p; T are uid velocity, pressure and temperature �elds (all temperatures measured in
�C), respectively; �; �w; g are the kinematic viscosity of water, the density and the acceleration of
gravity, respectively. The addition of the Boussinesq approximation adds a buoyancy force term
on the right hand side and it implies that the density variations are assumed to be exclusively
related to the temperature variations in the system. That way we can keep the density variations
out of the continuity and energy equation, (2.10 & 2.9).

2.1.2 Water density anomaly

Water has the peculiar property of having a density maximum anomaly. Similar to other liquids,
the density of water increases with decreasing temperature, so called negative thermal expansion.
But where most materials are denser in solid state than in liquid state, water expands upon
freezing, making it less dense. The density reaches its maximum at critical temperature Tc � 4
�C. From there, cooling further leads again to an expansion of the liquid again: the density
decreases as displayed in �gure (2.2). This behaviour continues into the super-cooled state below
0 �C. As [22] shows, the anomaly can be explained due to the formation of nanometer-size ice
crystallite at moderately low temperatures (Tw < 10 �C). This "nano-ice" impedes the increase of
water density when cooling and eventually makes the density decrease for Tw � Tc �C, while it is
cooled down.

Figure 2.2: Sketch of the water density behaviour around critical temperature � 4 �C, where the
water density anomaly occurs.

As the uid in this study is assumed to be deionized ultrapure water, we use the nonmonotonic
relationship of density with temperature for water from [22]:

�w = �0(1� ��jTw � Tcjq); (2.13)

with �0 = 999:972 kg
m3 ; �� = 9:30 � 10�6(K�q); q = 1:895, Tc the temperature at the critical point

(� 4 �C).

6 The Growth Of Ice In A Turbulent Couette Flow



CHAPTER 2. THEORY 2.1. AN OVERVIEW OF THE PHENOMENA INVOLVED

2.1.3 Rayleigh-Bénard system and convective turbulence

A consequence of the water density anomaly is that the type of strati�cation (stably or unstably)
in the water body is dependent on the temperature. With �gure (2.2) in mind, we see that for
Tw > Tc, the liquid expands and decreases in density. This means that in the case of warmer
water surrounded by colder water, the former (with Tw > Tc) will be positively buoyant due to
it being lighter than the colder water, leading to a gravitationally unstable situation. Convection
will start to develop and this is the principle on which the Rayleigh-B�enard (RB) system is based,
visualized in panel (2.3al) in �gure (2.3).

(a) (b) (c)

(d) (e) (f)

Figure 2.3: In panel (2.3a) contains a schematic representation of a two-dimensional Rayleigh-
B�enard at t = 0, so before any instabilities have formed, with the corresponding temperature
pro�le underneath in panel (2.3d). The uid is con�ned by the two horizontal plates, the bottom
plate being hot and the top plate being cold. In panel (2.3b) is the RB setup displayed in the
transient state, with the boundary conditions adjusted so solidi�cation of water occurs. Now the
top plate temperature Tt is below the phase-change temperature T� of the con�ned uid (water).
In this conductive case, the water layer stays stably strati�ed with a linear temperature pro�le as
displayed in (2.3e). On the right in panels (2.3c & 2.3f), the bottom plate temperature Tb is above
Tc. This leads to convective heat transport and an instably strati�ed water layer in this transient
state. The temperature pro�le is non-linear.

As mentioned in the introduction, the RB setup consists of uid con�ned between two hori-
zontal plates, where the top one is cold and the bottom one is hot, relative to each other. The
temperature gradients that arise due to the �xed temperature di�erence between top and bottom
will lead to instabilities and eventually convective uid ow. Many geometries are possible in the
RB setup. In panel (2.3a) in �gure (2.3) a square domain is displayed where the uid is also
con�ned laterally by two adiabatic walls, which prevent heat exchange.

The freezing process in this study is modeled within a RB setup, with the top plate at a
temperature Tt < T� and the bottom plate temperature Tb > T�. With the bottom plate below
the critical water temperature Tb � Tc as displayed in the sketch in panel (2.3b) in �gure (2.3),
heat is transferred conductively, without ow or mass transfer of the liquid. This leads to a stable
strati�cation of the liquid and a linear temperature pro�le. Meanwhile, the same mode of heat
transfer takes place in the ice.
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If we now increase Tb above Tc as in panel (2.3c) in �gure (2.3, the water body can roughly
be divided in a section where Tw � Tc, that is, from the ice-front h0 to the position of the
Tc isotherm (spatially averaged and denoted by h4(t)) and Tw > Tc, the layer from h4 to the
bottom plate at z = 0, where the water layer is positively buoyant due to the warmer water being
lighter than the colder water. The latter layer is gravitationally unstably strati�ed and thus has a
convective instability. The uid velocities caused by the convection is a source of turbulent kinetic
energy production in this unstable situation. Increasing Tb further above Tc will lead to turbulent
convective motion where strong thermal plumes arise from the boundary layer at the bottom of
the system, signi�cantly increasing the heat ux.

Thermal plumes are a prominent feature of convective turbulence. These localized coherent
structures are generated by the buoyancy e�ects in the system and arise from the upper and
lower thermal boundary layers. As a hot plume propagates upwards, it transfers its heat to the
surrounding colder uid thereby losing its buoyancy and vice versa for cold plumes generated on
the colder upper plate [23]. This process leads to a large scale circulation within the system [24].
The thermal plume acceleration is estimated as @w

@t � �g(Tb � Tc)q. Their characteristic velocity
is then

w �
p
� g H (Tb � Tc)q; (2.14)

also called the free-fall velocity, where H is the system height which in our case would be h0(t), as
the moving interface determines the system height for the liquid. From the Prandtl mixing length
hypothesis it follows that the turbulent di�usion coe�cient scales with the characteristic velocity
and length scale as:

K = UL (2.15)

where K is the turbulent di�usion and U and L the characteristic velocity and length scale,
respectively. So the turbulent di�usion can be written as

K =
p
� g (Tb � Tc)q h

3=2
0 : (2.16)

Important control parameters to characterize the dynamics are the Rayleigh number:

Ra =
� g �T h3

0
��

(2.17)

which quanti�es the strength of buoyancy relative to the viscous forces in the uid. Another
parameter is the Nusselt number which is the dimensionless vertical heat ux:

Nu =
w0� � � @T=@z

� �T
H

(2.18)

where w0; �0 are the uctuations for the vertical velocity component and the temperature, respect-
ively. The denominator represents the conductive heat ux.

2.1.4 Turbulent couette flow

The last signi�cant boundary condition added to the system is the implementation of a moving
bottom boundary with constant wall velocity Uw. The shear force that the moving bottom wall
exerts on the water is orthogonal to gravity and leads to a constant stress distribution �w across
the entire water layer.

The wall speed is now key in determining the character of the shear ow that develops. The
Reynolds numbers at which fully developed turbulence is obtained are above approximately 500
[25], with Re= Uwh0

2� , where the half-width of the channel h0=2 is used. When turbulence has
fully developed, momentum transfer takes place as a result of molecular momentum transfer due
to viscosity and as a result of thermal uctuations.

There are now two di�erent sources of turbulent kinetic energy: shear and buoyancy. The
turbulent shear channel ow gives rise to turbulent bursts and the natural convection causes
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turbulent buoyant plumes. Each of these has a signi�cant e�ect on the heat ux in the system and
[19] and [18] both identify a buoyancy dominated regime where large thermal plumes dominate the
ow, and a shear dominated ow regime where large-scale meandering streaks dominate the ow.
The heat transfer was found to initially decrease for intermediate shear Reynolds numbers due to
thermal plumes being disturbed and losing their coherence. For higher shear Reynolds numbers,
the shear becomes strong enough to increase the heat ux again, a result of meandering streaks
that e�ciently transport the heat away from the wall [19].

The moving bottom plate exerts a shear stress �w on the system while any pressure forces are
absent. This results in a ow pro�le visible in �gure (2.4).

Figure 2.4: Schematic representation of a turbulent Couette ow pro�le including the average
velocity pro�le u(z) with uc the average center velocity, the velocity gradient du=dz and the stress
pro�le � = �w. Redrawn based on image from [26].

In a turbulent Couette ow, the total shear stress � = �v + �t = �w = constant, with the
viscous stress �v de�ned as

�v = ��
du
dz
; (2.19)

and the turbulent Reynold stress �t de�ned as

�t = �� u0w0; (2.20)

leading to

�w = ��
du
dz
� �u0w0 (2.21)

where u0; w0 are the velocity uctuations in the x� and z�direction, respectively. Both stresses
can carry over horizontal momentum (parallel to the plates) towards the other plate but where the
viscous stresses are only relevant and dominating close to the walls, the Reynolds stress dominates
in the core region of the system (� H=2). This is visualized in �gure (2.5) where the di�erent
stress pro�les in the ow can be seen. Combined with �gure (2.4), we can see that the change in
horizontal momentum with respect to the vertical coordinate is essentially constant in the core but
increases substantially close to the wall and that is where the viscous stress starts to dominate.

We can now introduce the wall friction velocity u�, the characteristic velocity for turbulent
ows, de�ned as:

u� =
r
�w
�
; (2.22)

with which we can write �w as �w = �u2
�. From here, we can de�ne a number of important

dimensionless parameters:

Re� =
u�h0(t)

�
; (2.23)

The Growth Of Ice In A Turbulent Couette Flow 9



2.1. AN OVERVIEW OF THE PHENOMENA INVOLVED CHAPTER 2. THEORY

Figure 2.5: Shear-stresses across the channel where ��uw=�w represents the turbulent reynolds
stress (divided by �w), ��dUdz =�w is the viscous stress �v (divided by �w) and (�dUdz � �uw)=�w
the total stress (also divided by the total stress so that it equals unity.) Redrawn based on image
from [27].

the friction Reynolds number based on the wall friction velocity u�. Note the di�erence between
the wall shear Reynolds number:

Rew =
Uwh0(t)

�
; (2.24)

which is a Reynolds number based on the velocity of the wall Uw. The skin friction coe�cient is
de�ned as

Cf =
2�w
�U2

w
: (2.25)

For large enough Reynolds numbers, turbulent bursts will appear in the ow. These eddies
are a result of the irregular turbulent uctuations the same way as the turbulent plumes are a
result of the irregular temperature uctuations in the turbulent convection as described in section
2.1.3. The turbulent di�usion in the system can simply be written as the sum of the two types of
structures that make it up: the buoyant plumes (�(P )

T ) and turbulent bursts (�(B)
T ), as discussed

in [18]:
�T = �(P )

T + �(B)
T (2.26)

Both structures have a signi�cant impact on the heat transfer in the system and therefore on the
ice growth. The ratio between the sources of this structures, namely the shear production and
buoyancy production is called the Richardson number [19]:

Ri = Ra=Re2
wPr; (2.27)

An alternative way to quantify this buoyancy versus shear force ratio is to determine the Monin-
Obukhov length which is done a posteriori, in constrast with the aforementioned dimensionless
numbers which are all control parameters. This length is de�ned as

LMO=H =
u3
�

w0�0�gH
(2.28)

and gives an indication up to which distance from the wall the ow is dominated by shear [19].
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2.2 Theoretical model

We can distinguish between two important states in the freezing process: a statistical equilibrium
state and a transient state. The equilibrium state is reached when the heat ux through the ice
and water layer are energetically in balance. The ice has then reached its saturation thickness
resulting in the �nal ice position h0.

During the time-dependent transient state the interface between the ice and water h0(t) is still
evolving and progressing in time through the system. The following subsections expand on these
two major states of the system.

2.2.1 Statistical equilibrium state

In the statistical equilibrium state further freezing of the water body has stopped and the interface
has come to a standstill, h0 = constant. Because of the water density anomaly, the water body
decreases in density when its temperature decreases, for Tb � Tc. This results in a water layer
that, as a whole, is stably strati�ed in the equilibrium state and heat is di�usively transported
through the layer. The di�usive heat ux through the ice, qI is balanced by the di�usive heat
ux through the water qw:

kI
T� � Tt
H � h0

= kw
Tb � T�
h0

: (2.29)

From this heat ux balance in the equilibrium state we can derive the thicknesses of the ice and
water layer:

H � h0 =
kITt

kwTb � kITt
H; (2.30)

h0 =
kwTb

kwTb � kITt
H: (2.31)

For Tb > Tc, however, the position of the critical temperature (Tc = 4 �C) isotherm h4 separates
the water body into a stably strati�ed di�usive upper layer and an unstably strati�ed bottom layer.
This layer stretches vertically from z = 0 to z = h4(t) and the mode of heat transport depends
on the magnitude of Tb. In [14] was observed that for Tb > 5:1 �C the bottom layer started to
become convective.

In the latter case there are three kinds of heat ux that balance each other. On top we have
the di�usive heat ux in the ice layer (z = H to z = h0), the di�usive heat ux in the stably
strati�ed layer (z = h0 to z = h4) and the convective heat ux in the unstably strati�ed layer
(z = h4 to z = 0).

The convective heat ux

As the bottom plate temperature Tb is further increased over Tc, the convective heat ux in
the unstably strati�ed layer starts to become increasingly signi�cant. The thickness of this layer
increases as well, minimizing the inuence of the stably strati�ed layer in the system. Accordingly,
it is crucial to accurately model the convective heat ux. As we are now considering only the
unstably strati�ed layer, an e�ective Rayleigh number based on the thickness of this layer, Rae,
is introduced:

Rae =
(��=�0)g(h4)3

��
=
g��(Tb � Tc)q(h4)3

��
; (2.32)

Similarly, we de�ne the e�ective Nusselt number Nue as the heat ux compensated by the
di�usive heat ux, based on the thickness of the unstably strati�ed layer h4 and its temperature
di�erence (Tb � Tc):

Nue =
@T
@z jz=0

(Tc � Tb)=h4
: (2.33)
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In [14] an empirical �t of their simulation data was perfomed and compared to the numerical
results of classical Rayleigh-B�enard convection from [28]. With this comparison they obtained a
relation for Nue as a function of Rae and thus h4:

Nue =

8
><

>:

1; when � � 0;
1 + C1�; when 0 < � � 1:23;
C2�� ; when � > 1:23

(2.34)

with � = (Rae�Racr)=Racr; C1 = 0:88; C2 = 0:27�Ra�cr with � = 0:27 with all the values coming
from the simulation results [14]. Despite the system having di�erent conditions, there is good
agreement on the Nu�Ra relation as seen in [14], so the principles of Rayleigh-B�enard convection
can be used to model this system.

We can now use the expression for Nue to obtain the thicknesses of the di�erent layers in the
temperature range Tb > Tc, neglecting the fact that the interface of the ice front and that of the
Tc isotherm can be curved: 8

<

:

kI
T��Tt
H�h0

= kw
Tc�T�
h0�h4

kI
T��Tt
H�h0

= Nuekw Tb�Tch4

(2.35)

2.2.2 Transient state

The transient state is characterized by the time-dependent evolution of the ice-water interface
h0(t). We want to determine the position of this boundary in time analogous to the classical
Stefan problem. The volume change due to the density di�erences between water and ice, as
well as the thermal expansion of ice, is ignored to simplify the problem. In addition, the heat
transfer problem is considered to be one-dimensional and assumed is that the physical properties
are invariant with temperature while their values are di�erent for the ice and water phases; the
ice-water interface is �xed at the phase-change temperature T�.

The derivation of the temperature distribution in the water layer Tw(z; t) and in the ice layer
TI(z; t) can be found in appendix (A).

Derivation of the energy balance for Tb > Tc

As mentioned in section (2.2.1), when Tb > Tc the water body consists of a stably and an unstably
strati�ed layer and the position of the Tc isotherm seperating these two layers is given by h4(t).
We now de�ne the nominal Rayleigh number Ra and Nusselt number Nu to simplify the problem
of estimating the convective heat ux in this layer. These dimensionless parameters are based on
the entire water layer, from the bottom z = 0 to h0(t) with temperature di�erence Tb � 0 �C.
They are de�ned as follows:

Ra =
g��(Tb � 0)qh0(t)3

��
; (2.36)

Nu =
r(T )jz=0

(T0 � Tb)=h0(t)
: (2.37)

We can �nd relations between the nominal Rayleigh number Ra and the e�ective Rayleigh
number Rae by comparing the de�nitions:

Ra = Rae � �q1 � �
3
2; (2.38)

and similarly with the nominal Nussel number Nu and the e�ective Nusselt number Nue:

Nu = Nue � ��1
1 � �2; (2.39)

with �1 = Tb�0
Tb�4 and �2 = h0

h4
.
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By using equations (2.38 & 2.39), we obtain a model for Nu as a function of h4 as we have
written Nu as a function of Nue. With equation (2.34) we know how Nue relates to Rae and
therefore h4. With this we can make an estimation of the convective heat ux based on the entire
water layer. The energy balance at the ice-water interface now takes the following form:

L�I
dh0(t)
dt

= kI
@TI(h0(t)+; t)

@z
+ Nu kw

Tb � T�
h0(t)

: (2.40)

Combining equation (2.40) with equations (A.17, A.18) and equations (A.3, A.4, A.5), the
position of the ice-water interface as a function of time, h0(t), can now be solved thus enabling us
to predict the temporal evolution of the global icing process.
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Chapter 3

Computational Method: Lattice
Boltzmann

3.1 Kinetic Theory

The foundation of the lattice Boltzmann method lies in the kinetic theory of gases, a mesoscopic
description of the distribution of particles in a gas as a result of their molecular motion and
collisions. As it incorporates aspects of both molecular scale behaviour and macroscopic scale
quantities, it can be seen as a hybrid theory between a particle-based microscopic and continuum
uid approach.

Central in kinetic theory is the particle distribution function f(x; �; t). This quantity gives the
probability to �nd in a small volume centered around position vector x, particles with velocity
� = (�x; �y; �z) at time t. By taking speci�c integrals of the particle distribution function f , called
moments, over the velocity space, macroscopic variables such as the density � and the uid velocity
u can be determined, bridging the gap between the meso- and macroscopic quantities in the uid.

Furthermore, kinetic theory assumes that after a su�ciently long period without any external
forces, the particles in a gas will reach an equilibrium distribution feq(x; �; t), independent of time
and space:

feq(x; jvj; t) = feq(jvj) = �
� 1

2�RT

�3=2
e�jvj

2=(2RT ) (3.1)

where jvj is the absolute value of the mean velocity, R is the speci�c gas constant and T the
temperature. This equation is known as the Maxwell-Boltzmann distribution.

By taking the total derivative of the distribution function f(x; �; t) with respect to time t as
in chapter 1.3.4 of [29], we can obtain an expression for the evolution of f in time. This leads to
the Boltzmann equation:

@f
@t

+ ��
@f
@x�

+
F�
�
@f
@��

= 
(f): (3.2)

This equation represents the change in the particle distribution function f caused by a particle
propagation (or streaming) term, a forcing term and a source term 
(f) called the collision
operator. A very common operator in LBM simulations and also used in this research is the BGK
(Bhatnagar, Gross and Krook) operator:


(f) = �
1
�

(f � feq): (3.3)

This operator represents the relaxation of the distribution function f towards the equilibrium
distribution feq, with � the relaxation time parameter.

Again, by taking the moments of the Boltzmann equation (3.2), the macroscopic equations of
uid mechanics such as the continuity equation can be obtained.
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3.2 The Lattice Boltzmann Method

The lattice Boltzmann method aims to solve the Boltzmann equation (3.2) numerically. This
immediately is one of the most signi�cant advantages of LBM over conventional NS equation
solving methods like �nite di�erence (FD) and �nite element (FE) simulations. Approaching the
system in this research from a macroscopic point of view and locally solving the non-linear energy-,
Navier-Stokes and Stefan equation simultaneously on each node would be extremely complex due
to all the non-local derivative approximations. In contrast, LBM’s main algorithm is purely local
which makes the method simple to implement and adapt to complex geometries. An additional
bene�cial aspect is the relative simplicity to parallelize the simulations on multiple CPUs.

To achieve a numerical solution of the Boltzmann equation, velocity-space, space-time and
eventually the Boltzmann equation itself are discretised. Velocity-space is reduced to a small set
of discrete velocities fcig. In this research we use a D2Q9 velocity set, meaning 9 di�erent lattice
velocities on a 2-dimensional grid. Space and time are discretized in a lattice spacing of �x and
time step �t respectively.

Logically then, the particle distribution function transforms into the discrete-velocity distribu-
tion function fi(x; t). Also known as particle populations, fi(x; t) now represents the number of
particles at position x and time t with speci�c velocity fcig. Macroscopic quantities like the mass
density � can be obtained by weighted sums or the moments (analogous to the integrals for the
continuous particle distribution function) of fi:

�(x; t) =
X

i

fi(x; t); (3.4)

which is simply the sum over the particle populations corresponding to all the velocities in the
discretised velocity set fcig.

The Boltzmann equation can now be discretised leading to the lattice Boltzmann equation:

fi(x + ci�t; t+ �t) = fi(x; t) + 
i(x; t): (3.5)

After each timestep t + �t, particles fi(x; t) stream to an adjacent point x + ci�t, visualized in
�gure 3.1. Simultaneously, the particles are redistributed over the populations fi at each site x by
the collision operator 
i. During a simulation, these two distinct parts of streaming and collision
are performed in succession for each time step.

The discretized version of the BGK operator of equation (3.3) is simply:


i(f) = �
fi � feqi

�
�t; (3.6)

relaxing the populations fi with a rate represented by the parameter � towards feqi given by:

feqi (x; t) = wi�

 

1 +
u � ci
c2s

+
(u � ci)2

2c2s
�

u � u
2c2s

!

; (3.7)

where wi are the quantities with which the velocities in the ci are weighed. The parameter cs
is the speed of sound, which is an important parameter because it forms the link between the
pressure and density with the relation p = c2s�, with cs =

p
1=3 in lattice units.

By applying the Chapman-Enskog analysis, a method that connects the lattice Boltzmann
equation to an eminent equation in uid dynamics, the Navier-Stokes equation, the macroscopic
behaviour of the uid can be obtained. More on the Chapman-Enskog method in [29]. For
example, the method produces an expression for the kinematic shear viscosity as function of the
lattice quantities and speed of sound cs:

� = c2s
�
� �

�t
2

�
; (3.8)
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Figure 3.1: Schematic representation of the streaming step in the lattice Boltzmann method. On
the left are the particles populations at time t and on the right after streaming, at time t + �t.
Redrawn based on image from [29].

3.3 LBM for Thermal Flows

For thermal ows, the LBM can be adapted to govern the di�usion and convection phenomena
that can arise in these kind of ows. Advection-di�usion problems in the form of equation (2.9) are
dealt with by adding a second distribution function gi(x; t), along with equilibrium distribution
function geqi and relaxation parameter �g, that now represent the temperature scalar �eld. These
multi-distribution function (MDF) models use the same lattices as used in the single-distribution
LBM but usually it is possible to use smaller velocity sets such as D2Q5. The equation for the
thermal distribution function gi is given by:

gi(x + ci�t; t+ �t) = gi(x; t)�
�t
�g

�
gi(x; t)� geqi (x; t)

�
; (3.9)

with the temperature given by:

T (x; t) =
X

i

gi(x; t): (3.10)

The thermal di�usivity is a function of thermal relaxation parameter �g, analogous to the viscosity:

� = c2s�t(�g �
1
2

) =
1
3

(�g �
1
2

); (3.11)

where �t = 1.
Because both distribution functions are coupled to each other in MDF, the velocity distri-

bution function has to be modi�ed with an additional forcing term. Due to the presence of a
temperature �eld, the density also becomes temperature dependent, � = �(T ). Buoyancy forces
will emerge because of the temperature and therefore density di�erences in a uid. The Boussinesq
approximation as given by equation (2.12) leads to a buoyancy force density:

Fb =
�
�(T )� �0

�
g = ���0(T � T0)g; (3.12)

where �0 is the density of reference temperature T0 and � is the thermal expansion coe�cient.
The addition of the buoyancy force density term to the velocity distribution function results in:

fi(x + ci�t; t+ �t) = fi(x; t)�
�t
�
�
fi(x; t)� feqi (x; t)

�
+ g � ci�tPrRaT (t)=�T; (3.13)
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where Fb is written as a function of the Prandlt number Pr = �=� and the Rayleigh number Ra
(equation (2.36)).

3.4 Phase Change in LBM

To incorporate phase change with LBM, the enthalpy-based method is used as explained in section
??. This method is often used in LBM for solid-liquid phase transitions and adds an extra source
term to the thermal distribution fucntion gi. The local enthalpy is now written as:

H(x; t) = CpT (x; t) + L�l(x; t� �t); (3.14)

where the last term includes the liquid fraction of the previous timestep, used to calculate the
current enthalpy, and from there linearly interpolate the current liquid fraction �l(x; t):

�l =

8
><

>:

0 H(x; t) < CpT�;
H(x;t)�CpT�

L CpT� � H(x; t) � CpT� + L;
1 H(x; t) > CpT� + L

(3.15)

This leads to a source term for thermal distribution function gi as follows:

gi(x + ci�t; t+ �t) = gi(x; t)�
�t
�g

�
gi(x; t)� geqi (x; t)

�
� wi

L
Cp

�
�(x; t)� �(x; t� �t)

�
: (3.16)

Summarizing, at ‘each time step the temperature T (x; t) on every lattice point in the system
is calculated. From there, the enthalpy H(x; t) is determined using the liquid fraction of the
previous time step �l(x; t ��t) with which the current liquid friction �l can be obtained. Then
equation (3.16) is carried out which contains the streaming and colliding of the thermal particle
distributions. The temperature and density in the lattice are updated after this intermediate step
to calculate the buoyancy density force Fb. The streaming and colliding of equation (3.13) is then
executed concluding one time step �t.

3.4.1 Boundary Conditions

The system that is used in the LBM simulations either uses a 2D square with lateral walls or
the lateral walls substituted with periodic boundary conditions. On each of the walls a no-slip
condition is implemented for the uid momentum, meaning the velocity of the uid at the uid-
solid interface is equal to the velocity of the solid at that point. This is implemented in our LBM
with the Bounce-Back method. The principle behind this method is that the populations that
would otherwise hit the wall during streaming are now reected back to their original position.
The wall is assumed to be halfway between the boundary nodes in the uid and the nodes in the
solid. Apart from preventing any ux across the boundary and thus making the wall impermeable
to the uid, any transverse motion between the uid and solid is also blocked as displayed in �gure
3.2.
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Figure 3.2: Illustration of an incoming particle being reected back to its original position after
hitting the wall. All the momentum components of the pre-streaming populations are reversed in
the Bounce-Back method. Redrawn based on image from [29].

The bounce-back formula for the post-stream velocity particle distributions fi in the general
case of a wall with velocity uw then becomes:

fi(xb; t+ �t) = f�i (xb; t)� 2wi�w
ci � uw
c2s

; (3.17)

where f�i is the post-stream particle distribution, xb denotes a boundary node and subscript w
quantities at wall location xw = xb + 1

2ci�t.
In the case of the system with laterally periodic domain, the populations that would leave the

domain on one side, simply re-enter at the opposite side.
For the thermal particle distribution functions gi in the D2Q5 lattice, Dirichlet boundary

conditions are applied at the bottom and top of the domain. The anti-bounce-back scheme is used
which de�nes the post stream populations gi as follows:

gi(xb; t+ �t) = �g�i (xb; t) + 2geqi (xw; t+ �t): (3.18)

For a wall at rest and an imposed temperature of Tb, the last term simpli�es to 2wiTb.
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Chapter 4

Results From 1D Model

In this chapter a 1D numerical model for freezing under the infuence of a horizontal wind or moving
bottom boundary is introduced and discussed. The model is used to investigate coarsely what will
happen in the LBM simulations that will be performed later on. This will give an indication of
the ow dynamics, heat transport and growth of ice when the system is under a constant pressure
gradient or a moving bottom boundary.

For our convenience, the ow and thermal dynamics that occur in the freezing system when
Tb is varied, will in this section be split in a regime characterized by conduction and a regime
characterized by convection. The basis of the numerical model are equations (2.3 & 2.40), for the
conductive and convective regime, respectively. In section (4.3), forced convection is applied in
the form of a constant pressure gradient and then a moving bottom wall. The Nusselt-model on
which the convective energy balance of equation (2.40) is based is not valid any longer due to the
presence of turbulent shear production. This has a signi�cant impact on the heat transport in
the system and hence we have to resort to a di�erent model for the heat transport and plug it in
equation (2.40).

For this, we have used the empirical Nusselt-model found in [18] for the pressure-gradient
driven ows combined with Nu� Ra relations obtained by �tting their simulation data. Similarly
for the shear driven ows, we used Nu� Ra relations obtained by �tting the simulation data of
[19].

First, the model has to be validated against data from known situations such as freezing with
the uid starting out at rest, coming from [14]. Where possible, the numerical results were also
compared to analytical solutions. The model uses the ode23tb solver in MATLAB which is based
on a trapezoidal rule and backward di�erentiation formula to solve di�erential equations.

As explained in section (2.2.1), the mode of heat transport in a section of the water body can
result in either a stably or unstably strati�ed layer. This distinction is left away in the analysis of
the results in this chapter because these characteristics are not relevant for simple 1D numerical
simulations. The following sections are based on the two regimes and the temperature intervals
that de�ne them, with Tt �xed at �10 �C and the system starting with Tw(z) = Tb at t = 0.

4.1 Tb � 5:1 �C: Conduction Regime

In the temperature range Tb � 5:1 the water layer is dominated by conductive heat transfer.
As shown in [14], for Tc � Tc � 4 �C, the entire water layer is then, from the beginning until
the equilibrium state, in a stably strati�ed state where heat is transferred purely by di�usion.
Due to the di�usive nature of the heat transfer and therefore the absence of uid ow, the ice-
water interface remains at at all times. When the statistical equilibrium state is reached, the
temperature pro�les in both the ice and water layer are linear.

For Tc � Tb � 5:1 �C, the water layer will have a section from the bottom plate z = 0 to
z = h4 where the temperature is above Tc and consequently gravitationally unstable, which can
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lead to convection. The system then starts out with this convective bottom layer, but as the
e�ective height h4 of the convective layer decreases, the systems ends up in a di�usive state when
reaching the equilibrium state, with an unstably strati�ed di�usive layer at the bottom. So the
�nal ice-water interface position h0 determines whether the water layer is entirely in the di�usive
regime or still partly convective. The e�ective Rayleigh number Rae dropping below the critical
Rayleigh number Racr � 1708 is an indication for this [14].

Equation (2.3) is solved numerically for a starting ice-water interface position h0(t = 0) =
0:2399 m. Solving the equation analytically is not possible but we can get an indication of the
behaviour at the start of the freezing process when the heat ux in the water layer qw is negligble
compared to that in the ice layer, qi. The heat ux in the water layer qw is neglected and the
instantaneous temperature distribution in the ice layer TI is assumed to be linearly dependent on
the vertical position coordinate z. Equation (2.3) simpli�es to:

L�I
d
�
H � h0(t)

�

dt
= kI

@Tz
@z
jz=h0(t) = kI

Tt
H � h0(t)

; (4.1)

where H � h0(t) is the ice thickness. This equation has the following solution:

H � h0(t) =
r
�2kITt
L

t+
�
H � h0(0)

�2: (4.2)

The �nal ice thickness in the equilibrium state is a result of the heat ux in the ice layer being
equal to the heat ux in the water layer. This thickness can be derived analytically and is given
by equation (2.30). In �gure (4.1), the data points for the �nal ice-water interface position of
the numerical and analytical solution are compared and are su�enctly close to continue with the
model.

Figure 4.1: The �nal ice-water interface position from the numerical solution of equation (2.3)
compared to the analytical value from equation (2.30).

In �gure (4.2), the numerical solution of equation (2.3) and the analytical solution given by
equation (4.2) are compared. Because qw is neglected in the simpli�ed equation (A.14), the ana-
lytical solution starts to deviate from the numerical solution when qw starts to become signi�cant.
By analyzing the behaviour of the heat uxes in both of the layers, the numerical solution shows

20 The Growth Of Ice In A Turbulent Couette Flow



CHAPTER 4. 1D MODEL RESULTS 4.1. TB � 5:1 �C: CONDUCTION REGIME

that in the water layer, qw di�ers more than four orders of magnitude at the start of the freezing
process from qI , and only after 104 s this reduces to two orders of magnitude. Hereafter, qw grows
quickly and compensates qI to reach an equilibrium state.

(a) (b)

Figure 4.2: The evolution of the ice thickness from the numerical and analytical solution on linear-
linear scale in (4.2a) and log-log scale in (4.2b). The numerical solution reaches the statistical
equilibrium state, whereas due to the neglected qw in equation (4.1), the ice in the analytical
solution keeps on growing and is not physically realistic anymore.

It is useful to plot the evolution of the ice thickness on a log-log scale to visualize to which
power the solutions depend on time as in �gure (4.2b). It follows that for t < 105, the solution is
a function of C

p
t.
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4.2 Tb > 5:1 �C: Convection Regime

The convection regime dominates when Tb > 5:1� C. A gravitationally unstably strati�ed layer
forms where the primary heat transport is convection. The layer extends to z = h4, the spatially
averaged level of the Tc isotherm. On top of this is a stably strati�ed layer where heat is transferred
by di�usion. While convection can also occur for Tc < Tb � 5:1 �C, the uid dynamics in that
case are not dominated by convection and the system will end up in fully di�usive state.

To model this, and especially to resolve the complication of having a di�usive and convective
water layer, the nominal Rayleigh number Ra and Nusselt number Nu based on the whole water
layer are expressed as function of the e�ective Rayleigh and Nusselt number as seen in equations
(2.38 & 2.39). Now, the di�erential equation to solve is equation (2.40). As the Nusselt number
depends on Nue, it is a function of h4(t), the position of the Tc isotherm. Due to the fact that
equations (A.17 & A.18) do not hold during the convective transient state as well as for t > 104,
Tw is simpli�ed in the model to being linearly dependent on the vertical position z at every instant:
Tw = Tw(z) = Tb � z � Tb

h0(t) .
In �gure (4.3) is visible how the ice progresses during the process, following a t1=2 dependence

again. The lower bottom plate temperatures, especially those where the entire water layer ends
up in a di�usive state, that is Tb = 3:8; 4:5 �C, enable substantial more ice growth. The heat
transport is signi�cantly higher due to convection in the higher temperature cases and as a result,
the ice will grow less thick. Additionaly, the saturation time (time to reach 90% of the �nal ice
thickness), decreases rapidly for higher Tb.

Figure 4.3: Evolution of the ice growth for temperatures Tb = 6; 7; 8; 9; 10; 12; 15 �C

The e�ect of the emerging convection in the water layer is even more visible in �gure (4.4).
The �nal ice-water position as a function of Tb is compared to the experimental data from [14].
The �nal position matches up well with the one-dimensional model for water, especially in the
conductive regime. For the higher temperatures, slight deviations are noticable, as the convection
causes turbulent motion in the water. The experiments showed intensive spatial uctuations in
the ice-water interface, something that the model does not recreate and the probable cause of the
deviations.
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Figure 4.4: Final ice-water interface position as a function of the bottom temperature Tb compared
to experimental data from [14]

.

4.3 Natural And Forced Convection

To simulate what the e�ect is of a freezing system with thermal convection disturbed by a longit-
udinal wind, a constant horizontal pressure-gradient is applied on the system. An alternative is
applying a shear force by implementing a moving bottom boundary.

4.3.1 Horizontal Pressure-Gradient

The Nusselt-relation of equation (4.3) is used to model the heat transport in the system. This
relation is taken from [18], where a numerical study of Rayleigh-B�enard convection was done under
the action of wind, to see how the vertical heat ux is a�ected by both the natural and forced
convection. Summarizing, they found an initial decrease of Nu due to turbulent heat plumes being
swept away for intermediate Re� . By increasing the turbulent forced convection further, Nu was
observed to rise again due to the forced convection dominating over the buoyancy. They came up
with the following non-monotonic relation of Nu as function of the shear Reynolds number Re�
and Rayleigh number Ra, a result of phenomenological modeling:

Nu � 1 +A1
Ra1=2Pr1=2

Re3=2
�

+A2PrRe� ; (4.3)

where A1 and A2 are the two free parameters of the model. This relation reproduces the non-
monotonic dependence of the heat ux Nu on the applied wind, Re� , fairly well. However, due
to the presence in our system of water with a temperature range around Tc, applying this Nu
relation can only succeed by assuming that the di�usive stably strati�ed layer is negligbly small
compared to the convective layer. Hence we consider a purely convective water layer from the
beginning until the end of the freezing process. This also disposes of the di�culty of determining
the position of the Tc isotherm. The assumption is valid when Tb > � 6 �C, which follows from
the h4 isotherm position data from [14].

Figure (4.5) displays how equation (4.3) depends on the shear Reynolds number Re� for �ve
values of Rayleigh number Ra. The Ra range [1:7� 108; 9:4� 108] corresponds to a system with
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Tb 2 [6; 15] �C at t = 0. In �gure (4.5a) is visible how, after an initial drop of the heat transport
for smaller to intermediate Re� , the Nusselt dependence gets approximately linear for larger Re� .
Figure (4.5b) shows how the two di�erent terms in equation (4.3) a�ect the heat transport. As
Re� increases, the term with the Ra1=2 factor gets less and less signi�cant for the convective heat
transport.

(a) (b)

Figure 4.5: Nusselt number as a function of Re� in (4.5a) for Ra = 1:7 � 108; 3:0 � 108; 4:8 �
108; 7:0� 108; 1:1� 109. Sub�gure (4.5b) displays the behaviour of the separate terms that make
up the Nusselt-relation of equation (4.3).

The Limited Validity Of The Model

An important remark: the Nusselt-relation only starts to correspond well to the results of the
2D simulations of [18] in the vicinity of the minimum of the curves. For the �ve values of Ra as
displayed in �gure (4.5), the asymptotic behaviour of Nu for Re� <� 150 is not physically realistic.
From [18] we know for which values of Ra and Re� their simulation data starts to coincide with
the curves of equation (4.3). The Ra values for our freezing system however, with the constraint
Tb >� 6 �C, results in Ra 2 [1:71� 108; 1:11� 109] at t = 0, two orders of magnitude larger than
Ra in [18]. Hence, we do not know precisely what the minimum Re� numbers will be where the
Nusselt-relation will become physically useful. Therefore, a minimum value of Re� = 250 is used
based on its vicinity to the minimum of all the Nusselt-curves in �gure (4.5a). Fitting the data
has also been attempted, however the di�erence in Ra used in the data of [18] compared to our
Ra numbers, proved to be too big of a gap to yield useful relations.

Results

In �gure (4.6) the ice evolution is displayed under the inuence of shear wind represented as a
constant pressure gradient rp=�. Four cases of a constant shear wind in a system with Tb = 7 and
10 �C are compared to the pure RB case where there is zero wind. As expected from looking at
�gure (4.5a), the heat transport initially drops in (4.6b) resulting in thicker ice in the equilibrium
state. The heat transfer is suppressed by the wind and it therefore takes a longer time for the heat
ux in the ice layer, qice to be entirely compensated leading to the statistical equilibrium state.
As the shear wind increases slightly, there is a minimum in Nu at Re� = 300 as seen in (4.5a)
which results in the thickest ice in �gure (4.6b). Increasing Re� further and the dynamics of the
turbulent forced convection regime start to dominate.

With the Tb = 7 �C case, all the non-zero pressure gradients rp=� featured in the �gure
(4.6a) lead to less thick ice compared to the pure RB convection case, meaning a substantial
increase in heat transfer. It seems that the forced convection immediately starts to dominate.
However, it appears that the higher rp=� = 1:8 � 10�4 m/s2 leads to thicker ice than the lower

24 The Growth Of Ice In A Turbulent Couette Flow



CHAPTER 4. 1D MODEL RESULTS 4.3. NATURAL AND FORCED CONVECTION

(a) (b)

Figure 4.6: The ice thickness evolution under a convective regime at Tb = 7 and 10 �C, and a
longitudinal shear wind forced by the constant pressure gradient. The shear Reynolds numbers
here at t = 0 are Re� = 250; 300; 400; 500; 0.

rp=� = 9:2�10�5 m/s2. The cause of this is the fact that the water layer decreases in height during
the freezing process. This has the consequence that Re� drops as well. The pressure gradients
9:2 and 18� 10�5 m/s2 correspond to Re� = 250; 275 at the start of freezing, respectively. With
a �nal water layer thickness that is around eighty percent of its initial value at t = 0, the shear
Reynolds number drops to Re� � 188 and 245 in the equilibrium state. Now looking at �gure
(4.5a) it is visible that the heat ux increases for Re� < 250. So the lower pressure gradient of
rp=� = 9:2� 10�5 m/s2 leads to an increasing heat transfer during the freezing process, while for
the higher pressure gradient rp=� = 1:8� 10�5 m/s2, the heat transfer decreases such that Nu is
lower than in the lower pressure gradient case.

We see the same behaviour in �gure (4.6b) for the Tb = 10 �C case. Now, the Nusselt minimum
for Ra = 4:78 � 108 lies around Re� = 300 from looking at �gure (4.5a), (probably a little bit
lower even because Ra also decreases during freezing).

Figure (4.7) features a plot of the �nal normalized ice thickness as a function of the bottom
plate temperature and applied pressure gradient. For the lower bottom temperatures Tb = 6; 7; 8
�C, the initial decrease in ice thickness is substantial. This corresponds to the increase in heat
transport due to the forced convection. For the higher bottom temperatures Tb = 10; 12; 15 �C, at
Re� = 0, buoyancy driven convection is substantial and applying shear wind will initially sweep the
hot plumes away, decreasing the Nusselt number and increasing ice growth. At high enough Re� ,
the turbulent forced convection of the lateral wind will cause Nusselt to increase again, thereby
inhibiting ice growth. For Tb = 6; 7; 8 �C, the dynamics of the ow are very quickly dominated by
the forced convection and Nu increases with Re� , leading to lower and lower �nal ice thicknesses.

All in all, the physics behind the initial drop in ice thickness (increase in Nu) are di�cult to
resolve. As the forced convection starts to dominate the heat ux, there should not be a maximum
after which the heat ux decreases again. As explained above, it is understandable from the data
but this is probably a shortcoming of the model.

4.3.2 Moving Bottom Boundary

To replicate freezing in a system that is a�ected by a moving bottom boundary, heat ux data
is used from a wall sheared Rayleigh-B�enard convection system. In [19], a Couette type shearing
has been applied aiming to trigger the boundary layers to become fully turbulent. Consequently,
the data is comprised of relatively high wall shear Reynolds numbers, Rew = HUw=� 2 [0; 10:000]
for Rayleigh numbers in the interval Ra 2 [1:0� 106; 1:0� 108]. The corresponding Nusselt data
is �tted resulting in an expression of the heat ux as a function of Ra for a given wall speed Uw.
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Figure 4.7: The �nal normalized ice thickness as a function of Tb and the pressure gradient rp=�.
The bottom plate temperatures correspond to Ra = 1:7; 2:3; 3:0; 4:8; 7:0 and 11 � 108. The
missing data point of the ice thickness at Tb = 6 at zero wind equals 0.41.

Figure (4.8) contains the �nal ice thickness positions (H�h0)=H for six cases with varying wall
shear expressed by Rew while the bottom plate temperature Tb is varied. Due to the change in
viscosity of the uid for di�erent Tb, a system with Rew has di�erent wall speeds Uw when Tb is var-
ied. Nevertheless, wall shear Reynolds numbers Rew(t = 0) = 2000; 3000; 4000; 6000; 8000; 10:000
roughly correspond to wall speeds Uw = 0:01; 0:02; 0:025; 0:04; 0:05; 0:65 m/s across all the bottom
plate temperatures.

Very similarly to �gure (4.7), the ice thickness goes through a large decrease for Tb = 6 �C and
to a lesser extent for Tb = 7 �C. This decrease is noticable for all bottom plate temperatures and
seems to indicate that for low to intermediate Rew a slight increase in the heat ux occurs. This
suppresses the ice growth in the system. However, as shear increases to Rew � 2000 the ice growth
slowly increases again, reaching a maximum at Rew � 6000. Hereafter, the shear dominates again,
increasing the heat ux and inhibiting the ice growth. Figure (4.8) is very similar to �gure (4.7)
in the range rp=� � 0:2 m=s2.

Concluding, for lower bottom plate temperatures Tb = 6; 7 �C, there initially is a signi�cant
increase in the heat ux resulting in a decrease in ice thickness. This behaviour is shared for higher
Tb but to a lesser extent. As mentioned in the previous section, this is probably a shortcoming of
the model as the physics behind this can hardly be explained. For intermediate Rew the heat ux
increases substantially for Tb = 6; 7 �C but only very slightly for the higher Tb systems. For these
higher Ra systems, increasing the shear appears to have negligible e�ect on the ice thickness. For
Tb = 6; 7 �C, there is a noticable decrease in ice thickness with high shear.
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Figure 4.8: The �nal normalized ice thickness (H�h0)=H as a function of the wall shear Reynolds
number Rew at t = 0, where Uw is �xed, and bottom plate temperature Tb.
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Chapter 5

LBM Simulation Results

This research can be seen as a direct follow-up to the research done by Wang, Calzavarini, Sun
and Toschi in paper [14]. For this reason, the same code is used in the LBM simulations and the
system is identical in size to the experiments and simulations they performed in 2019.

All of the results in this chapter are produced by LBM simulations with a grid resolution
of 240 x 240 lattice nodes, excluding the conductive cases (Tb � 4 �C). In these cases, a grid
resolution of 120 x 120 lattice nodes is used, reducing the time it takes for the simulation to reach
an equilibrium.

Concerning the �nal ice thickness error of the LBM simulations with respect to the theoretical
ice thickness, the choice of the grid resolutions is based on the argument made in the appendix of
paper [14]. For Tb � 4 �C, the error between the simulation and theoretical results is within 3%.
With the convective cases where Tb > 4 �C, the resolution 240 x 240 guarantees that at least 6
lattice nodes are within the thermal boundary layer.

The solidi�cation of ice in a physical system corresponding to our parameters can be a very
slow process in reaching an equilibrium, with conductive cases having a saturation time of up to
three days [14]. Likewise, it takes a lot of simulation (lattice) time steps (� 108) to perform a
proper simulation on a 240 x 240 grid. Consequently, due to time and memory restrains it is very
impractical to write for every time step the temperature, velocities and liquid fractions for every
lattice node. Therefore, all the data displayed in the following �gures is the result of data dumps
with a 1:5� 105 lattice timesteps interval, and a few with 1� 106 timesteps interval.

The lattice represents a Rayleigh-B�enard convection system of square shape (aspect ratio
� = Lx=H = 1). The bottom plate functions as a heat source providing energy to the system with
�xed temperature Tb and the top plate functions as a sink with Tt �xed at -10 �C. The Stefan
number given by equation (2.6) remains at Ste � 20. In the case of the lateral wall bounded
domain, the walls are adiabatic so no exchange of heat is possible. On all walls in the domain, the
no-slip conditions are applied.
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5.1 Code Validation

The �nal spatial averaged ice-front positions h0 of the simulations (2D-S) are compared to the
analytical (1D-M) ice-front positions and the experimental data from [14] in �gure (5.1). The
four di�erent regimes that de�ne the modes of heat transport occuring during the freezing process
are indicated by R-1, R-2, R-3 and R-4. The stably strati�ed di�usive (conductive) case (R-1)
appears when Tb � 4 �C. Regime 2 (R-2) includes a stably strati�ed di�usive plus an unstably
strati�ed di�usive layer when 4 � Tb � 5:1 �C. When 5:1 � Tb � 6:9 �C (R-3), underneath the
stably strati�ed di�usive layer the water layer now becomes unstably strati�ed convective. And
�nally, for Tb > 6:9 �C, the purely unstably strati�ed convective case (R-4) prevails.

While the conductive cases all coincide very well, there is a slight deviation to be observed with
the convective cases, but the error is within 2-3 %. Included in the �gure (5.1) is the �nal position
of the h4 isotherm derived from the LBM simulations. It is nicely visible how the distance between
the ice-front h0 and the h4 isotherm grows smaller and smaller for increasing Tb, indicating that
the di�usive layer on top of the convective layer becomes less and less signi�cant in the system,
eventually playing a negligble role in the heat transport.

Figure 5.1: Comparison of the �nal spatial averaged ice-front position h0 with data from the
experiments of paper [14], 1D-model data (1D-M) and the 2D-simulation LBM results (2D-S).
The �nal position of the Tc = 4 �C isotherm is displayed in the �gure as h4.
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5.2 Lateral Wall Bounded Domain

5.2.1 Static Bottom Boundary

Several runs have been performed with a lateral wall bounded domain and static bottom boundary.
In these runs the bottom plate temperature was varied within the range Tb 2 [3:8; 10] �C, which
corresponds to systems with Rayleigh numbers within the range Ra 2 [7:0�107; 4:8�108] at time
t = 0. All the freezing cases from Tb = 3:8 to Tb = 10 �C eventually reach a statistical equilibrium
state where the ice growth saturates and both the total heat ux in the water and the heat ux
in the ice are equal. Figure (5.2) displays the progression of the ice thickness (H � h0)=H in time
for the cases Tb = 6; 7; 8; 9; 10 �C in a lateral wall bounded domain. After initially growing with
rate � 0:5t� 1

2 , the heat ux in the water eventually approaches the di�usive ice heat ux and
decreases the ice growth rate until both the solid and liquid layer have equal heat transport. As Tb
is increased and the convection gets stronger, the ice grows less thick and the saturation time drops
signi�cantly. This is largely due to the di�usive water layer h0�h4 becoming smaller and smaller
as Tb increases. With Tb = 6 �C, the ice-water interface is protected by this stably strati�ed
layer. At higher temperatures, this layer is heavily penetrated by strong thermal plumes having
a signi�cant impact on the ice growth. Therefore the relatively large di�erence in the saturation
time for Tb = 6 and Tb � 7 �C is easily explained by observing the heat transport which leads us
to characterize the former in regime 3 and the latter in regime 4.

Figure 5.2: Evolution of the spatial averaged ice thickness for Tb = 6; 7; 8; 9; 10 �C. Initially, the
ice thickness (H � h0)=H behaviour approximates �

p
t.

In �gure (5.3), the temperature �eld Tw(x; z) for the regimes 3 (Tb = 6 �C) and 4 (Tb = 10 �C)
are visualized. The instantaneous dynamics in the water layer during the statistical equilibrium
state can be observed, as well as the curvature of the ice front h0 in �gure (5.3b). The di�erences
between (5.3a) and (5.3b) are striking. As mentioned before, the Tb = 6 �C case still contains a
stably strati�ed di�usive water layer, protecting the ice-water interface h0 from strong thermal
plumes. These plumes arise from the thermal boundary layer at the bottom which can just be seen
in both cases. However, the di�erence between the bulk temperature and the thermal boundary
layer temperature is signi�cantly higher for Tb = 10 �C. This leads to the plumes having a
substantially larger buoyancy and thus vertical velocity. The hot plumes in Tb = 6 �C are not as
buoyant and have to deal with the extra uid layer on top. This has the consequence that the
ice-front does not get curved as in �gure (5.3b). There, the h0 � h4 layer is negligible and strong
thermal plumes directly impact the ice-front, resulting in a curved interface.
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Furthermore, the Tb = 10 �C case also displays strong circulation due to a vortex that almost
spans the entire width and height of the system as seen in �gure (5.3d), where the velocity
magnitude kuk(x; z) is displayed. This compared to the relatively small uid velocities in �gure
(5.3c), also suppressed by the decreased system height. Small vortices appear locally but large
scale circulation does not develop.

(a) (b)

(c) (d)

Figure 5.3: Instantaneous temperature Tw(x; z) (�gure (5.3a & 5.3b)) and velocity magnitude
�elds kuk(x; z) (�gure (5.3c & 5.3d)) during the statistical equilibirum state for the cases Tb = 6
�C and Tb = 10 �C with lateral walls. In �gure (5.3a) and (5.3b) the colormap only indicates
temperatures in the range Tw � 0, which is why TI , which is sub-zero, does not display any color
variance.

To show how the heat transport develops during the ice evolution in time and its direct relation
to the e�ective Rayleigh number Rae, the Nusselt number Nu is plotted against Rae for both cases
of Tb. From �gure (5.4a & 5.4b), it is noticable how strongly the heat transport is a�ected by Rae.
In �gure (5.4a) Rae drops almost one order of magnitude from � 107 down to � 106 caused by the
large decrease in h4 as displayed in �gure (5.4c). The heat transport is a�ected accordingly with
an almost 50% decrease in Nu but remains dominated by convection in the equilibrium state.

In the Tb = 10 �C case the heat transport logically is substantially larger which results in a
�nal ice thickness that covers only � 10% of the system. Due to this limited decrease in system
height, Nu and Rae stay fairly close to the values at the beginning of the freezing process.

While �gure (5.3b) is a snapshot of the instantaneous velocity magnitude �eld ku(x; z)k in
the equilibrium state, �gure (5.5b) supports the observation of the large scale circulation in the
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(a) (b)

(c) (d)

Figure 5.4: Evolution of the heat transport (Nu) and e�ective Rayleigh number Rae in time as
the system decreases in height due to the progression of the ice-front. The Nusselt number here
is taken as a spatial and temporal average (averaged over �ve data points at intervals of 1:5� 105

and 1� 106 lattice timesteps for respectively Tb = 6 and Tb = 10 �C). In �gure (5.4c & 5.4d) the
corresponding evolution of the ice-water interface and h4 isotherm are displayed, both strongly
coupled to the behaviour of Nu and Rae.

system. The temporal vertical velocity maxima uz(x) lie very close to the walls (� 5% of the
system width Lx = H). Between the two maxima at the walls, uz(x) decreases almost linearly
towards the center of the system.

This is not the case for the centerline vertical velocity uz(x) for Tb = 6 �C in �gure (5.5a).
Although the maxima near the walls are present, uz(x) shows a more disturbed behaviour away
from the walls. This indicates that during the process not all circulation is nicely spread across
the width of the system but more local rising and falling of plumes also occurs.
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(a) (b)

Figure 5.5: Temporal average of the vertical velocity uz(x) at z=H = 0:5, a horizontal cross-section
at the middle of the system for Tb = 6 and Tb = 10 �C.

5.3 Periodic Domain

5.3.1 Moving Bottom Boundary

To mimic the e�ect wind has on a water body that is subject to a subzero temperature on top and
bottom temperature above the freezing temperature, the bottom boundary is put in motion. The
wall shear causes a Couette ow pro�le in the system while the solidi�cation of the water body
happens at the top and progresses downwards. The wall shear is expressed with the wall shear
Reynolds number Rew = HUw

4� where the system half height H=2 is used and the centerline velocity
uc = Uw=2. However, as the system height H is time-dependent, this dimensionless parameter is
written as Rew = h0(t)Uw

4� .
The following �gures are the results of several runs with Rew 2 [0; 700] and Tb 2 [5; 10]. The

point at which turbulence starts to occur in Couette sheared systems is around Rew � 500, [25].
In �gure (5.6), the temperature �eld Tw(x; z) for Tb = 6 and Tb = 10 �C with Rew = 700 are

visualized. We observe that now a substantially larger part of the system is covered with ice in
the Tb = 6 �C case in �gure (5.6a). The system has ended up in a statistical equilibrium state
that is no longer convective but entirely conductive which has resulted in more ice growth.

In the Tb = 10 �C case in �gure (5.6b), convection is still very much present in the equilibrium
state. Noticable is now how the plumes are being swept away by the ow produced by the
wall shear. There no longer is a nice circulation as the result of a vortex but now the hot and
cold thermal plumes move in a diagonal way up and downwards. But despite this increase in
horizontal momentum coming from the moving bottom plate, heat is still e�ciently transported
upwards suppressing further ice growth. One additional aspect of this change in how the plumes
are organized is that the ice-front h0 and h4 isotherm are relatively unscathed by the rising plumes.
Especially the ice-front h0 displays now curvature now, something that is also a logical consequence
of the absence of lateral walls.

The ow pro�les in terms of the horizontal velocity ux(x; z) at an instantaneous point in the
equilibrium state are visualized in �gure (5.6c) and (5.6d). The moving bottom wall creates a ow
pro�le comparable to the schematic pro�le pictured in �gure (2.4).

We already saw from �gure (5.6a) that the Tb = 6 �C case under the inuence of a heavy
shearing bottom wall enters regime 2. Figure (5.7a) shows how the heat ux in the water layer
behaves from the start of the process. Because the system starts at uniform temperature Tw(x; z) =
Tb at t = 0 it takes a short while before the instabilities in the system have grown to full convectiion.
It reaches a maximum (Nu � 10) before it decreases drastically to a conductive level Nu � 1 as
we see Rae decrease substantially as well. The intense shear created by the moving bottom wall
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(a) (b)

(c) (d)

Figure 5.6: Instanteneous temperature Tw(x; z) (�gure (5.6a & 5.6b)) and horizontal velocity �elds
ux(x; z) (�gure (5.6c & 5.6d)) during the statistical equilibrium state for the cases Tb = 6 and
Tb = 10 and Rew = 700 at t = 0. The system has periodic boundary conditions on the sides.
Again, in �gure (5.6a) and (5.6b) the colormap only indicates temperatures in the range Tw � 0.

suppresses the heat ux in the water rather e�ectively. There is negligible vertical uid motion
despite Rae still being of the order � 107. Interesting is that convection appears again after about
6000 seconds which goes paired with a rise in Rae. The h4 isotherm moves upward in the system
due to an increase in heat transport from the bottom. This is short lived however as the wind
very e�ectively distorts the hot plumes spreading them out horizontally and making the vertical
heat transport de facto entirely di�usive. This has a signi�cant e�ect on the ice growth as it now
reaches a �nal thickness comparable to cases of Tb � 4 �C.

From �gure (5.7c), where now the process is shown until the equilibrium state, we see how
large the drop in the wall shear is as a result of the ice-front moving downwards.

In the Tb = 10 �C case in �gures (5.7b) and (5.7d) nothing really notable occurs compared to
the case where Rew = 0 in �gures (5.4b). The heat transport decreases a little from Nu � 28 to
� 23 corresponding to the decrease in system height h0 but the strong shear does not seem to have
any a�ect on Nu. It appears the rising hot plumes are so strong in the sense that their vertical
velocity uz component remains largely una�ected by the strong horizontal ow in the water layer.

The ow pro�les of the horizontal component of the velocity ux are displayed in �gure (5.8).
In the Tb = 6 �C case in �gure (5.8a) we see the velocity pro�le at four instantaneous moments
in time. The velocity pro�les are typical for a Couette ow where only one boundary is moving.
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(a) (b)

(c) (d)

Figure 5.7: Evolution of the heat transport (Nu) and e�ective Rayleigh number Rae in time in
�gure (5.7a) and (5.7b) as the system decreases in height due to the moving ice-front h0. In �gure
(5.7a) the data dump of the simulation was increased to write every 2040 lattice time steps to
have a closer look at what happens at the start of the process. Here, Nu is the temporal average
of every 5 consecutive data points. Figures (5.7c) and (5.7d) display the corresponding decrease
in the wall shear as the ice-front progresses downwards in the sytem.

The conductive nature of the heat transfer in this case has as a consequence that all the horizontal
momentum of the liquid comes from the moving bottom wall. This is contrast with the Tb = 10
�C case in (5.8b). Here the temporal average of the horizontal velocity ux(z) is displayed. The
maximum of the horizontal velocity in this case is not at at the wall itself but in the vicinity of
it. This could be explained by reasoning that some of the vertical momentum of the detaching
hot plumes from the boundary layers at the walls is converted into horizontal momentum, thereby
increasing the horizontal velocity in the wall vicinity.

The �nal ice thicknesses of the LBM simulations within a laterally periodic freezing domain
while the bottom wall speed Uw is varied, in combination with the bottom plate temperature Tb,
are displayed in �gure (5.9a). The 1D-model results are put underneath for comparison. Due to
time constraints and issues with the LBM code, only simulations with Tb = 5; 6; 7 and 10 �C were
performed. The range of bottom wall speeds Uw was limited to Rew = [0 ; 700] at t = 0, with the
maximum value constrained by the LBM code. Wall shear Reynolds numbers Rew > 700 would
require a lattice speed U� > 0:1 and therewith jeopardizing the accuracy of the results.

Starting with Tb = 10 �C case, the ice growth remains virtually una�ected by the moving

The Growth Of Ice In A Turbulent Couette Flow 35



5.3. PERIODIC DOMAIN CHAPTER 5. LBM SIMULATION RESULTS

(a) (b)

Figure 5.8: The centerline horizontal velocity ux(z; t) in �gure (5.8a) at four instantaneous mo-
ments in time and in �gure (5.8b) the temporal average of the horizontal velocity ux(z) in the
statistical equilibrium state.

bottom boundary over the entire range of Rew. We already saw that the vertical momentum
component of the hot plumes is large enough to e�ectively transport heat from the bottom to the
ice-front. It is however expected, that for Rew > 700, the thermal convection will be quenched
leading to increased ice growth as seen in �gures (4.7& 4.8).

In the Tb = 5 �C case, the ice growth also remains the same throughout the entire Rew range.
Convection does appear in this case due to Tb being above the critical temperature Tc, however
the strength of the detaching plumes from the walls is now easily quenched by the horizontal
advection in the system. This even causes the transient state to be almost entirely conductive
from the start, which is also the reason that there is almost no variation in �nal ice thickness in
this case. The moving bottom wall suppresses the convection so e�ectively that this case now
becomes conductive for all bottom wall speeds.

Interesting in the Tb = 6 �C case is that the point where the heat transfer process switches from
convective to conductive regime is shifted to Rew � 250. Initially for lower Rew the convective
heat transfer decreases slightly leading to a small increase in ice thickness compared to the case
where Uw = 0. It then reaches a point where essentially all vertical momentum of the plumes is
converted into horizontal momentum by the Couette ow. All heat transport from that point is
conductive, which again leads to identical ice thickness for Rew � 300. Due to the entire freezing
process then being conductive, the �nal ice thickness is only marginally lower compared to Tb = 5
�C.

As mentioned before, not enough time was available to obtain good results for all bottom plate
temperatures and wall shear Reynolds numbers. However, in the Tb = 7 �C case, we can already
observe that the process is still being dominated by convection for higher Rew than in the Tb = 6
�C. The ice thickness is only slightly thicker than in the absence of forced convection, indicating
that increasing the bottom wall shear does lead to an initial decrease in heat ux and thus an
increase in ice thickness.

Now comparing the LBM results to the 1D-model results, we immediately see that there is not
an initial decrease in ice thickness for small to intermediate Rew as in �gure (5.9b). This really
seems to be a aw in the model as it also is hard to explain this in terms of physical behaviour.
Overlooking this fact, we see that for the Tb = 10 �C case, the behaviour is very similar. There
is hardly any variation to be observed in the ice thickness, even for really high shear reynolds
numbers Rew. For the Tb = 6 and Tb = 7 �C case, we see an increase in ice thickness for lower
Rew in the LBM simulations. This behaviour is also seen in the 1D-model but then for higher
Rew. As the heat ux data is taken from a system that di�ers in more than a couple of ways
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(di�erent setup, lower Ra range, no density anomaly, two moving walls) from our system, this is
the most likely explanation. What is striking though is that the sudden switch from a convective
heat transfer process for lower Rew to an entirely conductive heat transfer process for higher Rew,
was not observed in the data from [19]. The ice thickness in the Tb = 5 �C case does not vary for
increasing shear ow, indicating that the shear vehemently suppresses the weak convection that
does appear in the Rew = 0 case. In the Tb = 6 �C case, it takes a bit longer before the conduction
regime sets in due to the shear ow. Before that happens, the ice thickness is observed to increase,
which does correspond to the behaviour in �gure (5.9b).

(a)

(b)

Figure 5.9: The �nal ice thicknessess (H�h0)=H as a function of the wall shear Reynolds number
Rew at t = 0 and bottom plate temperature Tb in a laterally periodic domain. Figure (5.9a) are
the LBM results and �gure (5.9b) the 1D-model results again from section (4.3).
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Conclusions

With a Lattice Boltzmann Method (LBM) model that incorporates phase change and a moving
bottom wall, the freezing of fresh water (low concentration of salt and other impurities) under a
horizontal ow has been studied via fully resolved numerical simulations. The basis of the system is
modeled within a Rayleigh-B�enard setup with two horizontal plates and water con�ned inbetween.
By keeping the top plate at a �xed temperature below the phase change temperature of water and
by varying the bottom plate temperature, the right conditions were created to study ice formation
in a water body. In our setup, the bottom wall could move horizontally with a �xed speed Uw in
order to induce a shear stress in the proximity of the ice interface, mimicking a horizontal ow
in the water-body. As a water-body is rarely completely free of ow, this setup has enabled us
to study the growth of ice, quantifying it in terms of its growth rate, saturation thickness and
morphology as it was a�ected by a varying bottom temperature and advection. The relevance of
this study can be found in the topics of geophysical and climatological sciences, especially within
the context of global warming.

The LBM simulations revealed that in a system without an imposed mean wind in a square two-
dimensional domain, the dynamics and �nal ice thickness correspond very well to the experimental
results of [14]. This holds for lower Tb, which leads to a regime dominated by conductive heat
transfer and a stably strati�ed water layer, but also for higher Tb, which leads to a convective
heat transfer regime and an unstably strati�ed water layer. This indicates the accuracy of the
LBM simulations, as the setup for these freezing simulations without moving bottom boundary is
identical to the experiments and simulations of [14].

For a system in a lateral wall bounded domain and a moving bottom wall, the induced shear
ow without exception leads to an enhancement in heat ux and a drastic decrease in ice growth.
The strength of the circulation in the system increases due to the moving bottom boundary and
the coherence of the thermal plumes stay intact.

However, in a periodic domain with moving bottom wall, the bottom plate temperature Tb
appeared to be crucial in a�ecting the shear ow impact on the ice growth. Freezing processes
that would otherwise be dominated by convection (Tb = 5 �C and 6 �C) are now forced into the
conduction regime. The coherence of the detaching plumes is heavily disturbed by the horizontal
advection, suppressing the convective heat transfer to the extent that it becomes conductive. This
leads to substantially more ice growth. For higher bottom plate temperatures (Tb = 10 �C), the
strength of the hot plumes in terms of its vertical momentum appeared to be too large to be
disturbed by the shear ow. Heat is still e�ectively transferred upwards leading to a negligble
inuence on the ice growth. It is expected that further increasing Tb in the shear wall Reynolds
number range that was used in this study (Rew 2 [0 ; 700]) will have no e�ect on the ice formation.
That is to say, the �nal ice thickness in a freezing shear ow system will approximately be equal
to the �nal ice thickness in a system with initially zero ow, when Tb � 10 �C.

However, as [18] and [19] show, there is a point where the forced convection due to the shear
ow (or horizontal pressure gradient) starts to dominate and lead to a monotonic increase in the
heat ux. This would indicate that for these high Rew, the ice formation will be inhibited and
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lead to lower and lower ice thicknesses. This e�ect is substantial for lower Rayleigh numbers in
the range Ra 2 [0; 1:0� 107] while [19] shows that for systems with Ra � 1:0� 108 or higher the
heat ux (Nu) remains very steady, and hardly any increase is observed.

It was expected that in our setup, a shear wall Reynolds number of Rew = 700 would be
enough to lead again to an increase in the heat ux, especially for Tb = 5 �C and 6 �C. This was
not observed, as the system showed a strong tendency to remain in the conductive regime. But
with the results of [18] and [19] in mind, a monotonic increase in the Nusselt number is certainly
expected when increasing the shear wall Reynolds number above Rew � 2000.

The LBM simulations were complemented by a one-dimensional freezing model. Multiple
versions of the model were used, depending on the expected regime of heat transfer in the freezing
process and the presence of advection at t = 0.

For Tb � 5:1 �C, the conduction regime, the ice growth is accurately predicted (within 0:2% of
the analytical solution) by solving the classical Stefan problem. For higher bottom plate temper-
atures Tb > 5:1 �C, the water density anomaly causes the bottom water layer to become unstably
strati�ed, leading to convection. By implementing a model for the convective heat ux in the
unstably strati�ed water layer based on the height of that layer, we were able to accurately de-
termine the �nal ice thickness (with an average error of 2% with respect to the �nal ice thickness
in the experiments).

For freezing in a system with horizontal ow (caused by a pressure gradient or moving bottom
wall), the heat ux in the 1D-model was modi�ed with Nusselt number data from [18] and [19].
Despite the model’s de�ciency for low shear wall Reynolds numbers, the model quite reliable shows
the ice growth for high Rayleigh number systems such as Tb � 10 �C. However, compared to the
LBM simulation results, for lower Tb (= 5; 6 �C) it fails to capture the dynamics and shear-plume
interplay that eventually lead to a suppression of the convection. This is not a surprise as the
Nusselt data from the two sources comes from setups which contain a constant system height, no
density anomalies and lower Rayleigh numbers.

It is concluded that a mild to intermediate horizontal ow (0 < Re < 200) in an ultrapure
water-body (containing no impurities such as salt and pollutants) in freezing conditions, will lead
to a moderate increase in ice thickness (5 � 10%) for water temperatures close to the critical
temperature (4 < Tw < 7 �C and Ra � 107) where the water density maximum occurs. For
ows where the heat ux is dominated by shear induced turbulence (forced convection), it is
expected that the ice formation will decrease signi�cantly. Additionaly, water-bodies with high
temperatures (Tw > 8 �C and Ra � 108), such as lakes that are substantially heated by solar
radation, even during ice formation, show no sign of being a�ected by horizontal advection in
proximity of the ice interface (within the Reynolds number range examined in this study).
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Outlook

Due to the interplay of the solidi�cation of water, convective turbulence, shear turbulence and
a dynamically changing geometry (due to the moving ice-front), the setup of this research is
quite complex. The LBM simulations adequately predict the ice growth in both conductive and
convective freezing setups where there is no advection due to an imposed mean wind. These
results can be validated against the experimental results from [14]. However, the consequences of
implementing a horizontal, even turbulent ow, in the LBM simulations, cannot yet be validated
against experiments. So devising a setup that corresponds physically to the setup of this research
and obtaining experimental results from it for shear wall Reynolds numbers of the order � 103

would be very interesting. Special attention should then also be paid to the inuence of high
(turbulent) shear ows on the morphology of the ice.

As mentioned before, the results that were obtained by the LBM simulations in a periodic
domain with a moving bottom wall are limited as a result of time constraints and issues with the
cluster on which the code was running. Due to this, a number of simulations that would have
been very useful were not performed. This concerns the intermediate bottom plate temperature
cases 6 � Tb � 8 �C, because these fall exactly in the range where the ice growth and notably the
heat transfer are expected to show the most interesting behaviour. After obtaining this additional
data, one could analyse the characteristic time scales of the bottom wall shear and the hot plumes
and examine which comes to dominate for which parameters and when. Being able to predict the
point where the sudden complete suppression of the convective regime and transition to conduction
occurs, could be a main objective in a follow-up research. These simulations can then be extended
by running setups with higher bottom wall speeds, obtaining higher intensity turbulence as done
in [19].

A direct continuation of the LBM simulations in this research then would also be to perform
them in a three-dimensional domain. The 3D freezing simulations without an imposed mean wind
as performed in [14] showed negligible disparity in ice thickness, with respect to the 2D simulations.
However, it is not excluded that in a case with a moving bottom wall this will lead to the same
outcome, especially at turbulent wall shear Reynolds numbers.

While the LBM results in a static water setup correspond well to the experiments, it is still
a simpli�cation of the real physical processes happening in geophysical landscapes like lakes and
seas. In their research, [14] used deionized and degased ultrapure water to completely exclude the
possibilities of water impurities a�ecting the ow dynamics and freezing process. The e�ects of
salinity in particular is a very interesting topic for further research as it is known to decrease the
temperature at which the density is at a maximum. This would a�ect the strati�cation in the
layers that form in the water-body and thus also the ice formation as [30] qualitatively discusses.
Additionally, to further approximate the freezing conditions found in nature, di�erent geometries
and container aspect ratios should be studied. How does ice form near the corner of a lake where
the bottom surface is inclined? What is the impact of mushy ice layers on the conductive heat
transport in that layer? A porous layer of ice with residual melt in its voids has signi�cant impact
on the thermal properties of ice as [31] and [32] show. More knowledge in these regards would be
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bene�cial to a better understanding and modeling of these kind of geophysical processes.
Regarding the 1D-model in the horizontal advection cases, its main strength is its ability to give

a rough qualitative description of the ice formation. With so many complex physical phenomena
at play here, it is no surprise that a 1D-model falls short in its quantitative description. Obtaining
more data, similar to the research in [18], should make it possible to come up with an extended
version of their phenomenological model for the heat transport, now incorporating the water
density anomaly. Adding this to the 1D-model used in this research and it will undoubtly prove
to be more reliable in a qualitative as well as a quantitative sense.
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Appendix A

Temperature distribution
derivation

Starting with equation (2.9) in the stably strati�ed di�usion regime (Tb � Tc):

@Tw(z; t)
@t

= �
@2Tw(z; t)

@z2 ; 0 < z < h0(t); (A.1)

@TI(z; t)
@t

= �I
@2TI(z; t)

@z2 ; h0(t) < z < H; (A.2)

where the subscripts "I" and "w" denote the ice and water phase respectively. The boundary
conditions are:

Tw(0; t) = Tb; (A.3)

lim
z!h0(t)�

Tw(z; t) = lim
z!h0(t)+

TI(z; t) = T�; (A.4)

TI(H; t) = Tt; (A.5)

where the superscripts "+" and "-" indicate the direction in which the limit is taken. The energy
balance at the ice-water interface is given by equation (2.3).

We can now derive an explicit expression for the solution of the energy equation, starting with
the water layer. As with many problems concerning di�usion, the solution can be written as a
function of the similarity variable

�(z; t) =
z
p
t
; (A.6)

which leads to solutions of the form:

Tw(z; t) = F (�(z; t)); (A.7)

where F (�(z; t)) is an unknown function yet to be found. The derivatives of Tw(z; t) are:

@Tw(z; t)
@t

=
dF
d�

@�
@t

=
dF
d�
�z

2t
p
t
; (A.8)

@Tw(z; t)
@t

=
dF
d�

@�
@z

=
dF
d�

1
p
t
; (A.9)

@2Tw(z; t)
@z2 =

1
p
�

(
dF
d�

)
@�
@z

=
1
t
d2F
d�2 : (A.10)

We can plug these derivatives in to equation (A.1) transforming the equation into an ordinary
non-linear di�erential equation:

d2F
d�2 +

�
2�

F
d�

= 0; (A.11)
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which can be integrated to obtain:

dF
d�

= C1 exp
�
�2

4�

�
; (A.12)

where C1 is an integration constant. We now call equation (A.12) the integrating factor M(�) and
multiply by equation (A.11) to get:

d2F
d�2 M(�) +

�
2�W

M(�)
dF
d�

= 0; (A.13)

which contains the product rule so we can simplify to:

d
d�
�
M(�)

F
�
�

= 0; (A.14)

and by integrating equation (A.14) we obtain:

M(�)
dF
d�

= C2; (A.15)

where C2 is the second integration constant. Solving equation (A.15) results in:

F (�) = C
Z �

0
exp

�
�

h2
0

4�W

�
ds+D; (A.16)

where D is another integration constant.
Using the boundary conditions in equations (A.3, A.4, A.5), we can get the temperature in the

water layer as a function of vertical coordinate z and time t:

Tw(z; t) = Tt �
Tt

erfc (�w)
erfc

� Z
2
p
�t

�
; (A.17)

with Z = H � z and �w = H�h0(t)
2
p
�t

Obtaining the temperature in the ice layer is analogous to the derivation of the distribution in
the water layer:

TI(z; t) = Tt �
Tt

erf (�I)
erf
� Z

2
p
�It

�
; (A.18)

with �I = H�h0(t)
2
p
�It

and erf x = 2p
�

R x
0 e
�t2dx and erfcx = 1� erf x.
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