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2 General introduction

The work described in this thesis is part of a project that investigates possible medical

applications of the plasma needle. To this end, effects of the plasma needle treatment on

both bacteria and biological cells and tissues are examined.

A plasma is an ionized gas that contains ions, radicals, and electrons. It usually emits UV

light. The temperature of the electrons is normally above 10,000 K; the temperature of

the neutral particles and ions is strongly dependent on the type of plasma and can vary

from room temperature to 107 K. It is sometimes referred to as the fourth state of matter.

A well known example of a plasma is the sun. Sometimes the flame of a candle is also

considered a plasma, but the concentration of ions is very low. One of the characteristics

of a plasma is its chemical activity. Inside the plasma radicals and other species are formed

that are highly reactive [1–3].

Plasmas can also be created on earth, in a laboratory: in most cases this is done inside a

vacuum vessel at low pressure. This type of plasmas is used e.g., for activating the surface

of polymers, growing solar cells and etching materials [4, 5].

The plasma needle, the subject of my research, is a plasma at atmospheric pressure. The

advantage of this is that it can be operated in open air, outside a vessel. The plasma that

is generated with the plasma needle setup is small (about one millimeter) and non-thermal,

the temperature of the neutral particles and ions is about room temperature. This gives

us the opportunity to use this type of plasma in the biomedical field. Future applications

may be for example treatment of cancer or skin ailments.

This study focusses on the possibilities for the application of a plasma on biological tissue

without causing inflammation reactions. For a reliable study of the biological effects it is

necessary to have a stable and reproducible plasma. Thus, the design of the plasma is part

of the study. The research into the biological implications consists of a study of the effects

on cultured cells and preliminary experiments on arteries. Effects of the plasma on the

cells are expected from the reactive species that were mentioned before and of UV light

emission by the plasma.

In the first part of the thesis focus is on the physics of the plasma needle and the char-

acterization of its properties. In the second half the effect of the plasma on cells will be

discussed. A literature overview of the work that has been performed on plasmas with

biomedical applications is given in Chapter 2. Existing in vivo applied plasma tools are

described.

In Chapter 3 the plasma needle is characterized both electrically and optically. For

the application of the plasma on biological material, it is important to know the emitted

radicals that actually reach the surface that is to be treated. Thus, a fluorescent probe

dissolved in liquid was used for the detection. The results are given in Chapter 4. From
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a calibration against NO radicals, the concentration of plasma radicals was assessed to be

in the µM range. Basic effects of the plasma treatment on cultured cells are described in

Chapter 5 and quantified in Chapter 6. The main effect was found to be cell detach-

ment. When little liquid covered the cells, this resulted in a large working area. Most likely

this is caused by a small penetration depth of the radicals. However, using small amounts

of liquid increases dehydration. To understand the importance of the UV that is emitted

by the plasma needle, a comparison between plasma treatment and UV radiation is made

in Chapter 7. In Chapter 8 pilot experiments performed on arterial walls are described.

The thesis ends with the general discussion in Chapter 9 which will give an overview of

the findings and the current status of the plasma needle research. Publications associated

with this thesis can be found on page 141.
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Chapter 2

Plasmas in biomedical applications:

an overview

A plasma is a (partly) ionized gas, which contains free charge carriers (electrons and ions),

active radicals and excited molecules. So-called non-thermal plasmas are particularly in-

teresting, because they operate at relatively low temperatures and do not inflict thermal

damage to nearby objects. In the past two decades non-thermal plasmas have made a

revolutionary appearance in solid state processing technology. The recent trends focus

on using plasmas in the health care for ”processing” of medical equipment and even liv-

ing tissues. The major goal of tissue treatment with plasmas is non-destructive surgery:

controlled, high-precision removal of diseased sections with minimum damage to the or-

ganism. Furthermore, plasmas allow fast and efficient bacterial inactivation, which makes

them suitable for sterilization of surgical tools and local disinfecting of tissues. Much re-

search effort must be undertaken before these techniques will become common in medicine,

but it is expected that a novel approach to surgery will emerge from plasma science.

Large parts of this chapter were published as E. Stoffels, I.E. Kieft, R.E.J. Sladek, E.P. van der Laan,
D.W. Slaaf, Gas plasma treatment: a new approach to surgery?, Crit. Rev. Biomed. Eng., 32(5-6):427-460,
2004.
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6 Plasmas in biomedical applications: an overview

2.1 Introduction

2.1.1 Non-thermal plasmas

A plasma is an ionized gaseous medium. Its unique properties result from the presence

of free charge carriers: electrons and ions. Most of the matter in universe is in ionized

state; huge objects like stars or planetary nebulae are nothing else but very dense or very

diffuse plasmas. Somewhat smaller specimens are encountered in every day life - fire and

lightning are natural plasma phenomena, while neon lamps and plasma TV displays are

typical man-made plasmas.

Plasmas can be created in several ways, e.g., by laser beams. Usually, a discharge in gas is

induced electrically, by applying voltage to a set of electrodes [1]. In this case only charged

species (electrons and ions) can gain energy from the electric field. The plasmas generated

by electric fields are divided in [2]:

• direct current (DC) discharges

• pulsed DC discharges

• radio frequency (RF) discharges

• microwave discharges.

The RF discharges can be divided in inductively and capacitively coupled configurations.

A general schematic of an RF capacitively coupled discharge is depicted in Figure 2.1.

The plasma needle, which is used in this study, is an RF capacitively coupled plasma in a

unipolar configuration. The surrounding environment acts as counter-electrode.

RF

matching 

network

Figure 2.1: Schematic of an RF capacitively coupled plasma.

In common perception, plasmas are hot gases that emit light and conduct electricity. In-

deed, plasmas often contain energetic electrons (at 3 eV or higher) that in turn transfer
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their energy to neutral molecules and excite radiating transitions. However, not all plas-

mas are hot. Small and light electrons cannot heat the large and heavy molecules very

efficiently, so in many cases the background gas remains at or close to room temperature.

In such non-equilibrium systems (often called non-thermal plasmas), the complex plasma

chemistry is driven by electrons. They perform ionization, necessary to sustain the plasma;

in addition, they are responsible for atomic/molecular excitation, dissociation and produc-

tion of ”exotic” species. The result is an active gaseous medium that can be safely used

without thermal damage to the surrounding. Such exceptional non-equilibrium chemistry

is the base of plasma applications in lighting technology [3], exhaust gas treatment [4] and

material processing [5].

There are several methods to generate non-thermal plasmas. When charged particles are

in minority, heating of neutral molecules is limited. Thus, diffuse plasmas where the frac-

tion of ionized species is below 0.1%, are usually non-thermal. This situation is readily

achieved under reduced pressures, in the range of 10 to 1000 Pa. The effect of low pressure

is double: in a rarefied gas ionization events are scarce, which keeps the charge density

low. Moreover, the frequency of elastic collisions between electrons and atoms/molecules

is low, so electrons do not have much chance to convey their energy to the gas.

Low-pressure plasmas are of great value in fundamental research as well as plasma technol-

ogy, but they have many serious drawbacks. These plasmas must be confined in massive

vacuum reactors, their operation is costly, and the access for observation or sample treat-

ment is limited. Therefore, one of the recent trends focuses on developing new plasma

sources, which operate at atmospheric pressure, but retain the properties of low-pressure

media. Non-thermal atmospheric plasmas may be created using one or more of the follow-

ing principles:

• Transient plasmas. The frequency of energy transfer in collisions between electrons

and gas is given by: ν[s−1] = (me/ma)2naσeave

where me/ma is electron to atom(molecule) mass ratio, σea is their mutual collision

cross-section, na is the atom density and ve is the electron velocity. In atmospheric

plasmas n is about 108 collisions/s; for efficient gas heating at least 100-1000 colli-

sions are necessary. Thus, if the plasma duration is shorter than 10−6 − 10−5 s, gas

heating is limited. Of course, for practical purposes such plasma has to be operated

in a repetitive mode, e.g., in trains of microsecond pulses with millisecond intervals.

• Micro-plasmas. Gas heating occurs in the plasma volume, and the energy is car-

ried away by thermal diffusion/convection to the outside. If the plasma has a small

volume and a relatively large surface, gas heating is limited. This situation can be
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also achieved for a spherical plasma glow. In case of the plasma needle, its typical

dimension should not exceed 1 mm [6].

• Dielectric barrier discharges (DBD’s) [7, 8]. These plasmas are typically created

between flat parallel metal plates, which are covered by a thin layer of dielectric or

highly resistive material. Usually they are driven by a high frequency electric current

(in the kHz range), but it is also possible to obtain a DBD by simple transforma-

tion of 50 Hz/220 V network voltage to about 1 kV. The dielectric layer plays an

important role in suppressing the current: the cathode/anode layer is charged by

incoming positive ions/electrons, which reduces the electric field and hinders charge

transport towards the electrode. DBD’s have typically low ionization degrees (ion

densities of 1019 − 1020 m−3) and currents in the order of mA. Besides, the electrode

plates are quite large (10 cm) and the distance between them usually does not exceed

a few millimetres. Thus, DBD has a large surface-to-volume ratio, which promotes

diffusion losses and maintains a low gas temperature (at most a few tens of degrees

above the ambient). The only serious drawback of a DBD is its limited flexibility.

Since the distance between the plates must be kept small, treatment of large and

irregular samples is impossible.

In the last decades, non-thermal plasmas have made a fast career in surface processing

technology. At present, virtually any surface treatment can be performed in a plasma

reactor: etching (fabrication of semiconductor elements); deposition of amorphous silicon

layers for solar cells; deposition of various thin coatings: hard/protective layers (diamond),

nano-structured composite films, cleaning/ashing, tailoring of surface properties: wettabil-

ity, surface energy, adhesion. The versatility of plasma interactions with various surfaces

was the inspiration for a completely new application: plasma-surface treatment in medical

care.

Several biomedical applications of plasmas have been already identified, e.g., bacterial de-

contamination of medical equipment, air, biological warfare [7, 9], coating of implants with

bio-compatible layers [10], and surface modification of substrates for cell culture [11, 12].

These ex vivo techniques are subject of extensive studies, which are beyond the scope of

this chapter. Here we shall concentrate on the most recent development, which is plasma

treatment of living tissues. The aim of this treatment is controlled tissue removal, devi-

talization, and hemostasis. Since modern plasma sources have become quite friendly and

”bio-compatible”, the area of applications is expanding rapidly and many novel medical

techniques are under preparation. It is expected that plasmas will be used for in vivo tis-

sue disinfection and induction of specific reactions at the cellular level (proliferation stop,

apoptosis). All these applications will be addressed.
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2.1.2 Cells and tissues

The ultimate goal of our plasma needle research is to develop it into a surgical tool. This

tool can then be used to treat several types of human pathological tissue. Tissues are

complex materials that usually consists of several cell types with connecting extracellular

matrix (ECM). The direct application of plasma to tissues of any kind will lead to compli-

cated chains of reactions. For research purposes, it is thus logical to start using cultured

cells as model system.

Cells

Cell biologists have developed ways of dissociating cells from tissues. The various cell

types are then separated, which results in a relatively homogenous population of cells.

Cell cultures prepared directly from the tissue are called primary cultures. When cells

are removed from the culture dish, they can be used to form a large number of secondary

cultures; they may be subcultured for weeks or months. The cells in culture are provided

with media. Most media used are derived from horse serum or fetal calf serum. However,

serum-free chemically defined media also exist. They include amino acids, vitamins, salts,

proteins (e.g., growth factors), and some miscellaneous additions. An example of the latter

is penicillin, to protect the cells from a bacterial infection [13].

A typical animal cell is 10 to 20 µm in diameter. It is a complex structure of organelles in

cytoplasm. Mammalian cells are surrounded by a membrane that shields its contents from

the outside environment. The membrane is a continuous sheet of phospholipid molecules

in which various proteins are embedded [13]. An important organelle is the nucleus, which

has its own membranes surrounding it. It holds the DNA with the genetic information.

Furthermore, the cell consists of parts such as the cytoskeleton for structure, and mito-

chondria for energy conversion.

If the cell is irreversibly injured, this will result in cell death. There are two types of cell

death: apoptosis and necrosis.

• Necrosis, or accidental cell death. Necrosis is defined as the consequence of a catas-

trophic injury to the mechanisms that maintain the integrity of the cell. In necrotic

cells the membrane is damaged, and the cytoplasm can leak out. Since the content
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of the cell is harmful to the tissue, the organism responds with an inflammatory re-

action. In surgery, mechanical, thermal or laser methods always cause severe injury

at the cellular level and cell necrosis. The necrotic tissue is eventually removed by

the organism, but the inflammation slows down the healing process and may cause

complications. The body reacts to inflammation by excessive tissue formation. In

arteries it may lead to (re)stenosis, in other places it leaves scar tissue. Surgery

without necrosis and inflammation would be surely a great improvement.

• Apoptosis, or programmed cell death. Apoptosis is an internal mechanism of self-

destruction, which is activated by cells, which are damaged, dangerous to the tissue,

or simply too old and not functional anymore. Thus, apoptosis takes place in develop-

mental morphogenesis, in natural renewal of tissues, in DNA-damaged, virus-infected

or cancer cells, etc. Presumably, any moderate yet irreversible cell damage can also

activate apoptosis. Known factors are UV exposure, oxidative stress and specific

chemicals. The role of radicals and UV has given rise to the hypothesis, that plasma

treatment may also induce apoptosis.

The intracellular mechanism of apoptosis is described in detail in textbooks on cell biology

[13] and specific articles [14]. The morphological changes in the cell during apoptosis are

easy to recognize. In early apoptosis, the DNA in the nucleus undergoes condensation

and fragmentation and the cell membrane displays blebs. Later, the cell is fragmented

in membrane-bound elements (apoptotic bodies). However, the membrane retains its in-

tegrity, so no cytoplasm leakage and no inflammatory reaction occur. The cell vanishes in

a neat manner, without damage to the rest of the tissue. The organic material of the cell

is ”recycled”, as the apoptotic bodies are engulfed by macrophages or neighboring cells.

It is clear that in the pursuit of fine surgery apoptosis is the preferred way of cell removal.

Selective induction of apoptosis can make a pathological tissue disappear virtually without

a trace. Such surgery, performed with a high precision, may be called the least destruc-

tive therapeutic intervention. No inflammation, no complications in healing and no scar

formation/stenosis is expected.

There are only four basic types of cells: cells of epithelial, connective, muscle, and nervous

tissue [15]. Within these basic tissues, there are many subtypes that exhibit different mor-

phologic and functional phenotypes. The cell types used in this study include fibroblasts,

endothelial cells and smooth muscle cells. Fibroblasts are part of the connective-tissue

family, which means that they are specialized in the secretion of collagenous extracellular

matrix. This property makes them important after tissue injury to help isolate and repair

the damaged tissue [13].
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The epithelial cells that make up the inner surface of blood and lymph vessels are called

endothelial cells. The endothelia consist of closely-packed cells arranged in flat sheets.

A layer of connective tissue is interposed between the endothelium and the underlying

smooth muscle. The contractile properties of the smooth muscle cells vary according to

the location of the blood vessel [16].

Standard protocols to detect cell damage include e.g., visual observation, cell counting

and (fluorescent) dyes. The dyes are most often used to detect specific proteins or other

molecules in cells and tissues. Examples are: calcium markers, metabolic markers and

stress markers. Fluorescent dyes are detected with the help of fluorescence microscopy.

Extracellular matrix

The surrounding environment of connective tissue cells is called the extracellular matrix

(ECM). This ECM consists of several components. For example, fibroblasts secrete vari-

ous proteins and polysaccharide chains; these chains then become part of the ECM. The

ECM has in total five components that make up a stable complex: collagens, basement

membranes, elastic fibers, structural glycoproteins, and proteoglycans [16]. A schematic

drawing is given in Figure 2.2. The exact composition of the extracellular matrix depends

on the cell type.

Figure 2.2: The connective tissue underlying an epithelial cell sheet. It consists largely of extra-
cellular matrix that is secreted by the fibroblasts. Picture after [13].

The ECM is important because it

• helps to cushion and support the cells,

• participates in signal transduction,
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• helps to maintain the cell shape,

• is important for the cell development (migration and cell growth)[15].

The cells interact with the extracellular matrix through the cell adhesion molecules (CAMs),

e.g., integrins. They are cell surface receptors that bind to extracellular matrix compo-

nents. Due to the connection of cells with the ECM, it is expected that the effect of plasma

treatment of tissues is different from treatment of cultured cells.

Tissues are usually fixed and sectioned for microscopy, because confocal fluorescence mi-

croscopy is not suitable for thicknesses above 50 µm. This is due to loss of resolution

and limited penetration depth. Fixation makes cells permeable to staining reagents and

cross-links their macromolecules so that they are stabilized and locked in position. Exam-

ples of fixation liquids are alcohol and formaldehyde [13]. An alternative for the fixation

procedure is rapid freezing. An alternative to these procedures is given by the two photon

laser scanning microscope (TPLSM). This method is less limited in penetration depth and

can for example be used to image mouse carotid arteries [17].

2.1.3 A ”bio-compatible” plasma source: safety issues

What is a ”bio-compatible” plasma? It depends very much on what one expects from

plasma treatment. But generally, everyone agrees that damage to the living organism

should be avoided or at least minimized, and that refined/selective modifications are pre-

ferred to non-specific effects. This imposes quite a number of restrictions on the plasma

source, in particular on its thermal and electrical properties and its chemical activity (tox-

icity). Before going into details on the possibilities and consequences of in vivo plasma

treatment, some basic features of atmospheric plasmas shall be described, and the neces-

sary safety requirements shall be discussed.

Thermal properties of non-equilibrium plasmas

As stated above, non-equilibrium plasmas are often referred to as non-thermal. In such

plasmas, the electron temperature can be 100 to 1000 times higher than neutral gas tem-

perature. But is the gas temperature always low enough to fully eliminate thermal damage?

Thermal damage was already of much concern in processing of heat-sensitive (non-living)

surfaces, like plastics and fabrics. For living tissues, it becomes even more crucial. Ther-

mal effects were elaborately studied in relation to laser surgery [18]. Temperature elevation
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above 43 oC causes in most cases damage to cells and tissues. The extent of this damage

depends on the type of cell or tissue, and the duration of the exposure to heat.

For example, a temperature increase of only 2.2 oC in the dental pulp causes not only

intense pain, but also partial pulp necrosis [19]. Conversely, tissues like skin can withstand

temperature elevation to 60 oC or more for several seconds without substantial damage [20].

Depending on the desired effect of plasma treatment, rigorous control of gas temperature

in the plasma, and surface temperature of the exposed tissue may be necessary. In non-

specific treatment, like burning and coagulation of wounds (see section 2.2 about in vivo

treatment), heating of the tissue is a part of the therapy. For this purpose, hot plasmas

are used, and the temperature is not so critical as long as there is no carbonization or

deep damage. In other applications, like specific treatment without tissue devitalization,

temperature is an essential issue. The tissue may be warmed up to at most a few degrees

above the ambient temperature, and treatment time must be limited to several minutes.

Figure 2.3: The plasma from the plasma needle expands to skin.

There are many techniques for the determination of plasma and surface temperature. In

most plasma physical works, spectroscopic measurement of relative intensities of rota-

tion bands (rotation temperature) is a popular method to determine the gas temperature.

Unfortunately, the accuracy is somewhat limited: at low temperatures (close to room tem-

perature) the error is in the best case of the order of ten degrees. This may be not so

critical in plasma physics, but in medicine every degree above the body temperature may
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become a problem. In biology (biophysics) and material technology thermocouples are

often used. In the present context, thermocouples are more useful as they provide direct

information about the thermal flux towards the exposed surface.

Table 2.1: A selection of atmospheric discharges

Plasma source Type Gas T (K) Ref.

Atmospheric Pres-

sure Plasma Jet

(APPJ)

RF capacitively

coupled

Helium,

argon

400 Park et al

[21]

Atmospheric glow AC/DC glow above

water

Air 800-

1500

Lu and

Laroussi

[22]

Cold arc-plasma jet

AC

10-40 kHz Air, N2, O2 520 Toshifuji et

al [23]

Microwave torch 2.45 GHz Argon + O2 2200 Moon and

Choe[24]

AC plasma AC Helium + O2 800-

900

Moon and

Choe [24]

DBD Dielectric barrier N2 + O2 +

NO

300 Baeva et

al [25]

Pulsed DBD Dielectric barrier Argon + H2O 350-

450

Motret et

al [26]

Atmospheric glow DC glow with

micro-hollow cath-

ode electrode

Air 2000 Mohamed

et al [27]

Plasma needle RF capacitively

coupled, mm size

Helium + N2 350-

700

Stoffels et

al 2002 [6]

Plasma needle RF micro-plasma Helium

(+H2O)

300 Stoffels et

al [28]

In Table 2.1, a few typical non-thermal plasma sources and their corresponding gas tem-

peratures are listed. Most of these results were obtained using spectroscopic methods:

optical emission and coherent antistokes Raman scattering: CARS [25]. Moon and Choe

calibrated optical emission spectroscopy against thermocouples [24]. Stoffels et al also used

both methods for the plasma needle (Figure 2.3) [6, 28]. The table comprises a reasonable

selection of atmospheric discharges. One can thus conclude that not many of these plasmas
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are suitable for non-thermal processing of organic samples.

Electricity and plasma

Gas discharge and electricity are inevitably coupled. At atmospheric pressure, the break-

down voltages may be quite high: from several hundreds of Volts even to 10 kV, dependent

on the type of discharge (DC, RF, microwave), electrode gap and gas composition. Such

high electric fields are surely a matter of concern for the health of the patient: they may in-

teract with the nervous system, disturb the heartbeat, and cause damage to individual cells.

Obviously, electricity does pose a danger: lightning is probably its most awesome and

frightening manifestation. However, most of the commonly encountered electrical phe-

nomena - sparks in dry air, shocks experienced after touching some surfaces, charging of

hair and clothes - are by far not so destructive. Yet the electric voltages that induce such

phenomena may be considerably high; for example, sparks are generated when the local

field strength is about 3x106 V m−1. The reason for their harmlessness lies in very low

electric currents and consequently low power dissipation. Thus, one can tentatively state

that damage is related to the (too high) electric power rather than voltage or field strength.

Electrical methods are not unfamiliar in medicine. Electrosurgery may be the most promi-

nent example: substantial electric power is dissipated in a living tissue, with controlled

coagulation/cutting as a result. However, not only electrosurgical devices, but also most

of the advanced medical equipment involves electricity. With the introduction of new tech-

niques, a thorough study of the effects of electric fields and EM radiation on living beings

was undertaken. In particular, much attention was given to alternate (high-frequency) cur-

rents passing through the body. For detailed data, the reader should refer to the works of

Gabriel et al [29] (dielectric properties and conductivity of tissues), Reilly [30] (nerve and

muscle stimulation) and Polk [31] (electroporation and other field-induced effects). These

studies revealed that the sensitivity of nerves and muscles to electric current decreases

with increasing current frequency. The threshold current that causes irritation is only 1

mA at 10 Hz, but as high as 0.1 A at 100 kHz. This result is of major importance for elec-

trosurgery and plasma treatment: it implies that for medical applications high-frequency

sources should be employed. The ”safety limit” lies around 100 kHz, but to be ”on the

safe side”, most of the equipment operates at 300 kHz or higher.

Nowadays, much attention is given to interactions of electric fields with the cell mem-

brane. Cell death due to membrane rupture is one of the hazards related to electric fields

- electroporation is a well known phenomenon, and it may become an undesired side effect
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during plasma treatment. The rupture occurs when the potential difference across the cell

membrane is 1 V [31]. Since the membrane has a thickness of several nm, the external

electric field, which causes this damage, must be of the order of 108 V m−1. In man-made

plasmas electric fields are typically much lower: in extreme cases (close to the powered

electrode) they are about 105 − 106 V m−1. Moreover, during plasma treatment only pe-

ripheral plasma zones are involved, where the electric fields are practically absent. Thus,

one can state that plasma treatment does not inflict electrical damage.

In some cases, the electric field may even become beneficial. Field-induced reversible per-

meabilization of the membrane is an interesting effect with many potential applications.

The effects of transient electric fields on living cells was elaborately studied by Schoenbach

and Beebe [32–35]. The duration of the electric pulse was from 60 ns to 100 µs; the electric

field strength was 3-15x106 V m−1. The authors found conditions in which membrane

electroporation is reversible. Furthermore, they reported remarkable modifications to the

cell interior. Short electric field pulses are capable of inducing programmed cell death

(apoptosis) in cancer cells, so they may be used therapeutically to suppress tumor growth

[33].

Toxicity by reactive species

Plasma is a rich source of radicals and other active species. Free radicals have earned a bad

name in biology and medicine, because of their capability of causing severe cell damage

[36]. Especially the ROS (reactive oxygen species) are well known as evildoers. The ROS

family comprises radicals like O, OH and HO2, peroxide anions O−
2 and HO−

2 , ozone and

hydrogen peroxide. These species are easily created in ambient air and water (e.g., due

to radiation), and they live long enough to reach the cell and attack the organic matter.

When the ROS level in body fluids becomes too high, various types of damage occur,

known under a common name of oxidative stress. It is believed that the oxidative stress

bears at least partial responsibility for diseases like atherosclerosis, cancer and respiratory

problems. Moreover, a high concentration of oxygen radicals accelerates ageing of cells and

tissues. On the cellular level, several effects leading to cell injury have been identified:

• lipid peroxidation - the oxidation of unsaturated lipids in the cell membrane (damage

to the membrane),

• DNA damage - oxidation of DNA bases, leading to breakage of the DNA strand (on

the positive side, this can also induce apoptosis),
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• protein oxidation - generally not so harmful, because damaged proteins are efficiently

replaced. However, it can temporarily decrease the enzyme activity.

On the other hand, free radicals have various important functions in the body. Small

amounts of them are produced by the organism itself. For example, macrophages generate

ROS to destroy invading bacteria; endothelial cells produce nitric oxide (NO) to regulate

artery dilation. It is not completely clear which radical concentrations are indispensable

for the proper functioning of the body, and which are too dangerous. There must be always

a compromise between benefit and damage, but the numbers can vary from individual to

individual. Radical production by the body during physical exercise can increase the ROS

concentration in blood plasma even up to 0.1 mM [37]. However, physical activity is gen-

erally considered healthy.

Potential toxicity of plasmas is an issue, which surely must be addressed. In order to

determine the radical activity, standard gas-phase plasma characterization is not very rele-

vant. Instead, one has to identify radical species that can ”survive” in an aqueous solution,

interact with the cell membrane and eventually penetrate into the cell. Biochemists have

some standard methods for radical detection. The principle is roughly the same as in

plasma diagnostics: laser spectroscopy. A confocal microscope is commonly used to image

cells and tissues. It has been developed to detect laser-induced fluorescence (LIF) from

biological samples stained with specific fluorescent probes (organic molecules). The probes

bind selectively so some target molecules in the cell, and after irradiation by a laser they

produce fluorescent light. In the confocal arrangement, the light collected by the detector

originates almost exclusively from the focal region of the laser beam. Three-dimensional

profiling with a resolution of about 0.3 µm is possible. The variety of available fluores-

cent probes is virtually endless (see http://www.probes.com), and so is the number of

applications. Verification of cell viability and detection of apoptosis are just a few simple

examples. Also for detection of free radicals in fluids, a large selection of dyes is available.

The derivatives of dihydrofluorescein diacetate are especially useful, because they can pen-

etrate through the cell membrane. Once present in the cytoplasm, they are hydrolysed

by esterases and the products of hydrolysis become trapped in the cell interior. These

products can react with various radicals and turn into fluorescent species.



18 Plasmas in biomedical applications: an overview

Radiation hazard

UV irradiation is a well known factor that induces cell injury [38]. Dependent on the

wavelength, UV effects are split into three categories.

• UV-A (315-380 nm) - the least harmful; causes tanning but may also accelerate skin

aging.

• UV-B (280-315 nm) - absorbed by the DNA, causes DNA damage; carcinogenic.

• UV-C (100-280 nm) - more aggressive than UV-B, damages DNA, proteins and cel-

lular lipids. However, radiation below 150 nm is blocked by water (absorption coef-

ficient 103 − 104 cm−1), so the eventual damage is not so severe.

It is known that UV radiation in the B and C range can efficiently inactivate bacteria [39].

UV (in all ranges) is also an important factor in bacterial sterilization using low-pressure

plasmas [40]. However, non-thermal plasmas under atmospheric pressures are generally

poor sources of near UV [41]: the irradiated power in the 200-300 nm region is of the order

of 1 mW cm−2. It is known that UV exposure can accelerate wound healing [16], probably

due to disinfecting and thus reducing the inflammation. A more detailed investigation is

needed to decide whether UV treatment can become a competitive technique for wound

sterilization. As regards atmospheric plasmas, it seems unlikely that their weak UV radi-

ation can have much effect on cells and bacteria. The specific cell responses are probably

induced by other factors, like plasma chemistry.

2.2 Established surgical plasma equipment

The first application of gas discharges in biomedical engineering was their use to make

X-rays: a method that was put into practice in the last years of the nineteenth century.

In the past decades, plasmas are more and more often used in the biomedical world. For

example for coatings of implants with bio-compatible layers [10, 42], sterilization [43] and

surface modification of polymeric biomaterials [44]. However, these techniques are all ap-

plied ex vivo. The first in vivo applied plasma was developed by Erbe med; its application

is called argon plasma coagulation (APC)[45]. Using a flexible endoscopic probe, APC has

been used to destroy gastric and colon carcinoma among others.
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In this section three in vivo applications of electricity and plasmas are described: electro-

surgery, plasma coagulation and Spark erosion.

2.2.1 Electrosurgery

In the 19th century, the technology of artificial generation of electricity was well developed

and ready to seek for more advanced medical applications. In 1893, d’Arsonval discovered

that high frequency current passing through the body does not cause nerve and muscle

stimulation [46]. Soon after, high-frequency devices were introduced for cutting of tissues,

but it took many decades before the technology of producing safe, efficient and compact

surgical tools became available.

At present, electrosurgery has a solid, established name in medicine: the electric cutting

device replaces the scalpel in virtually any kind of surgery. A detailed list of applications

can be found in the database of ERBE (http://www.erbe-med.de), a leading company

producing equipment for electric, cryogenic and plasma surgery. The electrosurgical tools

manufactured by ERBE are powered by high-frequency generators: either at 330 kHz or at

1 MHz. The reason for using these frequencies has been already explained in the previous

section: they are well above 100 kHz, which is the lower-limit for electric safety. The de-

vices can supply reasonably high powers - up to 200 or 450 W, dependent on the type and

application. The power can be (automatically) regulated during the operation, to obtain

the desired depth of the incision. Various electrode designs and configurations are used:

a monopolar high-frequency powered pin (in this case the current is flowing through the

patient’s body), a bipolar coaxial head, and a tweezers-like design.

The features that make electric devices so successful and desired are: good cutting repro-

ducibility, high precision, good control of depth, and the possibility of local coagulation.

The latter is especially important in achieving hemostasis and thus preventing blood loss,

formation of thrombus, and contamination of tissues during surgery. Electric coagulation

is also used on its own, when no incision is necessary. Current flowing through the tissue

induces Ohmic heating that causes fast and superficial coagulation. This method is often

used to seal small blood vessels.

2.2.2 Plasma coagulation

Electrosurgical methods discussed above are based on tissue heating due to Ohmic dissi-

pation. Since the electric current is flowing through the body, tissue damage is not strictly
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localized and depth effects occur. However, there are also specific applications, which re-

quire superficial tissue modification with minimum penetration depth. Plasma offers such

a possibility, so the step from electric to plasma surgery is readily made.

Devitalization by heat is a rather unsophisticated effect, which can be achieved by exposure

to any heat source. Atmospheric plasma generated by a high-power electric discharge is

one of the options. The aim of the treatment is coagulation and stop of the bleeding, and

sometimes even total desiccation and devitalization of the tissue.

Figure 2.4: An argon plasma coagulation device, developed by ERBE. Argon flow is blown through
the tube, in which the high-frequency electrode is placed. The plasma flame stretches out of the
tube. Picture after ERBE (http://www.erbe-med.de)

An adequate discharge has been developed by ERBE, and the corresponding surgical tech-

nique is called argon plasma coagulation (APC), see Figure 2.4. The design of the APC

source resembles somewhat the APPJ [21], because in the latter case the plasma is also

generated in a tube with flowing argon (flow rate adjustable between 0.1 to 0.9 l min−1).

The APC source has not been characterized, but considering the parameters - frequency

of 350 kHz, operating voltage of several kV and power input of 50 W, it seems to be a

classical AC atmospheric jet. The gas temperature within the plasma can easily reach

several hundreds of degrees Celsius.

The powered electrode is placed coaxially inside the tube (monopolar configuration). Like

in monopolar electrosurgery, the patient is placed on a conducting sheet and the high-

frequency current flows through the body. The APC electrode generates argon plasma,

which stretches about 2 to 10 mm from the tip. Since the plasma is electrically conductive,

the current can flow to the tissue, but the electrode does not touch it. This is one of

the most important advantages of APC: the energy is transferred in a non-contact way,

so the problems with tissue sticking to the metal device, heavy burning and tearing can
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be avoided. Another unique feature of APC is its self-limiting character. Since the desic-

cated tissues have a lower electric conductivity than the bleeding ones, the plasma beam

will turn away from already coagulated spots toward bleeding or still inadequately coag-

ulated tissue in the area receiving treatment. The argon plasma beam acts not only in a

straight line (axially) along the axis of the electrode, but also laterally and radially and

”around the corner” as it seeks conductive bleeding surfaces. This automatically results

in evenly applied, uniform surface coagulation. The tissues are not subjected to surface

carbonization and deep damage, and the penetration depth is at most 3-4 mm. It should

be mentioned that the action ”around the corner” is typical for all plasmas, but it cannot

be achieved in e.g., laser surgery. Capability of superficial scanning of irregular surfaces,

small penetration depths and last but not least, low equipment costs, make plasma devices

competitive to lasers.

It is not entirely clear what causes the coagulation of the treated tissue. It may be the

heat transferred directly from the hot gas as well as the heat generated within the tissue by

electric power dissipation (Ohmic heating). However, in the latter case one would expect

bulk heating, or at least a higher penetration depth.

May the exact physical mechanism of coagulation be not yet completely resolved, the APC

device has been successfully applied in many kinds of surgery. The most obvious applica-

tion is open surgery: promoting hemostasis in wounds and bleeding ulcers. Treatment of

various skin diseases has been discussed by Brand et al [47]. Most of the APC applications

involve endoscopy. In gastroenterology there are many situations where large bleeding ar-

eas must be devitalized [48–50].

2.2.3 Spark erosion

Spark erosion is a special and unconventional application of plasma in surgery. It is remark-

able for two reasons: first, as an attempt to treat atherosclerosis, a complex cardiovascular

disease that plagues most of the Western world, and second, as an example to show that

a quite powerful discharge can be induced in vulnerable places, like blood vessels.

Atherosclerosis is a chronic inflammatory disease, where lipid-rich plaque accumulates in ar-

teries. The consequences are plaque rupture and/or obstruction of the arteries. Atheroscle-

rotic plaque can be formed in all large and medium-sized arteries. Details on the patho-

genesis can be found in the overview article by Ross [51]. Treatment of atherosclerosis is

in most cases surgical [52]. The plaque must be removed, but in a way that causes least

damage to the artery, so as to minimise restenosis. Recently, laser methods have been

applied with reasonable success. However, as mentioned earlier, lasers cannot act ”around
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the corner”, which in this case is very essential.

Slager et al [53] presented a new concept, which lies between electrosurgery and plasma

treatment. This technique, called spark erosion, is based on plaque vaporization by electric

heating. The tool developed by Slager is similar to the monopolar device used in APC, but

no feed gas is used. Instead, the electrode is immersed directly in the blood stream and

directed towards the diseased area. Alternate current (250 kHz) is applied to the electrode

tip in a pulsed way, with a pulse duration of 10 ms. The voltages are relatively high - up to

1.2 kV. Under these conditions, the tissue is rapidly heated and vaporized. The produced

vapor isolates the electrode from the tissue, so that further treatment is performed in a

non-contact way. After vaporization, electric breakdown in the vapor occurs and a small

(< 1 mm) spark is formed. Spark erosion allows removing substantial amounts of plaque;

produced craters have dimensions of up to 1.7 mm. However, the crater edges are smooth

and the coagulation layer does not exceed 0.1-0.2 mm.

It is not yet clear whether spark erosion will become competitive to lasers and mechani-

cal methods in treatment of atherosclerosis. One possible problem is formation of vapor

bubbles, which may lead to vascular embolization. Nevertheless, the spark-producing elec-

trode can be used in other operations, where embolization does not pose such a danger. For

example, it can be applied in open heart surgery, like treatment of hypertrophic obstruc-

tive cardiomyopathy [54]. The cutting performance is similar to electrosurgery, but like in

plasma techniques, the treatment is essentially non-contact. Compared to argon plasma

coagulation, thermal effects in spark erosion are minor. The spark plasma is much smaller

than the argon plasma, so that a) the gas temperature is lower and b) heating is more local.

Since there is no gas flow, no heat is transferred by convection. Finally, pulsed operation

suppresses the thermal load. Summarizing, spark erosion is still an interesting surgical

technique, which combines the advantages of electrosurgery and gas plasma-induced coag-

ulation.

2.3 Goal of the plasma needle

In the medical techniques described above, the action of plasma is not refined: it is based

on local burning, vaporization or cutting of the tissue. Using the analogy to material

science, electrosurgery, APC and spark erosion can be compared to cutting and welding.

However, plasmas are capable of much more sophisticated surface treatment than mere

thermal processing. If the analogy to material science holds, it is expected that fine tissue

modification can be achieved using non-thermal plasma techniques.



2.3. Goal of the plasma needle 23

However, the construction of non-thermal and atmospheric plasma source suitable for fine

tissue treatment is not trivial. In section 2.1.3 a list of restrictions on the temperature,

voltage, chemical activity and radiation has been given. Next to these restrictions, there is

one more requirement: the flexibility to act on the tissue. There are not so many sources

that can be applied directly and with a high precision to a diseased area. Most plasmas

cannot operate in ambient air: they are confined in (partly) closed reactors and direct

exposure to the plasma is hindered. Therefore, our research is focused on a flexible and

non-destructive microplasma for direct and specific treatment of living tissues.

2.3.1 In vivo plasma disinfection

A very important feature of plasma treatment is related to plasma sterilization. Plasma

sterilization is a well known effect, demonstrated by many authors and even implemented

in practice [7, 9, 55–57]. Various types of discharges (low-pressure or atmospheric) and

many gas chemistries were used. The general conclusion is that antibacterial plasma ac-

tivity is due to the synergy of active plasma radicals and UV photons. Especially in the

low-pressure case, the role of (vacuum) UV photons is prominent: since they are not re-

absorbed in the gas phase, they can easily reach the bacteria and damage their DNA. In

atmospheric plasmas bacterial inactivation is mainly due to the membrane damage as a

result of plasma radical (ROS) etching. It has been established that air and oxygen plas-

mas are more efficient than noble gas discharges. Various types of bacteria (Gram positive

and negative) and spores were investigated. Typical D-values (treatment times that lead

to deactivation of one decade/90% of bacteria) range from minutes under low-pressure

conditions to seconds in atmospheric plasmas.

It is expected that the needle will be applied in dentistry for preparation of dental cavities

and/or inactivation of oral plaque [58]. Oral flora consists of several kinds of bacteria; the

most important of them is Streptococcus Mutans. These bacteria usually form thick bio-

films (dental plaque) or, when enabled to attack the enamel (e.g. at a weak spot, fissure, or

in acidic conditions), destroy the dentine and lead to tooth decay (caries). Small cavities,

produced this way, need not be filled and often remineralize when the bacteria are gone.

In large cavities the decayed matter must be removed and the cavity must be filled. The

cavity must be also disinfected prior to filling: typically, two-decades (99%) reduction of

bacterial population is sufficient. Recently, plasma disinfection has been proposed as an

alternative. As said before, the plasma needle is adapted for treatment of small objects,

due to its small size and flexibility in operation. Like all gaseous media, plasma can pen-

etrate into small fissures (”around the corner”), which are difficult to reach in another way.
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2.3.2 Plasma interactions with living objects

After reading about existing medical plasma technologies, one might wonder: what is

the ”refined” organism reaction, which one expects to achieve by non-thermal plasma

treatment, a reaction that makes plasma needle operation essentially different from APC

and spark erosion? The answer is the manner, in which the cells must be affected: cell

damage should be minimal. Cell death should be induced only when necessary, and even

then it should fit in the natural pathway, in which the body renews and repairs its tissues.

Interactions of non-thermal plasmas with living objects are an entirely new area of research.

Of course, the ultimate goal of this research is introducing plasma treatment as a novel

medical therapy. However, living organisms are so complicated that one has to begin with

a relatively simple and predictable model system, like a culture of cells.
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Chapter 3

Electrical and optical

characterization of the plasma needle

Abstract

The plasma needle is a source to create a non-thermal radio frequency plasma at atmo-

spheric pressure. To improve the ease of working on biological samples, a flexible plasma

probe was designed. In the new configuration, the needle was confined in a plastic tube

through which helium flow was supplied. The new setup was characterized by impedance

measurements and emission spectroscopy. Impedance measurements were performed by

means of an adjustable matching network; the results were modeled. The discharge was

found to be entirely resistive; the measured voltage was in the range 140-270 Vrms and it

was in excellent agreement with model results. From the resistance, the electron density

was estimated to be 1017 m−3.

Optical measurements showed substantial UV emission in the range 300-400 nm. Active

oxygen radicals (O· and OH·) were detected. Furthermore, the influence of helium flow

speed was investigated. At low flow speeds, the density of molecular species in the plasma

increased.

UV emission and density of active species are important factors that determine the per-

formance of plasma in the treatment of biological materials. Therefore, the new character-

ization will help to understand and optimize the interactions of atmospheric plasma with

cells and tissues.

This chapter was published as I.E.Kieft, E.P.v.d. Laan, E. Stoffels, Electrical and optical characteri-
zation of the plasma needle, New J. Phys.,6:149, 2004.
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3.1 Introduction

The plasma needle is a type of non-thermal atmospheric glow discharge; it has a single-

electrode configuration and is operated in helium [1]. Important properties of this type of

plasma are that it operates near room temperature, allows treatment of irregular surfaces

and has a small penetration depth. These characteristics give the needle great potential

for use in the biomedical field. This work is aimed at studying cells and bacteria that

are treated with the plasma. The experiments have already shown that the plasma needle

is capable of bacterial decontamination [2] and of localized cell removal without causing

necrosis to the treated or the neighboring cells [3]. Areas of detached cells were made with

a diameter of 0.1 mm, which indicates that the precision of the treatment can be very

high. It is believed that plasma particles, such as radicals and ions, and also emitted UV

light interact with the cell membranes and cell adhesion molecules and therefore cause the

detachment of the cells [3]. The penetration of the plasma radicals in liquid was tested [4],

and densities in the µM range were observed.

In this chapter, we characterize a new configuration of the plasma needle, by describing

its electrical setup and by studying light emission. The design of the needle was changed

to improve the ease of working and to allow treatment of large-sized objects. This was not

possible in the former configuration because the needle was enclosed in a box [1], which

meant that specimens had to be placed inside. The box had dimensions of 10 x 10 x 10

cm and it was filled with helium after the specimens had been put in, which took 30 s to

1 min. In the new design, this box is replaced by a tube, through which helium flow is

directed coaxially with the needle. Near the needle tip, the helium mixes with air. The

percentage of air at this point has been determined by Raman scattering to be in the range

0.1-1% [4]. This way, a plasma is created that is at first sight comparable with the high

frequency plasma pencil [5] and the plasma-energized jet [6]. However, the micro-plasma

generated by the plasma needle has a gas temperature much closer to room temperature

than in the other designs and is thus more suitable for the intended tissue treatment.

To electrically characterize the plasma, the voltage at the needle as well as the power dis-

sipated by the plasma were determined. Furthermore, we measured the impedance of both

the plasma and the matching network.

The method used to obtain the impedance of the RF discharge that was applied here was

based on the transmission line theory: a variable matching network was inserted to match

the impedance of the plasma setup to the internal impedance of the power supply [7, 8].

Firstly, the impedance of the matching network was determined and put into a model.

The model allowed calculating the impedance of the discharge. The plasma appeared to

be entirely resistive: no capacitive component was found. The power dissipated by the
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plasma was found to be dependent on the distance between the plasma needle and the

treated surface. This property might be used as a measurement tool for automatic control

of the position of the needle relative to a surface.

The light emission by the plasma was studied by optical emission spectroscopy. This

method is commonly used for plasma analysis [9–11]. The emission spectra are used to

investigate possible UV emission and the composition of the plasma. UV emission and

radicals are important for the application of plasma to biological samples because both

are known to be potentially damaging to cells; they can induce programmed cell death

(apoptosis) [12–14].

Emission spectroscopy was also used to investigate the effect of a change in helium flow

rate. Under all conditions, UV radiation was mainly emitted in the region between 305

and 390 nm; the species that could be detected were OH·, O·, N+
2 , N2 and He. An abrupt

increase (jump) in the intensity of the light emission was found when the applied voltage

was increased while keeping the other parameters constant. This jump could indicate a

transition to another plasma mode.

3.2 Method

3.2.1 Plasma needle

The schematic drawing of the plasma needle (Figure 3.1) shows the plasma at the sharp

end of a metal-alloy pin (diameter 0.3 mm). The typical size of the plasma glow was 2 mm

in diameter (Figure 3.2).

The metal pin was inserted coaxially in a Perspex tube; it protruded from the stainless

steel holder by 1.5 cm. The total length of the needle was about 8 cm. To prevent a

discharge along the entire pin, it was insulated by glass. Helium flowed through the plastic

tube at a rate of 2 l min−1 unless stated otherwise. The flow rate was regulated with a

mass flow controller from Brooks series 5850E. Because the inner diameter of the Perspex

tube was 5.5 mm, this flow rate resulted in a velocity of 1.4 m s−1. The helium flow was

mixed with a small amount of air near the tip. Moving the Perspex tube relative to the

fixed needle regulated the percentage of air. In the study described here, the end of the

tube reached as far as the needle tip.

The RF signal was generated with a waveform generator Hewlett Packard 33120A and

amplified by an RF amplifier model 75AP250 by Amplifier Research. From the amplifier,

the signal was directed to a home-built matching network, which is described in a later
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Network
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Figure 3.1: Schematic drawing of the experimental setup. The electrode wire is fixed in a stainless
steel holder and insulated by a glass tube, leaving only the tip exposed. The outer Perspex tube
surrounding the wire can be moved horizontally.

Figure 3.2: Plasma generated by the plasma needle. The plasma appeared as a pink glow with a
diameter of approximately 1 mm at the tip of the needle.

section.

A bi-directional power meter was placed in-between the amplifier and the matching net-

work to measure forward and reflected power. The meter was the PM 2002 obtained

from Amplifier Research with directional couplers also from Amplifier Research. A voltage

probe P6150A by Tektronix was attached to the feed-through of the needle when voltage

measurements were carried out. The probe was a 1000x attenuator with 100 M

Omega resistance and 3 pF capacitance.

3.2.2 Impedance measurements

In order to measure the impedance of both the metal pin and the discharge, first the

impedance of the matching network (Figure 3.3) had to be determined. The matching net-
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work had to be characterized carefully, and thus it was necessary to know the components

of the network as well as its stray impedances. To determine these stray impedances, the

method described by Bakker et al [8] was used, which is based on the reflection of power

by the matching network. To use this method for our setup, it was necessary to first adapt

the matching network: it was made adjustable and more stable.

Figure 3.3: The components of the matching network and of the plasma needle.

Then a stepwise approach was followed to determine the discharge impedance: (1) the

matching network was short-circuited and stray impedances were calculated; (2) the load

impedance (the plasma needle) was connected and the network was matched; (3) from the

settings, the plasma impedance was calculated. A short-circuit (used in step 1) is a fixed

load with zero real and imaginary values and it is independent of voltage and frequency.

For step 1, the components of the matching network were identified with the assumed

stray impedances (Figure 3.3). The basic components that were physically put into the

network were the coil Lm and the capacitances Cm,s and Cm,p. These capacitances were

Jennings tuning vacuum capacitors with very high quality factors (Q). Therefore, they

were assumed not to have any intrinsic stray impedance. The capacitors’ impedances were

measured when they were fully disconnected; the measured values were then put into the

model. Because of the high Q values, the capacitances could be measured at 1 kHz and

the obtained values were still reliable for use at 13.56 MHz. The impedances of these

capacitances were measured with an automatic RCL meter by Fluke (model 6303A) at 1

kHz. Depending on the plasma load, Cm,s and Cm,p varied between 500 and 520 pF and

290 and 310 pF respectively. The inductance of the coil was determined to be 3.4 µH at

3.2 MHz. However, because the coil did not have a high Q factor, at higher frequencies the

inductance deviated from the measured value at 3.2 MHz and thus the latter could only

be used as an indication for the model.
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Besides the impedances of the basic components, stray impedances were taken into ac-

count. These were called Lstray and Rstray. The impedance Lstray originated from the wires

that were connected to the capacitor Cm,p, because these wires had a small inductance.

Since the wires were very flat, the resistive skin effect was neglected. The stray inductance

from the wires that connected Cm,s and Lm was included in Lm in the model. In the model

of the matching network, a capacitance C geo had to be added because Cm,s was located

very close to the grounded case and this gave an extra capacitive impedance.

To determine the stray impedance values, we used Equation 3.1, which stated that the

reflection of power is a function of the impedance.

Pref

Pforw

=

∣∣∣∣
Z − 50Ω

Z + 50Ω

∣∣∣∣
2

(3.1)

The forward and reflected power were measured with the bidirectional power meter as a

function of Cm,p. For these measurements, the matching network was matched at 13.56

MHz and Cm,p was varied, whereas Cm,s was kept constant. The values of the stray

impedances were determined by fitting the function to the measured values.

Then followed step 2: Connecting the load impedance. The settings of Cm,s and Cm,p

in the matched situation with load were recorded, and from this the load impedance was

determined. The load impedance was divided into two components: the needle itself and

the discharge. The impedance of the needle was found when the plasma was turned off.

It had a capacitive and a resistive component. The impedance of the discharge had only

a resistive part. The transmission line that connected the matching network to the needle

transformed the load impedance. This transformation is given in Equation 3.2 [15].

Zload = Z0
Zneedle+discharge + Z0jtan(βl)

Z0 + Zneedle+dischargejtan(βl)
(3.2)

Z 0 is the impedance of the transmission lines and the internal impedance of the RF source,

both non-imaginary and 50 Ω. β Is the phase constant: it is the imaginary part of the

propagation constant. l Is the length of the coaxial cable from the matching box to the

needle system, which was in our setup 0.25 m with a β of 0.43 rad m−1.
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3.2.3 Light emission

To analyze light emission, we performed spectroscopy measurements; the obtained data

were used to determine the plasma composition. The helium flow rate was varied to inves-

tigate the influence of the flow velocity on the emission and thus the composition of the

plasma.

For the spectroscopy, two types of spectrometers were used. The first was the JobinYvon

H25, which had a good resolution (peaks 1 nm apart could be distinguished). For focusing,

a quartz lens was used with a focal length of 0.25 m. The grating of the spectrometer had

1500 lines per mm. The image produced by the spectrometer was taken with an intensified

charge-coupled device (iCCD) camera (Andor DH534) at a cooling temperature of -35 oC.

The exposure time was set at 0.7 s, and the gate width at 2000 ns. The accumulation

number we used was 100. The quantum efficiency of the CCD camera was greatly reduced

for wavelengths above 800 nm, where the efficiency was at least a factor 10 lower than that

in the range 300-500 nm.

For quicker but lower-resolution (peaks 5 nm apart could be distinguished) measurements,

an Ocean Optics HR2000 was used. The fibre was 2 m long. Through the fibre the signal

was greatly attenuated (> 20%) for wavelengths below 300 nm and from 900 to 1000 nm.

The numerical aperture of the fibre was 0.22, which equalled a whole acceptance angle of

24.8o. A collimating quartz lens was placed in front of the fibre to couple parallel beams

into the fibre. The diameter of this lens was 5 mm, which enabled us to view the entire

plasma at once.

Light intensity measurements were performed with a photodiode UV50 of UDT Sensors.

The sensor had a sensitivity range of 200-1100 nm with a peak at 800 nm.

3.3 Result and discussion

3.3.1 Impedance measurements

In the previous section, we explained that, before impedance measurements could be done

on the discharge, first the matching network needed to be known. To map the network,

a short-circuit was used to close it. Then the reflection coefficient, which is the reflected

power divided by the forward, was measured as a function of Cm,p (Figure 3.4). Cm,s was

kept at a constant value (22.30 pF) during these measurements.
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Figure 3.4: The reflection coefficient in relation to Cm,p and the curve fit that is made to determine
stray impedances.

In the matched situation, the reflected power was about 50 µW, which was very small

compared to the forward power of 1 W. The obtained data were used to make a model of

the matching network and thus determine the stray impedance values (Table 3.1). This

reflection coefficient calculated with the model fitted the measured coefficient well, with a

dataset correlation of 0.9998.

Table 3.1: Capacitance settings for matching network mapping and determined stray impedance
values.

Component Value

Cm,p 446.93 pF

Cm,s 22.30 pF

C geo 21.02 pF

Rstray 0.6728 Ω

Lm 3.018 µH

Lstray 14.6547 nH

Because the components of the matching network were now known, we could determine

the plasma needle characteristics with a high precision. As was explained in section 3.2,

the impedance of the plasma needle was divided into a resistive and capacitive component

of the needle itself and a resistive component of the discharge. The resistance of the nee-
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dle without discharge was 1.1 Ω, and its capacitance was 28.8 pF. The impedance of the

discharge depends on external parameters like the forwarded power (Figure 3.5), and on

the distance between the needle and the treated surface.

Figure 3.5: Discharge impedance as function of forward power. The impedance ranges from 100
to 1200 kΩ.

Without a nearby surface, the plasma impedance was calculated to be in the range 100-

1200 kΩ. The resistance of the plasma decreased with increase in forward power. The

power dissipated in the discharge ranged from tens of mW to a few hundred mW. The

power efficiency increased from a few percent to 20%, when the forward power was in-

creased from 700 mW to 3 W. We also observed that the size of plasma increased with

increasing power (roughly from 1 to 4 mm in diameter).

Knowing the resistance of the discharge and the size of the glow, we can estimate the elec-

tron density, since the resistance of the plasma is mainly determined by elastic collisions

of electrons with neutrals. For a weakly ionized plasma the conductivity σ in Ω−1m−1

depends mostly on the degree of ionization ne/na, with ne the electron density and na the

neutral density. Equations 3.3 and 3.4 [16] can be used to estimate the electron density

ne.

σ =
nee

2

meνea

(3.3)

νea = naσeave (3.4)
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Firstly, we use Equation 3.4 to calculate the collision frequency νea. The average speed

of the electrons, v e is taken to be 0.84x106 m s−1, because we can assume the average

electron temperature to be 2 eV for an atmospheric helium plasma [17, 18]. At this speed,

the cross-section σea is 5x10−20 m2 for collisions between electrons and neutrals [16]. With

the density of the gas at atmospheric pressure na = 2.5x1025 m−3, the νea was calculated

to be about 1.6x1012 s−1.

The conductivity in Equation 3.3 was calculated from the size of the plasma and the cor-

responding resistance. The size of the plasma was determined from the size of the glow,

which was assumed to be spherical. The resulting electron density was found to be 1017

m−3. The conductivity and thus the electron density varied as a function of the forward

power, as shown in Figure 3.6. This figure indicated that, when the forwarded power

exceeded 2000 mW, the plasma expanded in volume, but the electron density remained

almost constant. So it seems that the chemical activity of the discharge remained the same

while the glow increased in size.

Figure 3.6: Diameter of the plasma and the estimated electron density.

The electron density of 1017 m−3 seems reasonable if we compare it with the electron den-

sity of another non-thermal RF plasma at atmospheric pressure with helium as feed gas:

the atmospheric-pressure plasma jet (APPJ). The density for the α-mode discharge of the

APPJ is 3x1017m−3 [19], which is equivalent to the density we found for the plasma needle.

Using the model that was developed for the impedance calculations, we calculated the

voltage at the connector of the transmission line to the plasma needle. Thus, the fall

in voltage was calculated over both the resistance of the needle and the resistance of the
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discharge. For this calculation, we used the forward power at the power meter to determine

the start values V 0 and I 0. In a matched situation, the impedance of the system was non-

imaginary and 50 Ω at the input of the matching network. The voltage at the load could

then be determined from these start values, because all impedance components were known,

including the transmission line from the matching network to the load (see Equation 3.2).

It was not necessary to take into account the transmission line from the power meter to

the matching network, because this line was terminated by 50 Ω in the matched situation

and therefore it did not influence the amplitude of voltage.

The calculated voltage appeared to agree with the measured voltage (Figure 3.7).

Figure 3.7: Voltage at the connector of the plasma needle measured and calculated.

The minimum voltage needed to sustain the plasma was just below 140 V. This is higher

that in the old configuration, where it was as low as 90 V [1].

To ensure good reproducibility and high precision, it is important to learn how the plasma

characteristics change during surface treatments. To this end, the needle voltage was

measured when its tip was approaching a surface. The surfaces that were used during volt-

age measurements were: plastic (non-conducting), demineralized water (conductivity 2 µS

cm−1) and aluminium (conductivity 0.4 MS cm−1) [20]. The conductivity of the water was

closest to that of biological material (for most tissues in the range of mS cm−1)[21]. Only

when the surface was (partly) conducting, the voltage decreased during approach. The

first influence on the discharge could be noticed at a distance of 5 mm; from that point,

the effect continuously increased. The size of the plasma was about 2 mm in diameter,
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which means that the charged particles from the active plasma zone had to pass about

3 mm to reach the grounded surface. The voltage decrease was quite strong: a decline

from 190 V to 150 V for the liquid and aluminium surfaces. When the aluminium surface

was approached to about 1 mm, the voltage dropped to 125 V, and the plasma became

arc-like in appearance. Upon the approaching the surfaces, the net power dissipated in the

matching network and the plasma needle slightly increased. This relation can be used as

an indicator of the distance from the treated surface. This is of importance in the treat-

ment of biological tissues, where doses of plasma irradiation must be carefully controlled.

For precise and well-reproducible treatment, the needle-to-surface distance should be kept

constant.

3.3.2 Light emission

Light emission is monitored to detect possible UV emission and to determine the compo-

sition of the plasma. From the emission spectrum (Figure 3.8) the discharge composition

can be studied by ascribing the emitted lines to specific excited atoms and molecules. We

must keep in mind that only weak emission bands have been reported for ozone in scientific

literature [22], so ozone is not likely to be detected.

Figure 3.8: Emission spectrum for plasma needle. Emission lines were ascribed to He, N2, N+
2 ,

OH· and O·. Note that sensitivity drops notably for wavelengths greater than 750 nm.

Emission lines could be ascribed to He, N2, N+
2 , OH· and O·. The 3064 Å (A2Σ+ → X2Π
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transition) emission of OH· is found generally when water vapor is present, as is the case in

our open-air system. The first negative system of N+
2 (B2Σ+

u → X2Σ+
g ) can be observed, as

was expected in the presence of excess helium [22]. For N2 we see the second (C3Π → B3Π)

and fourth (D3Σ+ → B3Π) positive system. The second positive system appears readily

in discharges containing nitrogen [22]. Interestingly, the intensity of the nitrogen lines was

not dominant over the helium lines. This indicated that the discharge was mainly based

on helium, and the blending of nitrogen was low.

For an atmospheric helium plasma, it is not possible to determine the electron temperature

from the emission spectrum [17]. The relative densities of excited states, obtained from the

spectra, can be used to make Saha plots [18], but these plots yield only the excitation tem-

perature, which is not directly dependent on the electron temperature. This is because, in

a non-equilibrium system, there is a drain of charged particles that leads to an overpopula-

tion of the lower atomic states with respect to the Saha balance [18]. Electron temperature

in such systems must be determined in another way, e.g. by means of Thomson scattering.

The fact that helium is the lightest noble gas having high ionization potential results in

high T e and low ne. As mentioned before, the typical electron temperature in atmospheric

helium plasma is around 2 eV [17, 18].

Subsequently, we studied the relation between the applied voltage and the total (wave-

length integrated) light emission, recorded by a photodiode. The total light emission was

assumed to be an indicator for the size of the plasma. A sudden increase (jump) in light

emission intensity was observed when the voltage and input power were raised above a

certain threshold value (Figure 3.9).

This sudden increase in emission when voltage is raised above 160 Vrms could indicate a

change in plasma mode, which is usually followed by a change in electron temperature. To

study this behavior further, we analyzed spectra taken at point 1 and 2 in Figure 3.9 made

with the Ocean Optics HR2000 (sensitivity between 200 and 600 nm). Going from 1 to 2,

the total intensity of the spectrum increased by a factor of 6, whereas the intensity of the

helium line at 588 nm increased by a factor of 12; the emission of the OH· and N+
2 lines

increased approximately at the same rate as the total intensity. The intensities of the N2

lines decreased relative to the total intensity. This indicates that, in the low-voltage mode

(< 160 V) the plasma is sustained mainly by ionization of the impurities. This feature of

the plasma needle can be understood, because the molecular impurities are relatively easy

to excite and ionize, while efficient ionization of helium requires a certain threshold voltage.

Shi et al [23] described several modes of RF atmospheric plasmas that were similar to the

alpha mode. In addition to the generally known alpha-mode, they introduced the nor-
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Figure 3.9: At a certain voltage increase supplied to the needle, a jump in light emission was
observed using a fotodiode. This could indicate a transition in plasma mode.

mal glow mode and the recovery mode. These modes, similar to the alpha mode, had a

diffuse and uniform appearance, and for both modes the ionized gas was close to room

temperature. The two modes we observed in Figure 3.9 were both at low temperature

and were most probably of the alpha-mode type. However, because the plasma needle

has a unipolar configuration, we cannot directly compare the observed modes with those

of Shi et al, and more research is needed to determine the exact plasma modes of the needle.

3.3.3 Influence of helium flow speed

The advantage of decreasing helium flow rate is that it is cost-saving, and it would be

practical for use in small openings and for vulnerable tissues. However, due to the lower

flow speed, more air will diffuse into the discharge and this will change its characteristics.

The ionization potential of nitrogen is 15.58 eV, whereas it is 24.59 eV for helium, and

therefore nitrogen will become the predominantly ionized gas. The disadvantage of a lower

flow speed is an increase in gas temperature, because the heat loss by convection is lower.

Furthermore, the heat conductivity of nitrogen is lower than that for helium (24x10−3 W

m−1 K−1 versus 144x10−3 W m−1 K−1).

To investigate the effect of the helium flow on the composition of the plasma, the flow was

reduced from the standard 2 l min−1 to 0.5 l min−1 and the emission spectra were analyzed.

This flow reduction meant that the flow speed varied from 1.4 to 0.35 m s−1. At lower flow

rates, the plasma became unstable. The power needed to sustain the plasma decreased
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slightly from 3.8 W forward power to 3.7 W, with reflected power decreasing from 26 mW

to 6 mW. At first sight this may seem illogical, because the supply of helium was lower

and more impurity (molecules) was diffusing in, thereby causing a loss of electron energy

due to excitation and dissociation of the molecules. However, the nitrogen molecules were

easier to ionize due to their lower ionization potential.

The spectrometer used for these measurements has a sensitivity range of 200-600 nm, which

means that some helium lines and the 777 nm atomic oxygen line were not included.

Figure 3.10: Intensity dependence on the helium flow rate for He, N2 and N+
2 . There is a large

increase in emission for low flow speed, mainly for nitrogen lines.

When the helium flow was turned down, the total spectrum intensity increased. This was

mainly due to a substantial increase in N2 emission (Figure 3.10). Because the strongest

nitrogen lines were below 400 nm, the emission of UV light increased. Unfortunately, at

low flow rates, nitrogen lines significantly interfered with the OH· lines and an increase

in these lines could not be linked directly to a rise of OH radical density. Thus, we were

unable to describe the behavior of the OH radicals. Our previous study using fluores-

cent probes [4] indicated that oxygen-radical density decreased when impurities such as

oxygen or air were admixed with the helium. However, in those measurements [4], the

concentration of molecular species was in the 0.1-1% range. Such amounts of oxygen led

to a drastic reduction of plasma activity (e.g. decrease of electron density), which was

expressed by suppression of helium line emission. This was not the case in the present

experiment, because helium line emission remained constant even at low flow rates (Figure

3.10). Therefore we can tentatively conclude that the diffusion of air and water vapor into

the plasma results in very low concentrations of nitrogen/oxygen molecules (< 0.1%). At

such low concentrations of air, reasonable densities of excited species can be reached, while
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there is no unfavorable influence on the plasma. For optimal conditions of treatment, the

concentration of reactive species should be maximized. This may be achieved by careful

admission of low amounts of specific gases into the helium flow (in the 0.1% range) and

also by reduction of helium flow rate, which leads to enhancement of the density of excited

nitrogen species.

3.4 Conclusions

In this chapter, we described both optically and electrically the characteristics of the plasma

needle in a new design. This design had recently been adjusted so that cell treatments need

not have to be performed inside a box. A model was made to characterize the plasma nee-

dle impedance. Using this model, the discharge was found to be entirely resistive, ranging

from 100 to 1200 kΩ. This allowed us to make an estimation of the electron density: 1017

m−3. The electron density increased with increase in forward power until it saturated at

about 2 W. At power levels above 2 W, the electron density remained relatively constant,

whereas the size of the plasma increased.

Optical characterization was performed using emission spectroscopy. We found an abrupt

increase of the emission intensity when the voltage at the needle was 160 V. This could in-

dicate a transition into another plasma operation mode. In the low-voltage mode (140-160

V), the spectrum was dominated by N2, N+
2 , OH· and O·, while at voltages higher than

160 V relatively more helium line emission was detected.

The presence of UV emission is an important factor in the treatment of biological mate-

rials, because of possible damage to cells. In our plasma, UV emission was found in the

region between 250 and 400 nm, but the highest intensities were between 305 and 390 nm.

At these wavelengths the damage to cells and tissues is limited [24].

The influence of the helium flow velocity was investigated for the purposes of cost saving

and convenience of operation in small openings and on vulnerable tissues. A reduction of

helium flow influenced the spectrum: nitrogen lines became much more prominent. This

effect became significant when flow was reduced to below 0.8 l min−1. A disadvantage of

nitrogen admixture may be an increase in gas temperature due to the lower heat conduc-

tivity of N2. The characterization of the needle allows a better control of the plasma source

and helps to optimize plasma conditions in treatment of biological samples.
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Chapter 4

Radicals of plasma needle detected

with fluorescent probe

Abstract

Non-thermal atmospheric plasmas can be used for fine treatment of heat-sensitive mate-

rials, including living cells and tissues. The newly developed ”plasma needle” is capable

of inducing sophisticated cell responses, which may become valuable in refined surgery. In

our hypothesis, these effects are caused by interactions of plasma-produced radicals with

the cell membrane and/or other cell components. Cells consist for the main part of water

and are (especially in vitro) immersed in liquid. In this chapter we study the diffusion of

radicals from the plasma into liquids.

Raman scattering experiments were performed to determine the gas composition in the

plasma. A fluorescent probe (5-(and-6)-chloromethyl-2’,7’- dichlorodihydro-fluorescein di-

acetate, acetyl ester by Molecular Probesr inc.) was used to detect reactive oxygen species

in the liquid phase. This probe reacts with reactive oxygen radicals and the oxidation

product displays fluorescence when irradiated with a laser. After plasma exposure, liquid

samples were analyzed using a microplate fluorescence reader. In order to gain insight in

the behavior of radicals under various plasma conditions, several parameters like plasma-

to-liquid distance and plasma composition (O2 content in the plasma) were varied. The

absolute density in the liquid was estimated by calibration against NO radicals, produced

by the NO releaser NOR-1. Furthermore, an estimation was made for the radical density

in the gas phase. The usage of fluorescent probes allows a quantitative study of plasma

radicals in liquids. The method is powerful and easy to use, and the obtained data are

important to understand plasma effects on living cells.

This chapter was published as I.E.Kieft, J.J.B.N.van Berkel, E.R.Kieft, E. Stoffels, Radicals of plasma
needle detected with fluorescent probe, Plasma Processes Polym., special issue after the 16th ISPC,
Tormina, 295-308, 2005.
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4.1 Introduction

Plasmas are widely used for industrial surface modification. In particular, atmospheric

plasmas are becoming increasingly popular, because of their flexibility, convenience and

low costs. Recently, non-thermal atmospheric plasmas have been developed for treatment

(cleaning, sterilization) of heat-sensitive materials [1, 2]. In principle, such plasmas can be

applied in vivo for disinfection or local removal of diseased tissues.

Chemically reactive species, and especially short-lived radicals are of major importance in

any surface treatment. For example, the efficiency of bacterial decontamination is con-

ditioned by reactive oxygen species (ROS), produced in the plasma [3]. According to

Laroussi [2], free radicals are the most important sterilizing agent in atmospheric-pressure

plasmas. Apart from bacteria, the responses of living cells and tissues are also depen-

dent on the plasma chemistry. For specific cell treatment, a non-thermal microplasma

(”plasma needle”) has been developed [4]. In vitro experiments have already shown that

the plasma needle can trigger complex cell reactions [5, 6]. Depending on plasma con-

ditions, the treated cells can detach from each other and from the surface, or undergo

apoptosis (programmed cell death). The mechanisms behind these responses are not yet

completely understood, but we suspect that active radicals are responsible for the majority

of the observed effects.

As in any medical therapy, plasma-produced species can play a double role. Moderate

amounts of reactive oxygen species have a beneficial working, but an overdose leads to cell

injury. Oxygen species react with and damage cell building blocks like lipids, proteins and

DNA strands [7–9]. Montie et al [10] suggest that membrane lipids may be most vulnerable

to reactive oxygen species attack, because of their location near the cell surface, and their

sensitivity to oxidation. Severe oxidative stress causes cell injury and accidental cell death

(necrosis), while mild oxidative stress leads to apoptosis [11]. A small imbalance in oxi-

dant/antioxidant regulation can result in adaptation of the cells to the new environment.

Adaptation of cells is realized through changes in the gene expression, so that the cells are

capable of surviving in a hostile environment.

Regarding the importance of reactive oxygen species for cell condition, it is essential to

study the diffusion of radicals from the plasma into the liquid phase. In this chapter we

determined the densities of active species in a buffered solution that was exposed to the

plasma. For these experiments we used the plasma needle: an RF discharge generated

at the end of a metal pin. The main species in the plasma is helium. However, since it

operates in open air at ambient pressure, some air admixture is always present. Thus,

oxygen- and nitrogen-based active species like atomic oxygen, the metastable singlet state

of molecular oxygen (O2(a)), ozone, NO and NOX are formed in the plasma. Due to air

moisture, OH and HO2 can be produced.
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There are many methods to determine radical densities in the gas phase, e.g. laser in-

duced fluorescence (LIF) [12], broad-band UV absorption spectroscopy [13] and the cavity

ring-down technique [14, 15]. For radical detection in liquids laser-induced fluorescence in

combination with fluorescent probes can be used: an easy and convenient method that is

very popular in cell biology [16–19]. In this work we introduce LIF with a fluorescent probe

as a new, powerful plasma diagnostics. This method is recommended for determining fluxes

of radicals from atmospheric plasmas, concentrations of active species in plasma-treated

fluids and gels, for dynamic studies of the plasma/liquid interface, and for many other

applications.

4.2 Experimental

4.2.1 Plasma needle

The plasma was generated at the end of a sharp metal pin electrode (needle), to which

13.56 MHz radio frequency (RF) voltage was applied (Figure 4.1). The needle had a di-

ameter of 0.3 mm and was about 10 cm long. It was inserted in a Perspex tube with inner

diameter 0.8 cm. A helium flow of 2 l min−1, regulated by a mass flow controller of Brooks

series 5850E, was directed through the tube.

W a v e f o r m
g e n e r a t o r

R F
a m p l i f i e r

m a t c h i n g  
n e t w o r k

f l o w  
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h e l i u m
f l o w

Figure 4.1: A scheme of the setup. Radio-frequency voltage generated by a function generator
is amplified, impedance-matched and applied to the hand-operated plasma needle (a metal pin).
Helium is supplied to the needle by a Perspex tube.

For the plasma generation a Hewlett Packard 33120A waveform generator and an Amplifier

Research 75AP250RF RF amplifier were used. The power was monitored using a dual di-

rectional coupler and an Amplifier Research PM 2002 power meter. The power dissipated
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in the plasma was below 100 mW. The effective voltage at the needle was about 200 V.

The typical size of the plasma glow was below 1 mm. However, when the plasma was in

contact with (water) surface, the glow expanded slightly so that the typical size of the

treated spot was 1 mm2.

The position of the needle in the Perspex tube could be varied by moving the tube along

the axis of the needle (Figure 4.2). Normally, the tip of the needle and the end of the tube

were at the same position, but the needle could also protrude from the tube up to 1 cm.

In the latter case, more air was admixed in the plasma.

R F

H e

P e r s p e x

c e r a m i c

x

Figure 4.2: A drawing of the plasma needle. The position of the needle to the end of the Perspex
tube can be varied as is indicated in the figure by x.

4.2.2 Raman scattering

Raman scattering experiments were performed to determine the gas composition. Raman

scattering is an inelastic photon scattering on molecules. Typically, laser photons in the

visible region are used for irradiation. Their interaction with the molecule induces a vi-

brational/rotational transition, so the scattered photons display a small wavelength shift

corresponding to the energy of the transition. A Raman spectrum consists of lines that are

fingerprints of various molecules (e.g. O2, N2 and H2O in air) and it can be used to quanti-

tatively determine the composition of gas mixtures. Here we determined the air content in

our plasma by recording Raman spectra in helium/air flow, and comparing them to pure

air spectra. First, the spectra were integrated over wavelength, then the helium/air flow

values were divided by the pure air value. Measurements with and without plasma were

performed to check the plasma influence on the gas composition.

We used the setup developed by Van de Sande [20]. The system was equipped with an

Nd:YAG type laser (frequency doubled, λ = 532 nm, pulse length 7 ns, pulse repetition

rate 10 Hz), focused with a 30-cm lens. Spectra were taken with an intensified charge

coupled device (CCD) camera. Spectra were collected for 300 s per measurement. The
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plasma needle was fixed vertically above a grounded metal plate (at the distance 2 mm).

In the horizontal plane, the laser focal point was coincident with the needle tip, and in the

vertical direction it was positioned at a distance of 1 mm below the tip. One-dimensional

scans in the horizontal direction were taken.

4.2.3 Fluorescent probe

To detect reactive oxygen species that were formed in the plasma we used a molecular

probe, called 5-(and-6)-chloromethyl-2’,7’- dichlorodihydrofluorescein diacetate, acetyl es-

ter (CM-H2DCFDA). From the literature it is known that it can be used as an indicator

of reactive oxygen species formation and oxidative stress [16]. Upon reaction with oxygen-

containing reactive species, the probe is oxidized in such a way that a large multiple-

conjugated double bond with a high degree of stability is formed (Figure 4.3). This double

bond is also responsible for the fluorescent properties.

O
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C O H
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Figure 4.3: The chemical structure of CM −H2DCFDA before (left) and after (right) reaction
with reactive species. The acetate groups are removed by incubation in an alkaline solution.

The probe was delivered by Molecular Probesr. It was guaranteed to react with at least

the following reactive oxygen species: H2O2, OH·, HOO·, and ONOO−. The package con-

tained 50x10−6 g probe (8.653x10−8 mol). The content was dissolved in 100 µl dimethyl-

sulfoxid (DMSO, > 99%, Merck). Then, 1 ml of 0.01 M solution of NaOH (99.99%, Aldrich

Chem. Co.) was added to activate the probe. The solution was incubated for 30 min at

room temperature and afterwards diluted to 10.81 ml with phosphate-buffered saline (PBS,

Sigma-Aldrich Co.), resulting in a probe concentration of 8 µM. The PBS solution (pH 7.4

at room temperature) was a 0.01 M phosphate buffer with 0.0027 M potassium chloride,

and 0.137 M sodium chloride. The probe is sensitive to light, so the solution was covered

with aluminum foil and placed in a refrigerator. For the experiments a concentration of 1

µM was used.

The samples were prepared in 96-wells plates with a flat bottom of Nucleon Surface. After
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plasma exposure, they were examined with a Microplate Fluorescence Reader FL600 of

Bio-Tek. The oxidized CM-H2DCFDA probe was irradiated by a quartz halogen lamp

(P/N 6000556S) light source in combination with a 485/20X excitation filter (wavelength

about 485 nm). Fluorescent emission was collected at about 530 nm using a 530/25M filter.

4.2.4 Calibration with NO radicals

To obtain quantitative data, the probe was calibrated using NO radicals, produced by

NOR-1 (Sigma-Aldrich Co.), an NO releaser. From the work of Ueki et al [21] it is known

that NOR-1 can be used as a standard for absolute measurements of low NO densities.

They showed that NOR-1 releases a 1.4 excess of NO after 15 min of incubation, so [NO]

= 1.4 [NOR-1]. The CM-H2DCFDA probe may react directly with NO, or with its autox-

idation derivatives like N2O3 or NO−
2 [17, 22].

The efficiency of the CM-H2DCFDA probe to react with NO released by NOR-1 was tested

by performing two experiments. In both experiments small amounts (10 to 100 µl) of the

NO releaser NOR-1 in DMSO were dissolved in an Eppendorf tube containing 1 ml PBS

with the CM-H2DCFDA probe in varying concentrations. The tubes were incubated for

15 min at room temperature. Then 100 µl of the solutions were put in a 96-wells plate and

data were collected with the microplate fluorescence reader.

Figure 4.4: Intensity of CM −H2DCFDA probe after reaction with an overload of NO (1 mM).
The probe is maximally activated.

In the first experiment (Figure 4.4) an excess of NO was administered to different con-

centrations of the probe. This yielded a linear curve (R2 = 0.9999) for the maximum
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intensity emitted by the probe, of which all molecules were activated. In the second ex-

periment different concentrations of NO were added to the probe (concentration of 1 µM).

The calibration curve (fluorescent intensity vs. NO concentration) showed that for NO

concentrations below 10 µM the relation was linear (Figure 4.5). At higher concentrations

the probe was slightly saturated, which caused the curve to flatten. We can now compare

the two figures by looking, for example, at the intensity of the 1 µM probe (Figure 4.5)

activated by addition of 5 µM NO; this gave 31 000 counts. The same intensity (31 000

counts) was reached by illumination of 0.25 µM fully activated probe. This means that

about 5% of the NO molecules reacted with the probe.

Figure 4.5: Intensity of CM −H2DCFDA probe (concentration 1 µM) after reaction with NO
from the NO-releaser. Figure shows two trend lines, the line fitted for concentration below 10 µM,
and the polynomial curve fitted for all data points.

The radicals from the plasma were taken to have the same reactivity in this setup to-

wards the probe as NO radicals. Reaction rates of this specific probe with plasma radicals

(reactive oxygen species) are not given in the literature. Rate constants for reactions of

inorganic radicals with organic compounds in aqueous solutions range roughly from 106 to

1010 l mol−1 s−1 [23–25]. The reactions rates of OH and O are mostly one or two orders

higher than the reaction rates of NO. The calibration with NO then serves as an upper

limit for the radical concentration. The lower limit is set by Figure 4.4: In an ideal one-

to-one reaction of radicals with probe molecules there need to be at least the number of

radicals equal to the number of probe molecules to reach a certain fluorescence intensity.

This minimum number of radicals can be derived from Figure 4.4 and is a factor 20 lower

than the number derived from calibration to NO.

In our setup the probe is the only reactive organic molecule in the liquid (not including
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reactions at the wall). It will efficiently capture any radical, independent of the actual

reaction rate. The calibration against NO is thus valid in aqueous solutions with only

inorganic species. In a real biological sample the situation may be somewhat different: the

reactivity of the hydroxyl radical or atomic oxygen towards most organic compounds is

higher than that of NO [23], while this of ozone is lower. This means that, e.g., cell dam-

age inflicted by oxygen radicals is higher than the one caused by nitric oxide at the same

concentration level. Thus, we must keep in mind that the concentration of ROS deduced

from NO calibration is merely an indication for the ”oxidizing activity” of the plasma.

4.2.5 Plasma treatment

400 µl of fresh probe solution was treated with the plasma. Unless mentioned otherwise,

the samples were treated for 2 min, with a distance of the tip of the needle to the liquid

surface of about 1 mm and the tip of needle at the same position as the end of the Perspex

tube. After plasma treatment an antioxidant was added to the solution to prevent further

oxidation of the probe by air. Vitamin C or L-Ascorbic acid is known to be a very efficient,

water soluble antioxidant [26]. In the experiments 10 µl of 10 mM solution L-Ascorbic

acid was used. The antioxidant was tested by incubation of the untreated probe solution

of 1 µM in open air at room temperature. When ascorbic acid with a concentration of

100 µM was used, a small increase in fluorescence intensity of about 10% was observed

after 40 min. When the concentration was increased to 1 mM, no increase of intensity

could be detected within half an hour. The samples protected in this way could be kept

in the refrigerator even up to 24 h, but we analyzed them immediately after plasma treat-

ment. The samples were divided into 100 µl portions, and transferred to the plate reader

for data collection. 100 µl of untreated probe solution was used for background subtraction.

4.3 Results and discussion

4.3.1 Raman scattering

Raman scattering measurements were performed to determine the admixture of molecular

species in the helium gas flow. In the series presented below the Perspex tube surrounding

the needle was pushed back (the distance x in Fig. 4.2 was varied), exposing the tip of

the needle and thus allowing more air admixture. From the Raman spectra (Figure 4.6)

it was established that the percentage of air in helium in the middle of the plasma (in the

closest vicinity of the needle tip) was below 0.5%. It was actually below the detection limit

of the method, so it was difficult to observe any changes when the needle became more
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or less exposed. However, it can be seen that at the sides of the needle the air admixture

increased up to 25% in the case of 5-mm distance between the tip of the electrode and

the tube. The gradients of air concentration towards the middle also became higher, and

therefore the influx of air into the active plasma zone was increased. Raman spectra that

were recorded for the same helium flow but in presence of the plasma did not significantly

differ from spectra taken without plasma.

Figure 4.6: Air admixture determined from Raman spectra of the helium flow from the Perspex
tube without plasma. The horizontal position at 6 mm coincides with the tip of the needle; the
laser is shot 1 mm below. Different curves correspond to the length of the exposed part of the
plasma pin from the Perspex tube (x in Fig. 4.2). The sensitivity of the detection system decreases
at peripheral positions due to alignment.

Raman scattering measurements were performed in a configuration with a grounded metal

plate opposite to the plasma needle. During plasma treatment of cells or tissues this plate

was replaced by a biological sample. This could in principle have an influence on plasma

chemistry and/or gas composition, due to, for example, different conductivity of the sample

and the metal plate. However, such small differences cannot be visualized using the Raman

scattering technique. The Raman data can be used to estimate air concentration/influx,

but not to study the molecular composition of the plasma.

4.3.2 The fluorescent probe measurements

CM-H2DCFDA was tested by applying the plasma to the probe solution, while the sample

was scanned with a confocal laser scanning microscope (Figure 4.7). In this way a time
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series was recorded, which allowed visualization of probe activation (fluorescence) within

seconds after the onset of the plasma. Although the CM-H2DCFDA probe is sensitive to

light, the laser power was too low and irradiation time was too short to affect the fluores-

cence significantly.

Figure 4.7: Fluorescence emitted by CM −H2DCFDA probe during plasma treatment. Plasma
was applied at the left hand side of the picture (size 0.92 x 0.92 mm). Bright color indicates
higher fluorescence intensity.

The real-time measurements revealed flow patterns in the solution, induced by the flow of

helium from the plasma. These space- and time-varying fluorescent intensity patterns can

be used to determine the dynamical behavior of radicals in the liquid. However, in this

work we analyzed only the space-averaged intensities collected from a certain volume of

liquid, treated by the plasma.

The radical concentration as a function of plasma treatment duration is depicted in Figure

4.8. As expected, a linear dependence up to 8 min was found. At longer treatment times

the method was less reliable, because the probe might become saturated. From these data

the number of radicals in the plasma was estimated. The radicals diffusing into 400 µl of

liquid produced an oxidized probe solution after one minute of treatment that was compa-

rable to 0.65± 0.2 µM NO. The number of radicals reaching the liquid was then 2.6x1012

s−1. For the calculation of the radical density in the plasma using Equation 4.1 and 4.2

[27], we take the thermal velocity vth = 300 m s−1, the surface through which radicals

are transferred A = 1 mm2 (the size of the plasma spot), gradient length λ = 0.1 mm

(estimated plasma sheath thickness at the water surface) and mean free path lfr = 10−5 m.

Φrad = nrad ·D · A · λ−1 (4.1)
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Figure 4.8: The radical density in liquid, resulting from plasma treatment as a function of treat-
ment time. The x-position was 0 mm, the needle-to-surface distance was 1 mm. The radical
density was measured using the fluorescence from the CM-H2DCFDA probe, and calibrated using
a known NO concentration.

D =
1

3
· vth · lfr (4.2)

This estimation yields nrad = 1019 m−3, which is a reasonable value, noting that the ad-

mixture of air into the plasma was low (see the Raman scattering data).

Figure 4.9: The radical concentration as a function of distance from the tip of the needle to the
surface of the liquid. The treatment time was 2 min, the x-position was 0 mm.

In order to study the propagation of radicals in the gas phase (before they reach the fluid

sample), we varied the distance between the tip of the needle and the surface of the liq-

uid. A power fit of the data (the R2 of the fit is 0.92) shows that the density decreased
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with distance approximately as 1.2 power of 1/d, where d is the distance (Figure 9). This

is weaker than the 1/d2, expected for homogeneous spatial expansion from the point-like

source (glow). This means that at short distances the liquid preferentially absorbs the

plasma species. Visually, we observed that at distances of about 1 mm the plasma was

attracted to grounded objects, the glow expanded and a thin dark sheath at the object’s

surface was visible. As the needle was moved away, the glow remained confined in the

closes vicinity of the pin. This occurred at distances larger than 2 mm.

Figure 4.10: The radical concentration as a function of the position of the tip of the needle with
respect to the end of the Perspex tube (x-position in Figure 2). The treatment time was 2 min,
the needle-to-surface distance was 1 mm.

In another experiment we changed the plasma composition, to check its influence on the

amount of produced radicals. First, we determined the radical densities for different posi-

tions of the tip of the needle with respect to the end of the Perspex tube (x-distance in Fig.

4.2). As observed during Raman scattering experiments, the longer the exposed part of

the pin (outside the tube), the higher the air influx into the plasma. However, the number

of radicals decreased as the needle was pushed further out of the tube (Figure 4.10), even

though at the same time the influx of molecular species into helium increased. This can

be explained by the unfavorable effect of oxygen and nitrogen on the plasma. Both of

them cause dissipation of the electron energy due to vibrational and rotational excitation.

Moreover, oxygen is electronegative, and its presence creates a sink for plasma electrons

due to negative ion formation. This means that at the same power level, less energy is
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available for the production of active radicals when air content in the plasma is high. This

decrease of plasma activity is also evident from visual observation: the glow shrinks and

the emission intensity decreases. This situation can be to some extent compensated by

increasing the voltage (power), but then the glow-to-arc transition may take place and the

plasma becomes difficult to control [4].

Figure 4.11: The radical concentration as a function of oxygen admixture into helium flow. The
treatment time was 2 min, the x-position was 0 mm, the needle-to-surface distance was 1 mm.

In another experiment we measured the radical densities as a function of oxygen admixture

in the plasma. From the Raman spectrum we deduced that the amount of oxygen at the

position of the needle was normally well below 0.1%. By adding pure O2 into the helium

flow we observed that even an addition as small as 0.2% caused the plasma to shrink sig-

nificantly; the color of plasma emission changed from pink to white. The radical density

(Figure 4.11) also decreased as a function of oxygen admixture. As in the previous exper-

iment (Figure 4.10), this can be explained by the influence of O2 on the plasma: electron

attachment causes depletion of plasma electrons and decrease of plasma activity.

At the present stage we cannot decide whether the concentration of radicals in the liquid is

appropriate for the treatment of living tissues. This has to be defined in advanced in vivo

experiments, and is also dependent on the desired effect of the therapy. In the biological

studies on oxidative stress the exact concentrations are seldom mentioned. However, we

can state that plasma does not produce dangerously high reactive oxygen species concen-
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trations in the liquid phase. In fact, the amount of reactive oxygen species is comparable

to that produced by the body itself, e.g. to fight bacterial infection or during increased

metabolism. Radical concentrations found in vivo are in micromolar range. In high con-

centrations (0.5 mM) radicals may induce both necrotic and apoptotic cell death [28]. This

is at least a factor 10 higher than the concentration that was found for plasma radicals.

The inaccuracy in the calibration measurements for the radical concentrations is within the

right proportions to draw the conclusion that the mild oxidative properties of the plasma

may have a beneficial effect on the tissue (e.g. sterilizing or increasing the cell activity).

This is in agreement with previous experiments on living cells, in which we established

that plasma treatment usually did not kill the cells.

4.4 Conclusions

The use of a fluorescent probe for radical detection has proven to be a valuable method

in plasma diagnostics. It can be used in any atmospheric and non-thermal plasma, and it

gives information about the radical fluxes towards the surface. These data are useful in

monitoring the plasma performance in surface processing (etching, cleaning, chemical and

biological decontamination). In this work we tested this method using the plasma needle

and a probe for detection of reactive oxygen species. The radicals from the plasma had

sufficiently long lifetimes to reach the solution and bind with the probe. The radical flux

into the liquid was 1012 s−1; the radical density in the plasma was estimated to be 1019 m−3.

The radical density decreased with increasing distance from the needle. Addition of extra

oxygen or air decreased the plasma activity and resulted in lower radical concentrations.

For optimal reactivity, the plasma should be kept within 2 mm from the surface that is to

be treated, and the air content should not be higher than 0.5%.

The reactive plasma species dissolve in the liquid and reach living cells that are cultured

on the bottom of the wells-plate. The radicals generate oxidative stress that in principle

is harmful, but at low radical concentrations the interactions with cells can have beneficial

effects. The radical concentrations in liquid phase, generated by the plasma needle, are

only in the order of µM, and we observe that under normal conditions plasma does not

cause cell death.
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Chapter 5

Electric Discharge Plasmas Influence

Attachment of Cultured Cells

Abstract

Non-thermal plasmas can be generated by electric discharges in gases. These plasmas are

reactive media, capable of superficial treatment of various materials. A novel non-thermal

atmospheric plasma source (plasma needle) has been developed and tested. Plasma ap-

pears at the end of a metal pin as a submillimetre glow.

We investigate the possibility to apply plasma needle directly to living tissues; the final

goal is controlled cell treatment in microsurgery. To resolve plasma effects on cells, we

study cultured Chinese hamster ovarian cells (CHO-K1) as a model system. When these

are exposed to the plasma, instantaneous detachment of cells from the surface and loss of

cell-cell interaction is observed. This occurs in the power range 0.1 - 0.2 W. Cell viability

is assessed using propidium iodide (PI) and cell tracker green (CTG) fluorescent staining

utilizing confocal laser scanning microscopy (CLSM). Detached cells remain alive. Use of

higher doses (plasma power > 0.2 W) results in cell necrosis. In all cases, plasma-influenced

cells are strictly localized in submillimetre areas, while no reaction in surrounding cells is

observed. Due to its extreme precision, plasma treatment may be applicable in refined

tissue modification.

This chapter is based on two publications: I.E.Kieft, J.L.V. Broers, V. Caubet-Hilloutou, D.W. Slaaf,
F.C.S. Ramaekers, and E. Stoffels, Electric Discharge Plasmas Influence Attachment of Cultured CHO K1
cells, Bioelectromagnetics, 25:362-368, 2004 and I.E.Kieft , N.A. Dvinskikh, J.L.V. Broers, D.W. Slaaf, E.
Stoffels, Effect of plasma needle on cultured cells, Spie Proc., 5483:247-251, 2004.

65



66 Electric Discharge Plasmas Influence Attachment of Cultured Cells

5.1 Introduction

5.1.1 Plasma Application

Plasma is a partially ionized gas, containing electrons, positive/negative ions, radicals,

and various excited atoms and molecules. Plasma generated by an electric discharge can

be non-thermal: electrons present in this active medium are highly energetic, with typical

temperatures above 10 000 K, while ions and neutral species remain at (almost) room tem-

perature. Such a non-equilibrium situation is achieved when only electrons are electrically

heated. This is common in high frequency driven discharges, e.g., in the radio frequency

(MHz), or microwave (GHz) range, because in these systems only light and mobile elec-

trons are able to follow rapidly oscillating electric fields. Energy transfer from electrons to

heavy atoms and molecules is an inefficient process, so that the background gas remains

relatively cold (< 1000 K). The best known example is a low pressure plasma, sustained in

a vacuum reactor. Non-thermal discharges can be also obtained at atmospheric pressure

[1]. When the size of the discharge is below 1 mm, energy leaks by thermal diffusion pre-

vent gas heating. A combination of two physical principles: high frequency excitation and

spatial constriction of the discharge, has recently resulted in the development of a novel

non-thermal atmospheric plasma source, the ”plasma needle” [2].

Due to their unique reactivity and chemical interactions with surfaces, non-thermal plas-

mas are capable of virtually any surface treatment. Plasma etching, thin layer deposition,

cleaning, and activation of surfaces are well established techniques in material science.

Recently, plasmas are also applied in biomedical technology, e.g., in plasma coating of ar-

tificial implants to increase their biocompatibility [3], surface micropatterning of scaffolds

to achieve controlled cell adhesion [4], and bacterial decontamination of medical/surgical

equipment [1, 5]. The effects of plasma treatment on microorganisms under lethal and

sublethal doses have been studied by Laroussi et al [6].

For interactions with living tissues, the choice of an adequate plasma source is crucial. It

must operate under atmospheric pressure, be electrically and chemically safe and may not

cause any thermal damage to the living object. Most hitherto developed sources, although

non-thermal, are still too hot or aggressive to be applied in vivo.

In this chapter, we shall demonstrate that the plasma needle is suitable for treatment of

biological materials. Our aim is to introduce this source as a novel tool for high precision

treatment of pathological tissues. Desired effects are controlled cell removal without inflam-

matory reaction and damage to the surrounding (healthy) tissue, and possibly inducing

apoptosis. At present, we conduct a fundamental study to identify and elucidate vari-

ous cell responses. First, we perform temperature measurements to establish that plasma
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needle does not inflict thermal damage. Plasma-cell interactions are investigated using

Chinese hamster ovarian cells (CHO-K1, ATCC number CCL-61). The specific apoptosis

tests were performed on nonsmall cell lung cancer (NSCLC) cell line MR65 (Philips Uni-

versitats Klinik, Germany).These cells make a good model system for a study of basic cell

responses to a medium, which up till now has been unknown to living objects.

5.2 Experimental methods

5.2.1 Principle of Plasma Operation

The discharge type was an atmospheric radio frequency (RF) glow. In case of RF excitation,

an active plasma zone is created only at the powered electrode, i.e., the electrode to which

RF voltage is applied. A bipolar (two electrode) configuration is not necessary. In our

arrangement, the powered electrode was a metal wire. The (remote) surroundings, like the

walls of the plasma box, act as the counter electrode (ground). In this type of discharges,

voltage fall occurs in the closest vicinity of the powered electrode; in the outer plasma

zones, which make contact with samples, only small rest electric fields are present. Plasma

appears as a faint glow with less than 1 mm diameter, located at the tip of the powered

electrode (see Figure 5.1). Depending on the desired chemical effect, various gases can be

used, e.g., air, nitrogen, hydrogen and many others. However, it is recommended that the

buffer gas be helium, because the operating voltages are lower than in other gases and the

gas temperature is low due to high thermal conductivity of helium. Moreover, helium is

inert and non-toxic. The latter feature allows keeping a good control of plasma chemistry,

because active gases can be carefully dosed into the buffer gas.

Figure 5.1: Typical appearance of the plasma glow generated at the tip of a metal wire
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5.2.2 Electric Apparatus

Plasma was generated using a Hewlett Packard (Palo Alto, CA) 33120A waveform gen-

erator in combination with an Amplifier Research (Souderton, PA) 75AP250RF amplifier

and a home-built λ-type matching network (see Figure 5.2). The powered electrode was a

metal needle 5 cm long and 0.3 mm diameter; the discharge excitation frequency was about

10 MHz, and the peak-to-peak RF voltage was about 300 V. Both sine and square wave

excitations could be applied; the latter had a somewhat lower ignition threshold voltage.

Optimizing power dissipation in the plasma was performed either by varying capacitances

in the matching network or by tuning the RF frequency to achieve resonance in this AC

circuit. The latter method allowed for much finer tuning, because the circuit had a high

quality factor (width of the resonance curve was in the kHz range) and the frequency of the

waveform generator can be varied more accurately than the capacitances. The discharge

power was monitored using an Amplifier Research PM 2002 power meter connected to an

Amplifier Research dual directional coupler. The power input into the plasma was 0.1-0.3

W.

R F  a m p l i f i e r w a v e f o r m
g e n e r a t o r

p o w e r  m e t e r m a t c h i n g

n e e d l e
s t a g e

p l a s m a  c h a m b e r  ( g r o u n d e d )

H ef l o w  c o n t r o l
m a n i p u l a t o r

R F  

g r o u n d
p l a s m a  

Figure 5.2: Scheme of the experimental apparatus. The matching network is depicted at the right
hand side. It consists of two variable capacitors (0-2 nF) and a coil (1.6 µH).
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5.2.3 Plasma Chamber

The plasma chamber was a 10x10 cm stainless steel box, closed by removable plastic covers

(see Figure 5.3). The connection was not vacuum-tight. The plasma chamber was filled

with gas (inlet is visible at the left hand side in Fig. 5.3) with a flow rate up to 2 l min−1,

controlled by a Brooks series 5850E mass flow controller (Brooks Instrument, Hatfield,

PA). Air contamination due to leakage is in the sub percent range. Striving for higher

purities was not of much use, because presence of air and water vapor is inevitable during

treatment of the living cells. Samples for plasma treatment were placed on a moving stage,

mounted at the bottom of the chamber. The samples could be moved up to 2 cm in the

right-left direction. A similar manipulator was used to adjust the vertical distance between

the needle and the sample. Both manipulators were operated externally with an accuracy

of 0.01 mm.

Figure 5.3: Photograph of the plasma chamber from above. The plasma needle can be moved up
and downwards. The samples are placed on the moving stage visible at the bottom.

5.2.4 Cell Culture

CHO-K1 cells were cultured in flasks containing Ham’s F-12 medium with stable L-

glutamin (Bio Whittaker Europe, Verviers, Belgium) containing 9.0% of Fetal Bovine

Serum (FBS, Biochrom AG, Berlin, Germany) and 0.45% of Gentamycin (10 mg ml−1,

Biochrom AG). The medium used for the NSCLC MR65 cells consisted of DMEM (ICN
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Biomedicals) with 10% FBS, 1% L-glutamine and 0.005% Gentamycin.The cells were main-

tained in an incubator at 37 oC with 5% CO2. To prepare samples for plasma treatment,

the cells were trypsinized (0.05% Trypsin / 0.02% EDTA solution in PBS, Biochrom AG)

and transferred onto sterilized object slides (26 x 10 x 1 mm) and placed in multiwell

dishes. The cells were incubated in the multiwell dishes for 2 days prior to treatment.

5.2.5 Plasma Treatment

For the treatment the samples were taken out of the incubator for 15-30 min. No indication

was found on control samples that cell were affected by this. Just before treatment, the

sample was put in the helium-filled plasma box. To prevent drying out of the cells, the

sample was covered with a layer of phosphate buffered saline (PBS). The plasma needle

was brought close to the sample; visually the glow was just touching the surface of the

PBS solution.

The treatment time was 1 min, during which the sample was moved by the manipulated

stage over a distance of 1 cm. This produced a typical ”track” of plasma-treated cells,

which could be easily recognized under the microscope. Individual cells on this track were

irradiated for 5 s. The total treatment time could not be varied in a broad range: it was

limited by the (low) speed of the manipulator and by avoiding sample desiccation due to

helium flow. The experiments were performed at least five times for a given condition.

After exposure to the plasma, the samples were either immediately observed under the

microscope (within 1-2 min) or returned to the incubator and observed several hours after

treatment.

5.2.6 Visualization

Cells were studied with a light microscope and with a confocal laser scanning microscope

(LSM 510 by Zeiss, Oberkochen, Germany). Trypan blue (0.5% in physiological saline,

Biochrom AG) is a stain used to distinguish dead cells from living ones. The whole cyto-

plasm of a dead cell is colored blue, which is easily visualized by light microscopy.

For more detailed observations, propidium iodide (PI, 10 µg ml−1, Molecular Probes, Eu-

gene, OR) and cell tracker green (CTG, 10 µM, Molecular Probes) were used in combination

with the CLSM. PI penetrates cells with permeable membranes and binds to DNA and

RNA in the cell. It can be used to detect dead cells, or to reveal the structure of cell nuclei.

The He-Ne laser of the CLSM (wavelength 543 nm) excited the PI. A long pass filter of

585 nm was used, and red fluorescence around 617 nm was monitored. CTG was used

to detect living cells. When irradiated by an argon ion laser (wavelength 488 nm), CTG

produces green fluorescence in the cytoplasm of viable cells. To monitor this fluorescence,

we used a band pass filter of 505-530 nm. CTG is traceable for 36 h and is inherited by
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daughter cells after cell division.

Typically, we used dual staining (CTG and PI) about 2 h after plasma treatment to dis-

tinguish between living and dead cells. For a study of long term viability after treatment,

we applied CTG and observed the cells for a few hours up to 1 day. After the incubation,

the cells were fixed with buffered 4% formaldehyde and permeabilized with 0.1% Triton

(Tx-100). They were counterstained with PI and the structure of the nuclei was examined.

This allowed detection of possible abnormalities induced by the treatment, e.g., apoptotic

cells.

5.2.7 Apoptosis detection

If apoptosis is induced after plasma treatment, it can be detected 4 to 6 h after irradiation.

For the detection, we have used M30 CytoDEATH (Roche diagnostics) in immunofluo-

rescence. The M30 antibodies bound to the caspase cleavage products of cytokeratin 18.

The antibodies were labeled with a fluorescent dye that was used for the detection. All

incubations and washings were performed in a PBS buffer solution supplemented with 1%

BSA and 0.01% Tween. After fixation of cells in ice-cold pure methanol at -20 oC for

30 min, aspecific antibody binding was blocked with incubation buffer for 10 min at 20
oC. After incubation with 100 µl M30 CytoDEATH antibody working solution for 60 min

at 20 oC, cells were washed and incubated with rabbit anti mouse FITC (dilution 1:100,

DAKO A/S, Glostrup DK) for 30 min at 20 oC. Cells were mounted and examined using

a confocal laser scanning fluorescence microscope (MRC600, BioRad).

5.2.8 Temperature Measurements

To ensure that cells did not suffer from hyperthermia during treatment, the gas temperature

in the plasma was measured using a NiCr-Ni thermocouple (Hasco z251/1, Ludenscheid,

Germany) with a temperature range up to 400 oC and resolution of 0.1 oC. The thermo-

couple was fastened to the moving stage and the temperature was determined as function

of the distance between the needle and thermocouple head, in both dry and wet environ-

ments. In the latter case, the thermocouple head was immersed in 0.4 ml PBS solution.
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5.3 Results and discussion

5.3.1 Thermal Properties of the Plasma Needle

Since even slight heating may be fatal to cells, it is very important to keep a good control

of gas temperature during plasma treatment. Figure 5.4 shows the temperature deter-

mined by a thermocouple placed at various distances from the tip of the plasma needle.

Only slight temperature increase is observed at the distance of 2 mm, which is the normal

working distance during cell treatment. In this situation, the sample is in direct contact

with active plasma (glowing zone).

Figure 5.4: The temperature determined by a thermocouple as a function of distance between the
plasma needle and the surface for various conditions. Dry thermocouple: • 0.3 W plasma in
helium, ¥ 0.15 W in helium, N 0.15 W in helium with 3% air. Thermocouple immersed in PBS:
- 0.15 W in helium. Indicated plasma powers are initial values at 9 mm distance. Temperature
increase is directly related to plasma power. In case the plasma is applied to a dry thermocouple,
the temperature increase is slightly larger. The same is valid for air-contaminated plasma.

The temperature recorded by the thermocouple is slightly higher when this metal device

is dry. This is most likely due to lower heat capacity of the metal in comparison to water.

During cell treatment, a sample containing cells is always covered by a thin film of PBS.

This serves not only to prevent the cells from drying out, but also to create a smooth

conducting surface, which is beneficial for plasma stability. Moreover, it can divert any

static electricity (surface charging) created by the plasma away from cells and conduct it

to the ground (metal moving stage).
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As expected, gas heating is directly related to plasma power, so using higher powers in

combination with short distances should be avoided. Plasma with 0.3 W power input,

applied at the working distance of 2 mm, causes total necrosis in the treated area already

after a few seconds of treatment.

We conclude that the thermocouple measurements show that heat generated by the plasma

cannot cause damage to the cells when treatment is conducted under the following condi-

tions: powers around 0.15 W or less, distances about 2 mm, and treatment time of about

5-10 s per cell.

5.3.2 Cell Responses

Treatment with the plasma needle induces cell responses in a restricted area. A typical

”track” of the plasma left on the cell sample is merely 0.2 mm wide. This is the typical

size of the influenced area, reproducible within 20%. It is also possible to create ”plasma

marks” of 100 µm size, as shown in Figure 5.5, but the treatment time must be very short

(1 s per ”spot”) and the sample must be immediately brought out of the reach of the

needle. In the present configuration it is difficult to control such fast movements.

Figure 5.5: Plasma-induced void with ca. 100 µm size on a sheet of cultured cells. This demon-
strates high precision of plasma treatment. The cells have been treated with a very low-power (<
0.05 W) plasma, and after 2 h CTG has been applied. Prior to this observation (4 h after treat-
ment), cells have been fixed with formaldehyde and treated with PI to reveal the internal structure,
but no special features can be distinguished. The cells were alive after plasma treatment, but they
did not reattach within 4 h. Objective lens Zeiss 40x, NA 0.95 corr, resolution 0.45 µm/pixel.



74 Electric Discharge Plasmas Influence Attachment of Cultured Cells

There is clear threshold behaviour in cell responses. They occur only for a given range of

parameters (e.g. plasma power), and within this range they are insensitive to parameter

variation. All cells in the treated area are influenced in the same way, the borders between

various regions are very sharp and no ”mixing” of intact and altered cells is observed.

A typical image of the treated area is shown in Figure 5.6. In this case, a relatively high

power plasma (0.2 W) was applied and a dual staining assay was performed 2 h after

treatment. In Figure 5.6, three zones can be distinguished: in the top right of the picture

a necrotic zone (PI positive cells exhibiting red fluorescence), in the middle a typical void,

and in the lower left a cluster of normal and rounded cells, which are detached from the

surrounding ones. Below, we shall describe these zones in more detail.

Figure 5.6: Typical image of an area treated with a sufficiently high power to cause necrosis (ca.
0.2 W). Dual staining has been applied. The necrotic zone (indicated by 1), the void (indicated
by 2) and the living cells (indicated by 3) are visible. A number of the living cells is detached;
they form clusters and are stained green by CTG. Objective lens Zeiss 10x, NA 0.3, resolution
1.8 µm/pixel.

The necrotic zone was closest to the plasma needle. Cells, which are not viable after plasma

treatment, seem to preserve their shape and internal structure. However, they display an

abnormal DNA distribution in their nucleus (see Figure 5.7). This type of cell death is not

due to ordinary thermal damage, as verified by comparing with cells destroyed by heating.

At present, we cannot decide whether this plasma induced necrosis is a useful method of

disposing of unwanted cells in a tissue. Studying long term reactions of a tissue may supply

an answer.

In this work, we attempt to observe and classify as many plasma induced cell responses as
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possible, and therefore we mention necrosis as one of the options. However, cell necrosis is

an a priori undesired effect and from now on we shall concentrate on other reactions.

Figure 5.7: Close-up of necrotic cells from Fig. 5.6. Objective lens Zeiss 40x, NA 0.95 corr,
resolution 0.15 µm/pixel.

As said before, cell necrosis occurs at powers higher than 0.2 W (threshold process). At

lower powers necrotic zones like in Fig. 5.6 are absent in the treated sample. However,

voids and rounded cells can be still observed. A global feature of plasma treatment is cell

detachment, both from the bottom and from the surrounding cells. The first process is

responsible for the formation of the void; the detached cells are floating in the liquid (PBS)

and can be transferred to another Petri dish. The loss of cell-cell contact is reflected by

rounding of cells. These cells are still attached to the bottom. Loss of cell contact appears

even more readily than cell detachment from the surface. In some cases (about 20%) no

voids, but areas filled with rounded cells, are present.

Cell viability after detachment was verified using CTG staining. Rounded cell were always

stained green by CTG, like in the ”clustered cells” zone visible in Fig. 5.6. The threshold

power for cell detachment is about 0.1 W; all cells in the treated area are detached.

Long term behavior of detached cells deserves to be studied in detail. Information on cell

condition and long term viability may allow us to manipulate cells with plasmas in vitro

and possibly also in a living tissue. In our in vitro study we placed the treated CHO-K1

samples in cell culture medium and stored them in the incubator. Loose cells suspended

in medium were collected separately.

Figure 5.8 shows the development of the CHO-K1 culture after plasma treatment. The

viability of these cells is evident: only 1 h after exposure to plasma, cells start to move

around and attach. The halos around the rounded cells disappear. After 4 h a sheet of cells
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is formed and within 24 h confluence is attained, as in normal untreated samples. In case

of fully detached cells, suspended in medium after treatment, reattachment is somewhat

slower. Typically, cell-cell interaction is fully restored within 24 h.

Figure 5.8: Phase-contrast microscope photographs of cells treated with a 0.1 W plasma. Cells
have been observed for several hours, and reattachment of detached cells has been established: 1 -
before treatment, 2 - after 15 min, 3 - after 1 h, 4 - after 4 h. Objective lens Zeiss 10x, NA 0.25.

At higher doses of plasma treatment, reattachment is inhibited. This occurs within the

power range of 0.1 - 0.2 W, but at a total treatment time of 2 min (10 s per treated spot).

Cells retain their rounded shape up to several days after treatment. Cell activities like

proliferation continue, but at a slower rate than in normal cells. A typical treated area

after 24 h is shown in Figure 5.9. Some cells are in advanced phase of cytokinesis. Before

disposing of this sample the cells were stained with trypan blue, but no dead cells were

found.

Under moderate conditions, plasma treatment leads predominantly to loss of contact be-

tween individual cells, and often cell detachment from the surface. The mechanism of

this process is not yet completely clear however, it is expected to be of (plasma)chemical

nature. The influence of other plasma-related factors was checked separately. The effect

of UV radiation was studied by irradiating cells with excimer lamps described elsewhere

[7]. Exposure to UV did not cause detachment, but necrosis appeared above a certain

threshold of irradiance. RF electric fields applied to the needle in absence of discharge

induced no reaction in cells, even at relatively high amplitudes (1000 V peak-to-peak) and

distances shorter than 1 mm. Therefore we tentatively conclude that species emitted from

the plasma are responsible for cell detachment. From all these species, including electrons,
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ions and radicals, only the latter can penetrate under water and reach the cells.

Cell detachment can be a consequence of destruction (e.g. oxidation) of cell adhesion

molecules (CAMs): cadherins and integrins. The first ones seem to be destroyed more

readily: loss of cell contact is easier to induce than total cell detachment from the bottom.

On the other hand, penetration of plasma species under water is limited. Densities of

active particles may decrease drastically with depth, with a gradient length in the order of

cell thickness. Integrins connect the cells to the bottom of the sample, so they cannot be

reached by reactive species so easily as cadherins.

Figure 5.9: In the case of a higher exposure time to the plasma, cell reattachment is inhibited
even after 24 h. Objective lens Zeiss 20x, NA 0.3.

CAMs in CHO-K1 are restored on a time scale of a few hours. This is also the typical

observed time for cells to reattach and restore a sheet structure after plasma treatment.

This supports the hypothesis of plasma induced damage to CAMs. Further studies will

be carried out to identify specific chemical interactions that are responsible for this damage.

5.3.3 Apoptosis

Besides detachment of cells we observed that a small percentage of cells underwent apop-

tosis after plasma treatment. We used the M30 antibody method to detect apoptosis in

our treated samples. Figure 5.10 shows the presence of three apoptotic cells (arrows) in

an otherwise healthy cluster of cells. In the MR65 cells, there is always a small percentage

of cells in a certain stage of programmed cell death. The number of apoptotic cells in the
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treated samples was significantly higher than the natural number. A qualitative analysis

was made with variation of treatment time. This revealed that shorter treatment times

result in higher percentages of apoptotic cells.

Figure 5.10: Apoptosis detected with M30 in MR65 cells treated with plasma. (Objective 40x/1.3,
192x256 µm).

While the amount of apoptotic cells may be slightly underestimated by this staining

method, (detached cells are lost during staining), the number of apoptotic cells is rela-

tively low if compared with apoptosis-inducing agents such as MG132 (data not shown).

These preliminary experiments show that the plasma needle can induce programmed cell

death. A further optimization is expected to increase the percentage of apoptosis in the

treated samples. Programmed cell death is quite critical and the right dose of plasma and

reactive species needs to be supplied.

5.4 Conclusions

For the first time, interaction of an electrically generated plasma with single cells has been

described. A CHO-K1 culture has been used as a model system to observe cell responses

to a medium, which has not been applied to living objects before. We have verified that

our newly constructed non-thermal atmospheric plasma source does not cause thermal nor
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electric damage to the cells. Cell reactions induced by plasma treatment are of more so-

phisticated nature, such as cell detachment and apoptosis.

The percentage of cells that undergo apoptosis is expected to increase if the conditions are

optimized.When the plasma power is in the range of 0.1 - 0.2 W, cell adhesion is affected.

Cell detachment can be achieved with a high precision in an area as small as 0.1 mm di-

ameter. Detached cells remain viable; they typically restore contacts with other cells and

reattach to the bottom within a few hours. Based on this observation we conclude that

plasma action is limited to cell exterior, so that only CAMs are destroyed.

A possible mechanism responsible for cell detachment may be damage of cadherins and

integrins due to interactions with active radicals (oxygen and nitrogen species) emitted

from the plasma. We suppose that the plasma conditions used for cell detachment have

the least intrusive effect on the cells, since the treated cells do not seem to be altered in

any other way. Of course, applying harsh conditions (plasma powers higher than 0.2 W)

leads to severe damage and necrosis.

The final aim of this research is high precision, controlled cell manipulation in tissue. Tissue

modification without necrosis would not lead to inflammation and unnecessary damage.

Cell detachment is a promising method because it is easier to induce than apoptosis.

The plasma effect on cell adhesion is potentially applicable in refined cell removal. Cell

detachment in a living tissue will be investigated in the near future.
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Chapter 6

Plasma treatment of mammalian

vascular cells: a quantitative

description

Abstract

For the first time, quantitative data was obtained on plasma treatment of living mammalian

cells. The non-thermal atmospheric discharge produced by the plasma needle was used for

treatment of mammalian endothelial and smooth muscle cells. The influence of several

experimental parameters on cell detachment and necrosis was tested using cell viability

assays. Interruption of cell adhesion (detachment) was the most important cell reaction to

plasma treatment. Treatment times of 10 s were enough to detach cells in the cultured cell

sheet. Under extreme conditions, cell necrosis occurred. Cell detachment without necrosis

could be achieved at low voltages. It was shown that the thickness of the liquid layer

covering the cells was the most important factor, which had more influence than treatment

time or applied voltage. The results show no remarkable differences between the responses

of the two cell types.

This chapter was published as I.E.Kieft, D. Darios, A.J.M. Roks, E.Stoffels, Plasma treatment of
mammalian vascular cells: a quantitative description, IEEE trans. plasma sci., 33(2):771-775, 2005.
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6.1 Introduction

In biomedical technology, various plasmas have been extensively used for inactivation of

bacteria [1, 2] and for surface modification of scaffolds to improve cell attachment [3, 4].

However, these plasmas were never applied directly to living mammalian cells and tissues.

A special nonaggressive plasma source (the plasma needle) was developed for tissue treat-

ment without causing cell necrosis and inflammation. The aim of plasma treatment is

high-precision removal of pathological tissues without excessive damage to the body. Cell

reactions after plasma treatment were first described by Kieft et al [5]. They found that

the main effect of the treatment was the detachment of cells from each other and from their

extracellular matrix. The detachment of cells starts within seconds after the treatment [6].

In this chapter, the dependence on the experimental plasma parameters was investigated.

The plasma needle is a non-thermal discharge at atmospheric pressure produced by radio-

frequency (RF) excitation [7]. The size of the plasma is small (around one mm), and,

therefore, it can be used with a high precision. The plasma acts on the surface with a

minimum penetration depth. The mechanism of plasma treatment is still under debate.

In case of bacteria, it is proposed that the main cause of deactivation is their poisoning

and erosion by active radicals produced in the plasma [1]. It is thought that radicals are

more important than ions or ultraviolet (UV) light. However, it is not certain whether

mammalian cells respond similarly to these features, although both the radicals and UV

radiation are known to interact with cells and tissues [8–10]. In particular, reactive oxygen

species were identified to play a major role in the pathogenesis of cardiovascular diseases

[11, 12]. Spectral analysis of the plasma needle showed that reactive oxygen species such as

O. and .OH were present, and that UV was emitted [13]. Previous experiments with lamps

showed that UV irradiation causes necrosis, but no cell detachment [14]. The reactions

observed by Kieft et al [5] were most likely caused by radical interactions with the cell

membrane.

Our goal is to optimize plasma treatment by varying experimental parameters, such as

applied voltage, treatment time, and amount of liquid covering the cells. The incidence

of necrosis should be minimized, while cell detachment should be achieved efficiently. The

experiments were performed on two cell types: endothelial cells and vascular smooth mus-

cle cells. These two cell types constitute the arterial walls, and their response to plasma

treatment will provide us with information for possible future treatment of atherosclerotic

lesions or postangioplasty restenosis. The critical parameter for the treatment appeared

to be the thickness of the layer of cell culture medium covering the cells. This thickness

provides directly the penetration depth of plasma species in the liquid. In future surgical

applications, it will allow to accurately control the plasma dosage by screening the most



6.2. Experimental 83

vulnerable tissue areas. This influenced the area that was reached by the plasma, as well

as the presence of necrosis after treatment. An increase in plasma power merely caused an

increase in necrosis percentage.

6.2 Experimental

6.2.1 Plasma Needle

The plasma needle is a non-thermal atmospheric RF glow discharge. It is easy to handle

and small (the size of a pen). The RF signal (13.56 MHz) is generated by a waveform

generator (Hewlett Packard 33120A) and amplified by an RF amplifier (Kalmus model

125C-CE). From the amplifier, the signal is directed to a home-built matching network.

Figure 6.1 illustrates the plasma needle setup.

Matching

Network
RF

source

Helium

Figure 6.1: (a) Schematic drawing of the current experimental setup. (b) Plasma glow generated
at the end of the plasma needle.

The plasma needle consisted of a metal alloy pin (0.3-mm diameter). The metal pin pro-

truded from the stainless steel holder by 1.5 cm, while the total length of the needle was

about 8 cm. It was insulated by glass in order to prevent a discharge from expanding along

the entire pin. The latter was confined in a Perspex tube (5-mm inner diameter), which

was filled with helium delivered at a flow rate of 2 l min−1. Moving the Perspex tube

relative to the fixed needle regulated the percentage of air in the vicinity of the needle tip.
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In the work described here, the needle was protruding 8.5 mm out from the Perspex tube

and the plasma appeared as a pink glow at the tip of the needle. The typical size of the

plasma glow was 1-mm in diameter. Temperature measurements on the gas temperature

of the plasma were reported in a previous paper [5]. It was shown that the gas temperature

does not rise more than 10 o above room temperature (it is thus nog higher than 35-37
oC), so it does not affect cell viability.

6.2.2 Cells

Two cell types were used in the experiments that are prevalent in arterial walls: endothelial

cells and smooth muscle cells. The specific cell types are Bovine aortic endothelial cells

(BAEC) (Cell Applications Inc., San Diego, CA) and rat aortic smooth muscle cells (A7r5,

ATCC, Manassas, VA). The cells are transferred every three or four days in a new flask

with fresh culture medium and incubated at 37 oC with 5% CO2. The culture medium

is composed of: 500 ml Dulbecco’s modified eagle medium (DMEM) with glucose 4.5 g

l−1 and with L-glutamine (Biowhittaker, Cambrex, Verviers, Belgium); 50-ml fetal bovine

serum (FBS by Biochrom AG, Berlin); 5-ml non-essential amino acids (100x) (Biochrom

AG); 2.5-ml gentamycin (10 mg ml−1) (Biochrom AG); and 10-ml HEPES-buffer (1M)

(Biochrom AG). Both cell types are cultured in the same medium.

6.2.3 Stains

Fluorescent stains were used to visualize cell viability: cell tracker green (CTG) (10 µM,

Molecular Probes, Eugene, OR) and propidium iodide (PI) (10 µg ml−1, Molecular Probes).

They show cell viability by coloring the live cells in green or dead cells in red respectively.

The stains were used in combination with a fluorescence microscope (Axiovert 200M, Zeiss)

and a microplate fluorescence reader FL600 (Biotek). Two filters were used on the fluo-

rescence microscope: CTG was excited with 450-490 nm and emission was detected with a

long-pass filter LP 515 nm; PI was excited with 510-560 nm and its emission was detected

with an LP 590-nm filter. The plate reader was used to measure CTG emission using an

excitation filter with a center wavelength of 485 nm and a bandwidth of 20 nm at one-half

the maximum transmission; the center wavelength of the emission filter was 530 nm with

a bandwidth of 25 nm.
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6.2.4 Exposure procedures

The cell samples were prepared in 96-well plates. A haemocytometer in combination with

Trypan blue was used to count the cells that were seeded in one well. In each well 10,000

cells were grown at 37 oC in 100-µl culture medium about 20 h before treatment. The

treatment was performed at room temperature. Unless stated otherwise, after treatment

cell samples were washed with phosphate buffered saline (PBS) and incubated with fresh

medium for 3 h. Then, CTG and PI were applied and cells were again incubated for 30

min (at 37 oC). Control samples underwent exactly the same treatments except for the

plasma exposure.

The wells in the 96-well plate had a diameter of 6.5 mm. This meant that the plasma

treatment was not uniform over the well. This gave us the opportunity to test the reach

of the plasma.

The height of the wells was 11.5 mm. Thus, the plasma needle tip was situated 3 mm

above the cells, which were attached to the bottom of the plate.

6.3 Results

6.3.1 Penetration depth

The penetration depth of the plasma was tested by examining detachment and necrosis

rates while varying the amounts of liquids that covered the cell samples. Detached cells

left a circular void on the sample. An example of such a void is shown in Figure 6.2. The

void is present in the lower right side of the picture; a few necrotic cells are still attached

to the bottom. The picture was taken near the edge of the sample.
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(a) (b)

Figure 6.2: (a) Void introduced by plasma on BAEC cells by 30 s exposure with 10 µl. (b)
Untreated sample. (Objective 10x/0.30 Ph1 Plan Neofluar; size 870x705 µm).

The applied voltage in this experiment was 250 Vrms for 30 s. Different amounts of medium

were added to the cells, resulting in varying thickness of the liquid layer. However, due

the capillary forces, the entire surface of the well was not uniformly covered in case of

10 and 20 µl medium. Thus, an area in the center was covered with only a very thin liq-

uid layer (<0.1 mm). For 10 µl, this area had a diameter of 3 mm; for 20 µl, this was 2 mm.

Figure 6.3: CTG emission (squares) and void diameter (diamonds) for treated BAEC cells with
varying amounts of liquid.

For each medium volume, six samples were treated and the data were averaged (Fig. 6.3).
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The void diameters were determined from the microscope photographs. If we compare the

sizes of the voids to the sizes of the areas with only a thin layer of liquid during treatment,

we can conclude that they are similar. Thus, the sizes of the voids in the cell cultures

are mainly determined by the size of the thin liquid areas. Where the liquid layer is very

thin, the cells easily detach. This indicates that the average penetration depth of the re-

active plasma particles through the liquid is low: below 0.1 mm. However, one has to be

careful while treating cells through very thin layers of culture medium, because other, un-

desirable effects may become important (dehydration and osmosis because of evaporation).

When no liquid was added to the cells, voids were induced with a diameter of over 5 mm.

This is the radius that is reached by the plasma particles or UV light in the current con-

figuration. However, if the thin liquid layer area was too large (and most likely the liquid

layer too thin) there was a spot of necrotic cells in the center of the void. For the samples

with 0 µl of added medium (note that some adhesive medium will have remained on the

cells) this dead spot was 1-2 mm in diameter, for 10 µl this was 0-1 mm in diameter (see

also Figure 6.2). The voids for 20 µl had no dead cells inside. It appears that the influence

of the medium layer is important for the size of the hole that is introduced, but there is a

risk of necrosis, possibly due to dehydration.

6.3.2 Effect of exposure time

Data obtained (not shown) on both A7r5 and BAEC cells show no time dependence for

treatment times below 1 min when samples were treated with medium volumes ranging

from 10-60 µl. Even for 10 s, voids were introduced in the cell layers for low amounts of

medium. The voids induced for treatment times up to 60 s remained equal in size.

To check the effect of longer exposure times, BAEC cells were treated up to 9 min. The

amount of the medium in these experiments was 40 µl, resulting in a height of 1.2 mm

of liquid above the cells. Every 1.5 min 10 µl was added to keep the medium level constant.

Data were collected from three independent experiments. Note that the decrease in emis-

sion intensity in Fig. 6.4 cannot be caused by bleaching or quenching, since all samples

were treated first and then measured simultaneously. The percentage of necrotic cells that

remained in the well was below 10%. Thus, the decrease of the CTG intensity was due

to cell detachment. We can conclude (Fig. 6.4) that for longer treatment times, the de-

tachment of the cells proceeds linearly with time until eventually all cells detach. The

plasma constituent responsible for cell detachment always penetrates the liquid, but for

remote cells the dose is usually too low to induce an effect. This means that it is possible

to increase the area of reach of the plasma, but the treatment time must be scaled up
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Figure 6.4: CTG emission after treatment of BAEC cells with plasma. Emission data were scaled
to untreated samples.

accordingly.

6.3.3 Effect of applied voltage

When the voltage applied to the needle was increased, dissipated power and plasma size

increased. With this in mind, one can expect that cell detachment and possibly also necro-

sis are enhanced. In the experiment, plasma was applied to 20 µl of medium for 30 s with

increasing voltage from 226 Vrms to about 280 Vrms. The data points were averaged over

six samples. Unlike the experiments discussed before, the fluorescent CTG stain was now

applied before the treatment. The fluorescence emission intensity of the samples was scaled

per individual sample by collecting data before and after the treatment.

As voltage increased, the CTG intensity decreased (Fig. 6.5). There are two reasons for

this. First, there was a rise in the number of detached cells: not only in the central void

but also cell density near this void appeared to be lowered. This effect was visually ob-

served, but was not quantified. Second, the number of dead cells was increased; this is

discussed in the following paragraph. Dead cells will still show some fluorescence, even

though most of the cytosol containing the activated CTG will have leaked out of the mem-

brane. Thus, the CTG fluorescence emission is an upper limit for the amount of living cells.

The sizes of the central voids were measured to be between 1.5-2 mm in diameter for all

treated samples and did not change with increasing voltage. Again, this indicates the fact
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Figure 6.5: CTG intensity as a function of applied voltage after 30 s of plasma treatment of A7r5
cells. The intensity was scaled to the intensity of the untreated samples.

that the active plasma species have the most effect on the cells if the latter are covered with

only a thin layer of culture medium. However, we must keep in mind that cell reactions

may be affected by liquid evaporation.

On the other hand, the percentage of dead cells rapidly increased with increasing power

(Fig. 6.6), up to 50% in particular spots. The increased necrosis may be due to dehydra-

tion, but also to membrane damage because of reactive oxygen species (ROS) attacking

the cell surfaces.

Figure 6.6: Percentage of necrosis after treatment of A7r5 cells.

In conclusion, we can say that the increase of power does not affect the cell detachment,
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but does affect the viability of the cells. This is an unfavorable effect since we want to treat

cells without inducing necrosis. In this view, for optimal plasma treatment, the voltage

should be kept as low as possible to sustain mild plasma conditions.

6.4 Discussion

The chapter shows the influence of several experimental parameters on the detachment of

cells. As was proposed in a previous paper [5], the reaction mechanism that causes the

detachment may be the reactions of reactive species (e.g., radicals or ions) with the cell

adhesion molecules (CAMs) of the cells. These adhesion molecules (integrins and cad-

herins) may be damaged, and, thus, attachment is lost and cells will start floating in the

liquid. This idea is supported by the fact that detachment is reversible, and cell layers are

reconstructed within 4 h. This is a typical time needed to repair the damaged CAMs.

However, the results from more recent experiments indicate that there may be another

explanation. Cells do not detach instantaneously; the process of detachment starts a few

seconds after the plasma treatment is terminated, and continues for up to 20 s [6]. Thus,

the detachment may be a reaction initiated by a living cell upon the treatment. Indeed,

when cells are accidentally killed (necrotic) due to e.g., high plasma power, they do not

detach, but remain on the sample. Low doses of plasma species do not result in necrosis,

but they may cause discomfort. A moderate damage to the cell’s membrane or organelles

can trigger an impulse to move away from the ”dangerous” zone. Future flow cytomet-

ric assays will allow to unravel the nature of this damage and to evaluate its extent. At

present, we can tentatively conclude that cell detachment does not affect cell viability in

a drastic way, because both detached cells, floating in the medium, and cells remaining on

the plate are capable of reattachment and further growth.

It is not yet clear which plasma property causes the detachment or damage to the cells.

It has been checked that UV light alone (from narrow band UV lamps) causes in high

doses cell necrosis, but it never induces cell detachment [14]. Thus, UV is probably not

an important parameter in plasma-cell interactions. As the influence of temperature and

electromagnetic field can be neglected [5], the remaining ”suspected” species are electrons,

ions, and radicals. The penetration depth of electrons and ions in the liquid is not sufficient

to cause the observed effects directly; however, energetic ions in contact with the medium

can create reactive radicals from water molecules. An experiment is planned, in which an

external magnetic field that confines the ions will be applied. Reducing ion fluxes incident

at the medium surface may reveal the importance of the ions.
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6.5 Conclusions

Experiments with the plasma needle and cultured cells were performed to quantify the

influence of experimental parameters on cell detachment and necrosis.

Exposure of mammalian cells to the plasma caused their detachment with only 10 s of treat-

ment time. The size of the detached areas (plasma-induced voids) was mainly determined

by the thickness of the medium layer that covered the cells. To be able to detach cells after

short exposure times, this layer needed to be thin, preferably far below 1 mm. However, if

the layer was too thin, necrosis occurred most likely due to dehydration. Thicker culture

medium layers required a relatively long exposure time. Thus, in future medical treatment,

a compromise must be made, so as to induce the desired reaction within an agreeable time

and without dehydrating the tissue.

An increase in voltage applied to the needle increased the percentage of necrotic cells in

the sample. There was no apparent difference found in the behavior of the endothelial cells

compared to the smooth muscle cells after the plasma treatment.

The optimization of plasma parameters allows a plasma treatment with only small inci-

dence of necrosis.
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Chapter 7

A comparison of UV irradiation and

gas plasma treatment of cells and

bacteria

Abstract

Living mammalian cells and bacteria were exposed to irradiation from narrow-band UV

lamps and treated with a non-thermal gas plasma (plasma needle). The model systems

were: Chinese Hamster Ovary (CHO-K1) cells (fibroblasts) and Escherichia Coli bacteria.

UV irradiation can lead to cell death (necrosis) in fibroblasts, but the doses that cause such

damage are much higher than those needed to destroy Escherichia Coli. The usage of UV

radiation in combination with active oxygen radicals lowers the UV dose sufficient to kill

the cells. However, in any case the fibroblasts seem to be fairly resistant to UV radiation

and/or radicals. Possibly, the lamps may be used for decontamination of infected wounds.

The most important active species in an atmospheric plasma are the radicals; the role of

UV is less pronounced. Treatment of CHO-K1 cells with the plasma needle can lead to cell

necrosis under extreme conditions, but moderate doses cause only a temporary interrup-

tion of cell adhesion. Plasma needle may be used for fine tissue treatment (e.g., controlled

cell removal without inflammation) and also for bacterial decontamination.

This chapter was published as E.A. Sosnin, E. Stoffels, M.V. Erofeev, I.E. Kieft, S.E. Kunts, The
effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative
approach, IEEE Trans. Plasma Sci., 32:1544-1550, 2004.
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7.1 Introduction

Non-thermal plasmas operate at room or slightly elevated temperatures. Treatment with

such plasmas has been demonstrated to be a powerful method of inactivating microor-

ganisms [1–5]. Plasma treatment has many advantages in comparison with other bacterial

inactivation methods, such as dry heat or hot steam sterilization, irradiation by UV/gamma

rays and other techniques [1]. Plasma decontamination is usually fast, efficient, and safe

in terms of thermal, chemical or irradiation damage.

Non-thermal plasmas are easiest to generate under reduced pressures (less than 1 mbar)

in specially designed vacuum reactors. In the last decennia, these plasmas found a broad

spectrum of applications in material technology. The idea of employing low-pressure plas-

mas for bacterial inactivation was introduced long ago [2]. Primarily, it was assumed that

the key agent in plasma sterilization is the chemistry (highly reactive unstable species -

radicals). However, Soloshenko et al [3] showed that also the 160-220 nm UV radiation

plays an important role in low-pressure plasma sterilization.

Nowadays, a general trend has arisen both in material processing and biotechnology: vac-

uum reactors are often being replaced by atmospheric plasma sources. There are already

various principles and designs, which deliver plasmas operating at temperatures not higher

than several tens of degrees. Examples include atmospheric jets [5], dielectric barrier dis-

charges [6], and microplasmas [7]. These new developments allow treatment to materials,

which can withstand neither high temperature nor low pressure (e.g., biological tissues).

Anti-bacterial properties of atmospheric non-thermal plasmas are already well established

[4, 5]. The inactivation of microorganisms proceeds faster than at low pressures; it is as-

cribed to radical interactions with the membrane, while the role of UV is less important [4].

In parallel to plasma sterilization, treatment with UV radiation alone is a subject of exten-

sive investigations [8–14]. Effective bacterial inactivation was demonstrated for many kinds

of bacteria and viruses; various sources were used and the wavelength dependence was de-

termined [12–14]. Furthermore, the synergy of active oxygen radicals and UV was studied

[15]. For this purpose, photosensitizers like H2O2 were used. This particular molecule

produces OH, peroxy and hydroperoxy radicals upon irradiation. It was shown that the

joint action of radicals and photons facilitates bacterial inactivation.

In the mentioned studies, UV and plasma treatment was performed ex vivo. One is re-

luctant to apply these media to living tissues because of the risk of cellular damage by

UV [16] and radicals [17]. However, we have noticed that the lethal doses for bacteria

are surprisingly low. Therefore, in this chapter, we investigate the possibility of in vivo
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treatment, selective bacterial inactivation without harming the cells. For this purpose, one

has to establish what doses of UV or plasma exposure can be applied without extensive

tissue damage. We study the reaction of living mammalian cells to UV radiation, using

narrow-band UV lamps (excilamps) and Chinese Hamster Ovary (CHO-K1) cells in culture

as a model system. These cells are fibroblasts; a basal cell type, which is involved in many

processes, e.g., wound repair. We compare the effects of UV radiation on cells with data

on UV bacterial deactivation. Furthermore, the case when irradiated cells are immersed

in a hydrogen peroxide solution (a photosensitizer) is considered.

Finally, we present some facts on in vivo treatment by means of a novel non-thermal plasma

source (the plasma needle [7]). A fundamental study has been undertaken to identify all

possible responses of living objects exposed to the plasma. This may lead to development

of new techniques, like disinfection of tissues or removal of cells without inflammatory re-

sponse, and on a longer time scale to new methods in the health care.

7.2 The Experimental Setup

7.2.1 Cell culture preparation

CHO-K1 cells were cultured in flasks containing Ham’s F-12 medium with stable L-

glutamin (Bio Whittaker, Europe) containing 9.0% of Fetal Bovine Serum (FBS, Biochrom

AG) and 0.45% of Gentamycin (10 mg ml−1, Biochrom AG). The cells were stored in an

incubator at 37 oC with 5% CO2. To prepare samples for UV treatment, the cells were

trypsinized (0.05% Trypsin / 0.02% EDTA solution in PBS, Biochrom AG) and transferred

into Petri dishes. For plasma treatment, the same procedure was followed, but the cells

were transferred onto sterilized object glasses (26 x 10 x 1 mm, adapted to fit into the

plasma chamber) and placed in multiwell dishes. The cells were incubated for 2 or 3 days,

or until nearly confluent (see Figure 7.1).

Just before treatment, the medium was removed and the samples were rinsed twice with

phosphate buffered saline (PBS). During irradiation or plasma exposure the cells were

covered with a thin film of PBS (typically 0.3 mm) in order to prevent them from drying.

7.2.2 Bacterial sample preparation

A pure culture of Escherichia Coli, belonging to the main species of the enterobacteria

group, was used. E. Coli is one of the most resistant species within enterobacteria group,

so it is frequently used in a study of UV disinfection and sanitation, performed at the

Scientific Research Institute of Balneology (Tomsk, Russia). The E. Coli was supplied by
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Figure 7.1: CHO-K1 cells in culture, used for UV and plasma treatment. This is an untreated
sample. The cells are about 30 µm long.

the American National Academy, and had a series number K12 ATCC 25922.

The culture of E. Coli was supported on beef-extract agar (BEA) and kept at the tem-

perature of 4oC. The optimal concentration of microbial dredge was found based on the

method of multiple dilutions.

7.2.3 Ultraviolet radiation sources

Irradiation was performed using two low-pressure capacitive discharge UV lamps developed

at Laboratory of Optical Radiation, High Current Electronics Institute, Siberian Branch of

the Russian Academy of Science [18–22]. These lamps are confined in quartz tubes (38-mm

inner diameter and 300-mm-long silica tube with 80% transparency at λ=200 nm).

The first of these lamps is a new excimer lamp, filled with Xe and Br2 mixture (Type

XeBr LERA 5); the active radiating species is XeBr·. Excimer lamps (or so-called excil-

amps) are a subclass of electric discharge lamps emitting in UV or vacuum UV spectral

ranges. Excilamps provide UV irradiance up to 10 mW cm−2 and their efficiency is typ-

ically 7%-30%. The main feature which distinguishes excilamps from other UV sources

is that their spectra consist of narrow bands (the band halfwidth rarely exceeds 5-8 nm).

The B→X band emission adds to as much as 80%-90% of the total radiation of excil-

amp. By varying the composition of the working mixture it is possible to select a required

wavelength. Therefore, excilamps are suited to study wavelength-specific effects of UV

radiation on various objects, including microorganisms. The XeBr-excilamp employed in

our experiments produces a spectrum with an emission peak at λ ∼ 282 nm and weak

D→X and C→A bands. As confirmed in our previous experiments [14], XeBr-lamp is
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Figure 7.2: Emission spectra (range 200-500 nm) from two different UV light sources: (1) iodine
lamp and (2) XeBr-excilamp.

most efficient in sterilization. This is because the inactivation of bacteria is mainly related

to the DNA/RNA damage, and the maximum absorption of DNA and RNA occurs at the

photon wavelength between 240 and 300 nm.

The second light source is a low-pressure lamp (Type I LERA 5), filled with iodine vapor

[19]. The Iodine lamp produces a spectrum with a narrow peak of I· emission at λ∼ 206 nm.

7.2.4 Low-temperature plasma

A small-size non-thermal plasma (plasma needle) has been developed for the purpose of

studying plasma interactions with living species [7]. A plasma needle is an atmospheric

glow initiated under helium atmosphere by applying radio-frequency (about 10 MHz) elec-

tric voltage to a sharp metal pin. The plasma operates under gentle conditions: the voltage

needed to sustain the discharge is low (200-400 V peak-to-peak), and the electric power

consumption is only 10-300 mW. The size of the glow is 0.1-1 mm.

It has been previously established that the gas temperature in the plasma is at most a

few degrees above the room temperature. Also, energy fluxes from the plasma have been

determined for different operation parameters, using a calibrated probe. The total energy

flux (radiation, radical and ion contribution) ranges from 0 to 2 W cm−2. The plasma can

be applied to heat-sensitive materials or human skin (see Figure 7.3) without any thermal
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Figure 7.3: Plasma needle: plasma is created at the tip of a sharp metal needle. (a) Treatment
of cells in culture placed in a Petri dish (for precise positioning another setup was used, see Fig.
7.5). (b) The glow spreads over the surface of the tissue.

damage or pain sensation. From spectral measurements, it follows that this plasma is

a poor UV source1. Most of the emission (helium lines, nitrogen and oxygen bands) lies

within the visible range. Some N2 bands are detected between 300 and 400 nm, no emission

can be found below 300 nm (see typical spectra in Figure 7.4).

Possibly, the plasma could emit radiation in the vacuum UV range (< 100 nm, originat-

ing from the helium transitions), which we cannot detect using the present equipment.

However, these short-wavelength photons cannot propagate outside the plasma; they are

efficiently cut off by air and water (absorption coefficient in water is 107 m−1 at 100 nm).

The experimental arrangement for cell treatment is shown in Figure 7.5. The chamber was

filled with helium at the flow rate of 2 l min−1. Flat samples were placed on the bottom

of the chamber, where an externally manipulated stage is installed. The distance between

the sample surface and the needle tip was adjusted by means of another manipulator.

7.2.5 Sample treatment

For UV treatment, Petri dishes were placed at 5.5-cm distance from the UV lamp. At

this distance, the heating effect of substrate was minimized, while the irradiance could be

sufficiently high. The uniformity in the radiation dose over the surface of the sample was

about 10%. UV radiation was dosed by varying the treatment time between 2 and 5 min,

1Later spectroscopic measurements were performed that showed higher emission in the range 300-400
nm, and revealed UV emission below 300 nm, see section 3.3.2
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Figure 7.4: Typical spectra of the plasma: in pure helium (gray line, given an offset of 10 000
counts) and in a mixture of 90% helium and 10% nitrogen (black line). In the latter case, atomic
helium lines are suppressed and some N2 bands emerge below 400 nm.

while the lamp irradiance was kept constant at 4 mW cm−2 for the XeBr lamp and 3 mW

cm−2 for the I-lamp. All experiments were repeated at least three times.

UV treatment of E. Coli bacteria was performed in Tomsk; Petri dishes with E. Coli

cultures were irradiated from several seconds to several minutes at 5-cm distance and at

different levels of UV irradiance (up to 10 mW cm−2). Each exposure was repeated four to

five times. For control, several dishes were left not irradiated. The number of survivors was

determined by the method of bacterial inoculation in dense media (the Koch method of

bacterial inoculation in agarized media in Petri dishes). The inoculations were cultivated

at the temperature of 20 oC- 23 oC. After 72 h, the number of surviving microorganisms

was determined.

During plasma treatment, the object glasses containing the CHO-K1 cells were placed on

the moving stage at the bottom of the chamber. Plasma needle was brought at 1.5-mm

distance to the sample; visually, the glow was just touching the surface of the PBS solution.

Typical treatment time was 1 min, during which the sample was moved by the manipulator

over a typical distance of 1 cm. This produces a typical ”track” of plasma-treated cells,

which can be easily recognized under the microscope. Individual cells on this track were

irradiated for 1 to 10 s.
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Figure 7.5: Experimental arrangement for cell treatment with the plasma needle, rectangular
metal/plastic box filled with helium. (a) Manipulators to move the sample and to adjust the
needle - sample distance, (b) the needle, (c) the sample, and (d) a thermocouple to control the
temperature.

7.2.6 Observation

After treatment, the samples were observed under a light microscope. Trypan blue (0.5%

in physiological saline, Biochrom) was applied in order to distinguish between dead and

living cells. Trypan blue penetrates only the cells with membrane leakage (dead cells) and

colors the whole cytoplasm blue; the living cells remain colorless. Dead and living cells

were counted and the fraction of survivors was determined. The surviving fraction (SF)

is defined by N/N0 ·100%, where N0 is the initial number of cells, and N the number of

surviving cells. Mean values were calculated from numbers found in five different places of

a Petri dish.

In some cases (mainly after plasma treatment), no trypan blue was applied, but the samples

were incubated for several hours in order to study the long-term post-treatment phenom-

ena.

7.3 Results and Discussion

As expected, high UV doses result in cell damage and death by necrosis (rupture of cell

membranes). It can be seen in Figure 7.6, where a sample treated with the iodine lamp
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at 0.6 J cm−2 and subsequently stained with trypan blue contains a mixture of dead and

surviving cells. The dependence of the fraction of SF on the irradiation dose is displayed

in Figure 7.7.

Figure 7.6: A CHO-K1 sample irradiated by the iodine lamp at 0.6 J cm−2. Most of the cells are
necrotic.

The most striking feature is the presence of a threshold. The process of inactivation begins

only after some critical dose of radiation, which is about 0.5 J cm−2 for the iodine and 0.7

J cm−2 for the XeBr lamp. All cells within the irradiated area are dead when the dose

exceeds 0.7 J cm−2 for iodine and 1 J cm−2 for XeBr lamp. The UV dose (threshold and

lethal dose) is lower for UVC (I-lamp) than for UVB (XeBr lamp). This can be easily un-

derstood because absorption of UV radiation by lipids in cell membranes is highest for λ <

230 nm [23] and the irradiated power of the iodine lamp lies mainly in this range (Fig. 7.2).

The presence of the threshold dose for cell deactivation (Fig. 7.7) makes these results

significantly different from the ones obtained for deactivation of Escherichia Coli and other

bacteria, widely reported in the literature [10–15]. For comparison, we include typical

bacterial survival curves, resulting from the irradiation of E. Coli with XeBr and KrCl (λ

= 222 nm) excilamps (both developed in the High Current Electronics Institute, Tomsk).

These are given in Figure 7.8 and 7.9, respectively. First of all, one can immediately see

that UV doses needed to deactivate E. Coli are much lower than the ones that cause necro-

sis in fibroblasts. Besides, already very low UV doses reduce the bacterial population by

two decades. At higher doses, the killing rate is somewhat tempered, and the survival

curves display exponential tails. Decontamination to 0.01% of the original population is

achieved by UV doses, which are still too low to affect fibroblasts (at least not on the short

term, or on a typical time scale of 2 days during which CHO-K1 cells can be maintained

in the incubator). This shows that fibroblasts are extremely resistant to UV. Irradiation

with UV lamps may become a method of selective bacterial decontamination of wounds
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Figure 7.7: The survival curve of CHO-K1 after treatment with UVB (block) and UVC (circle)
radiation. Cells were irradiated at 37 oC.

without killing the body cells that strive to repair the wound.

Note that the survival curve of fibroblasts (Fig. 7.7) does not have an exponential tail. This

is most likely because the cell counting after irradiation was done after two-step flushing

with PBS solution. In this way, small amounts of alive cells could be flushed away. Besides,

we could not apply UV doses much higher than 1 J cm−2, because of cell desiccation due

to a too long treatment time or heat damage at a too short distance from the lamp.

In order to simulate the conditions characteristic for plasma treatment, it is necessary to

supply active radicals simultaneously with UV irradiation. This can be performed using

a photosensitizer, such as H2O2, which produces reactive oxygen species upon UV irradi-

ation. Possibly, in the current experiment, the conditions were similar to those described

by Soloshenko et al [3], who performed effective bacterial inactivation in a low-pressure

plasma. However, it is difficult to compare the exact UV doses, because a low-pressure

plasma emits also photons with a shorter wavelength (< 200 nm). These photons are nor-

mally lost by absorption in air at ambient pressure, but they can reach the surface when

the sterilized object is surrounded by plasma under low-pressure conditions.

We used radiation with λ = 206 nm (I-lamp), which is not efficiently absorbed in air or

water. A 3% aqueous H2O2 solution was applied to the CHO-K1 culture just before irra-
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Figure 7.8: The survival curve of Escherichia Coli irradiated with UVB (XeBr-excilamp).

diation; the layer of fluid was about 1-mm thick. The H2O2 solution alone (without lamp

irradiation) has also some toxic effects on cells, because small amounts of reactive oxygen

species are released by decomposition of H2O2 by ambient light. However, the cells could

survive in this environment for several minutes. The UV lamp in Figure 7.10 was applied

to cell/H2O2 samples for up to 5 min. The last points, corresponding to long treatment

times, may be influenced by natural toxicity of peroxide solution. However, when the UV

was applied, we observed a major increase of the killing rate, even at short treatment

times. Fig. 7.10 demonstrates that the usage of H2O2 together with UVC lowers the lethal

radiation dose by a factor of two (compare with Fig. 7.7). Moreover, there is no threshold

in the inactivation curve; the fraction of dead cells increases approximately linearly with

increasing UV dose.

Similar studies of the effect of 1% H2O2 in combination with 254-nm radiation on bacteria

were described by other authors [15]. They reported an efficient reduction of bacterial

population; the UV doses needed to inactivate 99.99% of microorganisms were in some

cases even ten times lower than in absence of a photosensitizer.

From the above results, it can be concluded that the effect of UV (alone or in combination

with active radicals) on fibroblasts is by far not so drastic as on bacteria. The rate of

killing cells is much lower than that for E. Coli (compare linear scales in Figs 7.7 and 7.10

with logarithmic scales in Figs 7.8 and 7.9), and the cells can withstand relatively large

UV and radical doses. However, at present, we cannot decide on possible DNA damage in
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Figure 7.9: The survival curve of Escherichia Coli after irradiation with a KrCl-excilamp (222
nm).

cells, which have survived the UV treatment. For this purpose, cells should be observed for

a long time, and CHO-K1 is not the most suitable cell line for such studies. Furthermore,

at present, we cannot decide on the performance of UV lamps in in vivo disinfection. For

this purpose, more tests must be performed on various kinds of bacteria. The bacterial

spores must be investigated, because they may be more resistant to irradiation.

A UV lamp in combination with H2O2 may be compared to a low-pressure plasma [3], be-

cause the latter is a reasonable UV source (after all, the excilamps described here are also

based on low-pressure plasmas). In case of the atmospheric plasma needle, the conditions

are milder. As stated before, plasma needle is a poor UV emitter2. The plasma-related

effects are rather of chemical nature (radicals). It is known that radicals alone are also

capable of inactivating bacteria, though not as efficient as in combination with UV. Re-

cently, bacterial inactivation with the plasma needle was performed on E. Coli [24]. The

reduction of bacterial population by two decades (99%) was achieved within 1-2 min at

the power level of about 10 mW. This dose does not cause any reaction in CHO-K1, which

again confirms the particularly high sensitivity of E. Coli bacteria to UV/plasma treat-

ment. Therefore we are confident that it is possible to find plasma conditions under which

the bacteria are eliminated, but cells remain alive. When higher plasma doses are applied

(>10 mW), interesting cell reactions are induced. We shall describe some general features

of plasma interactions with CHO-K1 cells.

2see footnote on page 98
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Figure 7.10: The survival curve of CHO-K1 after irradiation with the iodine lamp in presence of
3% H2O2 aqueous solution. Cells were irradiated at 37 oC.

Plasma treatment of living cells can have many consequences. Naturally, a high dose leads

to cell death (necrosis). Typically, necrosis occurs when the plasma power is higher than

0.2 W and the exposure time is longer than 10 s (per treated spot). In terms of energy

dose, this corresponds to 20 J cm−2, which is very high. However, even upon such harsh

treatment the cells are not disintegrated, but they retain their shape and internal structure

(see Figure 7.11).

When the power and treatment time were substantially reduced (to 50 mW and 1 s per

spot), no necrosis was observed. The cells remained negative to trypan blue. In Figure

7.12, it can be seen that the cells (partly) detach from the sample surface. Characteristic

voids are created in the sheet of cells (Figure 7.12a). The partly detached cells assume a

rounded shape (Fig. 7.12b).

Careful observation of treated samples showed that detachment is not an instantaneous

reaction; it can occur within seconds or even up to 1 min after treatment. Viability of de-

tached (rounded) cells was studied using assays described elsewhere [25]. Here, we can state

that the interruption of cell adhesion is a temporary effect. The cells remain unharmed

and after several (2 to 4) hours the attachment is restored. It seems that plasma treat-

ment induces a temporary disturbance in the cell metabolism, which is expressed (among



106 A comparison of UV irradiation and gas plasma treatment of cells and bacteria

Figure 7.11: Necrotic cells after treatment with the plasma needle at 0.3 W. These cells are stained
with trypan blue (the membranes are damaged).

others) by loss of adhesion. The reactive agent, responsible for this behavior has not been

identified yet. It was checked that radio-frequency electric fields and static electricity do

not induce such effects. Detachment is most likely caused by plasma species, which are in

direct contact with the cell (under PBS solution). The role of active radicals cannot be

ruled out. However, these are probably not the oxygen species created in photo-sensitized

UV treatment with H2O2, because in the latter case no cell detachment was observed. In

near future, we shall investigate whether positive ions from the plasma can trigger this

specific cell reaction.

Cell detachment without severe damage is a refined way of cell manipulation. The loosened

cells can be removed from a tissue, but as they are still alive, no inflammatory response

should be induced. The area of plasma action is always well defined; the influenced cells

are strictly localized and the borders between affected and unaffected zones are very sharp.

This demonstrates the locality and precision of plasma treatment.

7.4 Conclusions

The effect of UVB and UVC radiation on Chinese Hamster Ovary (CHO-K1) cells in cul-

ture was studied. These cells are fibroblasts, a cell type that in important in tissue repair.

The UV radiation was supplied by two novel lamps, which are characterized by narrow

band spectrum with 80%-90% of the irradiated power lying in the UVB and UVC range,

respectively. The UV dose that leads to necrosis in fibroblasts is more than ten times

higher than the one needed for deactivation of E. Coli bacteria. The deactivation curve

for CHO-K1 cells displays a rather high threshold of 0.5-0.7 J cm−2; above this value, the
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Figure 7.12: : Treatment of CHO-K1 cells by the plasma needle at low power (50 mW) results
in cell detachment. (a) A plasma-treated spot (track) in the sample, with a typical void resulting
from cell detachment. (b) A close-up of the edge of the treated area: partly detached cells. When
cell adhesion is interrupted, they assume a rounded shape (not spread over the surface like in Fig.
7.1). This situation is temporary; the contact between cells is restored within several hours.

number of survivors decreases approximately linearly with increasing UV dose. The lethal

UV doses (no survivors) for the fibroblasts are 1 J cm−2 for UVB and 0.7 J cm−2 for UVC

radiation. In contrast, the threshold for inactivation of E. Coli (if existing) is extremely

low, and the number of survivors decreases with increasing dose in a bi-exponential way.

When the photosensitizer (H2O2) was used together with the UV source, the cells were

destroyed more readily than in case of UV irradiation alone; this is due to the joint ac-

tion of UV and in situ formed active oxygen radical species. The threshold UV dose

is drastically lowered, but the amount of survivors versus UV dose is still linear. The ef-

fects of UV and photosensitizer on E. Coli bacteria are much more drastic than on the cells.

Photosensitized UV treatment bears some resemblance to plasma treatment, but the UV

emission from the lamp is usually more intense than plasma emission. We treated the fi-

broblast cells with a non-thermal plasma, which is an efficient source of radicals, but a poor

source of UV. Under low-power conditions plasma treatment does not cause cell necrosis

at all. However, an interesting cell reaction was observed; a temporary disturbance in cell

adhesion. The loosened cells are viable and can be removed or rearranged on the substrate.

In the view of future in vivo applications, UV treatment may provide a method to decon-

taminate tissues. However, we realize that the presented results are valid for one kind of

bacteria (E. Coli). Although E. Coli, as a Gram-negative type, is fairly resistant, there

might be other species that are more difficult to eliminate; especially, the efficiency of
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spore deactivation must be investigated. Therefore, additional studies are needed to assess

the performance of UV decontamination. Plasma treatment offers possibilities of sophis-

ticated tissue modification, like local removal or manipulation of cells without damage to

the tissue. However, before the UV lamp and plasma techniques may be implemented, ex-

tensive studies of long-term effects of UV and plasma on living tissues must be performed.

These studies should involve assays for possible DNA damage, and in vivo tests on animals.
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Chapter 8

Plasma treatment of ex vivo arteries:

preliminary results

Abstract

The plasma needle is a source to produce small non-thermal plasma at atmospheric pres-

sure. The volume of the plasma is small (∼ 1 mm3) and it can thus be applied to induce

various effects with precision.

Previous experiments have shown that cultured cells that were exposed to non-thermal

plasma for tens of seconds, detach from their surface and contiguous cells, but remain vi-

able. However, the environment of cells in culture differs substantially from cells in intact

tissue. Therefore, pilot experiments have been performed to investigate the effect of plasma

needle treatment on tissue. Carotid arteries of C57BL/6 and Swiss mice were treated and

subsequently examined over their entire wall thickness using two-photon laser scanning

microscopy (TPLSM).

Initially, arteries were treated in dry environment to ensure good reproducibility of plasma

effects. However, cell damage was induced by dehydration. Furthermore, when higher

plasma powers were used, the thickness of the arterial wall and elastin layers were affected,

probably by heat. Experimental procedures were optimized and the influence of mount-

ing procedures and tissue dehydration were investigated. In subsequent experiments, the

artery was covered by a thin layer of liquid during treatment to prevent cell death by

helium flow. The effects of plasma treatment appeared to be induced superficially and

were not dependent on plasma power, when it was varied between 160 mW and 400 mW.

After plasma treatment, most adventitia cells and only a few smooth muscle cells were

necrotic. Further experiments have to be performed to elucidate the observed effects, and

to distinguish between apoptosis and necrosis of cells.

Parts of this chapter were published as I.E. Kieft, K. Douma, R.T.A. Megens, M.A.M.J. van Zandvoort,
D.W. Slaaf, E. Stoffels, Non-thermal plasma treatment of ex vivo arteries: preliminary results, ICPIG 2005
proceedings
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8.1 Introduction

In the last decade, plasma applications in the biomedical field have been expanding. Ex-

amples of ex vivo applications include the sterilization of medical equipment and coating

or surface modification of implants to achieve bio-compatibility [1]. An example of in vivo

plasma application is argon plasma coagulation (APC) [2]. The latter application is based

on high-power plasma that devitalizes the tissue by heat. In contrast, the plasma gen-

erated by the plasma needle [3] is essentially non-thermal. Therefore, the plasma needle

has the potential to become a more refined surgical tool to locally influence cells and tissues.

Plasma treatment of cultured cells led to reversible cell detachment: cells remained alive

and reattached within several hours [4, 5]. Furthermore, a small percentage of cells exhib-

ited apoptosis. Necrosis was observed only when high powers were applied (> 200 mW).

It is interesting to assess whether these effects also occur after treatment of tissues and

to check whether these effects are dependent on plasma conditions. A tissue consists of

an inhomogeneous cell population embedded in an extracellular matrix; the latter may

influence cell reactions. We chose to treat arteries because the structure of arteries has

been extensively described in scientific literature, especially with focus on atherosclerosis

[6].

Injury models studied for better understanding of arterial functioning include damage

caused by heating [7–10], beta particles (high energy electrons), gamma rays [11, 12], or

oxidative stress [13–15]. Heating is known to cause denaturation of collagen and damage

to smooth muscle and endothelial cells. Furthermore, it causes a decrease in diameter

(shrinkage) of the artery. Ionizing radiation is used to prevent restenosis in atherosclerotic

lesions treated with balloon angioplasty and stenting. The delivered radiation causes chro-

mosomal damage in vascular fibroblasts, smooth muscle cells, and endothelial cells, which

results in the loss of ability to proliferate [12]. Oxidative stress plays a role in formation

of atherosclerotic lesions.

The plasma needle can induce thermal effects and/or cause oxidative stress. Primarily,

plasma treatment of arteries may provide a new non-contact injury model that will help

to understand mechanisms involved in atherosclerosis and arterial tissue repair. Possibly,

when in the future the effect of plasma on cell proliferation rate and detachment is better

understood, the needle may become a new tool for treatment of vascular lesions.

In this chapter we show first results of plasma treatment of arteries obtained using Two-

Photon Laser Scanning Microscopy (TPLSM), a technique that combines good axial and

lateral resolution with a large penetration depth [16]. It can be used to visualize cellular

structures in intact arteries [17].

Murine arteries were chosen for this study since they are small (lumen diameter ∼ 300 µm)
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and contain only 2 to 3 layers of smooth muscle cells [6]. This allows good visualization

of plasma effects. Furthermore, the genetic background of mice is well established, and

genetically modified mice are often used as model for atherosclerosis. Initially, treatments

were performed on dry arteries, without liquid coverage, taking a risk of dehydration. This

was done because thickness of a liquid layer is difficult to measure, which would influence

reproducibility. However, this treatment procedure caused a high amount of cell death,

most likely due to dehydration. Thus, we decided to cover the artery with a thin liquid

layer in subsequent experiments.

8.2 Experimental

8.2.1 Plasma treatment

The plasma needle consisted of a sharpened metal pin (diameter 0.3 mm) that was confined

in a Perspex tube (Figure 8.1). Helium was supplied through the tube (2 l min−1), which

provided plasma operating in helium/air mixtures [3, 18].

Figure 8.1: Schematic drawing of the plasma needle.

An RF signal (13.56 MHz) was generated by a waveform generator (Hewlett Packard

33120A) and amplified by an RF amplifier (Kalmus model 125C-CE). From the amplifier,

the signal was directed to a home-built matching network. The resulting voltage at the tip

of the needle was around 200 Vrms.

An Amplifier Research PM 2002 power meter with dual directional coupler was placed

between source and matching network to measure forward and reflected power. Dissipated

plasma power was determined using a subtraction method [19]: the difference in nominal
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power with and without plasma at the same voltage was used to estimate dissipated plasma

power. The value used for treatment will be indicated in the text.

8.2.2 Temperature measurements

Temperatures were roughly estimated using liquid crystal temperature strips (VWR). At

the specific temperature, the color of the strip turned black. The strips had a working

range of 37-65 oC in steps of 3 to 5 degrees centigrade. The needle was placed for 1 min

above the strips with the tip of the needle at 1-mm distance from the strips.

Temperatures were measured both on dry strips and through a thin liquid layer.

8.2.3 Tissue preparation

Carotid arteries were obtained from C57BL/6 and Swiss mice. Mice were fed normal chow.

They were killed using an overdose of CO2, after which the arteries were excised and care-

fully cleaned from excessive connective tissue. For the experiments in dry environment the

arteries were placed in hydroxyethyl piperazineethanesulfonic acid (HEPES) solution for

one day before plasma treatment was performed. For experiments on influence of treat-

ment procedures, arteries were dissected on the day of the experiment and placed in Hank’s

Buffered Saline Solution (HBSS). This buffer consisted of potassium chloride (5.36 mM),

sodium chloride (136.89 mM), disodium phosphate (0.34 mM), potassium dihydrophos-

phate (0.44 mM), calcium chloride (2.50 mM), magnesium sulphate (1.09 mM), HEPES

(15.00 mM) and glucose (5.56 mM).

Figure 8.2: Carotid artery mounted in a home-built perfusion chamber with inner dimension of 5
x 2.5 x 1 cm (IDEE, Maastricht). The average length of the artery segment is 3-4 mm.
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Arteries were mounted as shown in Figure 8.2. First they were tightened onto glass mi-

cropipettes and then pressurized. The transmural pressure was 40 mm Hg.

8.2.4 Plasma treatment

For good reproducibility of the experiments, treatment of the artery was started with-

out coverage with liquid. A variation in the thickness of the medium layer results in a

variation of active plasma species reaching the tissue. This affects the treatment, as was

also found in Chapter 6. Plasma was applied at a distance of 1 mm to the outside of the

artery using a micro-positioner. Standard treatment time was 60 s, unless stated otherwise.

Treatment of dry artery carries the risk of damage by dehydration. To assess and mini-

mize damage by other factors than plasma, several experiments testing the experimental

conditions were performed.

The dissection of the artery and its mounting in the perfusion chamber may cause damage,

especially to the outer and most vulnerable layers. In the chamber, the artery was kept in

HBSS for preservation and to prevent dehydration. Experiments have been performed to

investigate the condition of the artery at this point, thus before plasma treatment.

If plasma treatment is to be performed on dry arteries, they suffered dehydration by air

for at least 3 minutes. Experiments to check the effect of this dehydration were performed

by removing the medium for 4 minutes. The influence of the helium flow was determined

using exactly the same procedure as for plasma treatment, but without igniting the plasma.

When plasma is applied to the artery, it is accompanied by a standard helium flow of 2 l

min−1. To investigate the influence of the helium flow, application times and flow velocity

were varied.

8.2.5 Microscopy

The arteries were imaged using TPLSM. A Nikon E600FN upright microscope was incorpo-

rated in a BioRad 2100MP imaging system, using a Spectra Physics Tsunami Ti:Sapphire

laser as excitation source. The latter was tuned and mode-locked at 800 nm or 850 nm.

The latter was used for experiments using only PI labeling. A water-dipping objective lens

60X (NA= 1.0) was used.

Three photomultipliers detected fluorescence in different spectral ranges. Filters were used

to select the wavelengths of interest. The data were imaged using a Kalman filter.
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8.2.6 Staining procedure

Several assays were used to visualize distinct parts of the tissue. These will be indicated

in the text. Samples were incubated with the probes for at least 30 minutes. All fluo-

rochromes described are two-photon excitable.

To stain cell nuclei, SYTO 13 or SYTO 44 (both Molecular Probes, Leiden, The Nether-

lands) was used. Labeling concentration of SYTO 13 was 1 or 2 µM in either phosphate-

buffered saline (PBS) or HBSS. Emission peak of SYTO 13 is at 510 nm. Instead of SYTO

13, sometimes SYTO 44 was used, which emits at a wavelength around 472 nm. SYTO 44

was applied in a concentration of 1.5 µM.

Usually arteries were co-stained, for example by combining SYTO 13 and Eosin (staining

elastin with an emission peak at 545 nm). Labeling concentration for Eosin was 0.25 or

0.5 µM in PBS or HBSS.

To detect membrane leakage, Propidium Iodide (PI; Molecular Probes) was applied. PI

penetrates membrane-damaged cells, binds to their RNA and DNA, and emits at a wave-

length around 617 nm. It was applied in a concentration of 2 µg ml−1.

As PI and SYTO both bind to DNA and RNA, a combined assay would result in compe-

tition between the two fluorochromes. Experiments were performed to visualize the result

of the competition. To detect necrotic cells, it is important that cells initially stained with

SYTO can still bind PI when damage is induced. In the experiment, the artery was stained

with SYTO and PI and afterwards helium flow was applied with no liquid surrounding the

artery. Then it was again incubated with PI for at least 30 minutes.

8.3 Results and discussion

8.3.1 Temperature measurements

Figure 8.3 displays temperatures measured at 1 mm from the needle tip after 1 minute

of treatment. We were not able to measure temperatures below 37 oC and above 65 oC.

Thus, when 65 oC is indicated in the figure, this means the temperature was at least 65 oC.

Temperature was measured using both the standard 2.0 l min−1 and 0.5 l min−1, because

a lower flow rate could possibly lead to less damage of the artery.

Temperatures in the figure are valid for plasma treatment in dry environment. For a helium

flow of 2 l min−1, plasma powers up to 100 mW could be applied without risk of thermal

damage as the temperature remained at 37 oC or below. When the flow rate was decreased

to 0.5 l min−1, temperature increased quickly with increasing power.
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Figure 8.3: Temperature in air at 1-mm distance from the needle using 2 l min−1 and 0.5 l min−1

helium flow. Error bars indicate accuracy of the strips. The exact temperature of points below 37
oC and of points at or above 65 oC could not be measured.

The temperatures displayed in Fig. 8.3 may be higher than the temperature of an arterial

sample at the end of plasma treatment. One reason is that before start of the treatment,

samples are at room temperature. Furthermore, the thermal capacity of the liquid-filled

vessels is larger than that of the strips. This means that more energy is required for an

increase in temperature of the vessels than for the same increase in temperature of the

strips.

To determine the temperature on the inside of the artery during treatment, an artery was

sliced longitudinally and placed on top of the temperature strips with the adventitia facing

the needle. The temperature was determined not to reach 40 oC when 400-mW plasma

was applied, which means endothelial cells are hardly influenced by heat during plasma

treatment in dry environment. Further experiments have to be performed to determine

the exact temperature of the samples during treatment.

Furthermore, temperature was measured underneath a thin layer of water (about 0.5 mm)

for treatment in a wet environment, and 37 oC was not exceeded for plasma powers up

to 700 mW. However, the temperature will be strongly dependent on the thickness of the

liquid layer, which could not be measured accurately.
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8.3.2 Plasma irradiation of arteries in dry environment

The structure of the vessel wall can be divided into three regions. The first is the adventitia

or the outermost connective tissue covering the vessel containing collagen and fibroblasts

(amongst others). The second is the tunica media that consists of several layers of elastin

and smooth muscle cells (SMC). The third layer consists of the internal elastic lamina

(IEL) and vascular endothelium, which is in direct contact with blood [20]. Because the

plasma was applied to the outside of the vessel, the highest dose of ultraviolet (UV) light

and radicals was applied to the adventitia.

Treatment of arteries without medium covering them would improve reproducibility of

plasma effects. A liquid layer covering the tissue may reduce UV light or radicals reaching

the sample. Thickness of the layer could vary from one experiment to the other. Thus,

initially experiments were performed without a liquid layer. In the next section the risk of

dehydration will be assessed.

For low-power (below 100 mW) plasma experiments, damage was assessed using TPLSM

with combined SYTO 13 and Eosin staining; no PI was applied to detect cell death. How-

ever, as will become clear in the next section, alsmost all fibroblasts and most SMC may

have died by necrosis because of damage by helium flow.

In the treated sample, the cytoplasm was no longer visible around the nuclei of the adven-

titia cells. This effect may be caused by either leaking of the cell cytoplasm, or by changes

in the morphology of the cell. Another possibility is that plasma influences the binding of

SYTO 13. The sample was followed up to 4 h after treatment. The apparent effect did not

change over this time period. Plasma treatment at low power does not affect the thickness

of the wall, because it was found similar before and after treatment; no shrinkage occurred.

When higher plasma powers (450 mW) were applied, effects were enhanced and resembled

the effects that were described for heat injury in literature. Collagen structure was dam-

aged and wall thickness was reduced. Shrinking effect was comparable to that induced by

heating. Under normal physiological conditions (80 mm Hg), shrinking starts at 75 oC, but

in a condition of zero transmural pressure, it happens already at 60 oC [7]. Other effects

were damage to SMC and endothelial cells. This was indicated by the uptake of Eosin

by these cells, which does not occur in healthy, undamaged cells. Some cells exhibited

blebbing, which is indicative of apoptotis.

It is known that elastin is not affected by heating [7]. However, in Figure 8.4 it seems

that the elastin layers have condensed into 1 layer. Possibly this is due to dehydration. In

all considered cases, the artery was subject to a certain transmural pressure. Since this



8.3. Results and discussion 119

pressure did not drop after treatment, plasma treatment did not cause artery perforation.

(a) (b)

Figure 8.4: (a) Untreated carotid artery stained with Eosin and SYTO 44; arrows indicate elastin
layers; (b) 1 min treatment time with 450 mW. Elastin layers containing the SMC appear more
condensed. (Size 206x206 µm).

8.3.3 Dehydration and helium flow

To minimize damage inflicted by other factors than plasma treatment, the influence of

experimental procedure was tested. After mounting, some fibroblasts and endothelial cells

showed an uptake of PI (see Figure 8.5). This means that their membranes were damaged

and the cells were necrotic. This may be expected as adventitia and endothelium are the

exposed layers and are thus more susceptible to damage. In 2 out of 7 cases, also some

SMC were positively stained. This may be the result of pipettes touching the artery or of

air bubbles that came into the lumen during dissection or mounting. It is advised to always

check damage after mounting to distinguish this from damage induced by the plasma.

Experiments to check the effect of dehydration were performed by removing the medium

for 4 minutes. In an average plasma treatment experiment, the artery was left dry for

about 3 minutes. The result was that some fibroblasts and a few SMC were stained with

PI. However, there was generally no significant increase in comparison to experiments after

mounting only.
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(a) (b) (c)

Figure 8.5: (a) Damage due to mounting: some cells in adventitia (A) stained with PI, meaning
some damage was induced. (b) Some SMC (middle left) are also stained after dehydration to air
for 4 minutes. (c) Many cells in adventitia, SMC and endothelial (E) cells stained after a helium
flow of 2 l min−1 for 1 minute. (Size 206x206 µm).

Then the damage induced by helium flow was investigated. It appeared that when helium

was applied as in standard plasma treatment, necrosis was induced in the entire sample:

many SMC and endothelial cells died. Reduction of the treatment time to 10 s, and re-

duction of helium flow to 0.5 l min−1 still produced this effect. It was thus concluded

that it was necessary to cover the artery by a thin layer of liquid during the treatment, to

minimize damage.

(a) (b) (c)

Figure 8.6: (a) Adventitia after mounting. Artery was stained with PI (red), Eosin (green) and
SYTO 13 (blue). (b) After mounting and helium flow (c) After plasma treatment (400 mW);
most adventitia cells were dead. (Size 206x206 µm).

An experiment with medium covering the artery when helium was applied showed that
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necrosis was limited. No significant increase in damage to the adventitia and endothelium

was observed compared to the damage after mounting (Figure 8.6).

8.3.4 Staining procedure

As described in Section 8.2.6, PI was used to detect necrosis. To obtain a good image of

the various artery constituents and to assess if cells were viable or dead, a combined assay

was used. Membrane-permeant SYTO 13 or SYTO 44 was used to detect DNA and RNA

of all cells. When the cell membrane was (partially) disrupted, PI entered the cell and had

to compete with the SYTO, because they both bind to DNA or RNA.

To test if PI can be used in combination with SYTO, cells were initially stained with

SYTO only. Then the artery was dehydrated by helium flow of 2 l min−1 and afterwards

incubated with PI. Cells that were stained positively with PI showed little or no SYTO

fluorescence. This property makes the co-staining of PI and SYTO useful to detect cell

death, because necrotic cells will always be stained with PI. One explanation of this is that

the binding affinity of PI to DNA is stronger than of SYTO, and PI could thus replace

the latter. A second explanation is occurrence of FRET (fluorescence resonance energy

transfer, [21]) between SYTO and PI. When SYTO is excited it may transfer its energy

to PI. Consequently, PI will give fluorescence, whereas SYTO will not. An experiment to

resolve which is the right explanation is to measure fluorescence lifetimes of separate and

mixed assays. If the lifetime of PI changes, this might be an indication of FRET.

To stain elastin, Eosin can be added to this combination. The emission peak of eosin is at

a lower wavelength than that of PI. Thus, with the right filter settings, these two can be

discerned.

8.3.5 Plasma irradiation of artery under thin liquid layer

First experiments with plasma treatment of an artery covered with a thin layer of liquid

were performed using plasma powers of about 160 and 400 mW. The layer of liquid was

0.1 to 0.2 mm. This was estimated using the fact that the glass micropipettes (see Fig.

8.2) were attached to metal pipettes with a slightly larger radius (0.4 mm larger). The

height of the liquid level was compared to this known size. Part of the cells in the ad-

ventitia was already damaged after mounting (Fig. 8.6), as was mentioned in Section 8.3.3.

For both the lower (160 mW) and higher power (400 mW) plasma treatments, apparent

damage was limited to the adventitia: most adventitia cells, but only a few SMC were

necrotic (see Fig. 8.6). When using relatively high plasma powers, plasma treatment
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probably caused some heating effects, as the layer of liquid covering the artery was thin.

However, no effects were observed below the adventitia, thus heating effects may be limited

to this layer. Low-power plasma treatment did not lead to significantly less damage.

It seems that even at higher powers, plasma treatment can be used to induce superficial

damage while layers underneath stay intact. However, long term effects have to be inves-

tigated.

8.4 Conclusions

We have shown that plasma treatment can induce controlled damage to vascular cells. The

injury is inflicted in a non-contact way and may be used as a new injury model.

Experimental procedures were adjusted to minimize damage induced by other factors than

plasma treatment. Damage induced by mounting and dehydration to air is limited to

some cell death in the adventitia. However, direct helium flow along the artery should be

avoided. Thus, during plasma irradiation, a thin layer of liquid should cover the artery.

Temperatures of plasma treatment were measured in air. For plasma powers below 100

mW with a helium flow rate of 2 l min−1, temperatures remained below or at physiological

temperature. However, at the start of plasma treatment, arterial samples are at room

temperature and have an unknown thermal capacity. In future, experiments have to be

performed to measure the temperature of samples during the treatment.

It appears that the effect of plasma treatment is limited to the adventitia when plasma

power is below 400 mW and treatment time is less than 1 min. Application of lower (160

mW) and higher (400 mW) plasma powers induced comparable amounts of cell necrosis

in the adventitia, and only little necrosis in the SMC. It seemed that the induced damage

was not dependent on plasma power. A provisional conclusion is that, on average, active

plasma species do not penetrate the arterial wall further than a few tens of micrometers.

Future investigations should include variations in treatment time and observations of long

term effects.

To distinguish viable and dead cells, SYTO 13 and PI can be used in a combined assay.

Even if the cells are previously stained by SYTO, PI can enter the cell and emit fluores-

cence to indicate necrosis. In future experiments, apoptosis markers may be used to detect

programmed cell death after irradiation.
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9.1 Introduction

Goal of this work was to investigate possible biomedical applications of small low-power

non-thermal atmospheric plasmas. With these plasmas we want to induce controlled re-

actions in cells. In industry, gas discharges are commonly used for surface modification

(etching, cleaning and deposition). In the biomedical field (and in surgery in particular)

plasmas are mainly applied ex vivo. Low-pressure plasmas (similar to the ones used for

solid-state processing) are used to modify biological scaffolds; both low-pressure and at-

mospheric plasmas are applied in sterilization of surgical equipment, air, etc. For in vivo

(surgical) applications, only high power plasmas are used [1] to thermally devitalize and

dispose tissue parts. In this thesis, for the first time a non-thermal plasma has been applied

to living biological samples, and the plasma-induced effects under the threshold of thermal

damage have been studied.

For this study we used the plasma needle. This is a radio frequency (RF) plasma, oper-

ating in helium/air mixtures [2, 3]; the size of the active zone (plasma glow) is 1-2 mm.

The plasma produces radicals and emits some ultraviolet (UV) radiation. These two fac-

tors may cause reactions in cells and tissues. Goal is to superficially induce local changes

to cells in a non-thermal and non-contact way. Working area of this gas plasma can be

small, i.e. operation on a chosen spot in tissue can be performed with precision. In the

experiments, it was applied both to cultured cells (uniform population; easily accessible)

and tissues to study the reactions. The main effect for cells in culture was detachment of

cells without necrosis. Pilot experiments on tissues revealed that when low powers (about

100 mW) were used, penetration depth of the effects was limited to a few cell layers.

9.2 Plasma needle working range

The plasma needle operates in a unipolar configuration, i.e. it consists of one powered elec-

trode and the (remote) surrounding as grounded electrode. In practice, this means that it

is easy to apply to any surface, thus also to tissue. When one moves the needle close to

tissue, the plasma is drawn towards it, and changes in shape. In this situation the voltage

on the needle is lowered (Chapter 3). At the same time, the electric field increases, the

plasma becomes brighter and plasma power increases. The change in forward and reflected

power upon approach of the sample may in future be used as an indicator of distance.

The ideal distance to operate when treating a surface is less than 2 mm from the surface,

because then the plasma is drawn towards the surface (Chapter 4).

Even though the plasma is in principle non-thermal, we should be careful with applying it

to living cells and tissues. Temperature should not exceed the physiological one by more
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than a few degrees. The temperature of the plasma is, amongst others, dependent on

plasma power and distance to the surface (Chapter 5 and 8). At 1-mm distance, tempera-

ture in air is 37 oC or below for plasma powers under 100 mW. Use of high plasma powers

(> 200 mW) resulted in necrosis in cell cultures, possibly due to heat (Chapter 5). One

should be careful when the distance becomes shorter than 1 mm, because plasma temper-

ature is higher in the center of the plasma, which will result in an unwanted overheating

of the sample.

When tissues are treated with plasma, their temperature may not rise to the plasma tem-

perature that was measured in air. The samples normally start at room temperature and

have a certain thermal capacity. Thus, it will take time for them to warm up. Exact

temperatures of the tissue will have to be measured in future experiments.

Size of the plasma limits possible applications in two manners. First, for some applica-

tions, it might be useful to have a large plasma to treat larger surfaces faster. However,

if we increase plasma size by simply increasing voltage and power, this leads to higher

temperatures that can cause heat damage. A solution to this may be to construct a stack

of needles in close range or an array of micro-plasma cells.

Second, for very local and high-precision treatment, the plasma should be even smaller.

In this case, one is limited by plasma physical properties such as ionization and recombi-

nation rates. However, the limit is probably not reached yet. The point of the needle can

be made sharper to increase the local electric field [4]. It is expected that the plasma will

ignite at lower voltage and power, resulting in a smaller plasma. Furthermore, the material

of the needle is important for miniaturization of the plasma. Currently we use an alloy

containing tungsten, but a material with a lower work function leads to higher electron

emission, which would allow to sustain a discharge at a lower voltage. A non-oxidizing

material should be chosen because the needle is operating in humid air. A commonly used

material is thoriated tungsten (W + ThO2) [5].

To operate in small openings and on vulnerable tissues, helium flow should be limited to

avoid pressure build-up and flow-induced desiccation. When flow is reduced, the admix-

ture of air molecules increases. In the current configuration, admixture of air to helium

is minimal (at most 1 %) for flow rates on the order of 2 l min−1 (Chapter 4). In the

emission spectrum, a reduction in helium flow from 2 to below 0.8 l min−1 results in an

increase in intensity of the nitrogen lines (Chapter 3). The influence of this admixture

appears to be important. A numerical model by Brok et al [6] revealed that N+
2 is the

dominant ion even at small admixtures of nitrogen. They also conclude that the region

of influence of the needle extends far from the region of the active plasma, which is a few

hundred micrometers. The electrons and N+
2 ions that are produced by Penning ionization

of helium metastables can diffuse millimeters outward.
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An extra advantage of helium reduction is that it saves costs, but a disadvantage is the

uncontrolled increase of air admixture, and a decrease of convective cooling. The latter is

important to keep plasma temperature low. Indeed, flow reduction results in a substantial

temperature increase (Chapter 8). A solution may be to change the design of the needle,

its insulation and helium supply (e.g. by sustaining a high gas flow while recycling helium),

so that admixture is suppressed and convection is maintained.

The working of the plasma is based on its chemical activity. The intensity of the latter is

dependent on dissipated plasma power. We noticed before that dissipated power changes

with distance, and that it is strongly related to temperature. Thus, for fundamental re-

search, plasma power is an important parameter to measure. Power dissipated in the

plasma (influx) cannot be measured directly, but is calculated by a subtraction method

[7]. It ranges from tens of mW up to a few hundred mW (Chapter 3).

For applications, however, the power outflux can be more important that the power influx.

This is, because the outflux determines what actually reaches the sample surface. Power

outflux measurements by Stoffels et al [8] show that 10 % of the plasma power outflux is

transmitted through the medium between the needle and the surface as heat conduction

and radiation (both visible and near UV/IR). The other 90 % is lost by heating of the

medium (60 %) and (photo)chemical reactions (30 %). Total power outflux is around 0.1

W cm−2.

For a satisfactory reproducibility of the experiments, it is important that the plasma is

stable and reproducible. To achieve this, stability and efficiency of the power supply to

the needle were improved by adapting the design of both the needle and the matching

network (Chapter 3). Electromagnetic radiation by the needle was reduced by shortening

the part protruding from the metal case. This way, antenna behavior of the needle was

reduced which also allowed to save power. The matching network was optimized to reduce

power losses. Then, the electrical properties of the plasma were modeled and compared

with experimental results determined from matching network parameters (Chapter 3). The

discharge resistance found was in the range 100-1200 kΩ. From this resistance, electron

density was estimated to be 1017 m−3. A Thomson scattering measurement was performed

with the setup as built by Van de Sande [9], but electron density was below the detection

limit of the specific experiment. This means that electron density was lower than 1018 m−3.

Longer measurements with higher laser power should make detection of the low density

possible. Using a numerical model, Brok et al [6] calculated a density of 1017 m−3.
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9.3 Active plasma ingredient

When plasma was applied to cultured cells, a process was observed that appeared similar

to a well known chemical effect. Cells detached after plasma treatment as they also de-

tach after applying trypsine (Chapter 5). Trypsine breaks down several types of proteins.

When used on attached cultured cells, cell adhesion molecules are broken. These can be

restored on a typical time scale of several hours. Trypsine is only used for research pur-

poses because its action is neither specific nor local. After plasma-induced detachment,

cell adhesion molecules could be restored as well.

Using our non-thermal atmospheric plasma, detachment voids up to 5 mm in diameter

could be achieved at treatment times of 10 s (Chapter 6). The induced void sizes were

comparable to the deactivation areas induced on bacteria by Sladek and Stoffels [10]. The

smallest void that was produced had a size of 100 µm diameter. This means that if the

size of the plasma is further reduced, the precision of treatment might be increased to a

few cells, or even to a single cell in low-density cell cultures.

Another effect of the plasma treatment was the induction of apoptosis in a small percent-

age of the cells. Optimization of treatment conditions, e.g., by addition of other gases to

the helium buffer gas to produce specific radicals, might raise the percentage of apoptosis.

To optimize the efficiency of the plasma treatment, one has to know the cause of the reac-

tions. We found several indications that plasma radicals (both neutrals and ions) are the

main cause, and are more important than e.g., UV radiation.

Radicals are known, for example, to induce damage to DNA or to proteins, and to cause

lipid peroxidation [11]. These effects are generally due to reactive oxygen species (ROS) or

reactive nitrogen species (RNS), which include both neutral and ionized particles. When

the level of ROS in or around cells is too high, this can lead to oxidative stress. The latter

can result in either adaptation or (fatal) cell injury.

As mentioned above, ions are usually included in the broad definition of reactive species

or radicals. However, it may be interesting to know the specific role of ions, because both

positive and negative ions are known to deactivate bacteria or to inhibit their growth [12].

On the other hand, the density of ions in the plasma is probably one or two orders of

magnitude lower than that of radicals (Chapter 4). A method to clarify the role of charged

particles would involve their magnetic confinement. The ions would be trapped in or near

the plasma, so that they could not reach the tissue. Such tests are not within the scope of

this thesis, but will be executed in near future.

Besides radicals, UV light also forms an important factor that may lead to cell injury.

Experiments on bacterial cells with air plasmas at atmospheric pressure (emitting both

UV light and radicals) [13] showed that highly reactive species like O, OH and NO2 play

the most crucial role in the destruction of microorganisms, hereby indicating UV light to
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be of less importance.

Another indication of the low importance of UV light was found in our experiments. We

observed that the liquid layer that covered the cells was an important parameter for the

detachment area (Chapter 6). When the liquid layer was thin, cells detached more easily.

The UV light that was emitted by the plasma was in a range that was not absorbed by

water. Thus, it is most likely that reactive species (neutral radicals and ions) are more

important in the detaching.

Treatment of cells with UV light (no plasma) resulted in cell damage and eventually necro-

sis (Chapter 7). No cell detachment was observed after UV radiation exposure alone.

The CHO-K1 cells that were used for the experiments had a threshold value for the UV

treatment of 0.5-0.7 J cm−2, depending on the wavelength. Below this threshold value, no

evident effects were observed. However, internal cell damage may be induced.

In contrast to eukaryotic cells, bacteria appeared to be much more sensitive to UV irradi-

ation. It was found that the threshold for inactivation of E. Coli was extremely low or not

existing, and that 99 % reduction of bacterial population was possible at an irradiation do-

sis lower than 0.05 J cm−2. Since 99 % reduction is sufficient for tissue disinfection, it is not

unthinkable that low-power UV sources could be used for in vivo treatment of infected sites.

A last indication that one ”plasma ingredient” is dominant over the other was found by

comparison of two publications. Moisan et al [14] employed a low-pressure plasma source,

which emitted a substantial amount of high-energy photons. They characterized plasma

inactivation of bacteria and spores by the existence of two or three distinct phases in the

survival curve. The idea behind these phases is that there are different dominating inacti-

vation processes at different exposure times. In the first phase, bacteria are destroyed very

fast, because their DNA is broken by UV irradiation (up to about 1 min treatment time

in their plasma setup). This is followed by a slower erosion of the microorganism through

photodesorption and etching (again a few minutes). These two phases were not observed

during treatment of bacteria with the plasma needle [10]. It is likely that the UV irra-

diated by the plasma needle is so low that the second mechanism is dominant from the start.

The reactivity of the different radicals varies [15] and they may react with different biolog-

ical molecules [16]. Thus, it is important to know which radicals are formed in the plasma,

or in the liquid as a reaction to species from the plasma. For specific applications, specific

radicals may be needed. The radicals that are detected by optical emission spectroscopy

in the plasma are OH and O (Chapter 3); detection of ozone (O3) was not possible. The

latter may, for example, be measured by UV absorption [17, 18]. Another radical that is

thought to be formed, but not detected by emission spectroscopy, is NO. However, studies

on N and O containing plasmas state that significant amounts of NO are formed [19]. NO
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has a central role in a wide variety of physiologic and pathophysiologic functions in tissues

and organs. For example, it displays antitumor activity [20].

The amount of radicals formed by the plasma appeared to be determined by the mixture

of air molecules into the helium buffer gas. Thus, it may be possible to increase the per-

centage of radicals by accurate admixing of small amounts of, e.g., oxygen. Addition of

other gases may generate specific radicals [21].

For applications, it is not only important to know which radicals are formed, but also

what fraction of them can reach the biological sample. For this purpose, measurements

of radical densities in plasma-treated liquid samples were performed. In irradiated liquid,

radicals from the ROS family were detected (Chapter 4). Their density was found to be in

the µM range, which is comparable to physiological concentrations. The detected species

may be directly emitted by the plasma or formed in the liquid itself by reaction with, e.g.,

metastable atoms or ions from the plasma.

A last parameter that is important for applications, is how deep the active plasma ingredi-

ent penetrates the tissue. This penetration depth may be limited. An indication for this is

that the thickness of a liquid layer covering cultured cells influences the rate of detachment

(Chapter 6). A second indication was found from first experiments (Chapter 8) on murine

arteries. They were performed to verify damage after plasma treatment in the various lay-

ers. For powers between 160 and 400 mW with 1 minute treatment time, no dependency

on plasma power was found for the effects, and damage was limited to the adventitia. A

provisional conclusion was drawn that plasma reactive species cannot penetrate the tissue

more than a few cell-layers.

9.4 Detachment mechanism

What is the mechanism that causes the detachment of the cells? In the previous section

we described which plasma property is likely to cause the effects, but to understand the

entire mechanism we need to know which parts of the cells are affected and how the cell

responds.

At the moment, we developed two theories concerning the detachment: a passive and an

active mechanism. The first is that the reactive plasma species break the cell adhesion

molecules (CAMs) that connect the cells to each other and to the extracellular matrix.

Consequently, cell morphology will change; they will puff up and because they are in a

liquid solution they will start floating. The second theory is that the cells receive a cer-

tain alarming stimulus so that they start migrating towards a different and less dangerous

area. The fact that dead cells are not detached after treatment supports the second theory.
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Often when a cell is injured, gap junctions close, thereby isolating a damaged cell from

its neighbors. This isolation process may result from a rise in calcium and a fall in pH in

the cytosol of the damaged cell [22]. In future experiments, indicators for pH and calcium

will be applied to investigate this possible reason for the disturbance in cell communication.

The question is then: do we see the same effect for cells in culture or in tissue? Cells in cul-

ture are of homogeneous type and reactions are not influenced by a complex extracellular

matrix. Detachment of cells in a tissue would take more effort, as they are more strongly

bound to the matrix. Even when detachment of cells in the tissue is present, it will be

difficult to observe. The detached cells might still be enclosed by fibers of the matrix, so

they will not float away. In principle though, it is possible to stain the adhesion molecules

and detect if they are broken after the treatment.

9.5 Conclusion and future directions

In this work, we explored possible biomedical application of the plasma needle. We found

that the small non-thermal atmospheric plasma is a well controllable and that it can be

applied to locally influence cells and tissues. Possible applications are local cell removal

and use of plasma treatment as an injury model.

It will be interesting to elaborately study specific effects at cellular level. Questions like

”Are treated cells still communicating?” and ”Can cells completely recover after treat-

ment?” should be addressed. Furthermore, the influence of plasma on cellular proliferation

rate should be investigated. Only pilot experiments were performed to assess the effects of

plasma on tissue. Future studies should include detachment of cells from the extracellular

matrix in tissues, induction of apoptosis and other processes.

To study plasma-cell interactions from a plasma-physical point of view, addition of gases

to the helium to produce specific radicals, and magnetic confinement to clarify the role of

the ions are of major interest.
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Summary

The plasma needle is a novel design of a radio-frequency discharge in helium/air mixtures

at atmospheric pressure. The discharge contains neutral, excited and ionized particles,

and emits ultraviolet (UV) light. It operates at low electric power and close to ambient

temperature; it combines chemical activity with non-destructive character. Therefore it is

expected that the plasma needle will be used in future in (micro) surgery, e.g. in wound

healing and in controlled tissue removal through cell detachment or apoptosis, avoiding

necrosis and inflammation reactions. Focus of this study is both on optimization of needle

design and on assessment of effects of plasma activity on living cells. This work is a pio-

neering study of the effects of non-thermal plasma on biological samples.

The design of the plasma needle was adjusted in such a way that instead of operating in a

closed reactor, now the treatments could be performed in open air. Thus, larger samples

could be treated and handling times were reduced. Then, a characterization of the needle

was performed using electrical as well as optical diagnostics (Chapter 3). It was found that

the needle operated at voltages of 140 Vrms and higher. A model was made to determine

the resistance of the plasma and from this an estimation of the electron density could be

made. The latter can be regarded as an indirect measure for plasma reactivity. Results

from optical emission spectroscopy showed that reactive oxygen species, such as O· and

OH·, were produced in the plasma. Furthermore, UV emission was detected. Both the

radicals and the UV are known to interact with cells and tissues.

For applications, the amount of radicals that reach the sample or that are generated in

the sample is important. For this reason, radicals were detected in liquid that was treated

with plasma using a chemical technique (Chapter 4). It involved a fluorescent probe: the

probe was dissolved in liquid and after reaction with specific radicals it became fluorescent.

Radical density in the liquid depended on plasma conditions, treatment time, and amount

of liquid used, but it was always in the micromolar range. These concentrations were found

to be comparable with physiological concentrations that were stated in literature.

Basic cell reactions after plasma treatment were determined by experiments on cultured

Chinese hamster ovarian (CHO K1) cells (Chapter 5). One of these reactions was cell
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detachment: cells detached from their environment but remained alive after treatment.

Other reactions included a small percentage of apoptosis and, when high plasma powers

were used, necrosis. A comparison with the effect of UV light from UV lamps was made

(Chapter 7). The main effect of UV treatment was necrosis, but only above a certain

threshold value. For mammalian cells, this threshold was reasonably high. Thus, the ef-

fects of plasma treatment could not be explained by the action of the UV light from the

plasma.

Quantitative experiments were performed on cultured bovine aortic endothelial cells (BAEC)

and rat smooth muscle cells (A7r5) (Chapter 6). These two cell types constitute walls of

blood vessels. It was shown that treatment times of less than one minute cause detachment

of the cells if the layer thickness of the liquid that covered the cells was low (around 0.1

mm). This suggests that at short treatment times, the penetration depth of the plasma

into the sample is limited. The percentage of necrotic cells was low after treatment. No

difference was found in the detachment behavior of both cell types.

Finally, pilot experiments were performed on carotid arteries of C57BL/6 and Swiss mice

ex vivo (Chapter 8). They were studied using a two-photon laser scanning microscope

(TPLSM). Cell nuclei, elastin bands, and collagen could be visualized. Preliminary results

indicate that induced changes are not strongly dependent on applied energy if no heating

effects are induced. Apparent effects were limited to the adventitia, probably due to a low

penetration depth of active plasma species.

In conclusion, we can state that the plasma needle is a non-destructive tool that can be ap-

plied with precision. It has a superficial action and causes little damage to the tissue. The

level of damage can be controlled to achieve a desired therapeutic effect. Both on cultured

cells and on ex vivo arteries interesting effects were found that confirm the hypothesis that

the plasma needle will have a future in surgery.



Samenvatting

Plasma’s winnen de laatste jaren flink aan bekendheid vanwege de plasma tv-schermen die

sterk in opkomst zijn. Veel mensen kennen plasma’s ook van de TL-buizen die in de meeste

kantoren voor het licht zorgen, hoewel niet iedereen zich zal realiseren dat het hier plasma’s

betreft. Wat de meesten waarschijnlijk niet weten is dat plasma’s veel vaker voorkomen:

maar liefst 99 % van het heelal bestaat uit gëıoniseerd gas. Voorbeelden uit de natuur zijn:

de zon, bliksem, vuur en het noorderlicht.

Maar wat is een plasma nu eigenlijk? Een plasma heeft veel overeenkomsten met een gas,

het bevat namelijk vrij bewegende deeltjes. In een gas zijn dit atomen en moleculen. In

een plasma komen daar geladen deeltjes bij, zoals ionen en elektronen. Plasma’s zijn hi-

erdoor in staat elektriciteit te geleiden. Andere eigenschappen zijn dat ze licht uitzenden

en chemisch reactief zijn. Vooral dat laatste maakt dat plasma’s vele toepassingen hebben

gevonden in de industrie. Ze worden gebruikt voor het etsen van halfgeleidercomponen-

ten, het deponeren van dunne lagen, het ontsmetten van medisch gereedschap en andere

oppervlaktebewerkingen.

Ons project is erop gericht plasma toe te passen in het biomedische vakgebied. Het uitein-

delijke doel is fijn-chirurgie waarbij cellen gecontroleerd verwijderd worden zonder dat een

onstekingsreactie op gang wordt gebracht.

Plasma’s kunnen worden gemaakt door het zodanig aanleggen van een elektrisch veld dat

er een elektrische ontlading in een gas plaatsvindt. Door variatie in o.a. het soort gas,

de gasdruk en de frequentie van de aangelegde spanning kunnen de eigenschappen van

de ontlading sterk bëınvloed worden. Voor ons onderzoek gebruiken we de zogenoemde

”plasmanaald”. De werking van deze plasmanaald is gebaseerd op een radio-frequente

(RF) ontlading in helium/lucht mengsels. De ontlading vindt plaats aan het einde van een

scherpe metalen draad. In het eerste ontwerp was deze naald geplaatst in een afgesloten

doos die werd gevuld met helium nadat het te behandelen voorwerp erin was geplaatst.

Om behandeling van grotere voorwerpen mogelijk te maken en de doorlooptijd te verkorten

is het ontwerp aangepast (Chapter 3). De toevoer van het helium is parallel gemaakt aan

de metalen draad waardoor het plasma in de lucht kan branden. De ontlading vindt plaats

137



138 Samenvatting

vanaf een spanning van 140 Vrms.

In het geval van de plasmanaald zijn de eerder genoemde parameters zoals het soort gas en

de frequentie zodanig gekozen dat een klein (orde 1 à 2 mm) niet-thermisch plasma ontstaat.

Juist de combinatie van het niet-thermische karakter met de chemische reactiviteit maakt

de plasmanaald potentieel toepasbaar voor verfijnde biomedische toepassingen. Het doel

van het onderzoek in dit proefschrift is dan ook om meer inzicht te krijgen in deze mo-

gelijke medische toepasbaarheid. Het focus ligt hierbij zowel op de optimalisatie van het

ontwerp van de naald als op het in kaart brengen van de response van cellen na behandeling.

Om de effecten van het plasma goed te kunnen begrijpen is het noodzakelijk dat de samen-

stelling ervan bekend is. Met behulp van spectroscopie is het uitgezonden licht geanalyseerd

(Chapter 3). Hieruit is gebleken dat het grootste deel in het zichtbare gebied ligt, maar

dat er ook UV licht uitgezonden wordt. Uit de specifieke golflengtes van het uitgezonden

licht kan bepaald worden welke radicalen er o.a. in het plasma gevormd worden. Het blijkt

dat er reactieve zuurstof deeltjes, zoals O· en OH·, worden gemaakt. Van zowel radicalen

als van UV licht is bekend dat ze reacties veroorzaken in cellen.

Om radicalen in een vloeistof te meten is een andere methode toegepast (Chapter 4). Hier-

voor is een chemische techniek gebruikt, namelijk een fluorescente kleuring. Een chemische

stof wordt hiervoor in een vloeistof opgelost. Vervolgens wordt deze vloeistof met het

plasma bestraald en komen er radicalen in. Deze radicalen reageren met de chemische

kleuring die fluorescerend wordt. Op deze manier is vastgesteld dat de concentratie van

radicalen in de vloeistof in het micro-molaire bereik ligt.

De primaire celreacties op de gasontlading zijn onderzocht door experimenten op gekweekte

cellen uit te voeren (Chapter 5). Voor deze experimenten zijn cellen van de eierstokken van

een Chinese hamster (CHO K1) cellen gebruikt. Het voornaamste effect bleek het loslaten

van de cellen van hun buren en van de bodem waarop ze gekweekt waren. Verder ging

een klein percentage van de cellen in apoptose. Dit is een geprogrammeerde celdood die in

werking treedt als de cel onherstelbaar beschadigd is, maar nog wel enigszins metabolisch

actief is. Als het plasma vermogen hoog is treedt ook necrose op. Dit is een vorm van

celdood die vaak gevolgd wordt door een ontstekingsreactie.

Er is een vergelijking gemaakt met het effect van UV licht van UV lampen op cellen (Chap-

ter 7). Het belangrijkste effect van het UV was necrose, maar dit vond alleen plaats als de

hoeveelheid licht boven een bepaalde drempelwaarde uitkwam. Voor de geteste diercellen

was deze drempelwaarde relatief hoog t.o.v. bacteriën. Uit deze vergelijking blijkt dat de

effecten van de plasma-behandeling niet verklaard kunnen worden door het uitgezonden

UV licht.

Kwantitatieve experimenten zijn uitgevoerd op endotheelcellen van runderen (BAEC) en
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spiercellen afkomstig van ratten (A7r5) (Chapter 6). Deze twee celtypen vormen samen de

wanden van bloedvaten. Een plasma behandeling van 10 seconden resulteert in het loslaten

van cellen als de laagdikte van de vloeistof die de cellen bedekt klein is (rond de 0.1 mm).

Dit wekt de suggestie dat voor korte behandeltijden de penetratie diepte van het actieve

plasma ”ingrediënt” in de vloeistof beperkt is. Het percentage necrose na de behandeling

was laag. Er is geen verschil waargenomen in het gedrag van de twee bestudeerde celtypen.

Tenslotte zijn er proef experimenten uitgevoerd op carotide vaten van muizen ex vivo

(Chapter 8). Hiermee zijn de effecten op weefsels onderzocht. Dit is van belang omdat

cellen in weefsels omgeven worden door een extracellulaire matrix die bestaat uit o.a. col-

lagene en elastine vezels. De bloedvaten zijn bestudeerd met behulp van een twee foton

laser scanning microscoop. Hiermee konden celkernen, elastine banden en collageen worden

gevisualiseerd. De eerste resultaten geven aan dat de effecten niet sterk afhankelijk zijn

van de toegevoerde energie, zolang er geen hitte effecten optreden. Er treedt celdood op,

maar dit effect blijft beperkt tot de buitenste laag van het vaatje: de adventitia.

Een mogelijk toepassing van de plasmanaald is bijvoorbeeld het verwijderen of verplaatsen

van cellen en weefsels zonder al te veel schade (voor bijv. huidziekten, kanker, stenoses,

celbiologische manipulatie ten behoeve van gentherapie en celonderzoek). Verder zou de

naald kunnen worden gebruikt voor het ontsmetten van levende organismen, omdat bac-

teriële infecties zorgen voor complicaties in wondgenezing, tandbederf etc.

We kunnen concluderen dat de plasmanaald een niet destructief instrument is dat met

precisie kan worden toegepast. Het heeft een oppervlakkige werking en brengt weinig

schade toe aan het weefsel. De hoeveelheid schade kan worden geregeld om het gewen-

ste therapeutische effect te krijgen. Zowel op gekweekte cellen als op de ex vivo arteriën

zijn interessante effecten gevonden die de hypothese bevestigen dat de plasmanaald een

toekomst zal hebben in de chirurgie.
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