

Software architecture analysis tool : software architecture
metrics collection
Citation for published version (APA):
Muskens, J., Chaudron, M. R. V., & Westgeest, R. (2002). Software architecture analysis tool : software
architecture metrics collection. In Proceedings 3rd PROGRESS Workshop on Embedded Systems (Utrecht, The
Netherlands, October 24, 2002) (pp. 128-139). STW Technology Foundation.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Dec. 2021

https://research.tue.nl/en/publications/e836faa4-6a57-4417-b7ad-c5c7813c09d3

Abstract— The Software Engineer ing discipline lacks
the ability to evaluate software architectures. Here we
descr ibe a tool for software architecture analysis that is
based on metr ics. Metr ics can be used to detect possible
problems and bottlenecks in software architectures. Even
though metr ics do not give a complete evaluation of
software architectures it is a useful analysis method. The
Software Architecture Analysis tool can be applied to
XMI output generated by a UML modelling tool. We have
done this using Rational Rose.

Keywords— software architecture, analysis, metr ic
collection

I. INTRODUCTION

The first step in making good software is making a
good design. The design defines the architecture of the
software to be built. The quality of the software highly
depends on the architecture defined in the early stages of
he development process.

The architecture can influence the functional

requirements as well as the non-functional requirements.
The impact of architectural design decisions in a software
development process is very high.

At the present time there are a few methods to evaluate

software architectures. SAAM [3] and ATAM [3] are by
far the most well known. These methods are evaluation
techniques of quality attributes of software architectures
by a group of experts.

Experts are often not available, these methods are not
repeatable, time consuming, and subjective.

We analysed software architectures based on the 4+1

View Model [14] and describe software architecture

analysis in a way that is implemented by the software
architecture analysis tool. This tool calculates metrics;
these metrics can help architects evaluating software
architectures.

Section 2 discusses the notion of software architectures

that we use. Section 3 discusses what can be analysed of
software architectures and how software architectures
can be analysed. Section 4 presents the software
architecture description model used as input for the
software architecture analysis tool. Section 5 presents a
data model for the architecture description models
described in section 4. Section 6 discusses software
metrics based on the data model described in section 5.
Section 7 concerns the interpretation of metrics. Section 8
describes the environment of the tool. Section 9 describes
the design of the tool.

II. WHAT IS SOFTWARE ARCHITECTURE?

There are several definitions of software architectures,
almost as many as there are software architects. Here are
some examples.

(Bass, Clements and Kazman. Software Architecture in
Practice, Addison-Wesley 1997)
The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relationships
among them.
By “externally visible” properties, we are referring to
those assumptions other components can make of a
component, such as its provided services, performance
characteristics, fault handling, shared resource usage, and
so on. The intent of this definition is that a software
architecture must abstract away some information from
the system (otherwise there is no point looking at the

Software Architecture Analysis Tool
Software Architecture Metr ics Collection

Johan Muskens, Michel Chaudron and Rob Westgeest
Technische Universiteit Eindhoven and CMG Eindhoven

P.O. Box 513, 5600 MB Eindhoven, the Netherlands
Phone: +31 (0)40 2472993 Fax: +31 (0)40 2436685

E-mail: J.Muskens@tue.nl

PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

© PROGRESS/STW 2002, ISBN 90-73461-34-0 OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

architecture, we are simply viewing the entire system) and
yet provide enough information to be a basis for analysis,
decision making, and hence risk reduction.

(Booch, Rumbaugh, and Jacobson, 1999)
An architecture is the set of significant decisions about
the organization of a software system, the selection of the
structural elements and their interfaces by which the
system is composed, together with their behaviour as
specified in the collaborations among those elements, the
composition of these structural and behavioural elements
into progressively larger subsystems, and the
architectural style that guides this organization --- these
elements and their interfaces, their collaborations, and
their composition.

For the analysis of software architectures the definition of
software architectures is not the most important thing.
The notation used to describe the architectures is more
important. We use a notation based on “The ‘4+1’ View
Model of Software Architecture” [14] by Philippe
Kruchten, which is described in section 4.

III. SOFTWARE ARCHITECTURE ANALYSIS

Software architecture can be analysed on functional
requirements as well as quality requirements. We
consider the analysis of software architectures on non-
functional quality attributes like extendibility,
maintainability,

scalability, reusability, etc by means of an analysis tool.

Software architectures can be analysed on several
aspects. These aspects can be divided in the following
categories:

What can we analyse:

• Structural: The structural aspects of software
architectures are things like the logical
decomposition of the system in components and
the distribution of services over the component.

• Behavioural: The behavioural aspects concern
the ordering & multiplicity of actions and how
the components work together.

• Semantical: Semantical aspects are usually not
described in any kind of diagram, but concern the
meaning / interpretation of the software
architecture description.

For automated analysis there are several approaches.

How can we analyse:

• Metrics: Software metrics concern the calculation
of scores for elements (for example components)
in software architectures. Metrics can give useful
information on architectures, however the
interpretation of metrics can be quite
complicated. Currently most software metrics are
based on code [2,4,17].

• Conformance to design patterns or architectural
styles: Patterns and styles are often used in
software architecture designs. They represent a
simple concept and have proven their value over
time. Therefore it can be useful to check whether
architectures conform to a specific style or
pattern [5].

• Detection of Bottlenecks and design critiques:
Bottlenecks and design critiques are typically
things an architect wants to avoid in his design.
A tool that points the bottlenecks / anti-patterns
in a design can be useful [6].

This paper considers analysis of the structural,
behavioural, and in some way also some semantical
aspects of software architectures by means of metrics.

IV. “THE ‘4+1’ VIEW MODEL OF SOFTWARE

ARCHITECTURE”

Software architecture deals with abstraction, with
decomposition and composition, with style and esthetics.
To describe software architectures we use “The ‘4+1’
View Model of Software Architecture” by Philippe
Kruchten [14]. This model is composed of multiple views
or perspectives:

• Logical view
• Process view
• Physical view
• Development view

The description of architectures can be organised

around these four views, and then illustrated by scenarios
that become the fifth view.

129

������� ���
	���� �� �������
	 �
�
���
������� ��

�
��������������� �� ��������� ���
	���� ��

�� �!�"
#�$�% &('

)�*�+
,�-(.0/(1�2�-�*�354 6 78*�9(: 6 4 ;

< *54 /�=
1 9>4 7�1�.�?�@5/(1 2 7�1�AB9(*�3>/(?�C�3>9(: 9(D�6 : 6 4 ;

@�1 7�=�1 9(A�AE/�1�.F.07�2 4 GF9(1 /EAB9�*�9�=�/�AE/�*�4

H�78I�7�: 7(=�;(?
J�78A�A�-�*(6 3>9>4�6 78*�.

Figure 1 - The '4+1' View Model

We will now look at the views in turn. Only the

“Logical view” and the “Scenarios” are analysed by the
analysis tool.

A. Logical View

The logical architecture primarily supports the

functional requirements – what the system should provide
in terms of services to its users. The system is
decomposed into a set of key abstractions, taken (mostly)
from the problem domain, in the form of components.
Besides the functional decomposition in components the
logical view shows the logical dependencies of the
components.

For the logical view we use a component diagram. The

component diagram consists of the following elements:

• Components: A black box with an interface. This
interface is a list of services which the component
provides to the out-side world.

• Relations: A component can use one or more
services of another component; the uses relation
models this.

• Interface descriptions: Describe the provided
services to the out-side world (name and
parameter list)

K�L(MBN>L(O�P�O�Q�R K�L(M�N>L�O�P�O>Q
SK�L�M�N�L(O5P5O5Q
T

K�L�M�N>L(O�P5O5Q�K

U V�W X�Y Z�V\[>]�^ _5`�W]�a _0`�W b5c U�V�W X5Y Z�V�de]�^ _0`�W f>a _>`�W g>c
U V�W X�Y Z�V�dhb0^ _�`>W i0c

U V>W X�Y Z�V\jh]�^ c

U�V�W X�Y Z�V\k�]�^ _�`�W l�c
U V>W X�Y Z�Vek(b>^ _0`�W m>a _0`>W n0c
U�V�W X5Y Z�Vek�f0^ c

Figure 2 - Example of component diagram

In addition to the decomposition in components we

describe the behaviour of the components in a state-
transition diagram, which has the following elements:

• State: Show the different states of a component.
• State-transition: Show the allowed state changes

of a component.
• Begin state indication: Indicates the initial state

of a component

o
p�qep>rts o�p�q
p�rvu

o�p�q
p�rvw o�p�q�p�ryx

o�p5qzp5r|{

} ~ � � �
� } � � �

�

} ~ � � �
� } � � �
�

} ~ � � �
� } � � �
�

} ~ � � �
� } � � �
�

} ~ � � �
� } � � �
�

� � ���0��� � � �>�e�

� � ������� � � �����

Figure 3 - Example of state-transition diagram

B. Process View

The process view takes some non-functional

requirements into account, such as performance and
availability. It addresses issues of concurrency and
distribution, of system integrity, of fault-tolerance, and
how the main abstractions from the logical view fit in the
process architecture.

C. Development View

The development view focuses on the actual software

module organisation in the software development
environment. The software is packaged in small chunks –

130

program libraries, or subsystems – that can be developed
by one or a small number of developers. The subsystems
are organized in a hierarchy of layers, each layer
providing a narrow and well-defined interface to the
layers above.

D. Physical View

The physical view primarily takes into account the non-

functional requirements of the system such as
availability, reliability, performance and scalability. The
software executes on a network of computers, or
processing nodes. The various elements identified –
networks, processes, tasks and objects – need to be
mapped onto the various nodes. Several different physical
configurations can be used: some for development and
testing, others for the deployment of the system for
various sites or for different customers. The mapping of
the software to the nodes therefore needs to be highly
flexible and have minimal impact on the source code
itself.

E. Scenarios

The elements in the four views are shown to work

together seamlessly by the use of a small set of important
scenarios – instances of more general use cases. The
scenarios are in some sense an abstraction of the most
important requirements.

We describe a scenario by means of a message

sequence diagram. These diagrams contain the following
elements:

• Components
• Service calls

���������	��
����� �	�	�����	��
����� �	�������	��
����� �	�	��������
�����

�
�� ��� ��
��
�
�� ��� ��
��

�
�� ��� ��
��

Figure 4 - Example of scenario

Normally there are several scenarios. Each scenario is

an instance of a more generic use case. The use cases are
shown in a use case diagram.

� �"!$#"%&��!('

� ��!)#�%&��!+*

�,��!$#"%&��!.-

Figure 5 -Example of use case diagram

The relation between a scenario and a use case is not

explicitly shown in a diagram.

V. DATA MODEL

The data model used by the software architecture
analysis tool is restricted to the following diagrams
(logical view and scenarios).

• Use case diagram
• Sequence diagrams
• Component diagram
• State-transition diagrams

These diagrams are related. A use case diagram is

linked to several scenarios, a sequence diagram contains
components from the component diagram and the state-
transition diagram shows the states and state-transitions
of a component from the component diagram.

In order to be able to analyse these diagrams we

distilled an abstract data model from the diagrams. It is
obvious that the diagrams contain more information, but
the distilled information is sufficient for the calculation of
a lot of interesting metrics. It is likely that for the
calculation of new metrics the following data selection
needs to be extended.

131

���������	���
 ���	������ �

����������������

 ������� ���
 ����� �

 �	����� ����!�����"#"

$&%�'

(&)�*�+ %�, * '

$�%�'-�./)&0 , 1�2�'

(% *
($�% *�3 2

+4)

(%�5 5 2 .

(%�5 5 2�2

-�. 261�2 (26'7')�.

(%�5 5 '

8

8

8

8

8 8

88

8 8

8

8

9	: :#8

;

;

; ;

;

<�= >@?�>�A�>7B/BDCE=

F = C7G H C

Figure 6 – ER diagram

• Set of all use cases
• Set of all scenarios
• Set of all components
• Set of all services
• Set of all states
• Set of all service calls

The elements of these sets are related. For example a

use case has several scenarios, a scenario contains several
service calls and a service call has a caller, callee,
predecessor and a service that is called. This is modelled
in the Entity-Relation diagram in figure 6.

The Entity-Relation diagram in figure 6 can be

translated in to tables. This results in the following tables.

Table U contains the set of all use cases. For each use

case the NAME and an ID are stored. The NAME is a
unique string to identify the use case.

U
ID CHAR
NAME CHAR

Table S contains the set of all scenarios. For each
scenario the NAME and an ID are stored. The NAME is
the name of the sequence diagram describing the scenario.
The ID is a unique string to identify the scenario.

S
ID CHAR
NAME CHAR

Table C contains the set of all components. For each

component the NAME and an ID is stored. The NAME is
then name the component has in the component diagram.
The ID is a unique string to identify the component.

C

ID CHAR
NAME CHAR

Table M contains the set of all services. For each

service the NAME and an ID is stored. The NAME is the
name of the service (as described in the component
diagram). The ID is a unique string to identify the
service.

132

M

ID CHAR
NAME CHAR

Table T contains the set of all states. For each state the

NAME and an ID is stored. The NAME is the name of
the state (as described in one of the state-transition
diagrams). The ID is a unique string to identify the state.

T

ID CHAR
NAME CHAR

Table US is used to store the (“has”) relation between a

use case and a scenario. The table has two fields. ID_U
identifies the use case and ID_S identifies the scenario.

US

ID_U CHAR
ID_S CHAR

Table CM is used to store the (“provides”) relation

between a component and a service. The table has two
fields. ID_C identifies the component and ID_M
identifies the service.

CM

ID_C CHAR
ID_M CHAR

Table SM contains the set of all service calls. For each

service call an id, scenario, caller (component), callee
(component) and a service are stored. In some cases a
predecessor is stored. The table has six fields. ID is a
unique string identifying the service call, ID_S identifies
the context (scenario) in which the call is made, ID_C1
identifies the caller of the service, ID_C2 identifies the
callee, ID_M2 identifies the called service and ID_PRED
identifies the service call preceding this call in the specific
scenario (if available).

SM

ID CHAR
ID_S CHAR
ID_C1 CHAR
ID_C2 CHAR
ID_M2 CHAR
ID_PRED CHAR

Table CT is used to store the (“has”) relation between
a component and a state. The table has two fields. ID_C
identifies the component and ID_T identifies the state.

CT

ID_C CHAR
ID_T CHAR

Table TT is used to store the (“can change to”) relation

between two states. The table has two fields. ID_T1
identifies the “ from” state and ID_T2 identifies the “ to”
state.

TT

ID_T1 CHAR
ID_T2 CHAR

Implementing the metric calculation by means of SQL

statements has several benefits:

• Extendibility: Adding and removing metrics to
the analysis tool comes down to executing an
extra SQL statement or removing one.

• Easy implementation: Implementing the
calculation of the metrics comes down to the
execution of an SQL statement. Execution of
SQL statements is possible in many database
management systems. One of these database
management systems can be used for the
implementation of the metric calculation.

133

VI. METRICS

The software architecture analysis tool calculates
several metrics. For software metrics there are several
guidelines. Metrics must have the following properties:

• Simple and computable – the metrics should be

easy to learn and use.
• Empirically convincing – they should satisfy the

expectations of the engineer.
• Consistent and objective – they should produce

unambiguous results.
• Consistent in dimensionality – they should be

mathematically reasonable.
• Language independent
• Facilitating feedback – they should provide

useful information for software improvement.

Metrics usually are sizes of selections or a simple

function based on several selection sizes, which means
that the metrics are queries and can be implemented in a
database query language like SQL.

The next sub-sections discusses some example metrics.

A. Coupling

A component uses services of other components; this

means the component is dependent on the other
component.

This metric counts the number of components of which

a service is called. The main thought behind this metric is
that dependence on many different components id bad for
reusability, extendibility and maintainability, because:

Reuse of a specific component then requires reuse of a
large number of components.
Maintenance of a specific component then requires
knowledge of a large number of other components.

Definition:

(# c ∈ C : (∃ sm ∈ SM : sm.id_c1 = a.id ∧ sm.id_c2 = c.id))
for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(DISTINCT SM.ID_C2)
FROM C, SM
WHERE (C.ID = SM.ID_C1) GROUP BY C.ID;

B. Cohesion

When a component is used for the implementation of

several use cases it is likely that the component
implements requirements that are logically unrelated. It
usually means that the cohesion between the different
services of the component is low.

This metric counts the number of use cases that contain

a scenario in which a service of a specific component is
called or in which that component calls a service. The
main thought behind this metric is that cohesion within a
component should be high (number of use cases per
component should be low). High cohesion within a
component is good for maintainability, because this
means the component implements logical dependent
functionality.

Definition:

(# u ∈ U : (∃ sm ∈ SM : (sm.id_c1 = a.id ∨ sm.id_c2 = a.id)

 ∧ (<u.id,sm.id_s> ∈ US)))
for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(DISTINCT US.ID_U)
FROM C, US, SM
WHERE ((C.ID = SM.ID_C1 OR C.ID = SM.ID_C2)
AND (SM.ID_S = US.ID_S)) GROUP BY C.ID;

C. Complexity of Services

This metric attempts to give an indication of the

average complexity of the services of a component. A
component has a number of states and transitions
between these states. Service executions are responsible
for state changes (transitions). Therefore we presume that
the services of a component are more complex when they
are responsible for a larger number of state changes.

This metric computes the average number of state

transitions per service for a component. Main thought
behind this metric is that complexity of components /

134

services is bad for maintainability and extendibility.

Definition:

(# tt ∈ TT : <a.id,tt.id_t1> ∈ CT) / (# cm ∈ CM: cm.id_c = a.id)
for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(DISTINCT TT.ID_T1,TT.ID_T2)
 / COUNT(DISTINCT CM.ID_M)
FROM C, CM, CT, TT
WHERE (C.ID = CM.ID_C AND C.ID = CT.ID_C
 AND CT.ID_T = TT.ID_T1)

GROUP BY C.ID;

D. Number of Services of Component

A component provides services. It is wise to distribute

functionality evenly over the design. Large differences in
the number of services per component can five an
indication that this is not the case.

This metric counts the number of provided services of

a specific component. The main thought behind this
metric is that a well-balanced distribution of functionality
over the design is good for extendibility and
maintainability, because excessively large components
are difficult to understand.

Definition:

(# m ∈ M : (∃ cm ∈ CM : cm.id_m = m.id ∧ cm.id_c = a.id))
for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(DISTINCT CM.ID_M)
FROM C, SM
WHERE (C.ID = CM.ID_C) GROUP BY C.ID;

E. Fan in

Tasks should be distributed as equally as possible.

When the number of called services of a component is
high this can give an indication that the component is a
possible bottleneck considering scalability. It also
indicates that dependency of other components on the
specific component is high.

This metric counts the number of called services of a

specific component for all scenarios.

Definition:

(# sm ∈ SM : sm.id_c2 = a.id)

for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(*)
FROM C, SM
WHERE (C.ID = SM.ID_C2) GROUP BY C.ID;

F. Fan out

A component usually uses services of other

components. This means that the component is dependent
on the other component. The dependence on other
components increases with the number of service calls of
a component.

This metric counts the number of service calls of a

specific component for all scenarios. Main thought
behind this metric is that dependencies are bad or
reusability and maintainability, because:

• Reuse of a specific component then requires

reuse of a large number of components.
• Maintenance of a specific component then

requires knowledge of a large number of other
components.

Definition:

(# sm ∈ SM : sm.id_c1 = a.id)
for all a ∈ C

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(*)
FROM C, SM
WHERE (C.ID = SM.ID_C1) GROUP BY C.ID;

G. Depth of Scenario

Keep software architectures as simple as possible.

Simplicity is good for maintainability and reusability.
This metric gives an indication of the complexity of a
scenario. It measures how deep the service calls are
nested for a scenario. If the depth of a scenario is to high

135

this is bad for the understandability and therefore also
bad for maintainability and adaptability. Note that this
metric does not necessarily indicate the complexity of an
architecture, it indicates the complexity of some of the
diagrams used to describe the architecture.

Definition:

(# c ∈ C : (∃ sm ∈ SM : sm.id_c1 = c.id ∧ sm.id_s = a.id))
for all a ∈ S

Query, using the abstract data model described in section 5:

SELECT C.NAME, COUNT(DISTINCT SM.ID_C1)
FROM S, SM
WHERE (S.ID = SM.ID_S) GROUP BY S.ID;

VII. HOW DO WE INTERPRET THE RESULTS?

The metrics described in the previous section give

values for certain elements (use cases, scenarios or
components). The result of the query is a table containing
two columns. Each record has an element description
(first column) and a value (second column). What can we
do with this table?

We use the following approach. We do not use

benchmark values telling whether a score of an element is
good or bad, but we compare the score of an element with
the score of the other elements within the design. We look
for the elements that have outlying values, because we
suspect these elements to be the problem elements.
Outlying values are values that differ more than 2 times
the standard deviation from the mean value. The standard
deviation is calculated as follows:

First calculate the variance � 2.

Were � is the mean value of the distribution (all scores

of the elements) and N is the number of scores. The
standard deviation is the square root of the variance. It is
the most common used measure of spread.

Consider the following example of output of a metric.

Component A 2
Component B 3
Component C 3
Component D 2
Component E 1
Component F 15
Component G 2
Component H 3

Average: 3.875
Standard deviation: 4.26

Conclusion: Component F has an outlying value and is
a possible problem element.

Conclusion: Component F has an outlying value and is

a possible problem element.

Note that not all outlying scores are the result of a

design error. It is up to the architect to judge whether an
element is a real problem and redesign is necessary.

VIII. ENVIRONMENT OF THE ANALYSIS TOOL

The Software Architecture Analysis Tool analyses

architectures created with Rational Rose (UML modelling
tool). Rational Rose is used for the following tasks.

• Creation of the software architectures
• Export of the software architectures to an

interchange file (XMI).

Input for the tool is the interchange file created by

Rational Rose. The tool has one specific task: the
creation of an analysis report. But before this report can
be created the architecture has to be stored in a database
and analysed.

The output of the tool is a report in HTML format.

This report can be read with an ordinary HTML browser.

136

SAAT
HTML

Browser
Rational

Rose

Database

XMI HTML

Figure 7 - Environment of Software Architecture

Analasys tool

IX. DESIGN OF THE ANALYSIS TOOL

The tool consists of several components working

together. Each component has its own responsibilities.
The components are:

• Parser: This component extracts the relevant

architecture information from the input file.
The input file is an .xmi file generated by
Rational Rose.

• Database creator: This component creates a
new database with the database management
tool (mySQL) and creates the empty tables in
this database.

• Database filler: This component fills the
database with the software architecture
information extracted from the .xmi file.

• Database checker: This component checks the
database for incomplete information.

• Analyser: This component executes the queries
that are the actual architecture analysis.

• Statistics calculator: This component
calculates some statistics on the results of the
analysis.

• Statistic filter: This component filters the
result based on the statistics calculated by the
statistic calculator such that only the elements
with the outlying values remain.

• Saat: This is a control component that is used
to configure the Software Architecture
Analysis Tool.

The component diagram in figure 8 illustrates this. The

scenario in figure 9 illustrates how the components work
together.

����������� �	����
 ����	�

��� ����� ����� �
���	
 ����
 ��� ���

� ���������	���
��� ����� ���

��������� ����� �
� �
 ����

� ���������	���
� �

 ���

������� ������� � ��!"� � �
 ��#
������� ����� $�� �!%� � �
 ��#
������� ����� &'� ��!"� � �
 ��#
������� ������()� ��!*� � �
 ��#
������� ����� +�� ��!,� � �
 ��#
������� ������� $�� ��!*� � �
 ��#
������� ����� $�(-� ��!"� � �
 ��#
������� ����� &.()� ��!*� � �
 ��#
������� ����� & +�� ��!"� � �
 ��#

� �

 � � � ����� � �
 ��#
� �

 $�� � ��� � � �
 ��#
� �

 &'� � ����� � �
 ��#
� �

 ()� � ����� � �
 ��#
� �

 +�� � ��� � � �
 ��#
� �

 � $�� � ����� � �
 ��#
� �

 $	()� � ����� � �
 ��#
� �

 &.(-� � ����� � �
 ��#
� �

 & +�� � ����� � �
 ��#

�	����
 ������ � ��� �����	���	/ �����
 ���� � � �
 ��#

��� �	������0.��� # ���	
 ��$�� ����� ����� ����� � ������
 � � �
 ��#

� �
 � ��� � � ���1��
 � � �
 �/ ��� ����� ����� � � �
 ��#

� �����	������
�12�����3��	�

��2��	��3�� � �����	���	����/ ��2�����3 � �
 ��#

$��	���

Figure 8 - Component diagram

4�516 7 8�65�9�5�: ;�7 8�67 < 5�< = 7 < = >
>�51: >�?1: 5�< @�6

A 5�< 51B�5�7 8
>�6 8�5�< @	6

7 < 5�< = 7 < = >
C = : < 816

A 5�< 51B�5�7 8
C = : : 8�6

7 5�5�<

D E�F G H I F J

D E�F G H I F K

D E�F G H I F L

D E�F G H I F M

D E�F G H I F N

D E�F G H I F J�K

D E�F G H I F K�M

D E�F G H I F L�M

D E�F G H I F L1N

D E�F G H I F N�N

I G D�H F D

O P Q Q J

O P Q Q K

O P Q Q L

O P Q Q M

O P Q Q N

O P Q Q J�K

O P Q Q K M

O P Q Q L�M

O P Q Q L�N

O P Q Q N�N

H�R�H Q S�T D

I H Q I K F H F P T F P I T
O P Q F D�G

A 5�< 51B�517 8
>�U�8�>�V�8�6

I W�D I�X

 Figure 9 - Scenario

137

X. RELATED WORK

MAISA is a research and development project aiming

at developing methods for the measurement of software
quality at the design level. The metrics are computed
from the system's architectural description, predicting the
quality attributes of the system derived from it. Most
notably, size and performance metrics are addressed. The
performance analysis is refined by analysis at code level.

XI. CONCLUSION

Analysing software architectures is a complicated task.

Several methods have been designed to evaluate software
architectures. SAAM and ATAM are the most well
known. The most important thing those methods have in
common is that they use experienced architects for the
evaluation of a design.

Metrics can be calculated by a tool, without the help of

an architect. However the results should be interpreted by
an architect and the architect can take advantage of the
information given by the metrics.

The metrics do not tell whether architectures are good

or bad, but it helps the architect in improving his design
by indicating possible problem elements.

The Software Architecture Analysis Tool calculates an

arbitrary selection of metrics. The use of SQL for the
implementation of the metrics makes it easy to extend the
tool with new metrics and tune the old ones.

XII. ACKNOWLEDGMENTS

The Software Architecture Analysis Tool is developed

during a period of 9 months at CMG Eindhoven. During
this period there were several people that have offered
useful advice particularly I would like to mention Gert
Florijn, Andre Postma, Bjorn Bon and Onno van
Roosmalen.

This work profited from several test cases provided by

Ronald Pulleman, Onno van Roosmalen and Philips ASA
lab.

REFERENCES

[1] Object Oriented Design Heuristics, Arthur J. Riel ,ISBN 0-201-

63385-X (1996)
[2] Object Oriented Software Metrics, Mark Lorenz and Jeff Kidd,

ISBN 0-13-179292 (1994)
[3] Software Architecture in Practice, Len Bass Paul, Clements and

Rick Kazman, ISBN 0-201-19930-0 (1998)
[4] Software Metrics (A Rigorous & Practical Approach), Norman

E. Fenton and Shari Lawrence Pfleeger, ISBN 0-534-95600-9
(1996)

[5] Analysis patterns: reusable object model, Martin Fowler, ISBN:
0-201-89542-0(1997)

[6] AntiPatterns: refactoring software, architectures and projects in
crisis, William J. Brown, Raphael C. Malveau and Hays W.
McCormick III, ISBN 0-471-19713-0 (1998)

[7] Attribute-Based Architecture Styles; Mark H. Klein, Rick
Kazman, Len Bass, Jeromy Carriere, Mario Barbacci and
Howard Lipson (1999)

[8] Staan op schouders van reuzen, Bjorn Bon
[9] A Field Guide to Boxology: Preliminary Classification of

Architectural Styles for Software Systems; Mary Shaw and Paul
Clements (1996)

[10] Metrification of a software architecture definition; F.W.
Greuter

[11] An Architectural Connectivity Metric and Its Support for
Incremental Re-architecting of Large Legace Systems; Reinder
J. Bril and Andre Postma (2000)

[12] The Koala Component Model for Consumer Electronics
Software; Rob van Ommering, Frank van der Linden, Jeff
Kramer and Jeff Magee (2000)

[13] Software Architecture Documentation in Practice:
Documenting Architectural Layers; Felix Bachmann, Len Bass,
Jeromy Carriere, Paul Clements, David Garlan, James Ivers,
Robert Nord and Reed Little (2000)

[14] Architectural Blueprints -- The 4+1 View Model of Software
Architecture; Philippe Kruchten (1995)

[15] Principles for Evaluating the Quality Attributes of a Software
Architecture; Mario R. Barbacci, Mark H. Klein and Charles B.
Weinstock (1997)

[16] A Survey of Architecture Description Languages; Paul C.
Clements (1996)

[17] Software Metrics: Roadmap; Norman E. Fenton and Martin
Neil (2000)

[18] Scripting Coordination Styles; Franz Achermann, Stefan
Kneubuehl and Oscar Nierstrasz (2000)

[19] Applying Relation Partition Algebra for Reverse Architecting;
Andre Postma and Marc Stroucken (1999)

[20] A Two-phase Process for Software Architecture Improvement;
Rene Krikhaar, Andre Postma, Alex Sellink, Marc Stroucken
and Chris Verhoef (1999)

[21] Maisa, Jukka Paakki, Inkeri Verkamo, Juha Gustafsson,
Lilli Nenonen (1999 – 2001)
(http://www.cs.helsinki.fi/group/maisa/)

138

Figure 10 - Screenshot of Software Architecture Analysis Tool

139

