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Abstract

In this paper, we study a functional equation for generating functions of the form
fx) =g Zf‘il pi (@i (2)) + K (z), viz. arecursion with multiple recursive terms.
We derive and analyze the solution of this equation for the case that the «; (z) are com-
mutative contraction mappings. The results are applied to a wide range of queueing,
autoregressive and branching processes.

Keywords Recursion - Generating function - Stochastic process - Queueing model -
Laplace-Stieltjes transform

Mathematics Subject Classification 60K25 - 90B22

1 Introduction

In many applied probability models, in particular in queueing models, the following
type of recursion describes the behavior of a key performance measure:

Xn

Xn+1 = Z Yk,n + Zl’la
k=1
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where the involved random variables are nonnegative and integer valued. Under certain
independence assumptions and ergodicity conditions, this gives rise to the following
type of functional equation for the probability generating function (pgf) f(z) of the
steady-state distribution of the X, process:

f(@) =g f(a(z)) + K(2). (D

An example of such a model is a branching process with immigration (BPI). In that
case, the function f (z) represents the pgf of the steady-state distribution of the number
of individuals and the function «(z) the pgf of the offspring distribution. If in all
states except state 0 the pgf of the immigration distribution is given by g(z) while
in the special state O the pgf of the immigration distribution is given by go(z), then
the function f(z) satisfies (1) with K(z) = f(0) (go(z) — g(2)). Remark that in the
special case that go(z) = g(z), we have that K (z) = 0.

The solution of (1) is given by an expression containing an infinite product and an
infinite sum (see Eq. (13) later on in this paper) which is obtained after iteration of Eq.
(1). Branching processes with immigration appear for example in the analysis of the
M /G /1 queue with (single or multiple) gated vacations (see Takagi [18], Sect. 2.5 of
Chapter 2), the M /G /1 queue with permanent customers (see Boxma and Cohen [3])
and, a multi-type variant, in the analysis of polling systems (see Resing [15]).

In the case that the branching process with immigration evolves in an i.i.d. random
environment (BPIRE) in which the environment can be in M different states, the
corresponding functional equation is of the form

M
f@)=28@ ) pif@)+K@), @)

i=1

where p; is the probability that the environment is in state i and «; (z) is the pgf of the
offspring distribution when the environment is in state i, i = 1,2, ..., M.

In this paper, we obtain the solution of functional equation (2) in the particular
case that the functions «(2), ..., ap(z) are commutative contraction mappings on
the closed unit disk. Although (2) with multiple recursive terms is a natural extension
of (1) with only a single recursive term, it is hardly studied in the queueing literature,
probably because the number of different terms after the nth iteration of (2) grows
exponentially. That is also the reason why in this paper we restrict ourselves to the
case in which the functions o1 (z), .. ., ayr(z) are commutative.

In Adan et al. [1], a specific example of (2) was analyzed in detail in the study of a
queueing system with two classes of impatient customers. The main goal of the present
paper is to give a general treatment of Eq. (2) and to show how in the commutative
case the growth of the number of iteration terms can be handled. An additional aim
is to treat several queueing and branching-type examples in which (2) appears, also
allowing complications like the occurrence of a pole in g(z) and K (z).

Organization of the paper In Sect. 2, we solve the recursion (2), both for the homo-
geneous case where K (z) = 0 (Sect. 2.1) and for the inhomogeneous case (Sect. 2.2).
The results are applied in the subsequent sections. We start, in Sect. 3, with a partic-
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ular queueing model. Its choice is motivated by the fact that it provides a relatively
simple illustration of the theory for the homogeneous case, while still having a few
features that deviate from the setting of Sect. 2. Section 4 considers a special case of
the branching process with immigration in a random environment, also called random
coefficient integer-valued autoregressive process of order 1, in which the offspring of
an individual in each environmental state can only be equal to 0 or 1. In Sect. 5, we
consider an integer-valued reflected autoregressive process, which may be viewed as a
generalization of an embedded queue length process in the M /G /1 queue. Section 6 is
devoted to another reflected autoregressive process, this time on [0, co). Some topics
for further research are mentioned in Sect. 7.

2 The recursion

In this section, we study recursion (2) for the generating function f(z) of a non-
negative discrete random variable X with E[X] < oo, where g(z) and K (z) are
analytic functions (and not necessarily generating functions), py, ..., py is a proba-
bility distribution and o1 (z), . . ., opr (2) are commutative contraction mappings on the
closed unit disk, i.e., there is a constant k < 1 such that |o; (z) —«; (u)| < k|z—u| and
a;i(a;(z)) = aj(a;(z)) foreachi and j. Forexample, the mappings «; (z) = 1—a;+a;z
with |a;| < 1 are contractions with k = max(ay, ..., ay), and they commute, since

ai(aj(z)) =1—aiaj +ajajz = a;(a;(z)).

Note that the commutativity property implies that the contractions «;(z) have the
same fixed point a. In the example above, we have a = 1. Equation (2) is suitable to
iteratively determine f(z). We distinguish between the following two cases.

2.1 The homogeneous case K(z) = 0

After n iterations of the homogeneous equation

M
@) =2@)))  pif@), 3)
i=1
we obtain
F@= > PP L iy @) F (@i iy (D), “
i14-Aiy=n+1

where ;i) (2) = Oli] (Oléz e (Ol;",f (2))--+)) and &' (2) is defined as the nth iterate

of o; (z). Inparticular, «g, .. 0(z) = z. Thefunctions L;, . ;,, (z) are recursively defined
by
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g(@,0(2))1 2 3 i

Fig. 1 Path from (0,0) to (3,2) consisting of the sequence of grid points
0,0, (1,0), (1, 1), (2, 1), (3, 1), (3,2). Its path weight is the product of the step weights
8(,0(2))g(aq,0(2))g(1,1(2))g(02,1(2))g(@3,1(2))

M
Liy. i@ = > 8(@iyip1roning ) L i —1,.oning (2. )

with Lo o(z) = 1 and L;,,. ;,,(z) = 0O if one of the indices equals —1. These
functions can be interpreted as follows. A path from (0,...,0) to (iy,...,in) 18
defined as a sequence of grid points that starts in (0, ..., 0) and ends in (i1, ..., iy)
by only taking unit steps (0, . .,0) with 1 at posmon k=1, M Figure
O, ,0)to (iq, .. zM) Now as51gn weight g(a;;,.. i —1 ““;M (2)) to a step from any
grid point (i1, ..., ik —1,...,im) to (i1, ..., ip) and define the weight of a path as
the product of weights of all steps in that path (cf. Fig. 1). Then, L;, . ;, (z) can be
interpreted as the total weight of all (”fr +i4 M) paths from (0, ..., 0) to (i1, ..., ipm).
To handle (4), we proceed as follows. Note that, when i + -+ iy =n,

ity () — al < K"z = al, ©)
and hence, for |z| <1
Lf(@iy,..iy () — fl@)] = If f(w)dul
..... iy ()
= |,y (@) —al x  max If’(u)l
iy ,ipg (2)s
< lai,..., zM(Z)—alE[ ]
< «"lz — a|E[X], (N
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where the integral is along the segment connecting «;, .. i, (z) with a. Next we rewrite
(4) as follows

f@= Y PP L iy (D f@
i Aiy=n+1
+ Y P Ly iy D @iy iy () = fl@). (8)
i1 +Fiy=n+l

For given z, the second term in the right-hand side of (8) converges to zero forn — oo.
This can be seen as follows. By substituting z = a in (3), we get g(a) = 1. Hence,
from (6), step weight g(w;,,...i,,(z)) with iy +--- 4+ iy = nisclose to g(a) = 1
for all n sufficiently large, say |g(c;,,..iy(2)) — 1] <€ < «~!1 — 1. In other words,
the weight of sufficiently long paths grows at most with 1 + € per step. So there is a
constant C such that for all n, the weight of a path from (0, ..., 0) to (i1, ..., ip) with
i1+ ---+iy = nisbounded by C(1 + €)", implying that L;, . ;,, (z) is bounded by
(l‘lff;/lM)C(l + €)". Then, from (7), we can conclude that the second term in (8) is
bounded by C(1 + )"tz — q|E[X], which goes to zero for n — co. We have
thus proven the following theorem.

Theorem 1 (Homogeneous case) The generating function f(z) is given by

f@=1lm > PP L iy @ f @) ©

i1 =n+1

Remark 1 The unknown f (a) follows by substituting z = 1in (9) and using f (1) = 1.
This gives

f@t=1lim Y Pl P Ly (D).
i1+-tiy=n+l1

Remark 2 The first term in the right-hand side of (8) is a sum of (%t’l') terms. This

number is O (n™~1), which grows quickly (polynomially) in n for already moderate
values of M. However, this is not as quickly as in the non-commutative case, in which
case we would have M"+! terms, growing exponentially in 7.

Remark 3 Above we have seen that the second term in the right-hand side of (8)
converges to zero geometrically fast (with rate (1 4 €)«). Hence, the first term in the
right-hand side of (8) will provide an accurate approximation for f(z) already for
small values of n.

2.2 Theinhomogeneous case K(z) # 0

We now consider inhomogeneous Eq. (2) and obtain after n iterations,

F@= Y PP L i @ f @iy, iy (2))

i)t =n+1

@ Springer
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+Y Y P L iy DK @iy (@) (10)

k=0 ij+-+ipy=k

The first term of (10) is the same as in the homogeneous case. For given z, we proved
that it converges if g(a) = 1. For convergence of the second term, we need that either
K(y,..iy (2)) = 0 (Case 1) or pi' ... pi L, iy — 0 (Case2)asij+ -+
iy — oo. In this subsection, we successively consider both cases.

Case 1 Since K (v, ,....i, (2)) = K (a),inthis case we basically assume that K (a) = 0.
Note that, by substituting z = a in (2), this assumption implies that g(a) = 1 if
f(a) # 0 and thus that the first term in (10) converges. We now show that it also
implies convergence of the second term. Similar to (7), we have fori| +- - - +iy = n,

,,,,,

K @yoig @) = [K @iy, () = K(@)] < 6|2 —alD, (10
where D is the maximum value of |K’(u)| in the closed disk with center a and radius
|z — a| (intersected with the closed unit disk). Then, the kth term in the double sum
appearing in (10) is bounded by C(1 + €)*«*|z — a|D, and hence, the double sum
converges for n — 0o. We conclude that the following holds.

Theorem 2 (Inhomogeneous case) Provided K (a) = 0 and f(a) # O, the generating
function f(z) is given by

f@=lm Y p e p Lisin (D) f @)
i1ty =n+1

+3 S PP L iy DK @iy @), (12)

k=0 i1+-+iy=k

Remark 4 In case M = 1, Eq. (2) becomes

f(@) =g@) fla1()) + K(2),

yielding
oo k—1
f@) = H gn @) f @+ > [ s@n(@)K (@(2)) (13)
k=0 n=0
(where an empty product is one).

The infinite product ]_[210 g(an(2)) converges iff Y °° (1 — g(ay(z)) converges
(cf. Chapter I of [19]). Since g(w,(z)) and K (ax(z)) converge geometrically fast to
g(a) = 1 and K(a) = 0, respectively [cf. (11)], we conclude that both the infinite
product and the infinite sum of products in (13) converge.

Case 2 We now assume that pll1 ... pj(,‘f Li,.....isy (@) — 0 and show that the assumption
|g(a)] < 1is sufficient for convergence of this term to zero. For all n sufficiently large,
step weight g (o, iy, (2)) Withiy+- - -+ipy = niscloseto g(a), say |g(cti,,....i, (2))—
g(a)| < e with |g(a)| + € < 1. Hence, the weight of sufficiently long paths grows at
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most with |g(a)|+ € per step. So there is a constant C such that for all n, the weight of a
path from (0, ..., 0) to (i1, ..., iy) withiy +---+iy = nisbounded by C(|g(a)| +
€)", implying that L;, ___;,, (z) is bounded by (":**'¥)C(|g(a)| + €)". Then, indeed,

[P
terms are bounded, say by constant D. Hence, we can COIlC’l.l.l.’de that the kth term of
the double sum in (10) is bounded by C(|g(a)| + €)¥D, and thus the double sum
converges. The first term in (10) is bounded by C(|g(a)| + €)"*! which converges to
zero as n — 00. This is summarized in the following theorem.

Theorem 3 (Inhomogeneous case) Provided |g(a)| < 1, the generating function f(z)
is given by

F@Q=Y" > L i QK @iy (2)). (14)

k=0i1+-+iy=k

Remark 5 1In this section, we studied Eq. (2) for a generating function f(z) of a non-
negative discrete random variable X. Itis readily seen that Theorems 1-3 are also valid
in case f(z) is the Laplace—Stieltjes transform (LST) of a non-negative continuous
random variable X. Of course, then «1(z), . .., ap(z) are assumed to be contraction
mappings on the closed positive half space (instead of the closed unit disk).

3 The Dy /G/1 shot-noise queue

In this section, we consider the workload at arrival epochs for a specific queue. The
analysis of the LST of the workload gives rise to a simple recursion that has the
form (2), in the homogeneous variant. This section thus provides a relatively simple
illustration of our theory for the homogeneous case—while still having a few features
that deviate from the setting of Sect. 2. The model under consideration is the Dy, /G /1
shot-noise queue; we refer to [7] for a recent survey on shot-noise queueing models.
The Dys/G/1 shot-noise queue is a single server queue, in which the successive
interarrival times A, Ay, ... of customers are i.i.d., with the distribution of a generic
interarrival time A being given by

PA=t)=pi, i=1,...,M. (15)

The service requirements of successive customers Bj, By, ... are i.i.d. with finite
mean, and with LST B(-); all interarrival times and service times are independent. The
special feature of the model is that the server speed is workload proportional (shot
noise): when the workload is x, the service speed is rx. Let X,, denote the workload
just before the arrival of the nth customer. It is well known [2] that, in between arrivals,
the workload decreases exponentially; hence,

Xop1 = (X, + Bye ™t n=1,2,... . (16)

@ Springer



14 Queueing Systems (2022) 102:7-23

It is readily verified that, due to the workload-proportional decrease, the steady-state
distribution of the {X,,, n = 1, 2, ...} process exists. Stability conditions for queueing
and storage models with more general workload-dependent decay have been discussed,
a.0., by Brockwell et al. [10] and Cinlar and Pinsky [11] .

Let X denote a random variable distributed as the steady-state distribution of the
process {X,,n =0, 1, ...}, with LST &(-), then

M
() = Y piPlais)E(ais), (17)

i=1

witha; :=e "% i =1,..., M. Observe the differences with (3): we are now consid-
ering an LST instead of a generating function, and B(a;s) is inside the summation.

Let us first briefly consider the case of the D/G/1 shot-noise queue, i.e., M = 1.
In that case, iterating (17) n times gives, with a = a1:

§(5) = B(as)E(as) = f(as)B(a’s)E(a>s) = - = £@"s) [[ B@'s).  (18)

i=1

Now observe the following. Firstly, £(a"s) — £(0) = 1 for n — oo. Secondly,
convergence is geometric, as

o0 o0
1 —&@@"s)| < / 1 —e “SNdP(X < 1) < a"s/ tdP(X < t) = a"sE[X].
0

0
(19)
Thirdly, Hi’il gi converges iff Z;’il (1 — gi) converges (cf. Chapter I of [19]); hence,
the convergence of the product in (18) follows from

11— Ba's)| < / 11— e 9S"|dP(B < 1) < a'sE[B]. (20)
0

We conclude that -
£s) =[[B@s). 1)
i=1

Some thought will make it clear that the i th term in this infinite product represents the
contribution to X from an arrival that occurred i arrivals before the present one.

Let us now turn to the general Dj;/G /1 shot-noise case, cf. (15). After n iterations,
(17) gives (very similarly to the analysis in Sect. 2.1)

Eo) = Y PP L iy (OE@] . ds), (22)
i1+-+iy=n+1
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where
. . M
Liy. iy () = (@ ...ayf$) Y Liy. ig—1.ig (5), (23)
Loo,..1,0..00)=pBs), k=1,...,M, withl on position k. 24)
Notice that an (iy, ..., i)) term corresponds to a contribution to the workload (just

before an arrival epoch) from an arrival that occurred i + - - - + i)y arrivals before
the present one, the total interval consisting of iy interarrival times of length 7, k =

1,..., M, inany of (”+_“+’M ) orders. It is readily seen that
Ly ()] < (” " +’M>, 25)
ll M

and hence, the sum in (22) is bounded by one. Furthermore, letting ap :=
max(ay, ..., ay) and observing that ag = e min(i,....fy) 1, it is seen in a similar
way as above and as in Sect. 2 that §(a}' .. .ax[”s) converges geometrically fast to
£(0) = 1. Hence, rewriting (22) as

E)= > PP Liy iy (s)

i14+iy=n+l
+ > PP L iy O E@] a1, (26)
i14-+iy=n+1

we have the following theorem.

Theorem 4 The LST of the steady-state workload just before arrival epochs in the
Dy /G /1 shot-noise queue is given by

§@)=lim Y PP Ly ) 27)
ir++iyg=n+1

Remark 6 One could subsequently derive the steady-state workload LST at an arbi-
trary epoch by averaging over one arrival interval, and using a stochastic mean-value
theorem.

4 The BPIRE or RCINAR(1) process

In this section, we consider a branching process with immigration in a random environ-
ment (BPIRE process, see [14, 16]), also known as random coefficient integer-valued
autoregressive process of order 1 (RCINAR(1) process, see [17, 20]). This process
{X,,n=0,1,...}is defined as follows:

@ Springer
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X

Xui1 =Y Yen+ Zn, (28)
k=1

where the Z,, are nonnegative integer-valued random variables with finite mean. The
Yk.n are Bernoulli random variables with parameter &,, i.e., P(Y;, = 0) =1 = §,
and P(Y; , = 1) = &,; but we assume the special feature that the &, are themselves
random variables, independent and identically distributed with P(§, = a;) = p;,
i = 1,..., M. Hence, in generation n it holds with probability p;, i = 1,..., M,
for all Y, that they are 1 with probability a; and 0 with probability 1 — a;. All Z;
and Y ,, are also assumed to be independent. In Sect. 4.1, we consider the steady-
state distribution of the process {X,,,n = 0, 1, ...}, and in Sect. 4.2 we do this for
the generalization in which the BPIRE process behaves differently at zero, i.e., when
X, = 0 for some n.

4.1 The steady-state case

The generating function, f(z), of the stationary distribution of the process {X,,,n =
0, 1, ...} satisfies the recursion

M
f@ =@ pif(l—ai+a2), (29)

i=1

where g(z) is the pgf of the random variable Z,,. Hence, we are in the homogeneous
case (3) with co_ntrag:tion mappings i (z) = 1 — a; + a;z. In this case, the functions
iy,iy (2) = @) (@3 (- - (@ (2)) - - -)) are given by

M
iy iy @ =1-[]aj (1 -2. (30)

j=1
Define the functions L;, .. ;,,(z) again recursively by (5) and use that the contraction
mappings «; (z) have fixed point @ = 1 in this case, and hence, f(a) = f(1) = 1.

Theorem 1 now implies the following theorem.

Theorem 5 The steady-state probability generating function f(z) of the BPIRE pro-
cess is given by

f(z) = lim > PP L iy ) 31)

n—oo | .
itbeebipy=n+1

Remark 7 In the special case that p; = 1, the recursion becomes
f@)=g@f(0—-a(l-7)), (32)
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yielding
0 .
f@=]]s0—al(1-2). (33)
j=0
In the special case that a, = - - - = ay = 0, the recursion becomes

M
f@)=¢g) [plf(l—al(l—Z))HZ Pif(l)] =g@ [p1fl-ar(1-2))+1=p1],

i=2
(34)
and in this case the solution is given by
00 k )
f@ =Y a=popt[Ts(1-ala-2). (35)
k=0 j=0

4.2 Deviating behavior at zero

In this subsection, we assume that the BPIRE process behaves differently at zero, i.e.,
when X, = 0 for some 7. In particular, we assume that

Xn+1 =V, when X, =0, (36)
with Vg, Vi, ... i.i.d. nonnegative integer random variables, with pgf go(z). V, is
assumed to be independent of all ¥; ,,, Z,, and X,,, m =0, 1, ..., n. Itis readily seen

that the steady-state pgf f(z) in this case satisfies the recursion

M
f@) =2g@ ) pif(l—ai+aiz) + fO)g) — g()]. (37)

i=1

Hence, we are in the inhomogeneous case of Eq. (2) with K (z) := f(0)[go(z) —g(2)].
For future use we observe, by substituting z = 0 in (37), that

2(0) -
)= —FFFFF— if(l—a;). 38
10 1+g(0)_g0(0)§pf( a;) (38)

We conclude that the following holds.

Theorem 6 The probability-generating function f(z) is given by

f@=lim > P Ly @)
it++iy=n+1

k=0 iy+-tiy =k
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with L;, .. i, (z) recursively defined by (5) with Ly, 0(z) = 1l and L;;, . ;,,(z) =0
if one of the indices equals —1. The constant f(0), featuring in K (z), is determined
by substituting z = 1 — a; fori =1, ..., M into (39), multiplying both sides by p;,
summing over i and using (38).

.....

5 Areflected autoregressive process and an M/G/1 queue
generalization

In this section, we consider an integer-valued stochastic process {X,,, n =0, 1, ...}
that is very similar to the autoregressive process of the previous section, but includes
a negative component and has reflection at zero. It is determined by the following
relation:

Xut1 = ZY“+Z 10" n=0.1...., (40)
k=1
with [x]* = max(0, x), Z1, Z>, ... ii.d. nonnegative integer-valued random vari-

ables with pgf C(z) and where Y; ,, are i.i.d. Bernoulli distributed random variables:
P(Yr, =1 =&, P(Yr, =0) =1 — &,. In addition, we (again) assume the spe-
cial feature that the &, are themselves random variables, independent and identically
distributed with P(§, = a;) = pi,i = 1,..., M, where Zlﬂil pi = 1. Hence, in
generation n it holds with probability p;, i = 1,..., M, for all Yj , that they are 1
with probability ¢; and 0 with probability 1 — g;. All Z; and Y} ,, are also assumed
to be independent of each other and of all preceding X .

If all Y, are equal to one, then (40) can be interpreted as follows. Consider the
number of waiting customers in the M /G /1 queue, just after the beginning of the nth
service. Let X, denote this number, and let Z,, denote the number of arrivals during the
nth service. Then, X, 1| = [X,, + Z, — 1]™. If, in addition, each of the X,, customers
becomes impatient with probability 1 — a during the nth service and leaves, then the
sequence {X,} satisfies (40) with p; = 1 and a1 = a, i.e., with §, = a.

Without the maximum operator, we have the defining recursion of an INAR(1)
(integer-valued autoregressive) process, cf. Weiss [21]. We impose the stability con-
dition that both a; < 1 foralli = 1,..., M and E[log(1 + Z)] < oo, cf. [6] for the
case M = 1.

Below we show how the pgf f(z) of the steady-state distribution of the {X,, n =
0, 1,...} process can be obtained. It follows from (40), with [x]~ = min(0, x) and
X denoting a generic random variable with pgf f(z), that

f2) = E[Z[Zli;l Yk+Z—l]+] = E[z P Yk"l‘Z—l] +1-— E[Z[Zli(:l Yk+Z—1]7]

C(Z) Z (=i +ai2) + 1

i=1
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—[P(iYkJrZ—le)+%}P’<XX:Y1¢+Z—1=—1>}

k=1 =1
M
C 1
= % pif(l —ai +aiz)+ (1 —2)6171, (41)

i=1

where g_1 1= ]P’(Z,}f: 1 Yk + Z — 1 = —1). After multiplication by z and subsequent
substitution of z = 0, we find:

M
q-1=CO0) Y pif(l—a, (42)

i=1

which makes sense probabilistically; the right-hand side represents the probability that
both Z = 0 and Z,le Y, = 0. We observe that (41) can be rewritten in the form

M
f@=2g@ ) pif(l—a+az)+ K@),

i=1

where g(z) = C(z)/z and K (2) = q—1(1 — %). Hence, we have the exact same form
as (2). Furthermore, the fixed point of the iterates «;(z) = 1 —a; +a;zisz = 1, and
we have that K (1) = 0. Hence, f(z) is given by Theorem 2.

Remark 8 1t should be noticed that now g(z) and K (z) have a pole at zero. The iterate
K(1 —a}'...aj}{ (1 — 2)) has a pole inside the unit circle if ai' ...a}) € (%, 1).
Typically, this will only be the case for the first few iterations. In [6], where the case
M =1 is treated, it is shown that the singularities do not pose a real problem, as they
are all removable singularities which are exactly compensated. In the present more
general case, this can be shown in a similar way, but that is beyond the scope of the
present paper.

6 An M/G/1-type reflected autoregressive process

In this section, we consider the following extension of a model of an autoregressive
process, studied in [8]:

R,+1 =max(A,R, + G,,0), n=0,1,..., (43)

where Rg = z and where, forn =0, 1, ..., G, =Y, — B, with all B, independent
random variables which are exp(A) distributed, and all ¥,, non-negative i.i.d. random
variables with distribution Fy (-) and LST ¢y (-).In[8],onehas A,, = a witha € (0, 1),
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but we now take Ag, A, ... i.i.d., with the following discrete distribution:

M
P(Ay=a)=pi, i=1,....M, withall p;>0 and ) p;=1, andall g; € (0, 1).

i=1 (44)
In [8], both the transient behavior and steady-state behavior of the R, process with
A, = a are studied, via a Wiener—Hopf technique (cf. [12]) that leads to a recursion.
We apply the same tools in the extension defined by (43), (44). Below we first follow
the approach of [8]. Introduce U, := min(A,R, + G,,0) forn =0, 1, ..., and the
transforms

[e¢) o
R.(r.s) =Y r"EBle”*® Ry =z], U.(r.s):=) r"Ele*"|Ry=2z]. (45)
n=0 n=0

The first transform is analytic. forRe s > 0 and the second one for Re s < 0. Observing
that 1 + e* = emax(x.0) 4 emin(x.0) we have forn =0, 1, ...:

e_XRnJrl — e_S(Aran+Gn) + 1 — e_SUn.

Taking expectations and realizing that R,, A, and G, are independent, we can write

M
E[e % 1Ry = 2] e 0] Z [e7 "Ry = 2] + 1 — E[e ™" |Ro = z].

(46)

n+1 and summation, we obtain for Re s =

hence, after multiplication of both sides by
0:

R(r,s) —e "% — réy(s)s

Zp,R (rais) = —— = rU:(r,5).  (@47)

Restricting ourselves at this stage to Re s = 0 ensures that all terms are properly
defined. Multiplying both sides by A — s, one obtains:

M
_ r
(A—=S$)R (r,s)—rApy(s) Z piR;(r,a;s) = (A—s)[e™**+ = —rU;(r,s)]. (48)
i=1
Because all a; < 1, the steady-state distribution of the {R,,n = 0, 1, ...} process
always exists [13]. We shall restrict ourselves to the steady-state case. (The transient
case can in principle be studied in a similar way. Here it should be observed that, with
fixed point @ = 0, we have K(0) = 1 + 1= — rU;(r,0) = 1 # 0. We are now
in Case 2 of Sect. 2.2; |r| < 1 will guarantee the convergence of the corresponding
i im . .
Py Py Ligiy(@asip + - +iy =n— 00.)
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Let R(s) = E[e *R], with R a random variable with the steady-state distribution of
the R, process. U (s) = E[e™*Y] is similarly defined. After multiplying both sides of
(48) by 1 — r and letting » — 1, an Abelian theorem for generating functions implies
that

M
(A = $)R(s) — Ay (s) ZpiR(aiS) =@A-=9[-U®E)] (49)

i=1

Now make the following observations:

The left-hand side of (49) is analytic in Re s > 0, and continuous in Re s > 0.
The right-hand side of (49) is analytic in Re s < 0, and continuous in Re s < 0.
R(s) is for Re s > 0 bounded by 1, and hence, the left-hand side of (49) behaves
at most as a linear function in s for large s, Re s > 0.

U (s) is for Re s < 0 bounded by 1, and hence, the right-hand side of (49) behaves
at most as a linear function in s for large s, Re s < 0.

Liouville’s theorem [19] now implies that both sides of (49), in their respective half-
planes, are equal to the same linear function in s. We focus on the left-hand side of
(49):

M
(.= $)R(s) = Ay (s) ) piR(ais) = Co+Cis, Res=0.  (50)
i=l1

Substituting s = 0, we see that Cyp = 0. Taking s — oo, we see that C; = —P(R = 0),
but that does not yet determine Cj. Taking s = A, we observe that

M
Ci=—¢y(W) Y _ piR(@r). (51)
i=1
In fact, it is not hard to interpret this relation (replacing C; by —P(R = 0)), using (43)

and the fact that ¢y (A) = P(B > Y) and R(a;1) = P(B > a; R).
We can rewrite (50) as follows:

M
R(s)= H(s) Y_ piR(ais) + K (s), (52)
i=1

where

A
, K@s)=C
A—s ) IA—S

H(s) = ¢y (s) (53)

Equation (52) has exactly the same form as (2). Observe that the fixed point of the

iterates «; (z) = a;z is z = 0 and that K (0) = 0. Hence, Theorem 2 applies. It follows
that

k=01 +-+iy=k
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+lim o T P Ly ). (54)
i1ty =n+1
We finally need to determine the constant C; = —IP(R = 0), that features in K (s).

This is done by taking s = a;A, fori = 1, ..., M, in (54), and adding the resulting M
expressions, using (51):

i

. Cl aMaj
——ammZmz Yo PP L ,ZM(aJM—l ;

j=1  k=0ij+-+iy=k —a "aMaj
. i iy
—¢>y<x>2p,- Lim Y e Ly (@), (55)
j=1 ity =n+t1
and hence,
v ‘ . .
c oy (V) Zj:] Pj lim;— 00 Zil+"'+iM:"+l pll1 ,..p;&lLi|,...,iM(aj)\)
1=- )
1 A M L N00 i lML A ay' “/\y“/
T Oy ) 2521 Pj k=0 iy tiyg=k P1 -+ Ppg Lireing (@) )W
1 M 2]
(56)

Just like in [8], the removable singularity s = X requires some extra care, but poses
no real problems.

7 Conclusion and suggestions for further research

In this paper, we have developed a method for treating recursions between random
variables that lead to functional equations of the form (2). We have also presented
several examples of branching processes, queueing processes and autoregressive pro-
cesses, where such recursions and ensuing functional equations naturally occur. A
brief (by no means exhaustive) collection of other queueing models which can be
analyzed with the approach of the present paper (and for which the special case of Eq.
(1) is treated in the following references) is (i) the M /G /1 queue with vacations [18],
(ii) the globally gated polling model [5], (iii) the ASIP tandem model [4], and (iv) a
vacation plus retrials model [9].

Several interesting research questions present themselves. We mention the following
ones.

e In[1], a vector version of (2) for the LST of the virtual workload has been treated,
for a specific queueing system with impatience. It would be interesting to study
such a vector version in more generality. Interestingly, in [1], the mappings «; (z)
are of the form «;(z) = z 4 6;. These commutative mappings, however, are not
contractions.

e In this paper, we have restricted ourselves to commutative contraction mappings.
In the noncommutative case, one has an explosion of terms which no longer can be
grouped so neatly as in the analysis in Sect. 2. It would be interesting to investigate
what can still be accomplished in the noncommutative case.
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