
 Eindhoven University of Technology

BACHELOR

Using HAR On A augmented Reality Application To Identify The End of a Task in Manual
Assembly Environment

Kaijim, P.H.M. (Ralph)

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jun. 2025

https://research.tue.nl/en/studentTheses/9762adfb-4226-4c51-b3dd-a12f25e8bcdb

Department of Mathematics and Computer Science
Process Analytics

Using HAR On A augmented Reality
Application To Identify The End of a

Task in Manual Assembly
Environment

Bachelor End Project Report

P.H.M. Kaijim

Supervisors:
Dr. Felix Mannhardt

21-01-2022

Abstract

The topic of this research is the use of Human Activity Recognition on an
augmented reality application in a manual assembly environment. The spe-
cific question this research is focused on is: Can we reliably classify the end
of a high-level task using a RNN-LSTM or CNN-LSTM model based on the
little manual assembly data given by KIT-AR? Most related work does not
have data from an actual manufacturing environment and focuses on identi-
fication of the whole task instead of the end of a task. To tackle the research
question the focus of this paper lies on comparing the RNN-LSTM and CNN-
LSTM behavior on the little amount of KIT-AR data. The main two steps in
solving the research question are a hyperparameter tuning method involving
different rounds of a grid search and a laptop-emulation of the model run-
ning online on the HoloLens 2. The impact of the research is to determine
whether the proposed HAR models are able to be deployed to improve the
efficiency in manufacturing environment with a small training dataset.

Contents

1 Introduction 4
1.1 Context and Topic . 4
1.2 Research Question . 5
1.3 Method . 7
1.4 Findings . 8

2 Background 11
2.1 Human activity recognition 11
2.2 Related work . 12

3 Problem Exposition 14
3.1 Detailed Method . 14
3.2 Business Understanding . 16
3.3 Data Understanding . 16
3.4 Detailed Research Questions 22

4 The Three Different Models Used During This Project 24
4.1 Starting Requirements For The Model evaluation 24

4.1.1 Data Labeling And Formatting 25
4.1.2 The Baseline Model Concept 28

4.2 Understanding of the Proposed Neural Networks 29
4.2.1 RNN-LSTM concept 29
4.2.2 CNN-LSTM concept 33

5 Evaluation Of The Different Models 35
5.1 Objective . 35
5.2 Setup . 37
5.3 Execution . 38

5.3.1 The Hyperparameter Tuning of the Proposed Models . 39
5.3.2 The resource analysis of the proposed models 51

5.4 Results . 53

2

5.5 Discussion . 58

6 Conclusion 59
6.1 Conlusion and limitations . 59
6.2 Future works . 61

3

Chapter 1

Introduction

1.1 Context and Topic

The topic of this paper is Human activity recognition in a manual assembly
process. Human activity recognition (HAR) is identifying human activity
from sensor data. There are three different time horizons when HAR activ-
ity recognition can occur: predictive, online, and post-mortem. The focus
during the project is on online HAR. Online HAR is the act of recognizing
the activity while/ very shortly after it happens. HAR can be used on sensor
data from a lot of different activities, I can be used to identify a person’s
movement like running, walking, climbing the stairs but also much more de-
tailed like picking up a screwdriver or twisting this screwdriver. The reason
for choosing a manual assembly environment is because in recent years there
has been an evident rise in Industry 4.0. Industry 4.0 is the recent change
in manufacturing technologies by increasing automation and data exchange
[12]. Activity Recognition (HAR) can be vital in industry 4.0 due to the high
volume of data. HAR get more accurate due to a high volume of data, es-
pecially when the tasks and the underlying patterns are less pronounced like
for example in a manual assembly environment. HAR can be used to help to
evaluate and increase human performance, and thus their overall efficiency
in the production process [12]. The manual assembly environment for this
project is the assembly of a cabinet using instructions supplied through aug-
mented reality (AR). The augmented reality is used through a goggle that
shows the real world and overlays instruction to help the person assemble the
cabinet more efficiently than giving them a manual of instructions. The AR
would show a clear diagram of the task in hand with a textual explanation
and the placement of the different actions. Like screw the screw of type 1
into the board a the marked spot. HAR in this environment can be used

4

to improve the user efficiency by classifying if he makes a mistake during
the instruction or by identifying the end of a task. If the model can reliably
identify these end of a task, the AR goggles can automatically show the next
instructions and catch mistakes if the model and the user identify the end
differently then the subject.

This study aims to leverage HAR in a manual assembly environment of
the cabinet example as described before. We work during this project on the
dataset provided by KIT-AR of the assembly process of a cabinet. The trial
KIT-AR used to collect this dataset simulates the industry 4.0 concept where
there is an innovative manufacturing technology with a large amount of data
and increased automation. HAR can be used on the positional data of the
head during the assembly in different ways, but during this project, the focus
is on classifying the end of a task (a set of smaller instructions). Recently the
focus of HAR has shifted towards neural networks due to the lower degree of
domain knowledge needed for the classification using neural networks [3]. The
two best performing neural networks from the literature are the RNN-LSTM,
and CNN-LSTM [1, 3]. These models specialize in identifying patterns in a
series of time or images, so they are fit for the classification task and data at
hand. This research aims to determine if these two different neural networks
from previous literature can reliably and accurately classify the end of a task
based on the data collected and supplied by KIT-AR.

1.2 Research Question

The gap in the research is the different, more nuanced classification problem.
Instead of classifying the task during the research, the classification task
is to identify the end of a task. The end of a task is the last 10% of a
high-level task as displayed by Figure 1.1. Figure 1.1 shows the structure
of the high-level tasks and the low-level actions in the data. Most literature
focuses [1, 3, 16, 20] on classifying the activity in our case those would be
the low-level actions.

Also, another aspect missing from the current literature is a connection
to Industry 4.0, especially in the type of data used in different papers. The
dataset and its context used in the project are different by being much smaller
and collected during manual assembly tasks. The differences bring their own
challenges to the project. The research done during this project will focus
on the techniques described in the literature but on a dataset with a manual
assembly context. Most datasets used in the literature focus on more easily
classifiable activities with a larger dataset, compare to the datasets supplied
by KIT-AR. The goal of this research is to determine if HAR can be used by

5

Figure 1.1: The first row of this figure shows the high level task (task 1) over
the timeline with the end of the task marked red. The second row of the
figure shows the accompanying low-level actions the high level task consist
of.

KIT-AR in their AR application on the manual assembly to determine the
end of a task. A use-case for KIT-AR for the classification system at the end
of our project could be to improve efficiency by the user not having to use
voice command. The elimination of voice control can especially beneficial in
a environment with a lot of noise from large machinery. If the model is accu-
rate enough the model could also tell the subject that they made a mistake
and the task is not finished.

The research question is followed from the GAP in the literature and the
goal of this project:
Can we reliably classify the end of a high-level task on the little data given
by KIT-AR?

During the answering of the main research question we investigate two
model architectures which leads to three sub-question. RQ1 and RQ2 focus
on how the RNN-LSTM model and CNN-LSTM model compare in perfor-
mance and resource cost-effectiveness to each other and the baseline model.
RQ3 focuses on if the best model resulting from RQ1 and RQ2 is usable for
KIT-AR and thereby answers the final part of the main RQ

Each sub-question brings its results and solves a part of the main research
question. The different challenges and steps to solve these sub-questions will
be discussed in Chapter 4 and Chapter 5.

6

1.3 Method

Our approach to investigating the research question is to make a baseline
model, a RNN-LSTM model, and a CNN-LSTM model and evaluation and
comparing these final models at the end of the project, as displayed in a
visualisation of the project pipeline in Figure 1.2.

Figure 1.2: This Figure illustrates the pipeline used in this project for devel-
oping the three different models and answering the research question.

The first step in the pipeline to create any model is getting the data in
the correct format after labeling and preprocessing. The data needs to be
explored and cleaned from unusable cases. The preprocessed data needs to
be labeled.

After the data is labeled, the data needs to be split into different windows
and split into a training, validation, and test set. By using the ’Leave-one-
user-out’ (LOUO) method. LOUO means for this project’s data to leave the

7

data from a few selected cases out and divide this data in a validation and
test set, which results in testing on unseen data which simulated the real-
world implementation. The training, validation, and test split is 80:10:10
due to the smaller size of the KIT-AR dataset. More details on the data
split are discussed in Section 4.1.1.

After the data is in the right shape a Baseline model, a RNN-LSTM
and a CNN-LSTM models need to be developed. This start by using the
architectures and parameter specified in the literature [1, 3]. These starting
models are then improved on the KIT-AR data using an experimental method
of hyperparameter tuning. Instead of doing hyperparameter tuning using a
two-step method. More details and the results of the different rounds of
hyperparameter tuning of each model can be found in Sections ??, ??, ??
and ??.

The hyperparameter tuning results in a final Baseline model, RNN-LSTM
model and a CNN-LSTM model that need to be evaluated and the results are
compared between these models. The metrics used in the evaluation are the
F1-score, precision, and recall over a 10-fold cross-validation. More details
and the results of the evaluation of these models are discussed in Section 5.4
and Section 5.5.

Besides the performance, the amount of resources each model needs is also
crucial for implementing the final model and is part of the model evaluation.
The HoloLens has limited resources, especially when considering that the
other processes also need to run and take a large amount of the working
memory (RAM) and computational power (CPU). Due to us having no access
to an actual HoloLens 2, an emulation of the circumstances on the HoloLens
2 is run on a laptop with throttled down CPU to 15% of one core. More
details about the processors, conversion formulation and other aspect of the
emulation are found in Section 5.3.2.

1.4 Findings

Results

The project results are the evaluation and comparison of the final RNN-
LSTM and CNN-LSTM models. The clear observation made during the
research is that both models show that the variance of F1-score, recall, and
precision on a 10-fold cross-validation is higher than the variance of the
training data and the mean is lower then the mean of the training data.

The main observation during the loss-curve evaluation of the CNN-LSTM
models is that there are two trends of the loss-curves. The first trend is that

8

the validation loss curves over the different runs are increasing and very
volatile. The second trend of the loss curve shows that the validation and
training loss curves are more similar. The 10-fold cross-validation displays
fewer folds that follow the second trend. When comparing the loss curves
over the 10-fold cross-validation of the RNN-LSTM and CNN-LSTM, the
first main observation is that the RNN-LSTM model has more fold resulting
from the 10-fold cross-validation follow the second trend.

The first observation when comparing the different F1-score, precision,
and recall of the baseline model, RNN-LSTM and CNN-LSTM, is that the
RNN-LSTM score higher in every metric. The CNN-LSTM scores higher
than the baseline except in recall, where the score is approximately even.
The analysis of the resources needed to run the models online revealed that:
The RNN-LSTM model has a higher time it takes per prediction but needs
a lower amount of working memory. The observation for the CNN-LSTM is
vice versa (faster predictions, needs more working memory).

Interpretation

The main observation was that the RNN-LSTM model outperformed both
the baseline and the CNN-LSTM models in every aspect. However the all the
models were severely overfitting. The clear signs of overfitting of all models
were:

• the very large difference in all metrics when comparing the results on
the training and the test data

• A large variance in the performance of the model over a 10-fold cross-
validation

• The large difference in shape between the training and validation loss-
curves of the models show that the model was learning the signal but
more the noise

The RNN-LSTM model’s loss curve did show slightly more signs of the
models starting to separate the underlying patterns (signal) from all the
irrelevant details (noise). However, this slight increase in signal recognition
is not enough, and the model is still overfitted significantly. All the models are
lightweight enough (don’t need too much working memory and computational
power) to run online on the HoloLens 2 if the assumption defined in Section
1.3 hold.

RQ1 and RQ2 resulted in unreliable and poorly performing models given
the dataset and the methods used. Which meant that RQ3 results in the

9

RNN-LSTM model, which does not suffice the the requirements of the main
RQ. Since the model resulting from RQ3 does not meet the requirements set
in the main RQ is the answer to the main RQ that it is feasible given the
dataset and the methods used. So there is a large GAP in the research for
future work trying different techniques to reduce the overfitting and improve
the overall performance of the models. The main two directions we would
have explored given more time would be the data segmentation techniques
discussed in the paper written by Zheng et al. [20] and the OHIT synthetic
oversampling technique discussed in the paper written by Zhu et al. [21].
This gap in the research means that the degree to which the research question
from Sect. 1.2 has been answered successfully is not as high as desired, but
is answered with the given dataset and the methods used.

10

Chapter 2

Background

2.1 Human activity recognition

Human activity recognition (HAR) is the act of identifying human activity
from sensor data. There are three different time when HAR activity recogni-
tion can occur: predictive, online and post-mortem. Online HAR is the act of
recognising the activity while/ very shortly after it happens. Predictive HAR
is trying to predict the next activity from the current sensory data. post-
mortem HAR is classification of human activity using both data from the
past and future data. HAR can be used in all different field. The first field
to incorporate HAR recognition were the eldercare facilities. As explained
by Md Zia Udd [16], who said ”For instance, smart wearable sensor-based
behavior recognition system can observe elderly people in a smart eldercare
environment to improve their lifestyle and can also help them by warning
about forthcoming unprecedented events such as falls or other health risk, to
prolong their independent life”. However HAR has also other fields where it
can be used like in smart homes or during sport tracking.

The sensor data used in HAR has two main sources, wearable sensors
and camera’s. In earlier stage of HAR the models that were used are shal-
low machine learning models like Decision Trees, Support Vector Machines
(SVM), and Hidden Markov Models (HMM) [2]. Recently neural network
are outperforming the shallow model and require little to no feature engi-
neering in contract to the shallower machine learning models used in the
beginning [2]. The main reason why there is a lot of literature in HAR is the
main differentiating factor: the type of data and the environment in which
the data was collected. The actions have different levels of complexity and
are very different. For example small patterns of recognising a certain head
movement during a task or identifying walking up the stairs by looking at a

11

obvious pattern in the 3-axis movement data. The focus of this project lies
on a manufacturing environment since the recent rise of smart factories and
Industry 4.0. Industry 4.0 is the recent change in manufacturing technologies
by increasing automation and data exchange. HAR can be very important in
industry 4.0 due to the high volume of data and can be used to help to eval-
uate human performance and thus their overall efficiency in the production
process [12].

2.2 Related work

There is a lot of related work in the field of HAR on three-axis movement data
but less literature on HAR in a manual assembly workflow due to the just
recent rise of the industry 4.0 and accompanying use of HAR on a industry 4.0
environment. The main research that comes close to the research question of
this project is the research on HAR using lightweight models on the WISDM
dataset [1, 3]. The WISDM dataset [17] is a 3-axis smartphone-accelerometer
collected dataset on activities like walking, jogging, walking up and down the
stair, sitting and standing. The main difference is the type of tasks completed
during the collection of the KIT-AR data and the WISDM data. Besides the
differences in the tasks is there also a big difference in the classification task
compared to the related work: instead of identifying the different tasks is
the classification objectives of this project to identify the end of a task. The
paper by Ankita et al. [3] and the paper by Agarwal et al. [1] are the
closest in terms of process and how to get to the best lightweight solution
for the HAR classification problem of this project. Both papers [1, 3] use a
lightweight neural network approach (RNN-LSTM and CNN-LSTM) to HAR
on a edge device with a 3-axis movement dataset, just like our project. The
paper by Mohsen, Elkaseer and Scholz [12] and the paper by Knoch et al
[10] are more focused on a similar environment and use case of the solution
to the classification problem. The taxonomy by Mannhardt et al [11] is a
adequate way to get overview of HAR in the manufacturing context due to the
recent rise of industry 4.0. The taxonomy was also the starting place for the
literature research of this paper and gives an insight in the current literature
on the topic. In the table below the different related works mentioned before
are discussed and the objective of each paper and the connection between
this project and the literature.

12

Autor(s) Title Objective

2021 [1]

An Efficient and Lightweight
Deep Learning Model for Human
Activity Recognition Using
Smartphones

Using A CNN-LSTM model for HAR on the
WISDM dataset to get a lightweight and
accurate model. This paper is the inspiration
of the CNN-LSTM model tried in this project.
The main difference is the tasks executed and
the environment during the data collection.

2020 [3]
A Lightweight Deep Learning
Model for Human Activity
Recognition on Edge Devices

Using A RNN-LSTM model for HAR on the
WISDM dataset to get a lightweight and
accurate model. This paper is the inspiration of
the RNN-LSTM model tried in this project. The
main difference is the tasks executed and the
environment during the data collection.

2021 [12]
Industry 4.0-Oriented Deep
Learning Models for Human
Activity Recognition

To compare a CNN, LSTM and CNN-LSTM
model for HAR in more industry 4.0 context.
They did use the WISDM dataset so rather less
complex tasks. These are lightweight models,
but there is no mention of edge devices.

2020 [10]
Enhancing Process Data in
Manual Assembly Workflows

In manufacturing, information about human
behavior in manual assembly tasks is rare when
no interaction with machines is involved. This is
very similar to the use case of this project. The
data they are using in their paper is collected
during a similar assembly as the experiment by
KIT-AR. This data is collect using different
wearable sensors: the data used is collected using
camera’s and is image data.

13

Chapter 3

Problem Exposition

3.1 Detailed Method

The overall methodology used in this project is the CRIPS-DM methodology.
CRISP-DM stand for Cross-Industry Standard Process for Data Mining and
is an industry-proven way to structure data mining projects. The CRISP-DM
process is visualised in Figure 3.1.

Figure 3.1: A process model of CRISP-DM

Business understanding is the starting point for most data science projects,
including this project. The business understanding focuses on understand-
ing the needs of the company that commissioned the project. During the
business understanding the business objectives are established, the situation

14

is assessed, the data science goals are determined and the project plan is
created. The data understanding is the second phase of the CRISP-DM cy-
cle. The data understanding is an expansion of the project understanding.
During the data understanding normally the data is collected and the de-
scribed. In the current project these step are already done by KIT-AR. The
final two tasks during the data understanding phase is data exploration and
the identification of potential problems in the data. The potential problems
are related to data quality. The next phase in the CRISP-DM methodol-
ogy is data preparation. The first step in the data preparation to handle
the data problems identified in data understanding. The next steps in the
data preparation are the data generation and data formatting steps for the
modelling phase. After data preparation is the modeling phase. The model-
ing phase is the phase were your build and asses different models. To build
these models, modeling techniques have to be selected based on literature.
The second step is actually building the model and the final step is assessing
these models. According to the CRISP-DM data frame these last two steps
of build and evaluating the models have to be repeated until the best model
is found. However, most of the time there is a time limit on a project and
you find the best possible model and see if this model performs good enough.
The time limit in this project leads to the same approach of finding the best
model(s) and determine if the model(s) perform good enough for the goals
of the project determined in the understanding phases. The second to last
phase is the evaluation phase. During the evaluation phase is determined
if the models meet the business requirement and are ready for the deploy-
ment phase. This determination is done by reviewing the work put into the
model(s) and summarizing the results. The project goes back to the data
understanding if the current model is not ready for deployment. The final
phase is the deployment phase were the data science solution to the problem
is deployed including a written plan for deployment. This plan will also in-
clude the monitoring and maintenance of the solution of the deployment. The
final step of the deployment and the whole project is writing a report of the
project including a review of the project. The most important characteris-
tic of this methodology is the cyclic nature, especially the back-and-forwards
between the data understanding and data preparation stage and between the
data preparation and modelling stage. Each and every aspect of the CRISP-
DM will appear in this report and will be completed during the project.
CRISP-DM is a very flexible and easy to customize for different data science
projects. The main difference for the CRISP-DM cycle in this project is that
there are three parallel phases of both the modeling and evaluation, one for
every model: Baseline model, RNN-LSTM model and CNN-LSTM model.
In this project the focus of CRISP-DM are on these modelling an evaluation

15

phases, due to the goal of this project.

3.2 Business Understanding

The first step in the CRISP-DM cycle is the business understanding. KIT-AR
is a startup that uses a Augmented Reality (AR) on the manufacturing floor.
They aim to lower the cost of poor quality (CoPQ). CoPQ consists mostly
of prevention, inspection, auditing, rework, repairing, design changes, addi-
tional inventory, downgrading, sales returns. In the case study this projects
focuses on KIT-ASSIST. KIT-ASSIST is a product which companies can use
to improve their manufacturing workflow using AR. In the use case of this
project the subject wearing a HoloLens 2 is given step-by-step instructions
overlaid on the equipment using AR. The HoloLens 2 is a pair of augmented
reality smart glasses developed by Microsoft. The HoloLens 2 has an in-
tegrated display which it uses to mix the reality and computer generated
holograms (our use-case instruction of an assembly). KIT-ASSIST aims to
increase production quality and traceabilty. KIT-AR achieves these goals
with the HoloLens 2 which results in that the user never has to search for
the current step in the instructions and get less confusing information of
adjacent steps. The case study this project and the data is based on is a
furniture assembly process from a furniture company using KIT-ASSIST to
improve their assembly workflow. Reduction of time to competence (TTC)
is another goal of the case study.

3.3 Data Understanding

A very crucial and second step in the CRISP-DM method is the data under-
standing. The data understanding step starts off with the description of the
data source and collection. The next step in understanding the data is the
data summary to explain what the different variables represent. The final
crucial part in the data understanding is the data exploration, to see the
trends and characteristics of the data and check if these match up with the
business and previous data understanding. The data exploration also helps
to identify the areas of data preprocessing.

Data source and collection
The data of this project is supplied by KIT-AR. The data was collected in
a controlled environment in a laboratory. Every subject was asked to build
the same cabinet between two and three time. The placement of all the
parts and tools where identical in every assembly. An simple overview of the

16

experimental setup is displayed in Figure 3.2.

Figure 3.2: Top-down view of experimental setup

The data is collected by giving the participants 13 steps to assemble the
furniture. These steps are called high-level tasks. The positional time se-
ries data of these high-level tasks are observed by the KIT-AR system. The
second dataset is from the low-level actions. These low-level actions are the
actions performed by the subject when performing the high-level tasks and
are observed by a human annotator. The reason low-level tasks are defined
by a human annotator is, because the HoloLens 2 just knows which task the
subject should be on according to the instruction schedule. If the subject
tries to understand something, take a brake or does the wrong thing, the
HoloLens 2 will still label that in the data under the task you should be on.
Besides possible mislabeling is there also a lack of detail in the high-level
tasks, because there are different steps the subject needs to accomplish in
each high-level task. There are 13 different high-level tasks and 15 different
low-level actions. The focus of this project will mainly be on the high-level
tasks dataset, due to the classification task of this project which focuses on
the end of a high-level task which does not warrant the use of the low-level
actions. The low-level data is also not available for the HoloLens 2 during the
predictions of new data, because the human labeling of the low-level actions.

Data summary
A very important step in the data understanding is understanding the mean-
ing behind each variable of the data. The data contains 28 unique assembles

17

of the whole assembly sequence. There are 13 high-level tasks and 15 low-
level actions. Each of the data frames contains 18 columns with the following
semantics:

Name of variables Explaination Example

case

Case is the process instance identifier.
Cases with the same prefix (two characters)
are performed by the same worker. Every
user was asked to do between two or three
assemblies so the number behind the first
two characters are assembly numbers.

An example is ’Ca 1-1’,
where Ca classifies the
subject and the nummers the
assembly and the run of this
assembly.

label
The label of the low-level or high-level
action/task

’task1’ until ’task12’ and
’GAP’ task which signifies the
time between tasks. The task
are number chronological so
the first task is ’task1’

plane

KIT-AR built an environment model during
their experiment/ data collected and
recorded whether the gaze of the worker
(direction of the camera on their head) hit a
certain plane in that environment.

Examples of planes defined
during data collection are
’board left’, ’slider left bottom’,
’table side’. For the areas that
are not defined the ’none’ plane
is used

timestamp
The relative timestamp in seconds in the
case

The timestamp is generates with
an average sampling frequency
of 17Hz and significant until 0.1
nanoseconds.
(Example: 0.0339192)

label instance
The label instance is a monotonically
increasing instance number of the low
or high-level task.

All the numbers between 1.0 and
751.0

PosX, PosY, PosZ

the non-normalised x, y and z coordinate of
the camera. The camera on the HoloLens 2
can move along three planes, so the exact
location of the head of the subject can be
determined with the combination of these
variables. Further explanation is visualized
in Figure ...

These values are calibrated from a
null point: If a subject moves
straight to his/ her left, the PosX
will decrease. If the subject bends
down the reach a part, the PosY
will decrease

HeadZx (and so on)
The rotation matrix of the camera. Als of
these variables can determine the direction
the subject is looking in.

The values of these variables are
between -1 and 1 and each axis has
its own x, y and z values.

Data exploration and preprocessing
Data exploration is the most crucial step in the CRISP-DM, because this
is the first interaction with the actual data. The data exploration started
with summary statistics for each variable grouped by each case. This differ-
ent case names showed that some participants assembled the cabinet three
times, some two times and some participants even only one time. For the
classification problem of this project this is not very significant, because there
is no analysis of the different assemblies by person but in general. The first
insight the actual summary statistics showed when looking at the maximum

18

timestamp of each case is about the case names that end with two, for ex-
ample Ca 1-2. All the cases that end with two (indicated red in Figure 3.3)
are considerably shorter then the cases that end with one (indicated green in
Figure 3.3). Evidence of this considerable difference in length are displayed
in Figure 3.3. These cases also start at the positional coordinates where the
previous run has ended. Both the length difference and the fact that posi-
tional starting and endpoint match up results in the conclusion that these
cases are not actually new assemblies but an automatic run started by the
HoloLens 2 in directly at the end of the actual assemblies. This conclusion
was confirmed by a contact person at KIT-AR. Due to this conclusion, these
cases ending with a two are not used in this project.

Figure 3.3: Visualizing the different duration of the cases to illustrate the
clear difference in all the cases ending with a two compared to the cases
ending with a one.

What also became apparent form the summary statistics per case is that
the count (total amount of rows grouped by case) of case Ch 1-1 was much
lower. This lower count was caused by for this case having a lower sampling
frequency. All the average data has a labeling frequency 16.38 Hz. However
for one case in the study this was significantly lower: Ch 1-1. In this case
there are intervals between data points of up to 30.7 seconds. These gaps
in the time series data lead to an average of 2.49 labels per second. The
comparison between Ch 1-1 and all the other cases is demonstrated in Figure
3.4. This discrepancy will result in the removal of this case due to the large
gaps in the time series data.

Besides understanding the characteristic of the different cases, the most
important data is the positional and directional coordinate data, because

19

Figure 3.4: The comparison of the sampling frequency between the different
cases. The clear standout is the Ch 1-1 which has a considerably lower
average sampling frequency.

this will be the HAR input data for the models. The different position the
subject can take are defined on the X, Y and Z axis. In The Figure 3.5,
these axis are visualized relative to the subject.

Figure 3.5: Visualizing the different axis relative to the subject

The explanation of the axes in Figure 3.5 also makes sense when looking
at the middle plot in Figure 3.6, where the PosY is the variable with the low-
est standard deviation out of the different positional axis. This observation
is in accordance with the understanding that the height of the head will very
the least. The mean of the Y coordinate also increases in the last five tasks.

20

This increase in the mean height at which the subjects head is positioned is
due to that in the final stages of the assembly the cabinet get higher. The
whiskers of the box plots of the X-axis are also closer to each other during
task two, three, four, five, six and seven. These wiskers are calculated by
±1.5 · IQR (interquartile range) from either Q1 or Q3. So the smaller the
wiskers, the smaller the IQR and the smaller the variability of the data. The
reason for the decrease in variability of the data of these tasks is that these
tasks don’t involve parts that are on the table further left of the subject (as
illustrated by Figure 3.2).

Figure 3.6: The box plots to summaries the different positional coordinate
variables (Posx, PosY, PosZ)

21

The final stop of preprocessing is dealing with missing values. In the data
the average of missing values of each case per task is 1.74%. This is a small
enough percentage that these rows can be removed from the data, without
affecting the data and performance of the model significantly. After this final
step the data is completely clean, usable and understood. After the data was
fully cleaned, the categorical variables were label encoded. This means that
all the label, case and plane data were converted to numbers that correspond
with a linked string variable. For example for the label data 0 is ’task1’ and
for the case data 1 is ’Ch 2-1’. The rows with label ’GAP’ indicates the
time between two tasks which not an actual task. So due to the classification
problem of trying to identify the end of a task and due to the fact that during
the ’GAP’ periods no tasks are executed, all of these rows are removed from
the data.

3.4 Detailed Research Questions

The research question (RQ) formed based on three angles: the literature
on the subject of HAR on a edge device, the business understanding of the
goals of KIT-AR and the available data in this project. The RQ prompted
by the limited amount of data supplied and the interests of KIT-AR. KIT-
AR interests are about the aim to lower the CoPQ. This interest leads to
KIT-AR wanting a very robust and fast model in order to do online HAR.
The literature on the subject of using HAR are most of the time not in the
manufacturing environment, due to the fact that data collection about human
behavior in manual assembly tasks rare is when there is no interaction with
machines during the assembly process [10]. There is, however, more literature
on the use of HAR on similar 3-axis movement data collected by wearable
sensors [1, 13, 3]. This literature shows that CNN-LSTM and RNN-LSTM
are very promising models in the field of HAR on 3-axis movement data from
wearable sensors. Due to the online nature of the project and the fact it has
to run on a HoloLens 2, the lightweight versions of the CNN-LSTM and
RNN-LSTM show the best results on 3-axis movement data in the literature
[1, 3]. That is how the two part research question below is formed using the
data characteristics, literature and KIT-AR interests. The research question
is: Can we reliably classify the end of a high-level task using a RNN-LSTM
or CNN-LSTM model based on the little data given by KIT-AR?

The focus of the research question is to improve the KIT-ASSIST process
by having the HoloLens 2 detect when a task is finished or about to finish.
This will help increase the efficiency of the KIT-ASSIST process and could
aid in auditing the tasks the subject thinks he has completed. For example

22

when the model thinks the task isn’t nearly finished, but the subject does say
it is finished. These improvements could reduce their CoPQ and improve the
implementation of KIT-ASSIST. However to achieve this goals the models
needs to be reliable. The goal of using a HAR model to detect the end of
a task in a manufacturing context together with the literature the leads to
the comparison between the two most prominent lightweight HAR models
on 3-axis movement time series data: RNN-LSTM vs. CNN-LSTM.

The main RQ leads to three sub-research questions:

RQ1: How does the RNN-LSTM (with the proposed architecture of the
literature) compare on performance and efficiency to the other models?

RQ2: How does the CNN-LSTM (with the proposed architecture of the
literature) compare on performance and efficiency to the other models?

RQ3: Is the best model resulting from RQ1 or RQ2 implementable for
KIT-AR?

The literature showed a good performance in multiple different datasets
for both RNN-LSTM and CNN-LSTM, but these datasets were all in a non-
manufacturing setting collected and larger then the dataset for this project
[1, 13, 3]. This project’s comparison is on adjusted RNN-LSTM and CNN-
LSTM models for my data set using Hyperparameter tuning and data aug-
mentation.

The discussion around RQ1 and RQ2 start with the model architectures
discussed in Sect. 4.2. The models needed to answer RQ1 and RQ2 are then
finalized in Sect. 5.3. The answer to RQ1 and RQ2 are discussed in the
compared evaluation of the proposed model in Sect. 5.4 and Sect. 5.5. The
answers of RQ1 and RQ2 combined will answer RQ3 and are discussed in
Sect. 6.1.

23

Chapter 4

The Three Different Models
Used During This Project

The original research question is: Can we reliably classify the end of a high-
level task using a RNN-LSTM or CNN-LSTM model based on the little
data given by KIT-AR? So the first research problem of the original research
question is to create a RNN-LSTM and CNN-LSTM model, which starts
by understanding the three models and finding a starting point for their
architectures in the literature.

A part of solving RQ1 and RQ2 consists of building a justifiable and
straightforward baseline model and evaluating this model. However, the
data needs to be formatted before any model can be applied. The following
big step towards solving RQ1 and RQ3 is finding a starting point and under-
standing the RNN-LSTM and CNN-LSTM models. The next step towards
finding the best RNN-LSTM and CNN-LSTM models is finding a suitable
model architecture and a starting set op parameter to see the models’ be-
havior.

4.1 Starting Requirements For The Model eval-

uation

The first problem is that there are no results of what a straightforward model
would achieve with the same classification task, so we don’t know, on a rel-
ative scale, if the model is doing well and if it is an improvement. A way to
solve this problem is building a straightforward ’baseline’ model and evalu-
ating the baseline model to generate a starting point to compare the RNN-
LSTM and CNN-LSTM models’ performance. The first step in developing
the models is to get training, validation, and test data in the right shape.

24

4.1.1 Data Labeling And Formatting

The formatting started by labeling the target value in the data: for each row,
the progress in their task is calculated by using the following formula.

Progress =
CTS − STS

ETSi − STSi

CTS = the current timestamp of the row
STS = the timestamp of the start of the current task of the row
STSi = the timestamp of the start of the current task based on historical
data. The i stands for the label of the current task
ETSi = the timestamp of the end of the current task based on historic data

This calculation would result in the progress based on the completed per-
centage of the task based on the timestamp of that moment. If the progress
is higher than 0.9, the target value is 1, and the task is considered ending.
An example of the data after labeling is displayed in Table 4.1. A few rows
in the middle of the first task of the first case are displayed. To show the
process of labeling, take the row with index 300. The CTS of row 300 is
17.885919 seconds, and the STS is 0.0 seconds because this is the first task.
The ETSi is ETS0 and STSi is STS0, because the label is 0. The value of
ETS0 is the average time tasks with label 0 end; this is 26.864457 seconds.
The historical data is used to calculate the ETS0. The STS0 is the time
tasks with label 0 and case 0 start; this is 0.0 seconds.

Progress300 =
17.885919− 0.0

26.864457− 0.0
= 0.665784

After creating the target value, the data needed to be reformed into a
sliding window. The size of the sliding window in the literature [1] was 180
observations. The literature was on very similar kinds of data but collected
doing a very different task in a non-manufacturing environment and with
a different sampling frequency. The data in the literature was collected by
using the sensors of a phone while the subject was doing everyday activities
like walking, walking downstairs, running, etc. The different window sizes
and step sizes will be evaluated during the hyperparameter tuning.

The data is also transformed from data frame to matrices, after which the
data is split into a training, validation, and test set, where each data window
has its own matrix inside a larger 3D matrix. So the training data will be a
three-dimensional matrix where each data window has its own page or sheets
as shown in Figure 4.1. Unfortunately, we cannot use standard randomized
techniques to split the data into a training set, test set, and validation set

25

Timestamp
(CTS)

Case
(recoded)

Label
(recoded)

STS0

and
STS

ETS0 Progress Target

296 17.636919 0 0 0.0 26.864457 0.656515 0
297 17.702919 0 0 0.0 26.864457 0.658972 0
298 17.752919 0 0 0.0 26.864457 0.660833 0
299 17.818919 0 0 0.0 26.864457 0.663290 0
300 17.885919 0 0 0.0 26.864457 0.665784 0
301 17.935919 0 0 0.0 26.864457 0.667645 0
302 18.002919 0 0 0.0 26.864457 0.670139 0
303 18.068919 0 0 0.0 26.864457 0.672596 0
304 18.135919 0 0 0.0 26.864457 0.675090 0
305 18.202919 0 0 0.0 26.864457 0.677584 0

Table 4.1: Showing examples of rows after the data has been labeled with
the columns used for the labeling. The purpose of this Table is to illustrate
how the target value is labeled.

due to the issue of training on future data. Training on future data is caused
by data in the training set that occurs later in the time series than data in
the test or validation set.

Figure 4.1: A visual representation of a 3-D matrix to illustrate the data
structure after the formatting for the modeling phase

There are two different cross-validation schemes to prevent training on fu-
ture data: ’Leave-one-supertrial-out’ (LOSO) or ’Leave-one-user-out’ (LOUO)
[6]. LOSO would mean to leave all the data from a few randomly selected
tasks (labels) out of the training set en divide over the validation and test

26

set. LOSO does not make sense with this project’s data because the classifi-
cation task is not focused on one specific task (label) but on identifying the
end of any given task. LOUO would mean for this project’s data to leave
the data from a few selected cases out and divide this data in a validation
and test set. This method is perfect for accurate evaluation because the
model will also predict unseen data that it did not use during training. The
training-validation-test split is 80:10:10 instead of the normal 70:15:15 based
on the literature to counteract the limited training data. The LOUO means
that from the 30 different cases, the test data consists of randomly selected
24 cases, and both the test and validation set will have the data from three
out of the six other cases.

The data has two inherent problems limiting modeling performance, es-
pecially on neural networks:

1. The first and main problem is the lack of training data even after the
80:10:10 split

2. The second problem is the significant imbalance in the data: 89% of
the training data has target label 0, and 0.11% of the training data has
target label 1.

A possible way to moderate both problems is using random over- and un-
dersampling. Data random over- and undersampling are data augmentation
techniques. Random oversampling generates new data by randomly copying
already existing data points of the minority class. Random undersampling
reduces the imbalance in the data by randomly removing data points from
the majority class. Random over- and undersampling can be effective for
the machine learning algorithms where the imbalanced data negatively in-
fluences the model’s fit, which duplicate examples of the minority class can
solve. These models that benefit the most are algorithms that iteratively
learn coefficients, like artificial neural networks that use stochastic gradient
descent. The RNN-LSTM and the CNN-LSTM models compared during
this project also use iteratively learn coefficients. Both LSTM models use
a stochastic gradient descent optimizer. The paper of Ghazikhani et al. [7]
shows that wrapper-based random over- and undersampling outperforms reg-
ular random over- and undersampling on almost all datasets they tried. A
wrapper-based approach signifies using the model’s output to tune the dif-
ferent ways of over-and undersampling. The wrapper-based approach is used
in the literature to select a subset of the training data on which the oversam-
pling is applied. Due to the high-dimensionality of the data and the fact that
the data is time-series data, standard random sampling is applied instead of

27

the wrapper-based approach. Using random or ”naive” over- and undersam-
pling on the complex data speeds up the data augmentation compared to
oversampling techniques where synthetic samples are generated. However,
in this project, a different wrapper-based approach is used to determine the
level of over-and undersampling. Even though random oversampling seems
to fix all the problems in the data, there is a big downside to random over-
sampling: all the duplicate data might cause the model to overfit heavily
on the training data. To combat the overfitting, an even data augmentation
strategy of over and undersampling is used to generate more balanced data
than the 89:11 split of the original data. However, To determine which more
balanced split to generate, a wrapped-based approach is used to decide be-
tween the following balances in the training data: 50:50, 60:40, 70:30, 80:20.
These are the percentages of majority:minority split. An example is if there
are 9000 data points with target value 0 and 1000 data points with target
value 1, the split would be 90:10, and after oversampling 3000 data points
and undersampling 3000 data points, the split will be 60:40. This same strat-
egy is used during the data augmentation of the KIT-AR data to reduce the
imbalance of the dataset.

4.1.2 The Baseline Model Concept

The baseline model is a very simple and naive model. The baseline model is a
rule based model that solely focuses on the task label and the last timestamp.
The rule is based on the same process as the data labeling. The rule is:

if
current timestamp− the start of the current task

average length of this task
> 0.90

then classification = [0., 1.],

else classification = [1., 0.]

Classification [0., 1.] means that the model classifies the data near the
end of a task. classification [1., 0.] implies that the model classifies the data
as not near the end of a task. The average duration of each task is based on
the training data. This baseline model is justified because this simple rule-
based model is based on a similar process as the data labeling. The labeling
process is solely based on the timestamp task variable and uses the same
formula but has all the cases and not just the training cases. An example of
how the baseline model would work is that the baseline model would calculate
the average duration of each task (label) based on the training data. All the
other data is used in the formula can be extracted from the test variables

28

the model is trying to classify. The threshold used for the rule-based model
was found by trying different thresholds (an elementary form of grid search
hyperparameter tuning on one hyperparameter).

4.2 Understanding of the Proposed Neural

Networks

Besides a baseline model for reference and getting data in the right shape, is
the next requirement to answer RQ1 and RQ2 an understanding of the RNN-
LSTM and CNN-LSTM and their proposed architecture from the literature.
Therefore, the following section will focus on understanding the different
models and result in a model architecture for the RNN-LSTM model and
the CNN-LSTM model.

4.2.1 RNN-LSTM concept

The second sub-problem of the RQ1 is finding the suitable RNN-LSTMmodel
for the project’s dataset, classification task, and environment. The approach
for this is to use the proposed architecture from the paper [1] as a starting
point. Different steps are needed to find the best lightweight RNN-LSTM
model. The first step is to understand why LSTM models are chosen in the
first case. Then, this understanding is paired with explaining why the model
proposed by P. Agarwal [1] is a good starting point and where there are
gaps in the paper. Finally, the model needs to be further improved to fit a
manufacturing environment and the KIT-AR data.

The research question focuses on using HAR to identify the end of a task.
The traditional approach to solve this classification power involves a lot of
feature engineering, after which a machine learning model like a decision
tree was trained. The main problem with this approach is that the feature
engineering needed for the non-neural network models required a high de-
gree of domain knowledge. Recently, neural networks (NN) like LSTMs and
variations that use one-dimensional convolutional neural networks or normal
CNNs have provided state-of-the-art results on challenging activity recogni-
tion tasks with little or no data feature engineering. These NN can use raw
data for their feature learning. The reason for choosing a RNN-LSTM model
is that training regular RNNs is limited by possible vanishing or exploding
gradient problems that hinder the network’s ability to backpropagate gradi-
ents through long-range temporal intervals [9]. LSTM, on the other hand,
uses memory cells, which helps prevent the problem normal RNN have by

29

maintaining information in memory for an extended period of time. The Dif-
ferent gates on the memory cell help control the interaction with the memory
cell and the data. An LSTM cell consists of four main parts: the input gate,
a neuron with a self recurrent connection, the forget gate, and the output
gate. The input gate controls if the data go into the memory cell or not. The
output gate can determine if the state of the memory cell influences other
neurons. The forget gate can decide if the memory call remembers or forgets
the previous state using the self-recurrent connection [5].

Figure 4.2: A visual representation of a memory cell to clearly explain the
different parts and their function and why it is better then a normal RNN
cell. This Figure was featured in the paper by Chen et al[5].

The main inspiration and reason for choosing a RNN-LSTM model is
the RNN-LSTM model proposed by P. Agarwal [1]. A very similar problem
occurs in the paper compared to the research question of this project. The
main two differences between this project and the paper are related to the
data. In the paper, the WISDM dataset is used. The WISDM data is
3-axis movement data collected by time-series data of very regular actions
(Jogging, Walking, Standing, Sitting, Upstairs, and Downstairs) collected
using a wearable sensor. The first main difference between the KIT-AR data
and the WISDM data is the tasks during the data collection. The KIT-
AR data is collected in a manufacturing setting. This difference in tasks
can cause the results gathered on the KIT-AR data to vary from the results
achieved by P. Agarwal because their movements are less nuanced than the
head movement during the assembly of a cabinet. Besides the difference in
the settings, the data properties are also very different. The KIT-AR main
problems are discussed in Sec.4.1.1, and these problems could inherently limit
the performance of the RNN-LSTM model. The final problem not related
to the data is that the classification task is different. Instead of classifying

30

the task, this project focuses on classifying the end of any task. However,
the type of data, the techniques of HAR, and the use case of the solution
needing to run an edge device are similar.

The model architecture of the RNN-LSTM used in the paper by P. Agar-
wal is a very shallow model with a lightweight approach to accommodate the
limited computational power on the edge device (HoloLens 2 in the project’s
use case). The working of the RNN-LSTM model is visualization in Figure
4.3.

Figure 4.3: A visual representation of the workings of the RNN-LSTM model
used in this paper inspired by the literature of P. Agarwal [1]

The main component of the prediction is the lightweight RNN-LSTM, of
which the architecture proposed by P. Agarwal is visualized in Figure 4.4.
This architecture will be the starting point of finding the suitable RNN-
LSTM model for this project’s research question. The architect consists of
two hidden LSTM layers with 30 neurons each. The input is time series data
of a window with size T. The output of the RNN-LSTM model is a vector of
numbers that is converted to probabilities by the softmax function.

31

Figure 4.4: A visual representation of the workings of the RNN-LSTM model
used in this paper inspired by the literature. The Figure is features in the
paper of P. Agarwal [1]

The full model architecture of the RNN-LSTM model for this project is
visualized in Figure 4.5. Figure 4.5 shows the different parts of the model
described in Figure 4.3. The see through box in Figure 4.5 shows the part of
the model described in Figure 4.4.

Figure 4.5: The figure shows the RNN-LSTM model architecture by visual-
ising the different layers

32

4.2.2 CNN-LSTM concept

The second sub-problem of the RQ2 is finding the suitable CNN-LSTMmodel
for the project’s dataset, classification task, and environment. A crucial part
of making an efficient and lightweight CNN-LSTM model is understanding
the CNN-LSTM model. The CNN-LSTM starting model of this project
is based on the paper Ankita et al. [3]. The papers [3] and [1] have the
same classification problem and the CNN-LSTM model resulted in a slightly
higher F1-score of 0.9789 compared to 0.9578. So these models are very
comparable, and the CNN-LSTM is just an extension on the RNN-LSTM
model architecture proposed by P. Agarwal [1]. The CNN-LSTM architecture
is displayed in Figure 4.6. The only difference between the RNN-LSTM
architecture is the CNN layers. The architecture displayed in Figure 4.6 is
called a Long-term Recurrent Convolutional Network (LRCN) and is referred
to as a CNN-LSTM model in the literature. The combination of CNN-LSTM
gives an efficient and lightweight deep learning model by reducing the number
of features used in the LSTM part of the model.

Figure 4.6: A visual representation of the workings of the RNN-LSTM model
used in this paper inspired by the literature of Ankita [3]

The CNN part of the model reduces the features using convolutional and
pooling layers. These layers extract helpful information and reduce noise
using convolution operations to process the sensor data and generate new
feature values. The convolution kernel is used as a filter in the convolution

33

operations. The kernel size of the window is used in the convolution and re-
sults in a feature map. The literature [19] states that: ”These feature maps
are typically more useful than the original input data and considerably im-
prove the performance of the overall model”. The max-pooling layer following
the convolution layers uses a sub-sampling technique that extracts the maxi-
mum of a sliding window over the feature map and creates a low-dimensional
matrix. The new low-dimensional matrix created by the pooling layer can be
considered a concise version of the convolution feature map. Pooling reduces
the impact of small changes on the output of the max-pooling layers and
makes the model more robust.

The CNN part of the proposed model functions as the feature extractor
and consists of two one-dimensional convolutional layers followed by a drop-
out layer and by a max-pooling layer, as shown in Figure 4.7. The convolution
results are flattened, after which the LSTM model (classifier in Figure 4.7)
is applied. CNN part of the CNN-LSTM performs feature extraction. Each
window of size T is split into four sub-sequences of equal length. The entire
CNN model is wrapped in a time Distributed layer to apply the CNN model
to each of the four sub-sequences of the window T. The CNN part of the
model will extract flattened features from these four sub-sequences, and the
LSTM layers are applied to these features. The full model architecture of
the CNN-LSTM model for this project is visualized in Figure 4.7. Figure 4.7
shows the different parts of the model described in Figure 4.6.

Figure 4.7: The figure shows the CNN-LSTM model architecture by visual-
ising the different layers

The RNN-LSTM and CNN-LSTMmodel architectures resulting form this
section (Section 4.2) are the starting point of the hyperparameter tuning in
Section 5.3.1 and evaluated in Section 5.4 and Section 5.5 to answer the main
research question.

34

Chapter 5

Evaluation Of The Different
Models

5.1 Objective

The goal of the research question is to find a suitable model out of RNN-
LSTM and CNN-LSTM that can accurately predict when a task is ending.
This model also has to be suited to run on an edge device. The models are
the proposed RNN-LSTM and CNN-LSTM models from the literature [1, 3].
The performance metrics used to compare both improved LSTM models to
the baseline are the precision, recall, and F1-score [15]. The reason that
these metrics suit our objective is that the data is unbalanced in the target
variable.

These metrics use the different types of classification errors in their calcu-
lations. The different classification errors start with the true positives (TP),
which are the number of correctly predicted task endings. False positives
(FP) are the amount of wrongly predicted endings of a task. False positives
(FN) is the number of times a task ends, but the model predicts it is not.
True negatives (TN) are the number of correctly predicted instances where
the task does not end. These different classification errors are visualized in
Figure 5.1

• Precision: The amount of time the model correctly predicts a task is
ending out of the total amount of time the model predicts a task is
ending. Precision is the accuracy solely over the predictions that a
task ends. The formulate for precision:

Precision =
TP

TP + FP

35

Figure 5.1: A visualization of what recall and precision entail to illustrate
why the these matrix are suitable for our evaluation [18]

• Recall: The amount of time the model correctly predicts a task is
ending out of the total amount of time the task is actually ending. The
recall is the accuracy solely over the instances that a task is actually
ending. The formulate for precision:

Recall =
TP

TP + FN

• F1-score: The harmonic mean of the precision and recall:

F1 − score = 2 · Precision ·Recall

Precision+Recall

The F1-score will be the primary metric because this combines both
precision and recall.

36

5.2 Setup

In the setup section, a clear overview of all the different aspects will be
discussed in detail and every tool and type of data used for the various
experiments of the project. The project overview is visualized in the flowchart
found in Figure 5.2. The start of the project is the research question and the
raw data. The research question requires finding the best possible lightweight
RNN-LSTM model and CNN-LSTM model. First the raw data needs to be
preprocessed, formatted, and labeled which is explained in Section 3.3 and
4.1.1. The output of this process is a train, validation, and test 3D matrix
with a target value of [0., 1.] or [1., 0.]. The train and validation data and a
model architecture are used as the input of Experiment 1, as shown in Figure
5.2.

Experiment 1 aims to find the best hyperparameters for the RNN-LSTM
and CNN-LSTM models. So Experiment 1 is split into two parallel runs of
the same experiment on the different models. These experiments are outlined
with a hashed outline in Figure 5.2 and labeled experiments 1.1 and 1.2. This
first experiment has the input of: 1) the goal of finding the best RNN-LSTM
and CNN-LSTM model, 2) the final training and validation set, and 3) a
model architecture from the literature. Both Experiments 1.1 and 1.2 consist
of two rounds of hyperparameter tuning, where the first round results dictate
the grid of the second round’s grid search. The output of both iterations of
experiment 1 is a model with a final set of hyperparameters based on the
best performance. This analysis is based on the F1-score on the validation
data compared to the performance on the training data. This comparison is
used to determine the degree of over-or underfitting. Both final models are
also the input for the second experiment.

Experiment 2 is an emulation of each model to determine the resources
each model needs to run online on the HoloLens 2 (the edge device). The
input of the second experiment is the final RNN-LSTM and the final CNN-
LSTM together with 1000 data points of the validation data. The laptop
used during the emulation uses an Intel i7 core at 15% capacity of one core.
The emulation and comparison of the CPUs between the laptop and the
HoloLens 2 are discussed in more detail in Section 5.3.2. The emulation
records the meantime the model needs to predict on 1000 random data points
and uses a formula defined in Section 5.3.2 to output an estimation of the
time either model needs per prediction on the HoloLens 2. The second output
of experiment 2 is the amount of working memory (RAM) the model needs
to run online. The final models resulting from experiment 1 are evaluated by
10-fold cross-validation to determining the performance of the model using
the metrics discussed in Section 5.1.

37

Figure 5.2: A flowchart of the projects overview to visualize the different
steps of the project and the accompanying experiments and their input and
output.

5.3 Execution

The execution section is a clear description of the two different experiments
introduced in Section 5.2. The two experiments are the improvement of the
proposed model architectures by hyperparameter tuning and the estimation
of the resources the models need to run online. The hyperparameter tuning
will result in two final models, which will be evaluated on their performance
and their resources in Section 5.4 and Section 5.5.

38

5.3.1 The Hyperparameter Tuning of the Proposed Mod-
els

RNN-LSTM improvement methodology and their results

Besides the base architecture, many more hyperparameters influence the
model’s performance. The paper by P. Agarwal [1] clearly stated these pa-
rameters for their classification problem. Still, to transform the model to per-
form better on the assembly data, these hyperparameters need to be tuned
on the KIT-AR data of a manufacturing environment. The process to tune
these parameters is called hyperparameter tuning. The hyperparameter tun-
ing method used is a experimental grid search approach. The experimental
grid search is an ”educated” brute force approach due to the different rounds
of parameter tuning. The search grid for the hyperparameter function can be
narrowed by experimenting on different parameters based on prior knowledge
of the kind of model and patterns displayed during the rounds of hyperpa-
rameter tuning. The concept behind the different rounds of hyperparameter
tuning is that this reduces the number of initial parameters that need to be
checked by reacting to the model’s behavior to the initial parameter grid.

Results of the first round of hyperparameter tuning the RNN-
LSTM model

The first grid search is over the step size and batch size with the proposed
amount of neurons (30) by P. Agarwal in the two LSTM layers. The number
of epochs is limited by an early stopper, which prevents overtraining by
monitoring the trend of the valuation loss. A grid search is used instead of
a random search to reduce how much the different hyperparameters affect
each other by checking all possible combinations of parameters and taking
the mean and standard deviation. During the hyperparameter tuning, we
used three-fold cross-validation to show how robust the models were and
decrease the effect of the split between the train, test, and validation data
on the model performance.

The first results from the hyperparameter tuning are shown in Figure 5.3.
Smaller step sizes seem to better affect the mean F1-score of the RNN-LSTM
models and a decreasing standard deviation. A slight standard deviation
signifies a more robust model with less volatile performance. The effect of
a smaller step size also makes sense because this generates more windows in
the data, so more data points. This increase in the data points is a significant
advantage when training on a small training dataset. So in the next round
of the hyperparameter tuning, the focus is on step sizes smaller than 5.

The second parameter tested besides the step size is the batch size in the

39

Figure 5.3: The effect of different step sizes on the performance of the model,
to show the behavior of the model and see which way to go without having
too many different parameter combinations in the grid search. The orange
line signifies the mean training F1-Score, and the orange area is the standard
deviation. The blue line signifies the mean validation F1-Score, and the blue
area is the standard deviation.

first round of hyperparameter tuning. The batch size determines the number
of samples the model is shown before adjusting the weights. The performance
under the different batch sizes is visualized in Figure 5.4. The larger batch
sizes seem to have a better mean F1-score and decrease standard deviation
in the model performance on the validation data. However, the effect on
the mean performance is minimal on the training data. Larger batch sizes
result in faster progress in training but don’t always converge as fast. Smaller
batch sizes train slower but can converge faster. However, the models all stay
well below the maximum epochs of 300 (due to the early stopper) before
converging, so they don’t have problems converging due to the large batch
size.

The window size is the third hyperparameter of the first round of hy-
perparameter tuning. The effects of different window sizes are visualized in
Figure 5.5. The optimal window size is 60, with the best combination of the
highest performance and lowest standard deviation. The main factor is the
signal length of the ending of a task.

The general insight from the first round of hyperparameter tuning is that
the models are significantly overfitting by an average of 0.3226 in F1-score.
A potential cause for the overfitting could be that the models were all using

40

Figure 5.4: The effect of different batch sizes on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search.

Figure 5.5: The effect of different window sizes on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search.

an over-and undersampling strategy, resulting in a 60:40 imbalance in the
data, with an equal amount of over-and undersampling. This large amount
of oversampling can cause overfitting.

41

Results of the second round of hyperparameter tuning the RNN-
LSTM model

The first round of hyperparameter tuning showed that a smaller step size
and a bigger batch size enhanced the performance, but the models suffered
significant overfitting. The second round of hyperparameter tuning focuses
on the different over-and undersampling strategies to reduce overfitting. The
grid that will be searched during the second grid search focuses on smaller
step sizes, bigger batch sizes, and less over- and undersampling. The imbal-
ance in the data before over- and undersampling is: 89% of the windows in
the data is of periods where the tasks are not ending, and 11% of the windows
in the data is of periods where the tasks are ending. For the first round, this
89:11 split was turned into a 60:40 split with an equal amount of over-and
underfitting. The splits tested during the second round are the 70:30 split
and the 80:20 split. The results of the different sampling rates are displayed
in Figure 5.6. The reduction in data augmentation reduces the overfitting
by lowering the F1-score on the training data without affecting the F1-score
on the validation data.

Figure 5.6: The effect of different sampling rates on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search.

Besides sampling, the batch size and step size are further tuned on a grid
educated by the first round of hyperparameter tuning. The results of the
second round hyperparameter tuning of the different batch sizes are visualized
in the line graph in Figure 5.7. The trend is that a larger batch size reduces
overfitting by improving the model’s generalization.

42

Figure 5.7: The effect of different larger batch sizes on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search.

The first round of hyperparameter tuning also showed that a smaller step
size increased the performance of the models. So in the second round, even
smaller step sizes are added to the grid search. The results are shown in
Figure 5.8. There is no change in performance between a step size of 5 or
smaller.

The overfitting is still a problem, so the number of neurons in the two
hidden layers (LSTM) is a parameter in the final hyperparameter tuning.
All the models before had 30 neurons in each hidden layer, just like the
model proposed in the paper written by P. Agarwal. Reducing the neurons
and thereby reducing the complexity of the model is a very effective way
of reducing overfitting. The results of the effect of the different number of
neurons confirm this theory and are visualized in Figure 5.9. This Figure
clearly showed an increase in the mean F1-score on the validation data from
30 to 5 neurons, resulting in less overfitting. Lower than five neurons in each
hidden layer (3 neurons) result in a model lacking complexity and a lower
mean F1-score on the validation data.

To summarize the finding and the different parameters tried during the
two rounds of hyperparameter tuning and their results, a summary table of
Section 5.3.1 is shown in Table 5.3.1.

43

Figure 5.8: The effect of different smaller step sizes on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search.

Figure 5.9: The effect of different numbers of neurons in the hidden layers
on the performance of the model, to show the behavior of the model and see
which way to go without having too many different parameter combinations
in the grid search.

44

Hyperparameter of
the RNN-LSTM

Result first round
The optimal value:

Result second round
The optimal value:

Final results of the
Hyperparameter
tuning RNN-LSTM

Window size
Tried: 30, 60, 120
Result: 60

Not needed 60

Step size
Tried: 5, 10, 17, 20
Result: 5

Tried: 1, 3, 5
Result: 5

5

Batch size
Tried: 64, 128, 256, 512
Result: 512

Tried: 512, 1024
Result: 1024

1024

Number of Neurons
Tried: 30
Result: 30 (overfitting)

Tried: 3, 5, 20, 30
Result: 5

5

Oversampling
Tried: 60:40
Result: Less oversampling
than 60:40 (overfitting)

Tried: 70:30, 80:20, 87:13
Result: 80:20

80:20

Table 5.1: This table gives a clear summary of the different hyperparameters
tuned and the resulting hyperparameter for the final RNN-LSTM model.

CNN-LSTM improvement results

Results of the first round of hyperparameter tuning the CNN-
LSTM model

The methodology of the hyperparameter tuning is the same as during the
improvement of the RNN-LSTM model. The first round of hyperparameter
tuning focused on batch size, window size, step size, and the number of neu-
rons in the LSTM part of the CNN-LSTM model. The effect of the window
size on the performance of the CNN-LSTM model is visualized in Figure 5.10.
The clear optimum of the window size for the highest performance is at a
window size of 60. A larger window size seems to decrease the performance
of the model.

The next hyperparameter related to the training data format is the step
size. The effect of the different step sizes on the model performance is visu-
alized in Figure 5.11. The step size has a lower impact on the performance
of the CNN-LSTM. However, a larger step size does cause a higher standard
deviation in the results, indicating less robust models. The ideal step size is
five or smaller. The smaller step sizes are included in the second round of
hyperparameter testing.

The first round of hyperparameter tuning also focuses on the different
batch sizes used in training. The effect of the other batch sizes on the grid of
the second round of hyperparameter tuning is visualized in Figure 5.12. The
optimal batch size is 128, which has the highest F1-score on the test data
and less overfitting than larger batch sizes.

The number of neurons in the LSTM model is the final hyperparameter
tuned in the first round of hyperparameter tuning. The number of neurons

45

Figure 5.10: The effect of different window sizes on the performance of the
model, to show the behavior of the model and see which way to go without
having too many different parameter combinations in the grid search. The
blue line signifies the mean training F1-Score, and the blue area is the stan-
dard deviation. The orange line signifies the mean validation F1-Score, and
the blue area is the standard deviation.

Figure 5.11: The effect of different step sizes on the performance of the model,
to show the behavior of the model on the different step sizes.

in the RNN-LSTM model from Sect. 4.2 is 5. However, there are fewer

46

Figure 5.12: The effect of different batch sizes on the performance of the
model, to show the behavior of the model on the different Batch sizes.

features used by the LSTM layers in the CNN-LSTM model. So for the first
round of hyperparameter tuning, many neurons are tried to gauge the effect
of neurons on the performance of the convoluted features. This effect of the
different number of neurons is displayed in Figure 5.13. This Figure shows
that the best performance is either 50 or 100 neurons in the LSTM layers
because the standard deviation of the results with a lower amount of neurons
is much higher and suggests a less robust model.

The overall results of the first grid search are that the optimal batch size
is 128, the optimal step size is five or smaller, and the optimal window size
is 60. However, the model is still overfitting in all different hyperparameter
configurations.

Results of the second round of hyperparameter tuning the CNN-
LSTM model

Due to the model overfitting after the first round, the second round of
hyperparameter tuning focuses on the different pooling sizes and over-and
undersampling rates. The tuning on smaller step sizes is also continued in
the second round of hyperparameter tuning. The first change that could
help solve overfitting is reducing the amount of over-and undersampling. All
the models tested in the first round of hyperparameter tuning had an over-
and undersampling strategy of a 60:40 split. A 60:40 split is the final split
between the amount of training data with no ending as the target variable
and the amount of training data with ending as the target variable. can a

47

Figure 5.13: This Figure shows the effect of different numbers of neurons in
the LSTM layers on the performance of the model.

high amount of oversampling cause overfitting. So in the second round of
hyperparameter tuning, 70:30, 80:20, 87:13 are tried to determine the best
over- and undersampling strategy. The results of the effect of these different
sampling splits are visualized in Figure 5.14. This Figure clearly shows a
decrease in the difference between the model’s performance on the training
and test data between 70:30 and 80:20. After less data augmentation (87:13),
the sampling shows a parallel decrease in performance on both the test and
training data. So the optimal sampling strategy is over-and undersampling
the training data until the data imbalance is 80:20.

The first round of hyperparameter tuning revealed that smaller step sizes
are beneficial for the model’s performance, so a step size of 5 or smaller is
tested in the second round of hyperparameter tuning. The results of this
tuning are shown in Figure 5.15. This Figure showed better performance on
both the training and test data at a step size of 5.

The final hyperparameter tuned for the CNN-LSTM model is the pooling
size of the max-pooling layer. The max-pooling tried is from 2 up to 6. The
pooling size determines the size of the window used in the downsampling of
the input representation by taking the maximum value in the window. The
results of the different pooling sizes for the max-pooling layer are visualized
in Figure 5.16. This Figure clearly shows an increase in the performance
using pool sizes between 2 and 5, and the model performs worse on a pooling
size of 6. The decline also makes sense due to data loss caused by a larger
pooling size.

48

Figure 5.14: The effect of different sampling strategies of the training data
on the performance of the model, to show the behavior of the model on the
different over- and undersampling strategies.

Figure 5.15: The effect of different smaller step sizes of the training data
on the performance of the model, to show the behavior of the model on the
different smaller step sizes.

49

Figure 5.16: The effect of different pooling sizes of the max-pooling layer
on the performance of the model, to show the behavior of the model on the
different pooling sizes to see the optimal value with the best performance
and limited overfitting.

To summarize the finding and the different parameters tried during the
two rounds of hyperparameter tuning and their results, a summary table of
Section 5.3.1 is shown in Table 5.3.1.

Hyperparameter of
the CNN-LSTM

Result first round
The optimal value:

Result second round
The optimal value:

Final results of the
Hyperparameter
tuning CNN-LSTM

Window size
Tried: 30, 60, 120
Result: 60

Not needed 60

Step size
Tried: 5, 10, 17, 20
Result: 5

Tried: 1, 3, 5
Result: 5

5

Batch size
Tried: 64, 128, 256, 512
Result: 128

Not needed 120

Number of Neurons
Tried: 30, 50, 100, 200
Result: 50

Not needed 50

Oversampling
Tried: 60:40
Result: Less oversampling
than 60:40 (overfitting)

Tried: 70:30, 80:20, 87:13
Result: 80:20

80:20

Max-pooling size
Tried: 4
Result: 4 (overfitting)

Tried: 2, 3, 4, 5, 6
Result: 5

5

Table 5.2: This table gives a clear summary of the different hyperparameters
tuned and the resulting hyperparameter for the final CNN-LSTM model.

50

5.3.2 The resource analysis of the proposed models

The second aspect that determines how useful a model is the amount of re-
sources the model requires to run online on the HoloLens 2. The HoloLens
2 has a limited amount of resources, and a large portion of these resources
are used in different processes. The RNN-LSTM architecture used and the
CNN-LSTM architecture used are according to the paper of P. Agarwal [1]
and the paper of Ankita et al. [3] lightweight models. However, the hyper-
parameters have changed, and the papers did not have an analysis of the
RAM and CPU needed to run the model fast enough for an online applica-
tion. The final model needs to run on the HoloLens 2, with limited resources
left besides all the other processes required for the instructions and the aug-
mented reality. The main resources that the model need are working memory
(RAM) and processing power (CPU). However, since we did not have access
to a HoloLens 2 during this project, an emulation on a laptop has to serve
as a close estimation of the circumstances on the HoloLens 2. Due to not
knowing the resources left on the HoloLens 2, there need to be some assump-
tions made about the space left. The first assumption is that at least 15% of
one out of 8 cores is accessible for running the model; this is 1.875% of the
total CPU on the HoloLens 2. The amount of CPU power left for the model
will affect the classification speed of the model. However, the classification
speeds is also affected by the amount of RAM available to the model. The
HoloLens 2 has 4 GB of total RAM, and the assumption is that at least 1.5%
of this working memory is left for the model.

The processor used in the HoloLens 2 is a Snapdragon 850, and the proces-
sor used during the emulation is an Intel i7 processor. During the emulation
of the laptop, the resources of the model will be limited to 15% of a single
core to simulate the computational power of the HoloLens 2 and the limited
amount of resources. Even by limiting the amount of a single core the CPU
used during the emulation, there are still differences in speed and efficiency
of these cores. A comparison between the different specifications of the CPU
used in the emulation and the CPU in the HoloLens 2 is visualized in Figure
5.17. The clock speed does not solely dictate the speed of the CPU; that is
why the single thread rating is essential from Figure 5.17.

The comparison found in Figure 5.17 is completed using the CPU bench-
mark tool of PassMark software. First, they calculate the single thread rating
as follows: ”The single thread CPU benchmark, like all processor bench-
marks, attempts to estimate how quickly a processor is able to perform a
wide variety of calculations. The test issues a series of complex instructions
to the processor and times how long the processor takes to complete the
tasks. The faster the processor is able to complete the tasks, the higher

51

Figure 5.17: The comparison of the processor (CPU) used in the HoloLens 2
and during the emulation on the laptop. This comparison in used to argue
the differences between the processor and to add strength to this argument
by taking the difference into account [14].

the benchmark score” [14]. By comparing the different single thread scores,
the conclusion is drawn that one core of the Intel i7 is 1.7 times faster than
one core of the Snapdragon 850. During the emulation, 1000 predictions are
made using the final RNN-LSTM model, and the mean time each prediction
takes is estimated.

To estimate the time per prediction and accounting for the different pro-
cessor on the HoloLens 2 a calculation needs to be made:

PSmodel = PSEMU · STREMU

STRHL

PTmodel = the estimation of the prediction time on the HoloLens 2 in seconds
per prediction
PTEMU = the prediction time during the emulation on the laptop in seconds
per prediction
STREMU = The single thread rating of the CPU used during the emulation
STRHL = The single thread rating of the CPU in the HoloLens 2

The goal is to keep the PTmodel below the shortest time a task is ending.
Since the shortest task takes 6.611 seconds, the ending of this task consists of

52

10% of the total duration is the smallest ending of any task: 0.6611 seconds.
As long PTmodel stays below 0.6611 seconds, the model can identify every
task ending. So with the assumptions that there is 1.5% RAM available and
with the assumption that there is 15% of one core available on the HoloLens
2, we can determine if a model is resource-efficient enough to run on the
HoloLens 2.

5.4 Results

The project results evaluate and compare the final RNN-LSTM and CNN-
LSTM model to determine if either is good enough to predict the end of
any task reliably. The first mean of evaluation the models is by looking at
their performance over a 10-fold cross-validation which is shown in Figure
5.18 and Figure 5.19. The light green box plots are the performance on the
training data and the light blue on the test data. The boxplots indicate larger
IQRs (the box part of the box plot) and larger whiskers, a larger variance
in the data used to make them, in this case, the results of the 10-fold cross-
validation. The clear observation from both Figure 5.18 and Figure 5.19 is
that the variance of the test box plots is higher on both models and in all
metrics.

Figure 5.18: The figure visualizes the results of the 10-fold cross validation
of the final RNN-LSTM model. The figure shows the difference between
the performance of the 10 different folds and the comparison between the
performance of the model on training and test data

53

Figure 5.19: The figure visualizes the results of the 10-fold cross validation
of the final CNN-LSTM model. The figure shows the difference between
the performance of the 10 different folds and the comparison between the
performance of the model on training and test data

To identify possible overfitting the loss plots are visualized in Figure 5.20
and 5.21. In these plots, the trends of the loss of the different folds from the
10-fold cross-validation are shown in two subplots. The main observation of
Figure 5.21 is two trends in the loss plots, which shows the inconsistency
between the different folds of the cross-validation. The left plot shows that
the validation loss curves over the different runs are very different from the
more traditional training loss curves. The validation losses of example 1 are
increasing and very volatile. The second example of Figure 5.21 shows the
second trend of loss curves during the 10-fold cross-validation. Two main
observations are that the validation and training loss curves are much closer
in example 2 and that there are fewer runs in example 2. Another observation
of Figure 5.21 is that the starting validation loss of the folds in example 2
is lower than compared to the starting loss of the folds in example 1. If you
compare Figure 5.20 and 5.21 the first main observation is that there are
more folds out of the 10-fold cross-validation of the RNN-LSTM model with
loss curves in example 2 then for the CNN-LSTM model. The example 2
validation curves of Figure 5.20 display a more similar shape to the example
2 training curves then in Figure 5.21. The loss curves of example 1 of Figure
5.20 also are less volatile, and one of the validation loss curves of example 1
looks a lot like an example 2 curve until the rise in loss after 40 epochs. The
reason for these trends could be learning of the noise instead of the signal.

54

In certain folds, the chance of the model learning noise instead of the signal
increases due to a large difference in signal between the training and unseen
validation data in these folds.

Figure 5.20: The Figure visualizes the loss behavior of the 10-fold cross-
validation of the final RNN-LSTM model. The Figure shows two different
behaviors of the loss-progression on the validation data during the training
of the different folds in the 10-fold cross-validation. Not all 10 folds of the
cross-validation are displayed in this Figure due to them having higher peaks
in loss which would reduce the interpretability of the trend shown in the
plots.

Figure 5.21: The Figure visualizes the loss behavior of the 10-fold cross-
validation of the final CNN-LSTM model. The Figure shows two different
behaviors of the loss-progression on the validation data during the training
in the 10-fold cross-validation.

55

The normalized confusion matrices of Figure 5.22 show the type of mis-
take the different models are making. All models make relatively more mis-
takes in classifying when the true label is ending. The main observation of
the CNN-LSTM model from the baseline model is the reduced number of
false positives. The RNN-LSTM makes fewer mistakes in general, but main
less false negative as shown in Figure 5.22.

Figure 5.22: The comparison of the confusion matrix of the baseline model,
final RNN-LSTM model and final CNN-LSTM model to compare the kind
of misclassifications all model are making over the combined 10 folds of the
cross validation.

The metrics discussed in Section 5.1 give a quantitative evaluation of the
results seen in the confusion matrices of Figure 5.22. The goal is to get the
score as close to one as possible. The first observation is that the RNN-
LSTM score higher in every metric. The CNN-LSTM scores are higher than
the baseline except in recall, where the score is approximately even.

The final part of the Results Section is the results from the resource analy-
sis. The observation from the two bar charts in Figure 5.24 a straightforward:
the RNN-LSTM model has a higher time it takes per prediction but needs
a lower amount of working memory. The observation for the CNN-LSTM
is vice versa (faster predictions, needs more working memory). The esti-
mated prediction time and the working memory goal is to get as close to 0
as possible.

56

fmannhar
Sticky Note
what does this mean for the practical applicability?

Figure 5.23: The comparison of the different aspects of the metrics of the
baseline model, final RNN-LSTM model and final CNN-LSTM model to
compare the performance of both model over the combined 10 folds of the
cross validation.

Figure 5.24: The comparison of the different aspects of the metrics of the
baseline model, final RNN-LSTMmodel and final CNN-LSTMmodel to com-
pare the performance of both model over the 10 folds of the cross validation.

57

fmannhar
Sticky Note
why CNN does not help?

5.5 Discussion

The main observation was that the RNN-LSTM model outperformed both
the baseline and the CNN-LSTM models in every aspect. However, all the
models are severely overfitting which was especially clear from the compar-
ison of the metrics on the training and validation data of Figure 5.19 and
Figure 5.18. A very clear sign of overfitting was also displayed in Figure 5.21
and Figure 5.20. These figures showed a clear inability for the models to learn
the signal instead of the noise by the different shapes of the loss curves on the
different folds compared to the training data. Figure 5.21 and Figure 5.20
also showed that the RNN-LSTM loss curves over the 10-fold cross-validation
showed more signs of the model starting to learn the patterns and separate
the signal from the noise by looking more like a traditional loss curve. The
emphasis in the previous sentences is on ”starting”, the RNN-LSTM model
still overfits significantly. The confusion matrix in Figure 5.22 and the bar
chart in Figure 5.23 did show that the RNN-LSTM model classifies every cat-
egory better and is the best model resulting from this project. Assuming the
assumptions defined in Section 5.3.2 about the resources left on the HoloLens
2 hold, all models are lightweight enough to run online on the HoloLens 2.

58

Chapter 6

Conclusion

6.1 Conlusion and limitations

The main research question of this project is: Can we reliably classify the
end of a high-level task using a RNN-LSTM or CNN-LSTM model based on
the little data given by KIT-AR? The answer to the research question is that
we cannot reliably classify the end of a high-level task using a RNN-LSTM
or CNN-LSTM model and the KIT-AR data. This conclusion resulted from
the evaluation results discussed and interpreted in Section 5.4 and Section
5.5. The main conclusion of these sections is that even though the final
RNN-LSTM and CNN-LSTM models do improve over the baseline model,
both models cannot reliably and accurately predict the end of a task. This
conclusion was based on the large degree of overfitting, which led to de-
creased performance and a decreased robustness (reliability) of the models.
As a result, the model performance is poor on unseen data, as proven in the
results (Section 5.4). Therefore, the network fails to generalize the features
or patterns present in the training dataset. Vidhya [8] mentions two main
causes of overfitting on neural networks (NN) are:

• small training dataset, which causes the NN to learn too many details
(including the noise) instead of the underlying patterns in the data.

• Overly complex models can be caused by a noisy dataset, many features
in a dataset, or deeper NN based on the model architecture and different
hyperparameters.

The cause of overfitting in this project is the combination of a small
and a noisy training dataset relative to the nuanced classification task at
hand. The NN complexity is not architecture or hyperparameter related.

59

fmannhar
Highlight

All the models tried in this project are very shallow models. During the
hyperparameter tuning, different hyperparameters attempt to reduce model
complexity: max pooling size, number of neurons, kernel size, and filters.
The hyperparameters are extensively tuned using k-fold cross-validation in
the process of making the final RNN-LSTM and CNN-LSTM so that they
won’t cause an increased model complexity. Model complexity is also limited
by the early stopper implemented during the training of the different models.

Possible solutions for the overfitting observed during the project besides
collecting more data are data augmentation, different regularisation tech-
niques, and feature selection to reduce model complexity. However, these
solutions are also where the limitation of this project start. The project has
a limited time span, which means the time needed to be used efficiently, and
it means that not all possible solutions to answer the research question can
be tried. Instead of using the LOUO splitting strategy, we used the standard
randomized training, validation, and test split. So this mistake cost a lot of
time and reduced the number of different solutions tried during this project.

Besides not being able to try more different techniques to reduce lim-
itations and increase performance, there is also a limitation to the hyper-
parameter techniques used during the project. Starting at a sub-grid of
hyperparameters and moving this grid based on the results over the initial
sub-grid could cause finding a local maximum instead of a global maximum.
A global optimum can be missed due to the effect of different hyperparam-
eters on each other changing with the hyperparameters. For example: Out
of the starting sub-grid of the first round of hyperparameter tuning, a larger
batch size seems to perform better, and a smaller step size also seems to do
better on average. However, the model could perform exponentially worse
on the second sub-grid because of the combination of a larger batch size
and a smaller step size since these effects don’t have to be linear. However,
if the initial grid is large enough, the consequences of these effects on the
different parameters show in the results of the first round of hyperparame-
ter tuning. The main conclusion is that there is a balance between 1) the
initial grid size and the density of the grid and 2) the time it takes to run
the grid search because of the large number of hyperparameters. There are
also limitations to the resource analysis needed without trying the model on
the actual HoloLens. The prediction time resulting from the emulation is
an estimation where the accuracy is very closely related to the conversion
formula discussed in Section 5.3. Even though the logic is sound, there is a
possibility that the relation between the single thread rating and the predic-
tion time is not completely linear. The most accurate way of estimating the
CPU needed for the prediction time to be low enough is by using the model
on the HoloLens.

60

6.2 Future works

So to improve the model’s performance and reduce the overfitting without
just collecting more data, future work should be focused on more data aug-
mentation, different regularisation techniques, or try to make a model for
each task. Random over-and undersampling was used as one data augmen-
tation technique during the project. However, there are much more sophisti-
cated over-and undersampling techniques like OHIT discussed in the paper
written by Zhu et al. [21] about minority oversampling for imbalanced time
series classification.

A second possible solution is weight regularisation which works through
penalizing or adding a constraint to the loss function [8]. Otherwise, the loss
will be very low during overfitting, and the weight changes will be minimal.
Regularization terms are constraints applied to the optimization algorithm
when minimizing loss function apart from reducing the error between the
predicted value and actual value. Examples of the optimization algorithms
mentioned in the sentence before are Stochastic Gradient Descent or Adam,
a replacement optimization algorithm for stochastic gradient descent, used in
the final models of this project. According to the paper by Carpenter et al.
[4] possible regularisation techniques for small datasets to try in future work
are L1 regularization (or Lasso), L2 regularization (or Ridge), and L1+L2
regularization (Elastic Net). There is a possibility that not every task has
the same pattern before the end of a task, so a possible solution could be
making a separate model for each task. However, this would further reduce
the amount of training data for the models.

The final potential topic that could be interesting for future work is to
apply the segmentation techniques and data transformation approaches dis-
cussed in the paper written by Zheng et al. [20] to the KIT-AR data to
see if these techniques increase the overall performance of the project’s final
models. These segmentation techniques could be used to reduce the effect of
the noise in the data and make the signal clearer, thereby increasing the per-
formance of the models over the raw data. The best data segmentation and
transformation technique tried during Zheng’s research was the multichannel
transformation method (MCT) which improved the model performance on
all datasets, including the different versions of the WISDM dataset [17].

In future works, different more intelligent hyperparameter tuning meth-
ods should be explored due to the high dimensionality of the hyperparame-
ters. This high dimensionality of the hyperparameters causes an exponential
increase in the time needed for the hyperparameter tuning. Future hyperpa-
rameter tuning methods should include the different gradient descent meth-
ods, Bayesian optimization, random grid search, and halving grid search to

61

decrease the time needed for the hyperparameter tuning. Besides the hyper-
parameter tuning, would it also be interesting to see the effect of changing the
method of the training-validation-test split to where the test and validation
data is not data from unseen subjects. This change in training-validation-
test split would most likely increase the performance but change the use-case
of the resulting models.

62

fmannhar
Highlight

Bibliography

[1] Preeti Agarwal and Mansaf Alam. A lightweight deep learning model for
human activity recognition on edge devices. Procedia Computer Science,
167:2364–2373, 01 2020.

[2] Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A
review. ACM Computing Surveys (CSUR), 43(3):1–43, 2011.

[3] Ankita, Shalli Rani, Himanshi Babbar, Sonya Coleman, Aman Singh,
and Hani Moaiteq Aljahdali. An efficient and lightweight deep learn-
ing model for human activity recognition using smartphones. Sensors,
21(11), 2021.

[4] Marcus Carpenter, Chunbo Luo, and Xiao-Si Wang. The effects of reg-
ularisation on rnn models for time series forecasting: Covid-19 as an
example. arXiv preprint arXiv:2105.05932, 2021.

[5] Yuwen Chen, Kunhua Zhong, Ju Zhang, Qilong Sun, Xueliang Zhao,
et al. Lstm networks for mobile human activity recognition. In Pro-
ceedings of the 2016 International Conference on Artificial Intelligence:
Technologies and Applications, Bangkok, Thailand, pages 24–25, 2016.

[6] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ahmidi, Balakr-
ishnan Varadarajan, Henry C Lin, Lingling Tao, Luca Zappella, Ben-
jamın Béjar, David D Yuh, et al. Jhu-isi gesture and skill assessment
working set (jigsaws): A surgical activity dataset for human motion
modeling. In MICCAI workshop: M2cai, volume 3, page 3, 2014.

[7] Adel Ghazikhani, Hadi Sadoghi Yazdi, and Reza Monsefi. Class im-
balance handling using wrapper-based random oversampling. In 20th
Iranian Conference on Electrical Engineering (ICEE2012), pages 611–
616, 2012.

[8] Chirag Goyal. Guide to prevent overfitting in neural networks. Analytics
Vidhya, Jun 2021.

63

fmannhar
Highlight

[9] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber,
et al. Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies. A field guide to dynamical recurrent neural networks,
2001.

[10] Sönke Knoch, Nico Herbig, Shreeraman Ponpathirkoottam, Felix Kos-
malla, Philipp Staudt, Daniel Porta, Peter Fettke, and Peter Loos.
Sensor-based human–process interaction in discrete manufacturing.
Journal on Data Semantics, 9:1–17, 03 2020.

[11] Felix Mannhardt, Riccardo Bovo, Manuel Fradinho Oliveira, and Si-
mon Julier. A taxonomy for combining activity recognition and process
discovery in industrial environments. In David Camacho, Paulo No-
vais, Antonio J. Tallón-Ballesteros, and Hujun Yin, editors, Intelligent
Data Engineering and Automated Learning – IDEAL 2018 - 19th Inter-
national Conference, Proceedings, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), pages 84–93, Germany, 2018. Springer.
19th International Conference on Intelligent Data Engineering and Au-
tomated Learning, IDEAL 2018 ; Conference date: 21-11-2018 Through
23-11-2018.

[12] Saeed Mohsen, Ahmed Elkaseer, and Steffen G Scholz. Industry 4.0-
oriented deep learning models for human activity recognition. IEEE
Access, 9:150508–150521, 2021.

[13] Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural net-
works for human activity recognition. Sensors, 17:2556, 11 2017.

[14] Comparison between intel core i7-8750h vs snapdragon 850, Dec 2021.

[15] Marina Sokolova and Guy Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing Man-
agement, 45:427–437, 07 2009.

[16] Md Zia Uddin and Ahmet Soylu. Human activity recognition using
wearable sensors, discriminant analysis, and long short-term memory-
based neural structured learning. 2021.

[17] Gary M Weiss, Kenichi Yoneda, and Thaier Hayajneh. Smartphone
and smartwatch-based biometrics using activities of daily living. IEEE
Access, 7:133190–133202, 2019.

[18] Wikepedia. Precision and recall, Oct 2021.

64

fmannhar
Highlight

fmannhar
Highlight

fmannhar
Highlight

[19] Cheng-Hong Yang and Po-Yin Chang. Forecasting the demand for con-
tainer throughput using a mixed-precision neural architecture based on
cnn–lstm. Mathematics, 8(10), 2020.

[20] Xiaochen Zheng, Meiqing Wang, and Joaqúın Ordieres-Meré. Compar-
ison of data preprocessing approaches for applying deep learning to hu-
man activity recognition in the context of industry 4.0. Sensors, 18(7),
2018.

[21] Tuanfei Zhu, Cheng Luo, Jing Li, Siqi Ren, and Zhihong Zhang. Minor-
ity oversampling for imbalanced time series classification. arXiv preprint
arXiv:2004.06373, 2020.

65

List of Figures

1.1 The first row of this figure shows the high level task (task 1)
over the timeline with the end of the task marked red. The
second row of the figure shows the accompanying low-level
actions the high level task consist of. 6

1.2 This Figure illustrates the pipeline used in this project for de-
veloping the three different models and answering the research
question. 7

3.1 A process model of CRISP-DM 14
3.2 Top-down view of experimental setup 17
3.3 Visualizing the different duration of the cases to illustrate the

clear difference in all the cases ending with a two compared to
the cases ending with a one. 19

3.4 The comparison of the sampling frequency between the dif-
ferent cases. The clear standout is the Ch 1-1 which has a
considerably lower average sampling frequency. 20

3.5 Visualizing the different axis relative to the subject 20
3.6 The box plots to summaries the different positional coordinate

variables (Posx, PosY, PosZ) 21

4.1 A visual representation of a 3-D matrix to illustrate the data
structure after the formatting for the modeling phase 26

4.2 A visual representation of a memory cell to clearly explain the
different parts and their function and why it is better then a
normal RNN cell. This Figure was featured in the paper by
Chen et al[5]. 30

4.3 A visual representation of the workings of the RNN-LSTM
model used in this paper inspired by the literature of P. Agar-
wal [1] . 31

4.4 A visual representation of the workings of the RNN-LSTM
model used in this paper inspired by the literature. The Figure
is features in the paper of P. Agarwal [1] 32

66

4.5 The figure shows the RNN-LSTM model architecture by visu-
alising the different layers . 32

4.6 A visual representation of the workings of the RNN-LSTM
model used in this paper inspired by the literature of Ankita [3] 33

4.7 The figure shows the CNN-LSTM model architecture by visu-
alising the different layers . 34

5.1 A visualization of what recall and precision entail to illustrate
why the these matrix are suitable for our evaluation [18] . . . 36

5.2 A flowchart of the projects overview to visualize the different
steps of the project and the accompanying experiments and
their input and output. 38

5.3 The effect of different step sizes on the performance of the
model, to show the behavior of the model and see which way to
go without having too many different parameter combinations
in the grid search. The orange line signifies the mean training
F1-Score, and the orange area is the standard deviation. The
blue line signifies the mean validation F1-Score, and the blue
area is the standard deviation. 40

5.4 The effect of different batch sizes on the performance of the
model, to show the behavior of the model and see which way to
go without having too many different parameter combinations
in the grid search. 41

5.5 The effect of different window sizes on the performance of the
model, to show the behavior of the model and see which way to
go without having too many different parameter combinations
in the grid search. 41

5.6 The effect of different sampling rates on the performance of the
model, to show the behavior of the model and see which way to
go without having too many different parameter combinations
in the grid search. 42

5.7 The effect of different larger batch sizes on the performance of
the model, to show the behavior of the model and see which
way to go without having too many different parameter com-
binations in the grid search. 43

5.8 The effect of different smaller step sizes on the performance of
the model, to show the behavior of the model and see which
way to go without having too many different parameter com-
binations in the grid search. 44

67

5.9 The effect of different numbers of neurons in the hidden layers
on the performance of the model, to show the behavior of
the model and see which way to go without having too many
different parameter combinations in the grid search. 44

5.10 The effect of different window sizes on the performance of the
model, to show the behavior of the model and see which way to
go without having too many different parameter combinations
in the grid search. The blue line signifies the mean training
F1-Score, and the blue area is the standard deviation. The
orange line signifies the mean validation F1-Score, and the
blue area is the standard deviation. 46

5.11 The effect of different step sizes on the performance of the
model, to show the behavior of the model on the different step
sizes. 46

5.12 The effect of different batch sizes on the performance of the
model, to show the behavior of the model on the different
Batch sizes. 47

5.13 This Figure shows the effect of different numbers of neurons
in the LSTM layers on the performance of the model. 48

5.14 The effect of different sampling strategies of the training data
on the performance of the model, to show the behavior of the
model on the different over- and undersampling strategies. . . 49

5.15 The effect of different smaller step sizes of the training data
on the performance of the model, to show the behavior of the
model on the different smaller step sizes. 49

5.16 The effect of different pooling sizes of the max-pooling layer
on the performance of the model, to show the behavior of the
model on the different pooling sizes to see the optimal value
with the best performance and limited overfitting. 50

5.17 The comparison of the processor (CPU) used in the HoloLens
2 and during the emulation on the laptop. This comparison
in used to argue the differences between the processor and to
add strength to this argument by taking the difference into
account [14]. 52

5.18 The figure visualizes the results of the 10-fold cross validation
of the final RNN-LSTM model. The figure shows the differ-
ence between the performance of the 10 different folds and the
comparison between the performance of the model on training
and test data . 53

68

5.19 The figure visualizes the results of the 10-fold cross validation
of the final CNN-LSTM model. The figure shows the differ-
ence between the performance of the 10 different folds and the
comparison between the performance of the model on training
and test data . 54

5.20 The Figure visualizes the loss behavior of the 10-fold cross-
validation of the final RNN-LSTM model. The Figure shows
two different behaviors of the loss-progression on the validation
data during the training of the different folds in the 10-fold
cross-validation. Not all 10 folds of the cross-validation are
displayed in this Figure due to them having higher peaks in
loss which would reduce the interpretability of the trend shown
in the plots. 55

5.21 The Figure visualizes the loss behavior of the 10-fold cross-
validation of the final CNN-LSTM model. The Figure shows
two different behaviors of the loss-progression on the validation
data during the training in the 10-fold cross-validation. 55

5.22 The comparison of the confusion matrix of the baseline model,
final RNN-LSTM model and final CNN-LSTM model to com-
pare the kind of misclassifications all model are making over
the combined 10 folds of the cross validation. 56

5.23 The comparison of the different aspects of the metrics of the
baseline model, final RNN-LSTMmodel and final CNN-LSTM
model to compare the performance of both model over the
combined 10 folds of the cross validation. 57

5.24 The comparison of the different aspects of the metrics of the
baseline model, final RNN-LSTMmodel and final CNN-LSTM
model to compare the performance of both model over the 10
folds of the cross validation. 57

69

List of Tables

4.1 Showing examples of rows after the data has been labeled with
the columns used for the labeling. The purpose of this Table
is to illustrate how the target value is labeled. 26

5.1 This table gives a clear summary of the different hyperpa-
rameters tuned and the resulting hyperparameter for the final
RNN-LSTM model. 45

5.2 This table gives a clear summary of the different hyperpa-
rameters tuned and the resulting hyperparameter for the final
CNN-LSTM model. 50

70

