Reduction of nitric oxide at a flow-through mercury plated nickel electrode

Citation for published version (APA):

DOI:
10.1016/0013-4686%2876%2985014-1
10.1016/0013-4686(76)85014-1

Document status and date:
Published: 01/01/1976

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
REDUCTION OF NITRIC OXIDE AT A FLOW-THROUGH MERCURY PLATED NICKEL ELECTRODE

L. J. J. JANSSEN
Laboratory for Electrochemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 1 July 1975)

Abstract—The electrochemical reduction of nitric oxide at a flow-through mercury-plated nickel gauze electrode in sulphuric acid was investigated. The current efficiencies of hydroxylamine, nitrous oxide and of hydrogen formation were determined. The main experimental results are:

1. The ratio between the \(\text{NH}_2\text{OH} \) and \(\text{N}_2\text{O} \) formation depends on the \(\text{cd} \) and on the flowrate of the electrolyte through the electrode, but does not depend on the \(\text{H}_2\text{SO}_4 \) concentration in the investigated range from 0.25 to 2.0M and likewise not on the temperature.

2. The rate of the reduction of nitric oxide to \(\text{NH}_2\text{OH} \) and \(\text{N}_2\text{O} \) increases with increasing \(\text{cd} \) up to a maximum value, thereafter this rate decreases with increasing \(\text{cd} \).

3. The ratio between the current efficiency of the \(\text{NH}_2\text{OH} \) formation and the current efficiency of the \(\text{N}_2\text{O} \) formation increases slowly with increasing cathodic potential.

It seems that at low \(\text{cd} \) (much lower than the \(\text{cd} \) where the rate of the reduction of NO reaches its maximum) the reduction of NO is affected by both the electrochemical parameters and by the transport of NO to the electrode surface. However, at high current densities the reduction is dominated by mass-transport of NO only. NOH is an intermediate for both the \(\text{NH}_2\text{OH} \) and the \(\text{N}_2\text{O} \) formation.

1. INTRODUCTION

The electrochemical reduction of nitric oxide to hydroxylamine can be of interest for oximation processes. The effect of a number of factors on the electrochemical reduction of NO to \(\text{NH}_2\text{OH} \) is already published by Janssen and Hoogland[1,2]. They found that nitric oxide can be cathodically reduced mainly to \(\text{NH}_2\text{OH} \) at various electrode materials. In addition, \(\text{NH}_3 \) can be formed in solutions with a high acid concentration, \(\text{eg} \) in 8M \(\text{H}_2\text{SO}_4 \)[2]. On the other hand \(\text{N}_2\text{O} \) is formed in solutions with a higher pH, \(\text{eg} \ \text{pH} = 5 \)[3]. In this paper additional details are presented.

The effect of several conditions of electrolysis (\(\text{eg} \) time of electrolysis, potential, current density, flowrate of electrolyte and temperature) on the reduction of NO at a flow-through mercury-plated nickel electrode are studied more extensively in their interrelations.

2. EXPERIMENTAL

2.1 Apparatus and electrolytical conditions

A schematic diagram of the apparatus used for the electrolysis is shown in Fig. 1. The electrolytic cell was separated by a porous glass diaphragm into a cathodic and anodic compartment. The cell was thermostatted. The temperature was usually maintained at 17°C, unless the influence of the temperature between (5-40°C) was studied.

A platinum foil electrode in the anode compartment was used as an anode. A nickel gauze electrode covered with mercury, serving as a cathode, was horizontally clamped between two rubber rings at the bottom of the cathodic compartment of the cell. A saturated calomel electrode served as a reference electrode. The current was supplied by a de power generator (Della Electronika D 050-10). The applied current was varied between 0.25 and 2.5A. Potentials of the cathode as the calomel electrode were measured by means of a high-impedance voltmeter (Philips, PM 2435). These potentials were corrected for the \(\text{ir} \) drop measured oscillographically. Before the electrolytic cell and the other parts of the electrolytic circuit were filled with a solution, a potential difference between anode and cathode was adjusted. Careful attention was paid to this procedure to prevent any corrosion of the cathode. A 1M \(\text{H}_2\text{SO}_4 \) solution was used as

![Fig. 1. Experimental set-up.](image-url)
the supporting electrolyte, unless otherwise mentioned. The catholyte was pumped by a flow-inducer (W. A. Bachofen type LPA-standard) through the cathodic compartment of the cell in rising direction. To measure the flowrate of the electrolyte a flow-meter (Fischer and Porter No. 3F-3/8-25-5/36, tantalum or sapphire float) was used. The volume of the catholyte was 550 cm\(^3\) and that of the anolyte 150 cm\(^3\).

The flowrate of the catholyte was adjusted between 500–2000 cm\(^3\)/min, usually 1600 cm\(^3\)/min. To determine the current for the production of hydroxylamine a 5–10 cm\(^3\) sample of the catholyte was tapped by means of a tap in the catholyte circuit. Immediately after the sampling an equal volume of the supporting electrolyte was added to the catholyte. The first sample was taken 1 h after the passage of NO was started through the catholyte and the sampling was repeated with intervals of 1 h. The average time of an electrolysis was about 6 h.

Gas (N\(_2\) or NO) was passed through a flowmeter (Fischer and Porter No 08-1/16-16-4/36, sapphire float) and then through two wash bottles containing 6 M KOH. Thereafter the gas was brought into the catholyte by a glass flint in the form of a ring placed in the absorption column. In all experiments the flow-rate of NO was 75 cm\(^3\)/min to ensure saturation. The gas and the catholyte were pumped together through the cathodic system. The cathodic compartment of the cell has a gas outlet. The gas passed this outlet, flowed through the gas sample loop of the gas chromatograph and then through a wash bottle containing water.

After the adjustment of the current and the flowrate of the electrolyte, N\(_2\) gas with a flowrate of about 80 cm\(^3\)/min was bubbled through the catholyte during the first hour of the electrolysis. Thereafter the N\(_2\) gas was replaced by NO gas containing 0.50% N\(_2\)O and 0.60% N\(_2\). Both values determined gas chromatographically. The first gas chromatographic analysis during the electrolysis was carried out 55 min after the start of the bubbling through of NO: and then repeated every hour.

2.2 Cathode

The cathode consisted of a nickel gauze of 42 mm dia, spotwelded to a nickel ring with an o.d. of 50 mm and an i.d. of 35.6 mm. A nickel strip (5 × 35 mm) was also spotwelded to the nickel ring and served as current connection. The nickel gauze had a meshwidth of 0.050 mm, and wire diameter was 0.035 mm. A geometric surface area of 10 cm\(^2\) of the gauze was exposed to the catholyte. Taking into consideration a roughness factor of 2.58 for this gauze, the surface area of the wires serving as cathode surface was 25.8 cm\(^2\).

To cover the nickel electrolyte with a mercury layer the following room temperature procedure was adopted. The electrode was cleaned by a cathodic treatment in 1 M KOH with 1 A for 15 min and thereafter by washing with distilled water. The cleaned electrode was immersed in 4 M HNO\(_3\) for 2 min and a further cathodic treatment in 1 M HClO\(_4\) at 0.5 A for 30 min. Mercury was deposited on the oxide-free electrode by polarizing the electrode cathodically with 30 mA in a solution of 1 M HClO\(_4\) and 0.01 M HgNO\(_3\) for 1 hr a calculation gives that a mercury layer with a thickness of about 0.006 mm was formed. Thereafter the mercury plated nickel electrode was maintained cathodically with 0.6 A in 1 M HClO\(_4\) till the electrode was used for the experiments. To obtain reproducible results it was necessary to deposit a new mercury layer before each experiment on to the nickel electrode. This was brought about by a cathodic polarization of the electrode in the HClO\(_4\)/HgNO\(_3\) solution at 30 mA for 10 min.

2.3 Analyses

2.3.1 Hydroxylamine and ammonia. To determine the amount of NH\(_2\)OH, 5 or 10 cm\(^3\) catholyte was added to a 20 cm\(^3\) solution consisting of 10 cm\(^3\) 2 M H\(_2\)SO\(_4\) and of 10 cm\(^3\) 0.85 M Fe NH\(_4\)(SO\(_4\))\(_2\) + 0.1 M H\(_2\)SO\(_4\). The solution was boiled for 5 min. cooled to room temperature and then potentiometrically titrated with 0.05 M Ce(SO\(_4\))\(_2\) or 0.02 M KMnO\(_4\). Before the concentration of NH\(_3\) in a catholyte sample of 10 cm\(^3\) could be determined in the usual way the hydroxylamine in the sample oxidized quantitatively by adding 15 cm\(^3\) 0.1 M Ce(SO\(_4\))\(_2\) + 0.1 M H\(_2\)SO\(_4\) to the sample and boiling the solution for 20 min.

2.3.2 Nitrogen oxides, nitrogen and hydrogen. The analyses of the gas in the gas sample loop were performed with a gas chromatograph (F and M, model 720). The volume of the sample loop was 2.85 cm\(^3\). The carrier gas was argon. A 150 cm column of molecular sieve 5 A (size 45–60 mesh) at 80°C was used to obtain separately the peaks of hydrogen, oxygen, nitrogen and nitric oxide in the chromatogram. After the appearance of the nitric oxide peak the temperature of the oven was brought from 80°C to 220°C with a rate of 30°C/min and then the temperature was held at 220°C. After about 15 min the N\(_2\)O peak if present, appeared. The detector block was always maintained at 230°C.

For the calculation of the rate of the production of H\(_2\), resp. N\(_2\)O during the electrolysis, the rate of the gas flow passing the sample loop had to be known. This flowrate was calculated by correcting the flowrate of NO before entering the electrolytic cell by the rate of the H\(_2\) and N\(_2\)O production and of the consumption of NO in the electrolyt cell.

3. RESULTS AND DISCUSSION

3.1 Product analysis

Experimentally it was found that NO can be reduced to NH\(_2\)OH, N\(_2\)O and NH\(_4\). The formation of hydrazine which is also thermodynamically possible, was not mentioned in the literature. The analysis of the catholyte after an electrolysis at a current of 1 A of a 1 M H\(_2\)SO\(_4\) solution at 17°C through which NO gas was bubbled for 2 h, showed that beside hydroxylamine a small quantity of ammonium (and no detectable quantity of hydrazine) were present in the catholyte. The hydrazine concentration was determined as described by Watt and Crisp[6]. The quantity of ammonia corresponds to a current efficiency of only 2.7%\(n\). The formation of ammonia is only important for solutions with a high H\(_2\)SO\(_4\) concentration[2], therefore the formation of ammonia will not be considered further. The analysis of the gas
showed that besides large quantities of NO and H₂, very small quantities of N₂ and N₂O were present. Moreover, it was found that the NO gas of the cylinder gas contained already small quantities of N₂ and N₂O, 0.60% resp. 0.50%.

Experimentally it appeared that N₂O is formed whereas N₂ is not formed at the reduction of NO. The N₂O content in the NO gas depended on the electrolytic conditions.

This content was about a factor 2-4 higher than that in the NO gas of the cylinder. Consequently, during the electrolysis a small quantity of N₂O is formed. The formation of N₂O may be produced electrochemically by the reduction of NO and/or chemically by the decomposition of NH₂OH which had been formed during the electrolysis. To investigate the decomposition of NH₂OH, we determined the rate of the formation of N₂O and the rate of the decomposition of NH₂OH in the cathodic compartment during NO bubbling through a 1 M H₂SO₄ solution containing NH₂OH. In this case the diaphragm was completely closed by a rubber disk. The rate of the catholyte flow was 1600 cm³/min and the temperature 17°C. The cathode had been removed. Comparing the rate of the N₂O formation and that of the decomposition of NH₂OH it appeared that 1 molecule N₂O is formed from 1 molecule NH₂OH. The compound N₂O may be formed by the reaction of hydroxylamine with nitrite[7] according to the reaction, NH₂OH + HNO₂ → N₂O + 2 H₂O.

The occurrence of HNO₂ is likely since it is very difficult to remove all traces of NO from NO gas[8]. Moreover, oxygen gas can enter the cathodic compart- ment, since the experimental set-up might not completely be air-tight. Oxygen reacts with NO to form NO₂, so nitrite is formed in the cathodic compartment. The N₂O formation by decomposition of NH₂OH appeared to be independent of the NH₂OH concentration for our experimental conditions. The rate of the decomposition of NH₂OH, JNH₂OH in mA/cm², assuming 3 electrons per molecule, was equal to 3.4 mA/cm². The rate of the N₂O formation during the electrolysis was a factor 2-4 greater than corresponds with 3.4 mA/cm². Thus during the electrolysis N₂O is formed both by reduction of nitric oxide (JNO₂), and by decomposition of hydroxylamine.

3.2. The effect of the electrolytic conditions

In Fig. 2 characteristic results of the electrolysis of a NO-containing sulphuric acid solution are given. In this figure JNH₂OH, JNO₂ and JH₂ are plotted vs the time t of electrolysis for which NO gas was passed through the catholyte. JNH₂OH was determined from the increase of the concentration of NH₂OH in the catholyte during 1 h of electrolysis taking into account the rate of decomposition of hydroxylamine in NO bubbling, viz. 3.4 mA/cm² and the effect of diffusion of the electrolyte are averaged over 1 h. JNO₂ is calculated from the rate of N₂O formation during the electrolysis, corrected for the N₂O formation due to NH₂OH-decomposition. The sum of the corrected experimental values for JNH₂OH, JNO₂ and JH₂ is equal to the total measured current density. Here, only JNH₂OH and JH₂ at the stationary state, (men- tioned JNH₂OH and JNO₂) with the corresponding current efficiencies R₁NH₂OH and R₂NO₂ will be considered. It appeared that both R₁NH₂OH and R₂NO₂ increased with the number of times a mercury layer was deposited on the nickel electrode. After the mercury/nickel electrode had been used for 3 times as cathode for the NO reduction, R₁NH₂OH and R₂NO₂ reached constant values. These limiting values are somewhat different for various mercury/nickel electrodes. However, this ratio R₁NH₂OH/R₂NO₂ remained practically equal. After about 3 times mercury had been deposited on the electrode, the thickness of the mercury layer on the nickel wire may reach a maximum value.

In Fig. 3, R₁NH₂OH and R₂NO₂ are plotted vs the total cd J. This figure shows that the current efficiency for both the NH₂OH formation and the N₂O formation decreases with increasing current density and that at low current density only a small quantity of hydrogen is formed.

The influence of the diffusion of NO to the electrode surface can be more clearly represented by plotting mNO = (1/2) (R₁NH₂OH + R₂NO₂) J/F mmole/s cm² vs J where J is expressed in mA/cm² and F = 96500 c/mol. For the formation of 1 molecule NH₂OH are used 3 electrons and for 1 molecule N₂O 2 electrons. The mNO/J relation is plotted in Fig. 4;

Reduction of nitric oxide at a nickel electrode

Fig. 2. Plot of JNH₂OH, JNO₂ and JH₂ at J = 100 mA/cm² vs the time of electrolysis at which NO gas was passed through the catholyte.

Fig. 3. Plot of R₁NH₂OH and R₂NO₂ vs J.

Fig. 4. Plot of mNO vs J.
its data are deduced from those of Fig. 3. The curve of Fig. 4 reaches a maximum at about \(J = 120 \text{ mA/cm}^2 \); at higher \(c_d \) the rate of the reduction of NO decreases with increasing total \(c_d \). This decrease may be caused by the decrease of the NO concentration at the cathode due to stripping caused by an increasing rate of the \(\text{H}_2 \) evolution. Obviously, the current efficiency for the reduction of NO at \(J > 120 \text{ mA/cm}^2 \) is determined by the net decreased mass transport. The maximum value of \(m_{\text{NO}} = 24 \times 10^{-5} \text{ mmole/cm}^2 \) (Fig. 4) appear to be smaller than the maximum value, which might be obtained when hydrogen gas is not formed at the cathode. This conclusion is based on the much higher maximum rate of NO reduction when a 1 M (\(\text{NH}_4\text{SO}_4 \)) solution of pH of about 9 is used as a supporting electrolyte. In this solution practically only \(\text{N}_2\text{O}_3 \) was formed. The experimental maximum rate of NO reduction was about 100 \text{ mA/cm}^2 which corresponds with \(m_{\text{NO}} = 52 \times 10^{-5} \text{ mmole/cm}^2 \). Consequently, it follows that for a 1 M \(\text{H}_2\text{SO}_4 \) solution the rate mass transfer of NO at the maximum of the \(m_{\text{NO}}/J \) curve was at least a factor 2 smaller than the limiting rate of mass transfer if no hydrogen gas is formed.

The \(\epsilon/\log J \)-relation during \(\text{H}_2 \) and during NO bubbling give also some information about the reduction of NO. Fig. 5 shows both relations for a 1 M \(\text{H}_2\text{SO}_4 \) solution as supporting electrolyte. These curves determined by changing the potential in anodic direction from the potential at about \(J = 300 \text{ mA/cm}^2 \). Firstly, the curve during \(\text{H}_2 \) bubbling was measured after passing hydrogen for 2 h through the solution. Thereafter NO was bubbled for 2 h and the \(\epsilon/\log J \) relation determined. The obtained curves agree with the results of Fig. 3. This means that if there is no interaction between \(\text{H}_2 \) evolution and NO reduction, the obtained curves show that the current efficiency of the NO reduction decreases and that of the \(\text{H}_2 \) evolution increases with increasing \(c_d \).

The influence of the concentration of sulphuric acid on the reduction of NO was also investigated. In the investigated range from 0.25 M to 2 M \(\text{H}_2\text{SO}_4 \) no influence was found upon the current efficiency of the \(\text{NH}_2\text{OH} \) formation. Figure 6 shows the influence on the rate of the electrolyte flow through the cathode, \(r_e \), upon the current efficiency of the \(\text{NH}_2\text{OH} \) and of the \(\text{N}_2\text{O}_3 \) formation. From this figure it follows that both \(\text{R}_{\text{NH}_2\text{OH}} \) and \(\text{R}_{\text{N}_2\text{O}_3} \) increase with increasing \(r_e \). This is in agreement with the theory of hydrodynamics.

The effect of the temperature \(T \) appears from Fig. 7. The current efficiency \(\text{R}_{\text{NH}_2\text{OH}} \) is constant in the temperature range from 5 to 40°C. In Fig. 8 the ratio \(\text{R}_{\text{NH}_2\text{OH}}/\text{R}_{\text{N}_2\text{O}_3} \) is represented as \(\epsilon \). The value of the potential \(\epsilon \) is equal to that during the experiments at which the ratio \(\text{R}_{\text{NH}_2\text{OH}}/\text{R}_{\text{N}_2\text{O}_3} \) was determined. Fig. 8 shows that \(\text{R}_{\text{NH}_2\text{OH}}/\text{R}_{\text{N}_2\text{O}_3} \) increases with increasing cathodic potential. According to Mašek[9] nitric oxide yields two polarographic reduction waves in acidic media. He has concluded that the first wave is due to the two electron reduction of the dimer, \(\text{N}_2\text{O}_2 \), \(\text{N}_2\text{O}_5 \) and that the second wave is due to the direct uptake of three electrons by NO to produce hydroxylamine. The structure of the dimer \(\text{N}_2\text{O}_5 \)[10] is given to

\[
\begin{align*}
\text{N} & \equiv \text{O} \\
\text{O} & \equiv \text{N}
\end{align*}
\]

We assume that the structure of \(\text{N}_2\text{O}_5^- \) is the same. No acid association constants of this dimer are given in the literature. The acid-dissociation constants of nitrous acid and hyponitrous acid[10] are well-known, viz. \(K_{\text{HNO}_2} = 10^{-11} \text{ mole/l} \). From the acid-dissociation constants of the acids mentioned it fol-
Reduction of nitric oxide at a nickel electrode

allows that in sulphuric acid media the compound N$_2$O$_3^-$ formed by the reduction of N$_2$O$_2$ reacts with H$^+$ ions forming H$_2$O$_2$H$_2$ with the structure

\[N - O - H \]

\[H - O - N \]

The formation of N$_2$O is than only possible after a rearrangement of the dimer N$_2$O$_2$H$_2$. For solutions of pH = 5, Ehman and Sawyer[3] found that NO is reduced practically completely to N$_2$O at a mercury electrode. They proposed the following mechanism:

\[\text{NO} + \text{H}^+ \rightarrow \text{NOH}^+ \]

\[\text{NOH}^+ + e \rightarrow \text{NOH} \]

\[2\text{NOH} \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \]

The species NOH is an intermediate in this mechanism. If NH$_2$OH is formed with the direct uptake of three electrons by NO it is likely that NOH is also an intermediate which is formed after the uptake of one electron by NO. The intermediate NOH can give N$_2$O and can be reduced to hydroxy lamine according to NOH + 2H$^+$ + 2e$^- \rightarrow$ NH$_2$OH. Both species viz N$_2$O and NH$_2$OH are formed also in the potential range where the rate of the NO reduction is determined by the transport of NO to the electrode surface. Moreover, it is found that the ratio R$_{\text{NH}_2\text{OH}}$/R$_{\text{N}_2\text{O}}$ increases with increasing cathodic potential. This result supports the conclusion that NOH is an intermediate for both the NH$_2$OH and the N$_2$O formation.

REFERENCES