

Event structures : maps, monads and spans : invited talk

Citation for published version (APA):
Winskel, G. (2005). Event structures : maps, monads and spans : invited talk. (Computer science reports; Vol.
0520). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. May. 2021

https://research.tue.nl/en/publications/event-structures--maps-monads-and-spans--invited-talk(c2a3bde8-7dda-4899-8896-6bc07431a298).html

EXPRESS 2005 Preliminary Version

Preface

The EXPRESS workshops aim at bringing together researchers interested in
the relations between various formal systems in computer science, in particu-
lar in the �eld of concurrency. More speci�cally, they focus on the comparison
between programming concepts (such as concurrent, functional, imperative,
logic and object-oriented programming) and between mathematical models of
computation (such as process algebras, Petri nets, event structures, modal
logics, rewrite systems etc.) on the basis of their relative expressive power.

The EXPRESS workshops were originally held as meetings of the HCM
project EXPRESS, which was active with the same focus from January 1994
until December 1997. The �rst three workshops were held in Amsterdam
(1994, chaired by Frits Vaandrager), Tarquinia (1995, chaired by Rocco De
Nicola) and Dagstuhl (1996, co-chaired by Ursula Goltz and Rocco De Nicola).
The workshop in 1997, which took place in Santa Margherita Ligure and was
co-chaired by Catuscia Palamidessi and Joachim Parrow, was organized as
a conference with a call for papers and a signi�cant attendance from out-
side the project. As of 1998 (so, also this year), the workshops are held as
satellite workshops of the CONCUR conferences. In 1998, this was in Nice, co-
chaired by Ilaria Castellani and Catuscia Palamidessi, in 1999 in Eindhoven,
co-chaired by Ilaria Castellani and Bj�orn Victor, in 2000 at Pennsylvania State
University, co-chaired by Luca Aceto and Bj�orn Victor, in 2001 at BRICS, Aal-
borg University, co-chaired by Luca Aceto and Prakash Panangaden, in 2002
in Brno, co-chaired by Uwe Nestmann and Prakash Panangaden, in 2003 in
Marseille, co-chaired by Flavio Corradini and Uwe Nestmann, and �nally in
2004 in London, co-chaired by Jos Baeten and Flavio Corradini.

This year, in response to the call for papers, we received 15 submissions.
The program committee selected 9 of these for presentation at the workshop.
One of these was a short paper, describing work in progress, that does not
appear in the proceedings. In addition, the workshop contains two invited
presentations, by Tom Henzinger and Glynn Winskel, of which abstracts ap-
pear in the proceedings. Thus, in total, this proceedings contains 2 abstracts
and 8 papers. We would like to thank the authors of the submitted short and
full papers, the invited speakers, the members of the program committee and
their subreferees for their contribution to both the meeting and this volume.
We thank the Technische Universiteit Eindhoven for printing the preliminary
proceedings. We thank the CONCUR organizing committee for hosting EX-
PRESS’05, in particular the workshop organizer Leandro Dias Da Silva and
CONCUR general chair Luca De Alfaro.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Michael Mislove helped with style �les, Erik Luit with Cyberchair and
Sonja Joosten took care of the webpage http://www.win.tue.nl/Express05/.
The �nal proceedings will become available electronically at Elsevier Science
Publisher’s website http://www.elsevier.nl/locate/entcs.

The editors

Jos Baeten (Technische Universiteit Eindhoven)
Iain Phillips (Imperial College, London)

EXPRESS 2005 Program Committee

Robert Amadio Kohei Honda
Jos Baeten Richard Mayr
Julian Brad�eld Catuscia Palamidessi
Michele Bugliesi Iain Phillips
Mariangiola Dezani-Ciancaglini Julian Rathke
Wan Fokkink Eugene Stark
Thomas Hildebrandt

EXPRESS 2005 Subreferees

Paolo Baldan Matteo Ma�ei
Michele Boreale Massimo Merro
Horatiu Cirstea Marius Minea
Lucia Cloth Faron Moller
Cas Cremers Marco Pistore
Rocco De Nicola Paola Quaglia
Sibylle Fr�oschle Alwen Tiu
Fabio Gadducci Erik de Vink
Francesco Gianfelici Marc Voorhoeve
Jens Chr. Godskesen Benjamin Wack
Daniele Gorla Glynn Winskel
Michael Huth Axelle Ziegler
S lawomir Lasota

Table of Contents

Event Structures --- Maps, Monads and Spans……………………………………... 4
 Glynn Winskel

Causality Versus True-Concurrency………………………………………………... 6
 Sibylle Fröschle, Sławomir Lasota

Interaction Nets vs. the ρ-Calculus: Introducing Bigraphical Nets………………… 18
 Maribel Fernández, Ian Mackie, François-Régis Sinot

Feasible Reactivity for Synchronous Cooperative Threads………………………… 32
 Roberto Amadio, Frédéric Dabrowski

Static Equivalence is Harder than Knowledge……………………………………… 44
 Johannes Borgström

Processes as Games…………………………………………………………………. 56
 Tom Henzinger

A Short Visit to the STS Hierarchy………………………………………………… 57
 Nathalie Bertrand, Phillippe Schnoebelen

A Petri Net Semantics of a Simple Process Algebra for Mobility………………...... 69
 Raymond Devillers, Hanna Klaudel, Maciej Koutny

Separation of Synchronous and Asynchronous Communication via Testing………. 81
 Diletta Cacciagrano, Flavio Corradini, Catuscia Palamidessi

Open Bisimulation, Revisited………………………………………………………. 93
 Sébastien Briais, Uwe Nestmann

EXPRESS 2005 Preliminary Version

Event Structures—maps, monads and spans
Invited talk

Glynn Winskel 1

University of Cambridge Computer Laboratory
University of Cambridge

Cambridge, England

Abstract

Event structures are a model of computational processes. They represent a process
as a set of event occurrences with relations to express how events causally depend
on others, or exclude other events from occurring. In one of their simpler forms they
consist of a set of events on which there is a consistency relation expressing when
events can occur together in a history and a partial order of causal dependency—
writing e′ ≤ e if the occurrence of e depends on the previous occurrence of e′.

In detail, an event structure comprises (E,Con,≤), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a predicate
Con consisting of finite subsets of E, the consistency relation, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

Our understanding of the consistency predicate and the enabling relation are ex-
pressed in the notion of configuration (or state or history) we adopt for event struc-
tures. The events are to be thought of as event occurrences; in any history an event
is to appear at most once. A configuration is a set of events which have occurred
by some stage in a process. According to our understanding of the consistency
predicate and causal dependency relations a configuration should be consistent and
such that if an event appears in a configuration then so do all the events on which
it causally depends.

A configuration of an event structure E is a subset x ⊆ E which is

Consistent: ∀X ⊆ x. X ∈ Con, and

The configurations of an event structure are ordered by inclusion, where x ⊆ x′, i.e.
x is a sub-configuration of x′, means that x is a sub-history of x′.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

4

Winskel

Let E and E′ be event structures. A map of event structures f : E → E′ is a
partial function on events f : E ⇀ E′ such that for all configurations x of E its
direct image fx is a configuration of E′ for which

if e1, e2 ∈ x

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The partial function f
respects the instantaneous nature of events: two distinct event occurrences which
are consistent with each other cannot both be coincident with the occurrence of a
common event in the image. We say the map is total iff the function f is total, and
rigid iff it is total and preserves the order of causal dependency.

Recently, with Lucy Saunders-Evans, we have come to realize the primary nature
of rigid maps in the sense that the other kinds of maps of event structures may
be derived from them by a Kleisli construction. For example, total maps of event
structures from E to E′ can be obtained as rigid maps from E to T (E′), for a
suitable monad T on the category of event structures with rigid maps. The monad
is associated with changing the type of the events. A similar Kleisli construction
for suitable monads yields many other kinds of maps too, though only through
a slight generalisation of event structures. The generalisation is to extend event
structures to allow “persistent” events, events which can have a significant duration.
An event structure with persistence (E,P) is an event structure E together with
a distinguished subset of persistent events P . Configurations are defined just as
before. Maps f : (E,P) → (E′, P ′) of event structures with persistence are partial
functions on events f : E ⇀ E′ such that fP ⊆ P ′ and for all configurations x of
E its direct image fx is a configuration of E′ for which now

if e1, e2 ∈ x and f(e1) = f(e2) ∈ (E′ \ P ′), then e1 = e2.

A map on event structures with persistence is rigid iff it comprises a total function
which preserves the order of causal dependency. This amounts to the same definition
as before when no events are persistent.

In the talk I will motivate the generalisation to event structures with persistence,
and discuss applications of maps, monads and spans of event structures, specifically
to the semantics of nondeterministic dataflow and higher-order processes.

1 Email: Glynn.Winskel@cl.cam.ac.uk

2

5

EXPRESS 2005 Preliminary Version

Causality Versus True-Concurrency

Sibylle Fr̈oschle1,2 and Sławomir Lasota1,3,4

Institute of Informatics, Warsaw University
02–097 Warszawa, Banacha 2, Poland

Abstract

Category theory has been successfully employed to structure the confusing setup of models
and equivalences for concurrency: Winskel and Nielsen have related the standard models
via adjunctions and (co)reflections while Joyal et al. have defined an abstract notion of
equivalence, known as open map bisimilarity. One model has not been integrated into
this framework: the causal trees of Darondeau and Degano. Here we fill this gap. In
particular, we show that there is an adjunction from causal trees to event structures, which
we bring to light via a mediating model, that of event trees. Further, we achieve an open
map characterization of history preserving bisimilarity: the latter is captured by the natural
instantiation of the abstract bisimilarity for causal trees.

Key words: event structures, causal trees, bisimulation

In [6] Winskel and Nielsen employ category theory to relate and unify the many
models for concurrency. The basic idea is to represent models as categories: each
model is equipped with a notion of morphism that shows how one model instance
can be simulated by another. Category theoretical notions such as adjunctions and
(co)reflections can then be applied to understand the relationships between the
models. We give an example.Synchronization treesare intuitively those transi-
tion systems with no cyclic behaviour. Formally, the two models are related by
a coreflection: the inclusion functor embedding synchronization trees into transi-
tion systems is accompanied by a right adjoint that unfolds transition systems to
synchronization trees.

The categorical approach has also been applied to bring uniformity to the con-
fusing setup of behavioural equivalences. Joyal et al. define an abstract notion of
bisimilarity in the following way [4]: given a category of modelsM and a choice
of path categoryP within M, two model instances ofM areP-bisimilar iff there is
a span ofP-open mapsbetween them.P-open maps are morphisms that satisfy a
special path-lifting property with respect toP. As one would expect, on transition

1 Supported by the EU Research Training Network GAMES.
2 Email: sib@mimuw.edu.pl
3 Partially supported by the PolishKbn grant No. 4 T11C 042 25.
4 Email: sl@mimuw.edu.pl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

6

Fröschle and Lasota

systems and synchronization trees the abstract bisimilarity gives rise to classical
bisimilarity [4]. Various well-known equivalences are motivated as instantiations
of P-bisimilarity in a natural way [2].

Winskel and Nielsen’s framework has helped to clarify the connections between
truly-concurrent models such as event structures, asynchronous transition systems,
and Petri nets. These are all independence models: they have additional structure
which shows when two transitions are independent of each other. Common to
these models is that they come with a notion ofevent: given two runsr1, r2 and
two transitionst1 on r1, t2 on r2 it is possible to tell whethert1 andt2 represent
two occurrences of the same event and can thus be considered equivalent modulo
independent behaviour. The notion of event is primary in event structures; they can
be considered to bethe independence model for unfolded behaviour.

On independence modelsP-bisimilarity was shown to yieldhereditary history
preserving bisimilarity(hhp-b) [4]. This left open whether it is at all possible
to capturehistory preserving bisimilarity(hp-b) via open maps, which was then
thought to bethe truly-concurrent bisimilarity. In particular, it was found that the
characterization of hhp-b is very robust with respect to the choice of path category.

Along a different strand of research, a new model emerged in the late 80’s: the
causal treesof Darondeau and Degano [3]. They are a variant of synchronization
trees with enriched action labels that supply information about which transitions
are causally dependent on each other. Thereby, they reflect one aspect of true-
concurrency, causality, while being different from the truly-concurrent models of
[6] in that they do not come with a notion of event. However, the precise relation-
ship between causal trees and the standard models has never been clarified.

Roughly one could say the strand of research along which causal trees have
emerged is that of syntax-enriched process calculi. A unifying framework for a
wide range of such calculi, including theπ-calculus, has been provided by the
history-dependent automataof Pistore [5]. In this context a first, albeit indirect,
open map account of hp-b has been achieved: in [5] history-dependent bisimilarity,
which induces hp-b with respect to Petri nets, is captured via open maps. It has
remained open, though, whether hp-b has a direct open map characterization: one
that is as natural as that of hhp-b and illustrates the difference between the two
equivalences, one within a model related to event structures.

Our contribution is twofold. Firstly, we integrate the model of causal trees
into Winskel and Nielsen’s framework. We equip causal trees with a notion of
morphism, and thus define the category of causal trees,C. We investigate how
C relates to the other model categories. In particular, we show that there is an
adjunction from causal trees to event structures. This is brought to light via a larger
model, calledevent trees: the adjunction arises as the composition of a coreflection
from causal trees to event trees and a reflection from event trees to event structures.

Secondly, we identify the natural instantiation ofP-bisimilarity for causal trees:
CBranL-bisimilarity. It turns out thatCBranL-bisimilarity fills in a prominent
gap: it characterizes hp-b in a direct fashion. Finally, we capture the difference
between hp-b and hhp-b by characterizing them within the category of event trees.

2

7

Fröschle and Lasota

1 Relating Causal Trees to Other Models for Concurrency

We first define the category of transition systems,T, and that of synchronization
trees,S.

A transition systemis a tuple(S, sin , L, Tran) whereS is a set ofstates, sin ∈ S
is the initial state, L is a set oflabels, andTran ⊆ S × L × S is the transition
relation. We writes

a→ s′ to denote that(s, a, s′) ∈ Tran. We extend this notation
to possibly empty strings of labelsv = a1 . . . an writing s

v→ s′ to indicate that
s0

a1→ s1 · · · an→ sn for somes0, . . . , sn with s = s0 and sn = s′. Given t =
(s, a, s′) ∈ Tran, we usesrc(t) for s, tgt(t) for s′, andl(t) for a.

A run of a transition systemT is a sequence of transitionst1t2 . . . tn, n ≥ 0,
such that ifn > 0 thensrc(t1) = sin and for alli ∈ [1, n − 1] tgt(ti) = src(ti+1).
We denote the set of runs ofT by Runs(T).

Let T0 = (S0, sin
0 , L0, Tran0) andT1 = (S1, sin

1 , L1, Tran1) be transition sys-
tems. A morphismf : T0 → T1 is a pairf = (σ, λ) whereσ : S0 → S1 is a
function andλ : L0 ⇀ L1 is a partial function such that

(i) σ(sin
0) = sin

1 ,

(ii) (s, a, s′) ∈ Tran0 & λ(a) defined=⇒ (σ(s), λ(a), σ(s′)) ∈ Tran1,
(s, a, s′) ∈ Tran0 & λ(a) undefined=⇒ σ(s) = σ(s′).

Transition systems together with their morphisms form a categoryT. Composition
of morphisms is pairwise and identity for an objectT is (1S, 1L) where1S is identity
on the set of statesS of T and1L is identity on the set of labelsL of T .

A synchronization treeis a transition system(S, sin , L, Tran) such that

(i) every state is reachable:∀s ∈ S. ∃v. sin v→ s,

(ii) the transition system is acyclic:s
v→ s for somev ∈ L∗ =⇒ v = ε,

(iii) there is no backwards branching:s′ a→ s & s′′ b→ s =⇒ a = b & s′ = s′′.

Write S for the full subcategory of synchronization trees inT.
We definecausal treesexplicitly as a generalization of synchronization trees.

In particular, this means: we add causality information not via enriched labelling
and backwards pointers as in [3] but by a causal dependency relation on transitions.

Definition 1.1 A causal treeis a tuple(S, sin , L, Tran, <) where(S, sin , L, Tran)
is a synchronization tree and< ⊆ Tran×Tran, thecausal dependency relation, is
a strict order, which satisfy:

(i) for all t, t′ ∈ Tran, t < t′ =⇒ tgt(t)
v→ src(t′) for somev ∈ L∗.

Axiom (i) expresses a natural property of causality: ift is a cause oft′ thent
must have happened beforet′. Causal trees inherit their notion ofrun from that of
transition systems. We say two transitionst, t′ ∈ Tran areconsistent, denoted by
t Con t′, iff they appear on the same branch:t Con t′ ⇐⇒ t = t′ ∨ ∃v ∈ L∗.
tgt(t)

v→ src(t′) ∨ tgt(t′)
v→ src(t).

The morphisms of the truly-concurrent models of [6] preserve concurrency. Let
t, t′ be consistent transitions of a causal treeC; t andt′ areconcurrentiff they are

3

8

Fröschle and Lasota

not identical and they are not related by<. Note that in contrast to event-based
models, here concurrency is only meaningful when interpreted with respect to a
branch. Thus, we define causal tree morphisms as follows.

Definition 1.2 LetC0 = (S0, sin
0 , L0, Tran0, <0), C1 = (S1, sin

1 , L1, Tran1, <1) be
causal trees. A morphismf : C0 → C1 is a morphism of transition systems(σ, λ) :
(S0, sin

0 , L0, Tran0) → (S1, sin
1 , L1, Tran1) such thatσ preserves concurrency:

(i) for all t = (s, a, s′), t′ = (u, b, u′) ∈ Tran0 such thatt Con0 t′, andλ(a),
λ(b) are both defined,(σ(s), λ(a), σ(s′)) <1 (σ(u), λ(b), σ(u′)) =⇒ t <0 t′.

Causal trees and their morphisms give rise to thecategory of causal trees, C.
There is an obvious coreflection fromS to C: a synchronization tree can be

regarded as a causal tree, one in which the causal dependency relation is given by
the order of the transitions in the tree; the corresponding functor is accompanied by
a right adjoint which forgets about the causality information. It is more difficult to
understand the precise relationship between causal trees and event structures. We
first give the definition of the category of event structures,E.

A (labelled) event structureis a structure(E, <, Con, L, l) consisting of a set
E of events, which are strictly ordered5 by <, thecausal dependency relation, a
consistency relationCon consisting of finite subsets of events, a setL of labelsand
a labelling functionl : E → L, which satisfy

(i) e↓ = {e′ | e′ < e} is finite,

(ii) {e} ∈ Con,

(iii) Y ⊆ X ∈ Con ⇒ Y ∈ Con,

(iv) X ∈ Con & e < e′ ∈ X ⇒ X ∪ {e} ∈ Con,

for all eventse, e′ and their subsetsX, Y . Axiom (i) ensures an event occurrence
depends only on finitely many previous event occurrences. The consistency relation
is thought to specify which finite subsets of events can occur together in a run.
Axioms (ii)–(iv) express natural properties of this interpretation.

To define arun of an event structure(E, <, Con, L, l), we need the notion of
configuration, defined as any finite6 setX ⊆ E which is

(i) downwards-closed:e′ < e ∈ X ⇒ e′ ∈ X, and

(ii) consistent:X ∈ Con.

In particular,e↓ is always a configuration. For two configurationsX, X ′ we write
X

e→ X ′ whene /∈ X andX ′ = X ∪ {e}. A run is a possibly empty sequence
e1 . . . en of events such that there is a sequence of transitions∅ e1→ X1 . . .

en→ Xn

starting from the empty configuration, for some configurationsX1 . . . Xn. For runs,
r

e→ r′ meansr′ = re. The set of all runs of an event structureE is denoted by
Runs(E).

Let E0 = (E0, <0, Con0, L0, l0) andE1 = (E1, <1, Con1, L1, l1) be labelled

5 Defining causal dependency in terms of a strict rather than a partial order is more convenient here.
6 We deliberately restrict ourselves to finite configurations only.

4

9

Fröschle and Lasota

event structures. A morphismE0 → E1 is a pair(η, λ) whereη : E0 ⇀ E1 and
λ : L0 ⇀ L1 are partial functions such that

(i) η(e) defined⇒ η(e)↓ ⊆ η(e↓),

(ii) X ∈ Con0 ⇒ η(X) ∈ Con1,

(iii) ∀e, e′∈E0. {e, e′}∈Con0 & η(e), η(e′) both defined& η(e) = η(e′) ⇒ e = e′,

(iv) λ ◦ l0 = l1 ◦ η.

Event structures and their morphisms form thecategory of event structures, E.
The runs of an event structure give rise to a tree. Thus, any event structure

can be transformed into a causal tree by abstracting away the notion of event; this
operation has been defined in, e.g., [3]. On the other hand, there is no uniform way
of reconstructing the notion of event so as to obtain a coreflection betweenC and
E. Indeed, there is one aspect in which event structures are less expressive than
causal trees: their notion of run is induced abstractly by the consistency and causal
dependency relation; in particular, this means the set of runs of any event structure
is trace-closed, that is closed under the shuffling of concurrent transitions. In the
following, we expose an adjunction fromC to E via a larger model, which we call
event trees, that embedsC as well asE. Event trees are like event structures in that
causality and concurrency are event-based, global notions. They are like causal
trees in that their possible runs are specified explicitly by a tree.

Definition 1.3 A (labelled) event treeis a tuple(S, sin , E, Tran, <, L, l) where
(S, sin , E, Tran) is a synchronization tree,< ⊆ E × E is a strict order on the set
E of events, L is a set oflabels, andl : E → L is a labelling functionsuch that

(i) e ∈ E ⇒ ∃s, s′ ∈ S. s
e→ s′,

(ii) s
e→ s′ & s

e→ s′′ ⇒ s′ = s′′,

(iii) s
e→ s′ & u

e→ u′ ⇒ 6 ∃v ∈ E∗. s′ v→ u,

(iv) e < e′ & s
e′
→ s′ ⇒ ∃u

e→ u′, v ∈ E∗. u′ v→ s.

Axiom (i) says every event appears as a transition, and axiom (ii) that the oc-
currence of an event at a state leads to a unique state. (This is as for asynchronous
transition systems.) Axiom (iii) expresses a natural property of acyclic models: ev-
ery event appears at most once on a branch. Axiom (iv) ensures that ife is a cause
of e′ thene must have happened beforee′.

We say two eventse, e′ are consistentiff they appear on the same branch:

e Con e′ ⇐⇒ e = e′ ∨ ∃s, s1, s2, s3 ∈ S, v ∈ E∗. s
e→ s1

v→ s2
e′
→ s3 ∨

s
e′
→ s1

v→ s2
e→ s3. Event trees inherit a notion ofrun from synchronization trees,

where a run is a sequence of consecutive transitions. By axiom (ii) the sequence of
events appearing along a run determines this run uniquely. Hence, we consider a
run of an event tree to be a sequence of events rather than one of transitions.

A partial functionη : E0 ⇀ E1 induces a total function̄η : E∗
0 → E∗

1 defined
inductively by:η̄(ε) = ε, andη̄(re) = η̄(r)η(e) if η(e) defined, and̄η(r) otherwise.

Definition 1.4 Assume two event treesT0 = (S0, sin
0 , E0, Tran0, <0, L0, l0), T1 =

5

10

Fröschle and Lasota

(S1, sin
1 , E1, Tran1, <1, L1, l1). A morphism fromT0 to T1 is a pair(η, λ) where

η : E0 ⇀ E1 andλ : L0 ⇀ L1 are partial functions such that

(i) η(e) defined⇒ η(e)↓ ⊆ η(e↓),

(ii) r ∈ Runs(T0) ⇒ η̄(r) ∈ Runs(T1),

(iii) λ ◦ l0 = l1 ◦ η.

Clause (ii) implies that we also have:∀e, e′ ∈ E0. e Con0 e′ & η(e), η(e′) both
defined& η(e) = η(e′) ⇒ e = e′. This is analogous to clause (iii) of event structure
morphisms.

If (η, λ) : T0 → T1 is a morphism of event trees then̄η mapsRuns(T0) to
Runs(T1). Since each state of an event tree is reachable by a unique run,η̄ induces
a total function, sayση, from S0 to S1. It is routine to check:

Proposition 1.5 If (η, λ) : T0 → T1 is a morphism of event trees then(ση, η) is
a morphism of transition systems(S0, sin

0 , E0, Tran0) → (S1, sin
1 , E1, Tran1) such

that η preserves concurrency:∀e, e′ ∈ E0. e Con0 e′ & η(e), η(e′) both defined&
η(e) <1 η(e′) ⇒ e <0 e′.

Event trees and their morphisms give rise to thecategory of event trees, ET.
Any event tree gives rise to a causal tree by forgetting about events. Considering

axiom (i) of causal trees, we carry over the causal dependency relation from events
to consistenttransitions only. Extending this operation to a functoret2c : ET → C
we make use of Prop.1.5 in our translation of morphisms.

Definition 1.6 Let T = (ST , sin
T , ET , TranT , <T , LT , lT) be an event tree. Define

et2c(T) = (ST , sin
T , LT , Tran, <) where

• Tran = {(s, lT (e), s′) | s
e→T s′}, and

• < = {((s, lT (e), s′), (u, lT (e′), u′)) | s
e→T s′, u

e′
→T u′, e <T e′ &

∃v ∈ E∗
T . s′ v→T u}.

Let f = (η, λ) be a morphism of event trees. Defineet2c(f) = (ση, λ).

On the other hand, every causal treeC determines an event tree: that induced
by C when we assume each transition ofC represents a separate event. We take as
events the transitions ofC, and label each arc ofC by the corresponding transition.
This operation extends to a functorc2et : C → ET.

Definition 1.7 Let C = (SC , sin
C , LC , TranC , <C) be a causal tree. Letc2et(C) =

(SC , sin
C , TranC , Tran, <C , LC , l) where

• Tran = {(s, (s, a, s′), s′) | s
a→C s′}, and • l is given byl(s, a, s′) = a.

For f = (σ, λ) : C0 → C1, definec2et(f) = (η, λ) whereη : Tran0 → Tran1 is

given by:η(s, a, s′) =

 (σ(s), λ(a), σ(s′)) if λ(a) is defined,

undefined otherwise.

Theorem 1.8 The functorc2et is left adjoint toet2c. The adjunction is a coreflec-
tion, i.e., the unit is a (natural) isomorphism.

6

11

Fröschle and Lasota

Proof. [Sketch] LetC be a causal tree. Thenet2c(c2et(C)) = C, and the unit of
the adjunction atC, ηC , is the pair of identities(1S, 1L).

The pair(c2et(C), ηC) is free overC wrt. et2c, i.e. for any arrow(σ, λ) : C →
et2c(T) in C, with T an event tree, there is a unique arrowf : c2et(C) → T in
ET such thatet2c(f) ◦ (1S, 1L) = (σ, λ): the label component off is necessarily
λ, and the event component off is determined uniquely since events ofc2et(C)
are transitions ofC. 2

As a consequence,C embeds fully and faithfully intoET and is equivalent to
the full subcategory ofET consisting of those event treesT that are isomorphic to
c2et(et2c(T)). These event treesT are exactly those in which each event occurs
only once.

The runs of an event structure can be arranged into a tree. Hence, any event
structure forms an event tree whose states are the runs of the event structure. This
gives rise to a functore2et : E → ET.

Definition 1.9 Let E = (EE, <E, ConE, LE, lE) be an event structure. Define
e2et(E) = (Runs(E), ε, EE, →E, <E, LE, lE). On morphisms,e2et(f) = f .

On the other hand, any event tree determines an event structure: we define a
set of events to be consistent iff they appear together on some branch, and, having
extracted this information, we forget about the tree structure. Thereby we obtain a
functoret2e : ET → E.

Definition 1.10 Let T = (ST , sin
T , ET , TranT , <T , LT , lT) be an event tree. Define

et2e(T) = (ET , <T , Con, LT , lT) whereCon exactly contains all sets{e1, . . . , en}
such thats1

e1→ s′
1

v1→ s2
e2→ . . .

vn−1→ sn
en→ s′

n in T, for some statess1 . . . sn, s′
1 . . . s′

n

and sequences of eventsv1 . . . vn−1. On morphisms, againet2e(f) = f .

Theorem 1.11 The functore2et is right adjoint toet2e. The adjunction is a re-
flection, i.e., the counit is a (natural) isomorphism.

Proof. [Sketch] LetE be an event structure. Thenet2e(e2et(E)) = E, essentially
because the consistency relation derived frome2et(E) recovers that ofE. Hence,
the counitεE is the pair of identities(1E, 1L).

The pair(e2et(E), εE) is cofree overE wrt. et2e, i.e. for any arrow(η, λ) :
et2e(T) → E in E, with T an event tree, there is a unique arrowf : T → e2et(E)
in ET such that(1E, 1L)◦et2e(f) = (η, λ): it is f = (η, λ), considering that(η, λ)
is a morphism fromT to e2et(E) as well;f is uniquely determined sinceet2e is
identity on morphisms. 2

As a consequence,E embeds fully and faithfully intoET and is equivalent to
the full subcategory ofET consisting of those event treesT that are isomorphic to
e2et(et2e(T)). Event trees that correspond to event structures are characterized as
follows. We say that two distinct eventse1, e2 of an event treeT areconcurrent,
denoted bye1 coT e2, if they are consistent and neithere1 <T e2 nor e2 <T e1,
similarly as it is done for event structures.

7

12

Fröschle and Lasota

Proposition 1.12 An event treeT is isomorphic toe2et(et2e(T)) iff Runs(T) is
trace-closed, i.e., satisfies the following condition: ifre1e2r′ ∈ Runs(T) and
e1 coT e2 thenre2e1r′ ∈ Runs(T) as well.

The following diagram summarizes the four functors, which relate causal trees
and event structures via event trees.

C ⊂
c2et

-
/

et2c
ET

et2e
-

/
e2et

⊃ E

The hooks represent embeddings and the black arrows indicate the direction of left
adjoints. Altogether, we have derived a composed adjunction between causal trees
and event structures. It is not a coreflection, but induced by a coreflection and a
reflection via a larger category. The object component of the right adjoint of this
adjunction amounts to the transformation suggested in, e.g., [3]: it ‘linearizes’ an
event structure into a causal tree by forgetting about events.

Integrating the coreflection from synchronization treesS to C, and the well-
known coreflection fromS to E of [6] we obtain:

C ⊂ -
/ ET

S
∪

6

5
⊂ -
/ E

∪

4

?

The diagram can be seen as a decomposition of the coreflection fromS to E into
three consecutive adjunctions. It is routine to check that the embeddings and left
adjoints commute. The latter implies that right adjoints commute as well, and hence
we obtain three different commuting squares:

C ⊂- ET C ⊂- ET C / ET

� � �

S
∪
6

⊂ - E
∪

4

S
∪
6

⊂ - E
?

S
5

/ E
∪

4

2 Bisimulation from Open Maps

2.1 P-bisimilarity

Assume a category of modelsM and a choice of path categoryP ↪→ M, a subcat-
egory ofM. The choice forP determines the notion of computation path that will
be reflected byP-bisimilarity.

A morphismf : X → Y in M isP-openiff it satisfies the followingpath-lifting
condition. Whenever, form : P → Q a morphism inP, a square (1) (c.f. diagrams
below) in M commutes,i.e. q ◦ m = f ◦ p, meaning the pathf ◦ p in Y can be
extended viam to a pathq in Y , then there is a morphismp′ such that in diagram (2)
the two triangles commute,i.e. p′ ◦ m = p andf ◦ p′ = q, meaning the pathp can
be extended viam to a pathp′ in X which matchesq.

8

13

Fröschle and Lasota

Two objectsX1, X2 of M areP-bisimilar iff there is aspanof P-open mor-
phismsf1, f2 as depicted in diagram (3). For the categories considered in this
paper,P-bisimilarity is indeed an equivalence relation.

(1)
P

p
- X

Q

m ? q
- Y

f? (2)
P

p
- X

Q

m ? q
-

p
′ -

Y

f? (3)
X

X1

�
f 1

X2

f
2-

In the following, we work with respect to a fixed label setL. Given a model
categoryM, whose objects have a label set, we restrict our attention to the fibre
over L in M with respect to the obvious functor projecting the model objects to
their label sets. This is exactly the subcategory ofM with objects those models
with label setsL, and morphisms those having the identity onL, 1L, as label com-
ponent. We denote the fibre overL in M by ML. Observe that all the adjunctions
of Section1 cut down to the fibres; in particular we have:

CL
⊂ -
/ ETL

-
/ ⊃ EL

2.2 Hp-b via Open Maps

To obtain a natural instantiation ofP-bisimilarity for causal trees we single out a
path category withinCL. Path objects are naturally taken to becausal branches,
that is those causal trees which correspond to finite sequences of transitions.

Definition 2.1 With respect toL, define thecategory of causal branchesCBranL

to be the full subcategory ofCL with objects thosefinite causal treesC satisfying:

(i) no forwards branching:s
a→ s′ & s

b→ s′′ =⇒ a = b & s′ = s′′.

A morphismm : P → Q in CBranL shows how the causal branchQ can
extend the causal branchP : by additional transitions, and/or by increased concur-
rency. TheCBranL-open morphisms are exactly those which arezig-zag(c.f. [4])
and additionally preserve causality; short we say they arecausal zig-zag.

Definition 2.2 Letf = (σ, 1L) : C → C ′ be a morphism inCL. We sayf is causal
zig-zagiff it satisfies the following two conditions:

(i) zig-zag: for all s ∈ SC , if σ(s)
a→ s′ in C ′ thens

a→ u in C andσ(u) = s′,
for someu ∈ SC .

(ii) causality-preserving:for all t, t′ ∈ TranC , t <C t′ =⇒ f(t) <C′ f(t′).

Lemma 2.3 The CBranL-open morphisms ofCL are exactly those which are
causal zig-zag.

It turns out thatCBranL-bisimilarity coincides with the well-known hp-b. Two
systems are hp-bisimilar iff their behaviour can be bisimulated while preserving the
causal dependencies between their transitions. Technically, this can be realized by
basing hp-b on pairs ofsynchronous runs.

9

14

Fröschle and Lasota

Let C1, C2 be causal trees with label setsL, r1 = t1 . . . tn ∈ Runs(C1), and
r2 = t′

1 . . . t′
m ∈ Runs(C2). r1 andr2 aresynchronousiff n = m, ∀i ∈ [1, n],

l1(ti) = l2(t′
i), and∀i, j ∈ [1, n], ti < tj iff t′

i < t′
j. We denote the set of syn-

chronous runs ofC1 andC2 by SRuns(C1, C2).
H ⊆ SRuns(C1, C2) is prefix-closediff (r1t1, r2t2) ∈ H implies(r1, r2) ∈ H.

We assume hp-bisimulations to be prefix-closed; this restriction has no effect on
the induced equivalence.

Definition 2.4 LetC1 andC2 be causal trees with label setsL.

A history preserving(hp-) bisimulationrelating C1 andC2 is a prefix-closed rela-
tion H ⊆ SRuns(C1, C2) that satisfies:

(i) (ε, ε) ∈ H.

(ii) If (r1, r2) ∈ H and r1t1 ∈ Runs(C1) for somet1 ∈ Tran1, then there is
t2 ∈ Tran2 such that(r1t1, r2t2) ∈ H.

(iii) Vice versa.

C1 andC2 arehp-bisimilariff there exists a hp-bisimulation relatingC1 andC2.

Given a morphismf = (σ, 1L) : C → C ′ in CL we define the image of runs
of C in C ′ inductively by: f(ε) = ε; f(r (s, a, s′)) = f(r) (σ(s), a, σ(s′)). If f is
CBranL-open and thus causality-preserving, it is easy to show that a runr of C
and its image inC ′ form a pair of synchronous runs.

Proposition 2.5 Let f : C → C ′ be aCBranL-open morphism inCL. For any
r ∈ Runs(C) we have:(r, f(r)) ∈ SRuns(C, C ′).

Theorem 2.6 Two causal trees, with label setsL, are CBranL-bisimilar iff they
are hp-bisimilar.

Proof. ‘⇒’. Let f : C → C ′ be aCBranL-open morphism inCL. We show how
from f we obtain a hp-bisimulation relatingC andC ′. By transitivity of hp-b this
will clearly establish the ‘⇒’-direction. DefineH = {(r, f(r)) | r ∈ Runs(C)}.
By Prop.2.5 and prefix-closure ofRuns(C) it is clear thatH is a prefix-closed
subset ofSRuns(C, C ′). To prove thatH is a hp-bisimulation forC andC ′ we
further need to verify that conditions (i)-(iii) of Def.2.4are satisfied. (i) is obvious
by ε ∈ Runs(C). (ii) follows easily fromf being a morphism. (iii) can be obtained
with the zig-zag condition, whichf satisfies by Lemma2.3.

‘⇐’. Let H be a hp-bisimulation relating two causal treesC1 andC2, with label
setsL. We observe thatH can be regarded as a causal tree,CH, and that there are
two morphismsf1 : CH → C1 andf2 : CH → C2 in CL.

For i ∈ {1, 2} we define a functionπi : SRuns(C1, C2) → Si by: πi(ε, ε) =
sin

i , andπi(r1t1, r2t2) = tgt(ti). Further, fori ∈ {1, 2} we define the pair of maps
fi = (πi, 1L). Given(r, a, r′) ∈ SRuns(C1, C2) × L × SRuns(C1, C2) we write
fi(r, a, r′) short for(πi(r), a, πi(r

′)).

10

15

Fröschle and Lasota

Let CH = (H, (ε, ε), L, TranH, <H) where

TranH = {((r1, r2), a, (r′
1, r′

2)) | (r1, r2), (r′
1, r′

2) ∈ H, r1
a→1 r′

1 & r2
a→2 r′

2},

∀u, u′ ∈ TranH. u <H u′ ⇐⇒ f1(u) <1 f1(u′) & f2(u) <2 f2(u′).
It is routine to check thatCH is indeed a causal tree, and that, withπ1, π2 restricted
to H, f1 : CH → C1 andf2 : CH → C2 are indeed morphisms inCL. Furthermore,
f1 andf2 are causal zig-zag. But then by Lemma2.3 there is a span ofCBranL-
open morphisms as required. 2

2.3 Relating Hp-b and Hhp-b inET

We capture the difference between hp-b and hhp-b by characterizing them within
the categoryET. We carry over hp-b to event structures and event trees. Two
event structuresE1 andE2 are hp-bisimilar iffet2c(e2et(E1)) andet2c(e2et(E2))
are hp-bisimilar; this is consistent with the standard definition. Analogously, it
is natural to define: two event treesT1 andT2 are hp-bisimilar iffet2c(T1) and
et2c(T2) are hp-bisimilar.

Consider the following instantiation ofP-bisimilarity for event trees: as the
path category withinETL choose the image ofCBranL under the embedding
functorc2et ; for simplicity, call it CBranL as well.CBranL-bisimilarity in ETL

characterizes hp-b:

Proposition 2.7 Two event treesT1 andT2 are CBranL-bisimilar iff they are hp-
bisimilar.

Given a span of morphisms (as depicted in Section2.1) in ETL, we say that the
span is rooted inCL if the root objectX is c2et(C) for some causal treeC, and
that it is rooted inEL if X is e2et(E) for some event structureE. We have:

Proposition 2.8 Two event treesT1 andT2 are CBranL-bisimilar iff they are re-
lated by aCBranL-open span rooted inCL.

By Prop.2.7and2.8 it follows:

Theorem 2.9 Two event structuresE1 and E2 are hp-bisimilar iffe2et(E1) and
e2et(E2) are related by aCBranL-open span inETL rooted inCL.

Hhp-b is characterized inEL asPomL-bisimilarity [4], wherePomL is the full
subcategory of finitepomsets, i.e., of finite event structures without conflict (which
means all finite subsets of events are consistent). We obtain:

Lemma 2.10 Let f : E1 → E2 be a morphism of event structures. Thenf is
PomL-open inEL iff e2et(f) is CBranL-open inETL.

Theorem 2.11 Two event structuresE1 andE2 are hhp-bisimilar iffe2et(E1) and
e2et(E2) are related by aCBranL-open span inETL rooted inEL.

Theorems2.9 and2.11indicate thatC is the proper choice of model for hp-b
while E is the natural choice for hhp-b.

11

16

Fröschle and Lasota

3 Conclusions

Altogether we have advocated causality as a non-embedding but adjoining concept
to true-concurrency. (We prefer the admittedly biased term ‘true-concurrency’ to
‘independence’ here since (in)dependence can be captured without a notion of event
in the style of causal trees, just as well.) We summarize:
(i) Causality models are more basic than truly-concurrent models in that they cap-
ture causality without a notion of event. On the other hand, they are more expressive
than the latter in that their possible runs can be freely specified in terms of a tree;
in contrast, truly-concurrent models and their sets of runs adhere to certain axioms
that express characteristics of independent events.
(ii) Hp-b turns out to have a straightforward open map characterization when we
take causal trees to be the model category. Our results motivate that hp-b isthe
bisimilarity for causality while hhp-b remainsthebisimilarity for true-concurrency.

Our work should be compared to [1], which relates causal trees to prioritized
event structures. It would also be interesting to confirm our results with respect to
models that keep the cyclic structure. A type of history-dependent automata, called
causal automata, should be examined in this context.

Our investigation has led us to the new model of event trees. We are not keen on
advertising yet another model for concurrency but event trees do arise in practice:
given a truly-concurrent system, assume we restrict our attention to a subset of its
runs that is not necessarily trace-closed. This is exactly what we do during a partial
order reduction; indeed it is the intention here to lose trace-closure.

We are working on a characterization of those event structuresE which corre-
spond to causal trees in thatE = et2e(c2et(C)) for some causal treeC. We expect
that such event structures are optimal for partial order reduction.

References

[1] Bodei, C.,Some concurrency models in a categorical framework, in: ICTCS’98(1998),
pp. 180–191.

[2] Cheng, A. and M. Nielsen,Observing behaviour categorically, in: FST&TCS’95, LNCS
1026, 1995, pp. 263–278.

[3] Darondeau, P. and P. Degano,Causal trees: interleaving+ causality, in: Semantics of
systems of concurrent processes, LNCS469, 1990, pp. 239–255.

[4] Joyal, A., M. Nielsen and G. Winskel,Bisimulation from open maps, Information and
Computation127(1996), pp. 164–185.

[5] Pistore, M., “History Dependent Automata,” Ph.D. thesis, University of Pisa (1999).

[6] Winskel, G. and M. Nielsen,Models for concurrency, in: Handbook of logic in
computer science, Vol. 4, Oxford Univ. Press, New York, 1995 pp. 1–148.

12

17

EXPRESS 2005 Preliminary Version

Interaction Nets vs. the ρ-calculus:
Introducing Bigraphical Nets

Maribel Fernández, Ian Mackie 2

Department of Computer Science, King’s College London
Strand, London WC2R 2LS, UK

François-Régis Sinot 1,3

LIX, École Polytechnique, 91128 Palaiseau, France

Abstract

The ρ-calculus generalises both term rewriting and the λ-calculus in a uniform
framework. Interaction nets are a form of graph rewriting which proved most suc-
cessful in understanding the dynamics of the λ-calculus, the prime example being the
implementation of optimal β-reduction. It is thus natural to study interaction net
encodings of the ρ-calculus as a first step towards the definition of efficient reduction
strategies. We give two interaction net encodings which bring a new understanding
to the operational semantics of the ρ-calculus; however, these encodings have some
drawbacks and to overcome them we introduce bigraphical nets—a new paradigm
of computation inspired by Lafont’s interactions nets and Milner’s bigraphs.

Key words: Rewriting Calculus, Interaction Nets, Bigraphs.

1 Introduction

Pattern calculi [18,17,3,5,6,13] combine the expressiveness of pure functional
calculi and algebraic term rewriting. The ρ-calculus [5,6] provides a simple
framework generalising both term rewriting and the λ-calculus. It is an exten-
sion of the λ-calculus where we can abstract on patterns, not just on variables,
hence providing a suitable foundational theory for modern programming lan-
guages with pattern-matching features.

Interaction nets [15] are graph rewrite systems which have been used for
the implementation of efficient reduction strategies for the λ-calculus [12,1,16].

1 Projet Logical: PCRI, CNRS, École Polytechnique, INRIA, Université Paris-Sud
2 Email: maribel,ian@dcs.kcl.ac.uk
3 Email: frs@lix.polytechnique.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

18

Fernández, Mackie, Sinot

One of the main features of interaction nets is that all the computation steps
are explicit and expressed in the same formalism; there is no external machin-
ery. Also, since reduction in interaction nets is local and strongly confluent,
reductions can take place in any order, even in parallel (see [19]), which makes
interaction nets well-suited for the implementation of programming languages
and rewriting systems [9,8]. Since pattern calculi encompass term rewriting
and the λ-calculus, clearly there are natural questions about the existence of
efficient implementations using interaction nets. In this paper we will focus
on the ρ-calculus, but our results can be applied to other pattern calculi.

We adapt interaction net implementations of the λ-calculus to deal with the
specific features of the ρ-calculus. We concentrate on the problem of pattern-
matching and take for granted that binders can be dealt with using one of
the many available encodings of the λ-calculus mentioned previously. We give
two alternative encodings of matching in interaction nets, both with certain
advantages and drawbacks, and claim that a fully satisfactory solution cannot
be obtained in the interaction net framework. This indeed comes as a surprise
and highlights a deep difference between the λ-calculus and the ρ-calculus,
namely that the ρ-calculus has more potential (implicit) parallelism. We then
propose a third encoding using a particular class of bigraphs [14] which we call
bigraphical nets. Bigraphs incorporate a notion of locality which is missing in
interaction nets. We exploit this feature to overcome the drawbacks of the
previous solutions, while still remaining close to a machine implementation.

Our work is modular with respect to the encoding of binders that is used,
i.e. the same method can be applied to transform any interaction net imple-
mentation of the λ-calculus into an implementation of the ρ-calculus (even
the bigraphical net encoding is modular, since interaction nets are also bi-
graphical nets). We can also easily export the solution to other calculi with
patterns. Besides practical advantages (e.g. sharing of computations), graph
representations are often useful to abstract away from syntactical details (e.g.
α-conversion comes for free) and bring more understanding to the theory.
In particular, the encodings presented in this paper highlight the differences
between the various operational semantics defined for the ρ-calculus.

Section 2 recalls the ρ-calculus, interaction nets and bigraphs. Sections 3
and 4 give two interaction net encodings of the ρ-calculus, and their properties.
Section 5 gives a third encoding using bigraphical nets, a new paradigm of
graph rewriting incorporating locality. We conclude in Section 6.

2 Background

We start with a short presentation of the ρ-calculus; for more details see [5,6,2].
We write x, y, . . . for variables and f, g, . . . for constants. The set of ρ-terms
(or just terms) T is defined by: t, u ::= x | f | p _ t | [p� u].t | (t u), where
P is an arbitrary subset of T (p ∈ P are called patterns); p _ t is a generalised
abstraction (it can be seen either as a λ-abstraction on a pattern p instead of

2

19

Fernández, Mackie, Sinot

a single variable, or as a standard term rewriting rule); [p� u].t is a delayed
matching constraint denoting a matching problem p � u whose solutions
(if any) will be applied to t; (t u) denotes an application (we omit brackets
whenever possible, and associate to the left). Terms are always considered
modulo α-conversion (this is realised for free in interaction nets).

The ρ-calculus can be parametrised by the set P of patterns. Here we use
linear algebraic patterns : p ::= x | f p1 . . . pn where each variable occurs at
most once in p. The reduction rules are the following:

(ρ) (p _ t) u→ [p� u].t (σ) [p� u].t→ σp�u(t)

The rule σ asks for an external matching algorithm to find any solutions
of the matching of p with u, and applies the corresponding substitution to
t. Here we assume syntactic matching; under this assumption the calculus
is confluent [6]. We focus on the implementation of the σ rule, isolating as
much as possible the problem of matching from the problems of implementing
binders. This methodology is justified by the fact that the terms p _ t and
x _ [p � x].t are extensionally equivalent, so that we can safely precompile
terms in order to abstract only on variables and have explicit matchings from
the beginning. To give a full implementation of the calculus, including the
matching algorithm, we first define a version of the ρ-calculus with explicit
matching inspired by [4]. Substitution is still implicit since it will be realised
for free in the graphical representation.

(ρ) (p _ t) u → [p� u].t

(σv) [x� u].t → t{x = u}
(σan) [f p1 . . . pn � f u1 . . . un].t → [p1 � u1] . . . [pn � un].t

Note that (σan) represents an infinite family of rules; we thus replace it by a
finite set of local rules, more suitable for an encoding into interaction nets:

(ac) f t → f • t
(aa) (t • u) v → (t • u) • v
(σc) [f � f].t → t

(σa) [(p • r)� (u • v)].t → [p� u].[r � v].t

A matching [p � u] may have no solution; this is called a blocked matching.
We can add a rule to detect failure for constants:

(⊥) [f � g].t → ⊥ if f 6= g

Now if there is a ⊥ in a term, in which cases should the whole term evaluate
to ⊥? There are mainly two options:

(strict) C[⊥] → ⊥ for any context C[·]
3

20

Fernández, Mackie, Sinot

The strict rule corresponds to an exception-like semantics of matching failure
(as in ML) e.g. even if the argument of an application is not used by the
function, the result is ⊥. In this context, a higher priority is given to this rule
than to any other applicable rule. If we desire a non-strict semantics, this rule
should be weakened to a particular class C of strict contexts:

(non-strict) C[⊥] → ⊥ for any C[·] ∈ C

We take C = {([] t), t ∈ T }, although a larger class of contexts is acceptable.
Rules of the form [p � u].t → ⊥ if p and u have different head symbols,
are unsafe and lead to non-confluence [5]. Our encodings will not implement
unsafe rules (automatically, due to the strong confluence of interaction nets).

A system of interaction nets is specified by a set Σ of symbols with fixed
arities, and a set R of interaction rules. An occurrence of a symbol α ∈ Σ
is called an agent. If the arity of α is n, then the agent has n + 1 ports : a
principal port depicted by an arrow, and n auxiliary ports. Intuitively, a net N
is a graph (not necessarily connected) with agents at the vertices and each edge
connecting at most 2 ports. The ports that are not connected to another agent
are free. There are two special instances of a net: a wiring (no agents) and the
empty net; the extremes of wirings are also called free ports. The interface of
a net is its set of free ports. An interaction rule ((α, β) =⇒ N) ∈ R replaces
a pair of agents (α, β) ∈ Σ × Σ connected together on their principal ports
(an active pair or redex) by a net N with the same interface. Reduction is
local, and there can be at most one rule for each pair of agents. We use the
notation =⇒ for the one-step reduction relation and =⇒∗ for its transitive
and reflexive closure. If a net does not contain any active pairs then it is in
normal form. One-step reduction satisfies the diamond property.

In [14] a notion of graph transformation system is defined, using nested (or
hierarchical) graphs called bigraphs. Bigraphs represent two kinds of structure:
locality (nodes may occur inside other nodes) and connectivity (nodes have
ports that may be connected by links). We recall the basic terminology of
bigraphs and refer the reader to [14] for details and examples.

Nodes are labelled by controls with fixed arities; the arity of a control
corresponds to the number of ports of the node. Links are attached to nodes
from the inside or the outside, so bigraphs have both an inner and an outer
interface. A control is atomic if it cannot contain a nested graph, otherwise
it is non-atomic. The reduction relation is defined by a set of reaction rules,
which are pairs of bigraphs (called redex and reactum). The redex has a width,
corresponding to the number of sites it occupies in the outer bigraph (see [14]).
A non-atomic control K can be specified as active, in which case reactions can
occur inside, or passive, in which case reactions in the internal bigraph can
only occur after the control K has been destroyed.

Interaction nets are a particular kind of bigraphs without nesting: all
controls (called agents in interaction nets) are atomic, and have a distinguished
port. Interaction rules can be seen as reactions in which both redex and

4

21

Fernández, Mackie, Sinot

reactum have width 1, and redexes are restricted to just two controls connected
by one link through the distinguished ports.

3 A Simple Interaction Net Encoding of the ρ-calculus

We can obtain an implementation of the ρ-calculus starting from any off-the-
shelf interaction net encoding of the λ-calculus (that we will not describe)
and adding a matching algorithm as specified in the explicit ρ-calculus (see
Section 2). We first describe an encoding that aims at simplicity; however, we
will see that this encoding is not able to represent a non-strict semantics of
the ρ-calculus, which will motivate the following sections.

We give a translation T (·) of ρ-terms, and the interaction rules that will be
used for solving matching constraints. A ρ-term t with free variables fv(t) =
{x1, . . . , xn} will be translated to a net T (t) with the root edge at the top,
and n free edges corresponding to the free variables, as shown below (left)

T (t)
· · ·

x1 xn ����
f
6

T (u) T (p) T (t)

r rr

If t is a variable then T (t) is just a wire. For each constant f we introduce
an agent as shown above (middle). A term of the form [p � u].t is encoded
as shown above (right) 4 which can be interpreted as the substitution in t of
the (possible) solution of the matching (the left subnet corresponds to the
matching problem p � u). We assume that terms have been precompiled
to abstract only on variables, as described in the previous section; hence we
can reuse the abstraction of the λ-calculus: We introduce an agent _ with
its principal port oriented upwards. Similarly for application and interaction
between abstraction and application (β/ρ-reduction): we introduce an agent
@ with its principal port oriented towards the left subterm, so that interaction
with an abstraction is possible.

In this simple encoding, the matching algorithm is initiated by connecting
the root of a pattern with the term to match. Thus, the rule (σv) (matching
against a variable) is realised for free, as in the λ-calculus. To simulate (σa)
and (⊥), constants will interact. When two identical constants interact, they
cancel each other to give the empty net, as indicated in Figure 1 (left). If the
agents are not the same, then we introduce an agent fail, which represents a
failure in the matching algorithm, as indicated in Figure 1 (right). Note that
the right-hand side of the second rule in Figure 1 is a deadlocked net (because
the matching is disconnected). Interaction is not possible between the agent
fail and the rest of the term; consequently, we interpret a net containing an
agent fail anywhere as an overall failure. Unfortunately, this implements the

4 A dashed edge represents a bunch of edges (a bus).

5

22

Fernández, Mackie, Sinot

����
f ����

f� I =⇒

empty

net

!
����
f ����

g� I =⇒ ����
fail

6

Fig. 1. Matching of constants (success and failure)

����
f

����
@

�
�

�
	 @ =⇒ ����

•
6

����
f

�
�

�
@ ����

•

����
@

�
�

�
	 @ =⇒ ����

•
6

����
•

�
�

�
@

� @ � @

Fig. 2. Rules to transform patterns

����
• ����

•
6 6

=⇒
� @ � @

Fig. 3. Matching applications

rule (strict) as a side effect.

In the ρ-calculus application is used in two very different ways: on one
hand as the application of an abstraction to a term, and on the other hand
as a term constructor in patterns, as shown in Section 2. We have to convert
a usual application (@) into a pattern application (•) when it is part of an
algebraic pattern (or term), using the rules in Figure 2. We also need a rule
to match applications, which is given in Figure 3.

Example 3.1 The term (f _ h) g evaluates to a blocked matching (failure)
[f � g].h. This reduction is represented in interaction nets by:

����
f ����

h

����
_

����
@

����
g

@
@

I

I@
@

�
�

�
	

�
�

�

=⇒∗ ����
h
6 ����

f ����
g� I

In this case there are two disconnected parts in the resulting net, one repre-
senting h and the other one representing the matching failure.

Properties of the encoding

In most applications of interaction nets, nets which become disconnected are
no longer of interest, i.e. they are considered garbage and thus ignored. This is
especially done because, in general, garbage collection requires a full traversal
and even full evaluation, which motivated some work on strategies in inter-
action net [10,20]. However, the previous example shows that disconnected

6

23

Fernández, Mackie, Sinot

nets, even without any free ports, do matter in this interaction net encod-
ing, which implies that we cannot stop reduction at the so-called interface-
normal-forms [10]. On the other hand, this is very good news for a parallel
implementation (which is also a motivation of interaction nets): disconnected
components can easily be dispatched on different processors. Moreover, in
our case, the only interesting information about these matching components
is whether they finally evaluate to the empty net (successful matching) or not
(matching failure, but this is undecidable).

Although good for parallelism, the nasty consequence of this observation
is that we cannot implement a non-strict semantics. For instance, reduction
of (x _ h)((f _ i) g) gives (where the ε agent is used for erasure):

����
f ����

i

����
_

����
@

����
g

@
@

I

I@
@

�
�

�
	

�
�

�

����
_

����
@

@
@

�
�

�
	

����
ε

�
�

� ����
h
6 =⇒∗

����
h
6

����
ε ����

i� I

����
f ����

g� I
=⇒

����
h
6

����
f ����

g� I

We cannot distinguish the result of this computation (for which just h
could be a desirable answer) from the previous failing one. This corresponds
to adding the strict rule (cf. Section 2), treating pattern-matching failures as
exceptions (cf. [6] for a corresponding big-step semantics, although we allow
some terms to be reduced before matching). If we want pattern-matching
failure to be treated as a matching failure in a lazy language rather than as
an exception, then we cannot disconnect matching constraints. We present an
alternative encoding which maintains connectivity in Section 4.

The simulation of the rules (ρ) and (σv) is under the responsibility of the
encoding of the λ-calculus used. Rules corresponding to (ac), (aa), (σc), (σa)
and (⊥) have been given. The (strict) rule is realised by the interpretation of
agent fail, as we explain below. Assuming correctness of the encoding of the
λ-calculus we can show (where → denotes reduction in the explicit ρ-calculus
with the strict rule):

Correctness: If T (t) =⇒∗ T (u) connected, then t →∗ u. If T (t) =⇒∗ T (u)
disconnected but without failure, then there is a v such that T (u) = T (v)
and t→∗ v. If T (t) =⇒∗ N where N is a net with a failure, then t→∗ ⊥.

Completeness: If t is closed and t→∗ u 6= ⊥ in normal form, then T (t) =⇒∗
T (u). If t→∗ ⊥ then T (t) =⇒∗ N containing a fail agent.

The provisos of the correctness properties are justified by situations of the
form (f _ t) Ω → [f � Ω].t where Ω is a non-terminating term, thus the
matching constraint cannot be eliminated, but it is represented by a discon-
nected interaction net (i.e. the readback is not unique). The restriction to

7

24

Fernández, Mackie, Sinot

t closed and u in normal form for completeness are standard [16]. Since we
disconnect the matchings from the rest of the net, we can only interpret a fail
agent remaining at the end of the reduction as failure; hence we are modelling
a strict calculus (i.e. the explicit ρ-calculus plus the (⊥) and (strict) rules).

4 Introducing a Matching Agent

Disconnecting matching constraints increases the parallelism of the implemen-
tation but does not allow us to implement a non-strict semantics. The obvious
solution to this problem is to maintain connectivity by using an explicit agent
for matching. Then we can keep track of the point where a matching failure
may have occurred, thus staying closer to the syntax and behaviour of stan-
dard ρ-calculus. We make the minimum amount of changes to the previous
encoding. The counterpart of the ρ-rule now creates an explicit matching
agent � linked to the rest of the net by an agent [] (the right-hand side of
the rule is thus the new representation of a matching constraint):

����
_

����
@

�
�

�
	 @

@�

=⇒
����
[]

����
�

-

�)

We have introduced two new agents: � will take care of the matching and
[] will simply attach the matching to the right place, exactly mimicking the
structure of terms: [p� u].t. Note that the agent []’s principal port is looking
towards the agent � i.e. it will wait until the matching is done and look at
the result, which will be either success or failure. If the matching cannot be
solved in either way, this agent will stay there forever.

Success will be represented by an agent >, failure by an agent ⊥, both
0-ary, with the expected interactions with agent []. The ideas are settled, now
the development of the matching algorithm is straightforward.

It is clear that each rewrite step in the explicit ρ-calculus corresponds to a
sequence of interaction rules in this encoding, hence properties of simulation
are stronger than with the previous encoding. Here → denotes the explicit
non-strict reduction, and t, u belong to T ∪ {⊥}.

Proposition 4.1 (Correctness and completeness) If T (t) =⇒∗ T (u),
then t→∗ u. If t is closed and t→∗ u in normal form, then T (t) =⇒∗ T (u).

The problem with this encoding is that the agent [] blocks any further
computation between the root and what was the body of the abstraction. For
instance, in the term (a _ b) ((p _ c) t) where a, b, c are constants and
p, t are terms, we will have to complete the matching of t against p (which
may be costly) before noticing that a and c do not match. This was not
the case in the first encoding. The moral interpretation of this result is that

8

25

Fernández, Mackie, Sinot

the drawback identified in the first encoding is not about connectivity but
about locality. Hence we naturally turn our attention towards an extended
framework inspired by bigraphs: bigraphical nets.

5 Using Bigraphical Nets

Bigraphs [14] introduce a notion of locality (using nesting to indicate that
a graph is local to a certain node) which is missing in interaction nets, and
which is a key to solving the problems of the previous encodings: if we can
specify that a pattern (and later a matching constraint) is local to a certain
abstraction, we can keep track of occurrences of failure and implement a non-
strict ρ-calculus without introducing an explicit matching agent. Note that
bigraphs permit links between nested nets and external subgraphs (unlike
hierarchical graphs [7]) and rewriting can take place across control boundaries,
both features which will be of use in our encoding of the ρ-calculus. To encode
the ρ-calculus we will use a subclass of bigraphs that contains interaction nets,
and that we call bigraphical nets.

Definition 5.1 Bigraphical nets are bigraphs in which each control has a
distinguished principal port (the remaining ports are called auxiliary), and
links connect at most 2 ports. Reaction rules define interactions between two
controls connected by their principal ports (and their sites), or interactions of
a control with its local sites, preserving the interfaces.

For examples of a bigraphical net and a reaction rule, see Figure 4. Note
that, in contrast with interaction nets, a left-hand side can specify the loca-
tion in which the reacting controls are, or the locations contained in these
controls, and reactions can take place across boundaries. A full study of bi-
graphical nets as a computational framework is beyond the scope of this paper,
however, we remark that all the examples of bigraphs for the π-calculus and
ambient calculus given in [14] (part I) can be redefined as bigraphical nets
by adding principal ports and copy/erase controls to preserve the interface of
the reactions. Comparing with the properties of interaction nets, we remark
that confluence does not hold in general for bigraphical nets, because of the
possibility of interactions across boundaries. However reduction is still local.
The latter point is crucial for implementation.

Bigraphical nets can be seen as a particular class of higher-order nets [11].
Following the usual terminology of interaction nets, controls in bigraphical
nets are also called agents, and reaction rules are called interaction rules.

We will use the following agents for the encoding:

• _ of arity 2, which is a non-atomic agent representing abstraction;

• @ of arity 2, which is an atomic agent representing application;

• f, g, . . . of arity 0, for constants;

• a non-atomic agent M of arity 1 to represent matching problems;

9

26

Fernández, Mackie, Sinot

• a family of non-atomic agents αM , where α is any of the agents above
except M ;

• ⊥ of arity 0 (atomic), to represent matching failure.

All non-atomic agents permit interactions to take place inside nested nets,
and also across the agent boundary (i.e. they are active). The translation of an
application, a variable, or a constant, are the same as in the first interaction
net encoding. We give the translation of an abstraction p _ u in Figure 4(a),
where we omit the encoding of the box, as before. The reaction implementing
the ρ-rule is given in Figure 4(b). The rules to implement the matching
algorithm are given in Figure 5. The first rule allows agents from the body
of the abstraction (except for copy and erase agents) to interact at the root,
keeping track of the matching constraint. We assume that the non-atomic
agents αM have the same behaviour as α (i.e. same interaction rules), and
permit the same interactions as M between the net inside and the outside
(whence the name αM). We omit the rule for M and ε which should erase M
and its content, sending ε agents along the interface. If α is itself an αM then
the interaction produces again αM with an additional matching constraint.
The next rule eliminates the M agents after the matching constraint has been
solved. The last three rules decompose matching problems with application,
and detect success or failure when constants interact (we assume α 6= f).
Similar rules for αM are omitted (with an empty net it reduces to α).

T (u)

T (p)

6'
&

$
%

r

/

/

_

(a) Abstraction

=⇒

'
&

$
%

6

����
@

���	

r

@ar '
&

$
%

?

a r

/ /

_ M

b b
(b) Rule (ρ)

Fig. 4. Bigraphical encodings of abstraction and rule (ρ)

Simulation of ρ-calculus reductions

The interaction rules above simulate the rules ρ and σ of the explicit ρ-calculus
(the rule σv is obtained for free). This encoding allows us to implement a non-
strict semantics (and also a strict one, see below), similarly to the encoding
that uses an explicit matching agent. Unlike the latter, the matching agent
does not block interactions between the net representing the body of the ab-
straction and the context of the term. We have the following results, which
are similar to those stated in Section 4.

10

27

Fernández, Mackie, Sinot

'
&

$
%

/

/ ?
6����
α

· · ·
α 6= c, ε
� @

M

a

=⇒

'
&

$
%

/
6

/

a

αM

A
A

�
�· · ·

?

'
&

$
%M =⇒

����
f

����
f

6

?

?

'
&

$
%M

/

=⇒

'
&

$
%M

/ ?

����
•

����
•

6

?

?

@ �

'

&

$

%
M =⇒

'
&

$
%

?

M

/

/

/

/

'
&

$
%����

f
6
?

����
α
· · ·

@ �

?

r

/

M =⇒ ����
ε
· · ·

����
ε ����

ε ����
⊥

����
ε ����

ε ����
ε

6 6

?

6 6

6

?/

/

?

����
ε

Fig. 5. Matching using bigraphs

����
@

����
g

6

����
f

����
h

@
@

I
6

r'
&

$
%_

���
	

����
f

����
g'

&
$
%

?

6
?

M

����
h
6

=⇒ =⇒

����
⊥

����
ε

����
h
6
?

6

=⇒ ����
⊥
6

Fig. 6. Evaluation of (f _ h) g with bigraphical nets

Proposition 5.2 (Correctness and completeness) If T (t) =⇒∗ T (u),
then t→∗ u. If t is closed and t→∗ u in normal form, then T (t) =⇒∗ T (u).

Example 5.3 We now reconsider the examples of Section 4 with this encod-
ing. Evaluation of the term (f _ h) g produces a matching failure (both
under the strict and non-strict semantics) as shown in Figure 6. On the other
hand, the term (x _ h)((f _ i) g) reduces to h, since the ε agent erases the
failing matching (therefore implementing the non-strict semantics), as shown
in Figure 7. To implement a strict semantics it is sufficient to take out the
rule between ε and a fail agent, and interpret any net containing ⊥ as failure.

11

28

Fernández, Mackie, Sinot

�
�

�
�'
&

$
%

@
@

���
	

r
r_

_

����
��*

���

@
@

I

����
@

����
@

����
g����

f����
h����

ε

����
i
6

6 6 6

=⇒
�
�

�
�'
&

$
%

���
	rM

_

@
@

I

����
@

����
g����

f����
h����

ε

����
i
6

6
6
? 6

=⇒∗
����
h

����
i

����
ε

����
@

����
g����

f

6

6

?

��
	

I@
@

6
r'

&
$
%

�

_

=⇒∗ ����
h
6 ����

ε ����
ε

? ?

����
⊥ ����

i
6 6

=⇒∗ ����
h
6

Fig. 7. Evaluation of (x _ h)((f _ i) g) with bigraphical nets

6 Conclusion

Although there are several good encodings of the λ-calculus in interaction nets,
the problem of designing a satisfactory encoding of the ρ-calculus is non-trivial,
because the problem of matching introduces more potential parallelism than
in the λ-calculus, which is difficult to handle satisfactorily with interaction
nets because they lack a notion of locality. We finally proposed a framework
which is expressive enough for this.

For the sake of clarity, we omitted some details (like free variables in pat-
terns, and non-linear patterns) in order to isolate the real problem, that is the
problem of matching. We nevertheless assure the reader that the issue would
stay unchanged in a more realistic implementation.

The original motivations for this work were to provide grounds for im-
plementing in a distributed setting the ρ-calculus, which can be seen as a
foundational model for functional languages featuring pattern-matching, or
for rewriting. This actually led us far beyond, and we have also proposed
bigraphical nets as a model of distributed computation with local synchroni-
sations which is suitable for our particular problem (and for a larger class of
problems). This will be the subject of future work.

12

29

Fernández, Mackie, Sinot

References

[1] A. Asperti, C. Giovannetti, and A. Naletto. The Bologna optimal higher-order
machine. Journal of Functional Programming, 6(6):763–810, Nov. 1996.

[2] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure patterns type systems.
In Principles of Programming Languages - POPL2003, New Orleans, USA.
ACM, Jan. 2003.

[3] V. Breazu-Tannen, D. Kesner, and L. Puel. A typed pattern calculus. In
Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science
(LICS’93), Montreal, Canada, 1993.

[4] H. Cirstea, G. Faure, and C. Kirchner. A rho-calculus of explicit constraint
application. In Proceedings of the 5th workshop on rewriting logic and
applications. Electronic Notes in Theoretical Computer Science, 2004.

[5] H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic
Journal of the Interest Group in Pure and Applied Logics, 9(3):427–498, May
2001.

[6] H. Cirstea, C. Kirchner, and L. Liquori. Rewriting calculus with(out) types.
In F. Gadducci and U. Montanari, editors, Proceedings of the fourth workshop
on rewriting logic and applications, Pisa (Italy), Sept. 2002. Electronic Notes
in Theoretical Computer Science.

[7] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation.
In J. Tiuryn, editor, Proc. Conf. on Foundations of Software Science and
Computation Structures (FOSSACS 2000), volume 1784 of Lecture Notes in
Computer Science, pages 98–113, 2000.

[8] M. Fernández and L. Khalil. Interaction nets with McCarthy’s amb: Properties
and applications. Nordic Journal of Computing, 10(2):134–162, 2003.

[9] M. Fernández and I. Mackie. Interaction nets and term rewriting systems.
Theoretical Computer Science, 190(1):3–39, January 1998.

[10] M. Fernández and I. Mackie. A calculus for interaction nets. In G. Nadathur,
editor, Proceedings of the International Conference on Principles and Practice
of Declarative Programming (PPDP’99), volume 1702 of Lecture Notes in
Computer Science, pages 170–187. Springer-Verlag, September 1999.

[11] M. Fernández, I. Mackie, and J. S. Pinto. A higher-order calculus for graph
transformation. In D. Plump, editor, Proc. of the Int. Workshop on Term Graph
Rewriting (TERMGRAPH 2002), ENTCS Vol. 72 (1), Barcelona, 2002.

[12] G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda
reduction. In Proceedings of the 19th ACM Symposium on Principles of
Programming Languages (POPL’92), pages 15–26. ACM Press, Jan. 1992.

[13] C. B. Jay. The pattern calculus. TOPLAS, To appear.

13

30

Fernández, Mackie, Sinot

[14] O. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical
Report 580, Computer Laboratory, University of Cambridge, 2004.

[15] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on
Principles of Programming Languages (POPL’90), pages 95–108. ACM Press,
Jan. 1990.

[16] I. Mackie. Efficient λ-evaluation with interaction nets. In V. van
Oostrom, editor, Proceedings of the 15th International Conference on Rewriting
Techniques and Applications (RTA’04), volume 3091 of Lecture Notes in
Computer Science, pages 155–169. Springer-Verlag, June 2004.

[17] V. Oostrom. Lambda calculus with patterns. Technical Report IR 228, Vrije
Universiteit, Amsterdam, November 1990.

[18] S. L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall International, 1987.

[19] J. S. Pinto. Sequential and concurrent abstract machines for interaction
nets. In J. Tiuryn, editor, Proceedings of Foundations of Software Science
and Computation Structures (FOSSACS), volume 1784 of Lecture Notes in
Computer Science, pages 267–282. Springer-Verlag, 2000.

[20] J. S. Pinto. Weak reduction and garbage collection in interaction nets. In
Proceedings of the 3rd International Workshop on Reduction Strategies in
Rewriting and Programming, Valencia, Spain, 2003.

14

31

EXPRESS 2005 Preliminary Version

Feasible Reactivity for
Synchronous Cooperative Threads

Roberto M. Amadio 1

Université de Paris 7

Frédéric Dabrowski 2

INRIA Sophia-Antipolis

Abstract

We are concerned with programs composed of cooperative threads whose execution
proceeds in synchronous rounds called instants. We develop static analysis methods
to guarantee that each instant terminates in time polynomial in the size of the
parameters of the program at the beginning of the computation.

Key words: Synchronous and cooperative programming, Resource
bounds, Quasi-interpretations, Termination, Polynomial time.

1 Introduction

In [8], Boussinot and De Simone introduced the Synchronous Language (SL).
A program in SL is a set of cooperative threads interacting through shared
signals whose execution proceeds in synchronous rounds called instants. A
fundamental hypothesis of the model is that the reaction to the absence of a
signal within an instant can only happen in the following instant. Reactivity
is the essential property that one should guarantee of an SL program. This
means that at each instant the program fed with an input will ‘react’ producing
an output.

The SL language has gradually evolved into a general purpose program-
ming language for concurrent applications and has been implemented in vari-
ous programming environments such as C, Java, Scheme, and Caml. Typ-
ical applications effectively developed in these languages include event-driven
controllers, data flow architectures, graphical user interfaces, simulations, web
services, and multi-player games (see, e.g., [13,5]).

1 Email: amadio@cmi.univ-mrs.fr
2 Email: frederic.dabrowski@inria.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

32

Amadio and Dabrowski

All the extensions of the SL language mentioned above introduce data types
such as integers, lists, trees. What does it mean to ensure reactivity in this
context? One may consider three increasingly ambitious goals. The first one,
is to ensure that every instant terminates. The second one, is to guarantee
that the computation of an instant terminates within feasible bounds which
depend on the size of the parameters at the beginning of the instant. The third
one, is to guarantee that the parameters of the program stay within certain
bounds, and thus the resources needed for the execution of the program are
controlled for arbitrarily many instants.

In this note we introduce a basic version of the SL model enriched with
data types and develop static analysis methods to guarantee that each instant
terminates in time polynomial in the size of the parameters of the program
at the beginning of the computation. Following previous work by one of the
authors [1], the method is based on a combination of standard termination
techniques for term rewriting systems and an analysis of the size of the com-
puted values based on the notion of quasi-interpretation. With respect to [1],
the main novelties are: (1) A more general and abstract formalisation of the
model. (2) A method to generate inequalities whose satisfaction in suitable
structures entails a polynomial bound on the size of the parameters of the pro-
gram for arbitrarily many instants (theorem 4.2). (3) A new method to ensure
polynomial time termination which can be regarded as a specialisation of size
change termination (theorem 5.1).

2 Model

A program is a multi-set of threads described by a list of mutually recursive
type, function, and behaviour definitions. Threads interact through shared
signals which may carry general values (including signals). The language
should be regarded as an intermediate code where complex control structures
have been compiled into a simple tail-recursive form.

Types and Constructors. We assume a list of types t, t′, . . . and a list of
constructors c, c′, For constructors of particular ‘signal’ types we may use
the notation r, r′, . . . and refer to them as reference values. A value v is a first
order term built out of constructors. The size |v| of a value v is defined by
|c| = 0 and |c(v1, . . . , vn)| = 1 + |v1| + · · · + |vn|.

We will use the notation a to denote a vector a1, . . . , an of elements and
denote with σ, σ′, . . . a substitution [v/x] mapping variables to values. Types
and constructors are declared by a system of equations having one of the
following shapes:

(1) t = · · · | c of t1, . . . , tn | · · · (2) t = Sig(t′) with · · · | r := v | · · ·

In equation (1), we declare a type t and a constructor c with functional
type (t1, . . . , tn) → t. In equation (2), we declare a type of evaluated signals

2

33

Amadio and Dabrowski

including a signal r whose value at the beginning of each instant is v. It is
intended that the value v has type t′ (see below) and for the sake of simplicity
we assume |v| = 0. Signals can be read and written and their values are always
defined.

The system of equations is subject to the usual convention that types and
constructors occurring in it are declared exactly once. This means that we can
assign to every constructor a unique type (t1, . . . , tn) → t where n ≥ 0. With
respect to this assignment, values are typed according to the rule: the value
c(v1, . . . , vn) has type t if c is assigned the type (t1, . . . , tn) → t and the values
vi have type ti for i = 1, . . . , n. Finally, we have a special behaviour type beh:
elements of this type do not return a value but produce side effects. In the
following we will manipulate various syntactic concepts: variables, values, pat-
terns, expressions, expression bodies, substitutions, behaviours, programs,. . .
and we will always assume that they are well typed. The typing rules are
standard and are omitted.

Expressions. Let x, y, . . . denote variables ranging over values. A pattern p
is a well-typed term built out of constructors and variables. In particular, a
linear pattern p is a pattern whose variables are all distinct. In the following
all the patterns are supposed to be linear.

An expression e has the shape h(e1, . . . , en) where n ≥ 0 and h can be either
a variable x, or a constructor c, or a function symbol f . A function symbol f
of type (t1, . . . , tn) → t is specified by an equation f(x) = eb. Here eb is an
expression body defined by the grammar: eb ::= e || match x with · · · p ⇒ eb · · · .
To simplify the presentation, we assume that a (well-typed) value matches
exactly one pattern.

A closed expression body eb evaluates to a value v, written eb ⇓ v, accord-
ing to the following standard rules where σ denotes a matching substitution
and e ⇓ v stands for e1 ⇓ v1, . . . , en ⇓ vn.

(e1)
e ⇓ v

c(e) ⇓ c(v)
(e2)

e ⇓ v, f(x) = eb, [v/x]eb ⇓ v

f(e) ⇓ v

(e3)
σp = v′ σ eb ⇓ v

match v′ with · · · p ⇒ eb · · · ⇓ v

Thread behaviours. In the following we let %, %′, . . . range over both vari-
ables and reference values. We denote with b, b′, . . . behaviours defined as
follows:

b ::= stop || f(e) || yield .b || next .f(e) || % := e.b ||

match x with · · · p ⇒ b · · · || read % with · · · p ⇒ b · · · [x] ⇒ f(e)

where f is a functional symbol of type (t1, . . . , tn) → beh and defined by an
equation f(x) = b. In the examples, we may omit the branches p ⇒ b or the

3

34

Amadio and Dabrowski

branch [x] ⇒ b of the read instruction. Behaviours produce side effects and
their execution is relative to a store whose elements we denote with s, s′,
A store is a finite partial function mapping reference values to values which
is type compatible. We will denote with so the default store with which the
computation is initialised at the beginning of each instant.

Behaviour reduction is described by the eight rules below. A reduction
(b, s) ⇓ (b′, s′) means that the behaviour b with store s runs an atomic sequence
of actions till b′, producing a store s′ and returning the control to the scheduler.

(b1)
(stop, s) ⇓ (stop, s)

(b2)
(yield .b, s) ⇓ (b, s)

(b3)
(next .f(e), s) ⇓ (next .f(e), s)

(b4)
σp = v, (σb, s) ⇓ (b′, s′)

(match v with · · · p ⇒ b · · · , s) ⇓ (b′, s′)

(b5)
e ⇓ v (b, s[v/r]) ⇓ (b′, s′)

(r := e.b, s) ⇓ (b′, s′)
(b6)

no pattern matches s(r)

(read r . . . , s) ⇓ (read r . . . , s)

(b7)
s(r) = σp, (σb, s) ⇓ (b′, s′)

(read r with . . . p ⇒ b . . . , s) ⇓ (b′, s′)
(b8)

e ⇓ v, f(x) = b,

([v/x]b, s) ⇓ (b′, s′)

(f(e), s) ⇓ (b′, s′)

The effect of the various instructions is informally described as follows: stop,
terminates the executing thread for ever; yield .b, halts the execution and hands
over the control to the scheduler — the control should return to the thread
later in the same instant and execution resumes with b; f(e) and next .f(e)
switch to another behaviour immediately or at the beginning of the following
instant; r := e.b, evaluates the expression e, assigns its value to r and proceeds
with the evaluation of b; read r with . . . p ⇒ b . . . [x] ⇒ f(e), waits until the
value of r matches one of the patterns p (there could be no delay) and yields
the control otherwise; if at the end of the instant the thread is always stuck
waiting for a matching value then it starts the behaviour f(e) in the following
instant where x is the value of r at the end of the instant; match v with . . . p ⇒ b
filters the value v according to the pattern p; the execution never blocks since
we have assumed there is always a matching pattern. We say that a behaviour
b with the store s is suspended, written (b, s)‡, if (b, s) ⇓ (b, s) by means of a
proof of height 1 (rules (b1), (b3) or (b6)). Thus a suspended behaviour b has
necessarily the shape stop or next .f(. . .) or read · · · .

Programs. We represent abstractly a program P as a non-empty multi-set of
behaviours. The evaluation of a program P with store s is defined as follows:

(p1)
∀ b ∈ P (b, s)‡

(P, s) ⇓ (bP cs, s)
(p2)

∃ b ∈ P (¬(b, s) ‡ (b, s) ⇓ (b′′, s′′)
(P \{b} ∪ {b′′}, s′′) ⇓ (P ′, s′))

(P, s) ⇓ (P ′, s′)

4

35

Amadio and Dabrowski

where the program bP cs representing the result of the execution of the threads
at the end of the instant is defined as follows:

bP cs = {|bbcs | b ∈ P |} bstopcs = stop

bnext .f(e)cs = f(e) bread r . . . [x] ⇒ f(e)cs = [s(r)/x]f(e)

Remark 2.1 [fairness] The execution of a program within an instant consists
of a serialisation of the execution of the behaviours that compose it until all
behaviours are suspended. Rule (p2) allows a completely non-deterministic
scheduling of the behaviours. We say that an execution (within an instant)
is unfair if there is a behaviour which is run (at least) twice and between the
two runs there is a distinct behaviour which is continuously enabled but never
run. Programs including the yield instruction may rely on the hypothesis that
all executions are fair (cf. example 3.2).

3 Constraints generation

We introduce a suitable control flow analysis associating with a program a set
of inequalities over first order terms.

Read once condition. We require that threads perform any given read
instruction at most once in an instant. This can be checked by a simple
control flow analysis rejecting programs that may traverse several times within
an instant the same read instruction. Following this check, we assign to every
read instruction in a program a distinct fresh label, y, and we collect all these
labels in an ordered sequence, y1, . . . , ym. In the following, we will sometimes
use the notation read 〈y〉 % with . . . in the code of a behaviour to make visible
the label of a read instruction. Then with every function symbol f defining a
behaviour we associate a list yf composed of the labels of the read instructions
we may execute within an instant starting from f . The important point is
that the computation of f within an instant can be regarded as a function of
the parameters and the values read within the instant.

Control points. A control point is a triple (f(p), be, i) where, intuitively,
f is the currently called function, p represents the patterns crossed so far in
the function definition plus possibly the labels of the read instructions that
still have to be executed, be is the continuation, and i is an integer flag in
{0, 1, 2} that will be used to associate with the control point various kinds of
conditions. If the function f returns a value and is defined by the equation
f(x) = eb, then we associate with f the set C(f, x, eb) defined as follows:

C(f, p, eb) = case eb of

e : {(f(p), e, 0)}

match x with . . . p ⇒ eb ′ . . . : · · · ∪ C(f, [p/x]p, eb ′) ∪ · · ·

5

36

Amadio and Dabrowski

On the other hand, suppose the function f defines a behaviour by the equa-
tion f(x) = b. Then we generate a fresh function symbol f+ whose arity is
that of f plus the number of variables in yf (the ordered sequence of labels
corresponding to read instructions that may be performed by f within an in-
stant). When unfolding the definition of C the parameters x and the labels
yf of the function f+ may be replaced by patterns.

When going from one instant to the following, we need to control the size
of the parameters. The basic idea is that if f may call g in the current instant
or in the following then the parameters of f should control the size of the
parameters of g. This idea has to be implemented with some care because
some values may depend on read instructions and some parameters may be
discarded before the following instant begins. Therefore, we identify first
the function symbols that may start a behaviour. They include all function
symbols with which we can start the computation of a thread and all function
symbols that follow a next instruction or a [y] ⇒ . . . branch. We call these
function symbols initial. Next we need some notation. Let 0 be a fresh
constant. If h is a function of arity n and I ⊆ {1, . . . , n} then h(e1, . . . , en)I is
defined as h(e′

1, . . . , e′
n) where e′

i = ei if i ∈ I and e′
i = 0 otherwise. Intuitively,

in h(e1, . . . , en)I we set to 0 all arguments that are not in I. For each function
symbol f defining a behaviour of arity n with a related function symbol f+

of arity n + m we define a set If ⊆ {1, . . . , n} with the condition that If =
{1, . . . , n} if f is initial. In particular this means that we neglect all arguments
that correspond to the read instructions.

With this convention, the set of control points associated with f+ is the
set C(f+, (x, yf), b) defined as follows:

C(f+, p, b) = case b of

(C1) stop : ∅

(C2) g(e) : {(f+(p), g+(e, yg), 0), (f+(p)If
, g+(e, yg)Ig , 2)}

(C3) yield .b′ : C(f+, p, b′)

(C4) next .g(e) : {(f+(p)If
, g+(e, yg)Ig , 2)}

(C5) % := e.b′ : {(f+(p), e, 1)} ∪ C(f+, p, b′)

(C6) match x with . . . p ⇒ b′ . . . : . . . ∪ C(f+, ([p/x]p), b′) ∪ . . .

(C7)

 read 〈y〉 % with . . .

p ⇒ b′ . . . [y] ⇒ g(e)

 :
{(f+(p)If

, g+(e, yg)Ig , 2)}∪

. . . C(f+, [p/y]p, b′) . . .

Note that in the clause (C2), the read once condition guarantees that the
labels yg occur in the patterns p. An instance of a control point (f(p), be, i)
is an expression body or a behaviour be ′ = σ(be), where σ is a substitution
mapping the free variables in be to values. In order to carry on the proofs, it
is convenient to reformulate expression body evaluation and behaviour evalu-
ation on instances of control points. A hint on how to do this is given in the

6

37

Amadio and Dabrowski

proof of theorem 4.2 and a complete treatment is available in [1].

We associate with a control point (f(p), be, i) a constraint f+(p) �i be for
i = 0, 1, 2, and say that the constraint has index i. Intuitively, we rely on the
constraints of index 0 to enforce termination of the instant, on those of index
0, 1 to enforce a bound on the size of the computed values within an instant,
and on those of index 0, 1, 2 to guarantee a bound on the size of the computed
values for arbitrarily many instants. Note that the constraints are on pure
first order terms, a property that allows us to reuse techniques developed in
the standard term rewriting framework.

Example 3.1 As a running example, we consider the case of a server f(s, x)
that at every instant, yields the control, reads a list of requests on the signal
s, and serves the requests:

f(s, x) = yield .read s with l ⇒ f ′(s, x, l)
f ′(s, x, l) = match l with nil ⇒ next .f(s, x) |

cons(req(r, y), l′) ⇒ r := h1(y, x).f ′(s, h2(y, x), l′)

The server maintains a state x. A request contains a data y and a return
signal r. We leave the functions h1 and h2 unspecified; the first is used to reply
to the request and the second to compute the following state of the server. A
client g(s, r, y) that wishes to use the server could be defined as follows:

g(s, r, y) = read s with l ⇒ s := cons(req(r, y), l).
yield .read r with z . . .

Notice that the operation of inserting a message in a list requires a read
operation and therefore the read once condition forbids to iterate this kind
of operation within an instant. However, arbitrarily many behaviours may
perform the operation within an instant. We compute the constraints of index
0, 1, 2 assuming that f is initial, f ′ is not initial, and If = {1, 2} = If ′ .

f ′+(s, x, cons(req(r, y), l′)) �0 f ′+(s, h2(y, x), l) f+(s, x, l) �0 f ′+(s, x, l)
f ′+(s, x, cons(req(r, y), l′)) �1 h1(y, x) f+(s, x, 0) �2 f ′+(s, x, 0)
f ′+(s, x, 0) �2 f+(s, x, 0) f ′+(s, x, 0) �2 f ′+(s, h2(y, x), 0)

Example 3.2 [registers] In our framework, registers can be regarded as sig-
nals that preserve their values from one instant to the following. We can
simulate a register r with a signal (with the same name) and a thread whose
behaviour f(r) is described by:

f(x) = read x with [y] ⇒ g(x, y), g(x, y) = x := y.f(x)

The behaviour f(r) waits the end of the instant to read the value y of r and
in the following instant it writes y again in r. Since in the simulation r is a
signal, at the beginning of the instant its value is reset. Then we have to make
sure that the behaviour f(r) runs before any other behaviour tries to read r.

7

38

Amadio and Dabrowski

For this purpose, we rely on the fairness hypothesis (cf. remark 2.1), and
transform all other behaviour definitions so that they start with a yield. We
can extract from this simulation conditions to control the size of the values in
the registers. In particular, we note that the constraint f+(x, 0) �2 g+(x, y)
can only be satisfied if the value y contained in the register has bounded
size. This is an important restriction we have to impose on the programming
language.

4 Size bounds

In order to bound the size of the values computed by a program we rely
on the notion of quasi-interpretation (see [6,2,3,7]). In a nutshell, a quasi-
interpretation qf of a function symbol f is a numerical function ensuring that
there is a constant k such that the size of the largest value computed by f
when called with arguments v1, . . . , vn is bounded by qf (k|v1|, . . . , k|vn|).

The synthesis of quasi-interpretations can be mechanised to some extent.
The existence of a quasi-interpretation does not entail termination but it does
allow to control the complexity of the computed function following a well-
known result of S. Cook [9] who showed that a polynomially bounded auxiliary
push down automaton can be simulated by a Turing Machine in exponen-
tial time using a ‘table’ to store intermediate results. We refer to [3] for an
extended discussion of these issues.

Assignments and quasi-interpretations. Suppose given a program. An
assignment q associates with each constructor and function symbol h, a func-
tion qh over the natural numbers N such that:

(1) If c is a constructor with arity n then qc = 0 if n = 0 and qc(x1, . . . , xn) =
d + Σi∈1..nxi if n > 0 where d ∈ N and d ≥ 1 (this guarantees that the
quasi-interpretation of a value is proportional to its size). In particular, the
quasi-interpretation of the special constant 0 introduced in the constraints is
the natural number 0.

(2) If f is a function symbol with arity n then qf : (N)n → N is a monotonic
function over the natural numbers.

We say that a function U : N → N bounds the assignment q if ∀ x ∈
N qh(x, . . . , x) ≤ U(x). In particular, we say that q is polynomially bounded
if the function U can be a polynomial. We associate with an expression e
without variables a natural number qe as follows:

qh(e1,...,en) = qh(qe1 , . . . , qen) . (1)

We write q |= e1 � e2 if the assignment q satisfies a constraint e1 � e2 where
e1, e2 are expressions (possibly with variables). This is defined as:

q |= e1 � e2 if ∀ σ qσe1 ≥ qσe2 (2)

8

39

Amadio and Dabrowski

where σ is a substitution associating values with variables. We also write:
q |= e1 � e2 if ∀ σ qσe1 > qσe2 .

An assignment q is a quasi-interpretation if it satisfies the constraints of in-
dex 0, 1, 2 generated by the program and moreover if it satisfies f(x1, . . . , xn) �
xi for all i = 1, . . . , n and all function symbols f . This last condition allows
to control the size of the values computed by a function and not just the size
of its result. Thus if f(v1, . . . , vn) ⇓ v then we know that qf(v1,...,vn) ≥ qv and
moreover that for any value u computed by the function qf(v1,...,vn) ≥ qu.

Example 4.1 We define a quasi-interpretation for the running example 3.1.
We suppose the functions h1 and h2 operate over values of bounded size. Then
we can just take qh1 = qh2 = λ(x, y).k for some suitable constant k ∈ N. We
can also set qcons(x, l) = x + l + 1 and qreq(r, y) = r + y + 1. Then we can
satisfy all the constraints by assuming qf+(s, x, l) = qf ′+(s, x, l) = max (l, k).

Theorem 4.2 If a program P has a polynomially bounded quasi-interpretation
q then the size of the largest value computed by P is polynomial in the size of
the parameters of the program at the beginning of the computation.

In order to prove theorem 4.2, we define a small step reduction of be-
haviours on instances of control points. The reduction makes abstraction of
the memory and the scheduler while depending on an assignment δ associating
values with the labels of the read instructions. The assignment δ is a kind of
oracle that provides the thread with the values it may read within the current
instant. A fresh assignment is generated whenever we move from one instant
to the following one (rules b′

3 and b′
6).

(b′
2) (f+(p), yield .b, σ, δ) → (f+(p), b, σ, δ)

(b′
3) (f+(p), next .g(e), σ, δ) → (f+(p), g(e), σ, δ′)

(b′
4) (f+(p), match x with · · · p ⇒ b · · · , σ, δ) → (f+([p/x]p), b, σ1 ◦ σ, δ) if (1)

(b′
5) (f+(p), % := e.b, σ, δ) → (f+(p), b, σ, δ) if σe ⇓ v

(b′
6) (f+(p), read 〈y〉 % . . . [y] ⇒ g(e), σ, δ) → (f+(p), g(e), [δ(y)/y] ◦ σ, δ′) if (2)

(b′
7) (f+(p), read 〈y〉 % . . . p ⇒ b . . . , σ, δ) → (f+(p), b, σ1 ◦ σ, δ) if (3)

(b′
8) (f+(p), g(e), σ, δ) → (g+(x, yg), b, σ′, δ) if (4)

where: (1) ≡ σ1p = σx, (2) ≡ (no pattern matches δ(y)), (3) ≡ σ1(p) = δ(y), and
(4) ≡ (σe ⇓ v, g(x) = b, σ′ = [v/x]). Relying on the small step semantics we
then prove the following lemma from which theorem 4.2 follows directly.

Lemma 4.3 Suppose q is a polynomially bounded quasi-interpretation for a
program P with m distinct read instructions and n threads. Let i denote a
thread of the program and P (i) the associated behaviour.

(1) Suppose that at the beginning of the computation P (i) = f(v) and that
P (i) = g(e) at the beginning of a following instant. Then qf(v) ≥ qg(e).

9

40

Amadio and Dabrowski

(2) Suppose that at the beginning of an instant P (i) = f(v). Then the size of
the values computed by the thread i during that instant is bounded by qf+(v,u)

where u are the values contained in the signals at the time they are read by
the thread (or their default value, otherwise).

(3) Suppose c is a bound on the quasi-interpretation of the parameters of the
behaviours at the beginning of an instant and that U is a polynomial bound on
the quasi-interpretation. Then the size of the values computed by the program
P during an instant is (polynomially) bounded by Un·m+1(c).

5 Polynomial time reactivity

Marion et al. [11,6,7] have shown how to ensure termination in polyno-
mial space or time by combining the existence of a polynomially bounded
quasi-interpretation with termination by suitable restrictions of the recur-
sive path ordering (see, e.g., [4]). In this section we propose a more flexible
approach where we compare the arguments of the functions using the quasi-
interpretation rather than the restricted recursive path order.

The constraints of index 0 have one of the following shapes: (A) f(p) �0 e
or (B) f+(p) �0 g+(e). We start by building the least pre-order (reflexive
and transitive) ≥F on the function symbols such that f ≥F g if f appears on
the left hand side and g on the right hand side of a constraint of index 0. We
write f =F g if f ≥F g and g ≥F f . We note that a function symbol that
returns a value can never call a function symbol that generates a behaviour,
so we have that the latter is always larger than the former.

As in recursive path orderings, we associate a status with each function
symbol which determines how to compare the arguments of the function. In
our case, we consider either a lexicographic or a multi-set status. We assume
that function symbols that are equivalent with respect to the pre-order ≥F

have the same arity and the same status.

Following [7], we say that a constraint is linear if there is at most one
function symbol on the right hand side which is equivalent to the function
symbol on the left hand side. Henceforth, we assume that all the constraints
of index 0 are linear (note that the constraints of shape (B) are always linear).

Suppose given a polynomially bounded quasi-interpretation q for the pro-
gram. We rely on the quasi-interpretation to compare the arguments of equiv-
alent function symbols. Therefore, we depart from the standard RPO method
and rely on a size change analysis as in [10].

For lexicographic comparison, we write: q |= (p1, . . . , pn) >lex (e1, . . . , en) if
there is an i < n such that for all σ, qσp1 ≥ qσe1 , . . . , qσpi−1

≥ qσei−1
, and qσpi

>
qσei

. For multi-set comparison, we write: q |= (p1, . . . , pn) >mset (e1, . . . , en) if
for all σ, {|qσp1 , . . . , qσpn|} >N

mset {|qσe1 , . . . , qσen|}, where {| . . . |} is our notation
for multi-sets and >N

mset is the multi-set order over the natural numbers. We
say that the quasi-interpretation is compatible with the order if in all con-

10

41

Amadio and Dabrowski

straints of index 0 of the shape:

f(p1, . . . , pn) �0 C[g(e1, . . . , en)]

where C is a one hole context and f =F g with status st ∈ {lex , mset} we
have that q |= (p1, . . . , pn) >st (e1, . . . , en).

Theorem 5.1 Suppose the program has a compatible and polynomially bounded
quasi-interpretation. Then the computation of an instant terminates in time
polynomial in the size of the parameters at the beginning of the instant.

Proof hint. In our language all function definitions are first-order. Then the
state of each thread can be represented by a stack of frames. A frame is a triple
(f, pc, v1 · · · vn) where f is the name of a function, pc points to the instruction
of the function to be executed, and v1 · · · vn is a stack of values. The maximum
number of values that can be on the stack can be statically determined. Thus
the size of a frame is determined by the size of the values that can be found
on the stack and the quasi-interpretation provides a polynomial bound for
that. Our task is to bound the number of frames that a thread can allocate
within an instant. The rank of a function symbol f is the length of the longest
chain of functions such that f >F f1 >F · · · >F fn with respect to the pre-
order on function symbols. We estimate the number ncall(o) of frames that a
function f of rank o can generate when called with arguments of size at most
B using the linearity of the constraints of index 0 and the hypothesis that the
quasi-interpretation is over the natural numbers. 2

Example 5.2 With reference to the running example 3.1, 4.1, we assume
f+ >F f ′+ and a lexicographic status (from right to left) for the function f ′+.

Remark 5.3 The method in [7] is based on a recursive path ordering that
coincides with the homeomorphic embedding �emb on constructors. We ob-
serve that if p �emb p′ and q is an assignment then q |= p � p′. It follows that
the method presented here succeeds whenever the one presented in [7] does
(and therefore all PTIME functions can be represented). The converse fails
since we can never have p �emb e when e contains a function symbol.

6 Conclusion

We have presented a static analysis that guarantees that a program composed
of synchronous cooperative threads reacts every instant in time polynomial
in the size of the parameters at the beginning of the computation. The con-
ditions we have imposed refine and extend those proposed in [1] to control
the resources within an instant. As it could be expected, the possibility of
controlling the resources for arbitrarily many instants comes at a price. First,
the parameters of each thread at the beginning of each instant have to be
essentially non-size increasing. To satisfy this requirement it is often neces-
sary to rely on the fair yield hypothesis and to reprogram the application

11

42

Amadio and Dabrowski

so that an instant is sufficiently large; typically, an instant corresponds to a
protocol transaction or to a logical simulation step. Second, the registers (or
persistent signals) have to carry values of bounded size while unbounded data
structures can still be allocated on signals (which are reset at the beginning
of each instant).

Acknowledgement The authors were partially supported by ACI CRISS.
This work was started while the first author was at the Université de Provence.

References

[1] R. Amadio and S. Dal-Zilio. Resource control for synchronous cooperative
threads. In Proc. CONCUR, SLNCS 3170, 2004. Extended version to appear
in Theoretical Computer Science.

[2] R. Amadio. Max-plus quasi-interpretations. In Proc. of TLCA, Springer LNCS
2701, 2003.

[3] R. Amadio. Synthesis of max-plus quasi-interpretations. In Fundamenta
Informaticae, 65(1-2):29–60, 2005.

[4] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[5] L. Mandel and M. Pouzet. Reactive ML, a reactive extension to ML. In Proc.
ACM PPDL, 2005.

[6] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with
space bound certifications. In Proc. PSI, SLNCS 2244, 2001.

[7] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations. Draft
November 2004. Available from the authors.

[8] F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE Trans.
on Software Engineering, 22(4):256–266, 1996.

[9] S. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM, 18(1):4–18, 1971.

[10] C. Lee, N. Jones, and A. Ben-Amram. The size-change principle for program
termination. In Proc. ACM POPL, 2001.

[11] J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique.
Université de Nancy. Habilitation à diriger des recherches, 2000.

[12] J. Ousterhout. Why threads are a bad idea (for most purposes). Invited talk
at the USENIX Technical Conference, 1996.

[13] Reactive Programming, INRIA Sophia-Antipolis, Mimosa Project. http://
www-sop.inria.fr/mimosa/rp.

12

43

http://www-sop.inria.fr/mimosa/rp
http://www-sop.inria.fr/mimosa/rp

EXPRESS 2005 Preliminary Version

Static Equivalence is Harder than Knowledge

Johannes Borgström 1

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract

There are two main formulations of secrecy of cryptographic protocols. The first
version checks if the adversary can have knowledge of the value of a secret parameter.
In the second version, one checks if the adversary can notice any difference between
two protocol runs with different values of the secret parameter.

In this paper we give a new proof that when considering more complex equational
theories than partially inversible functions, these two kinds of secrecy are not equally
difficult to verify. More precisely, we identify a message language equipped with
a convergent rewrite system such that after a completed protocol run, the first
problem mentioned above is decidable but the second problem (static equivalence) is
not. The proof is by reduction of the ambiguity problem for context-free grammars.

Key words: Security protocol analysis, Term rewriting,
Decidability.

1 Introduction

There are two main ways of specifying secrecy for a cryptographic protocol.

(1) One common approach is to take the set of messages intercepted by the
attacker after some interaction with honest protocol participants, and
check if he can deduce the value of a secret parameter of the protocol.
This disclosure-based approach is intuitive and straightforward to define,
and is taken in, e.g., [15,17,13].

(2) The other approach is to check whether the attacker can notice any differ-
ence between protocol runs with different values of the secret parameter.
This indistinguishability-based approach fits naturally into the standard
process calculus framework [5,8], is a standard notion of secrecy of crypto-
graphic primitives [12], and is thus often used for protocol analysis in the
probabilistic polynomial-time tradition [16]. This approach can also be
used for other properties than secrecy, by comparing an implementation
of the protocol with an executable specification.

1 Email: Johannes.Borgstroem@EPFL.ch, home page: http://lamp.epfl.ch/~jobo/.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

44

Borgström

Independently of the particular security properties to be verified, the for-
mal cryptography tradition [11] is moving towards a more complete treatment
of algebraic properties of cryptographic primitives [4] as well as a more fine-
grained treatment of “compound primitives” such as block encryption algo-
rithms used in electronic code book or cipher block chaining mode, or message
authentication codes [14]. However, algorithms treating such more complex
message algebras are often defined ad-hoc [9] and/or without termination guar-
antees (e.g., naive additions to ProVerif [6]). Recent work [1,3] aims at finding
a sufficiently large class of message algebras, where the relevant properties still
are decidable.

In this paper, we prove that there exist message algebras in which after
a protocol run, disclosure is decidable but indistinguishability is not. The
proof is by reducing the ambiguity problem for context-free grammars to an
indistinguishability problem. Previously, a proof sketch for this separation
result, based on another undecidable problem relating two pairs of Turing
machines, appeared in [1,2]. However, the present paper is, to the knowledge
of the author, the first published instance of a full proof.

2 Formal Cryptography

The basic idea behind formal cryptography is to abstract from the actual
encryption algorithms used, and instead work with some suitable message
algebra. The reason for this is that cryptographic primitives are often in
themselves fairly complex algorithms and the guarantees that they provide are
usually based on probabilities and computation time, which together makes for
a complicated model for the verification. Formal cryptography, on the other
hand, works with algebraic relationships between cryptographic primitives.
Implicit in this approach is that the only operations on messages are the ones
permitted by the algebra. Thus, formal cryptography is the study of protocols
under assumptions of perfect cryptography.

2.1 Message Algebras

Definition 2.1 We assume countably infinite sets of names n ∈ N , variables
x ∈ V and function symbols f ∈ F , and a finite signature Σ : F ⇀ N taking
function symbols to their arity (which may be 0). The set of terms TΣ is then
defined by t, u ::= n | x | f(t1, . . . , tn) where Σ(f) = n. Let |t|u be the number
of occurences of u in t. We let n(t) be the names and v(t) be the variables of
a term t. The concrete terms T cΣ are those that do not contain any variables.

In algebras for cryptography, message equality is typically induced by some
rewrite system. In the case of symmetric cryptography, this may be as simple
as the single rule dec(enc(x, k), k) → x, stating that a message x encrypted
(enc) under the key k can be decrypted (dec) using the same key.

2

45

Borgström

In order to more accurately model the behavior of particular implementa-
tions of cryptographic primitives, one can add to and modify this rule [10]. One
drawback with such refinements is that the rewrite system might no longer be
convergent, so the decidability of equality must be proven for each variation.
Since names are often used to model many different types of cryptographic
data, such as public and private keys, nonces, and primitive messages, we also
permit rewrite rules that apply only to names of a certain type. This gives
the adversary increased distinguishing power.

Definition 2.2 A rewrite rule is of the form “t1 → t2 if φ“, where t1, t2 ∈ TΣ

and φ is a conjunction of membership predicates xi ∈ Si for certain Si ⊆ N .
We require v(t2)∪ v(φ) ⊆ v(t1). An equational theory E is defined by a finite
set of rewrite rules. A term t matches a rewrite rule of the form above if there
is a substitution σ : v(t1) → TΣ such that t = t1σ and φσ is true. If E is an
equational theory defined by a set containing this rewrite rule, t can be head
rewritten to t2σ, which we write t →h

E t2σ. We let →E be the closure of →h
E

under contexts, and ≡E be the transitive, reflexive and symmetric closure of
→E. When E is clear from the context, we often omit it.

As an example, if we assume a set of DES keys KDES ⊂ N , the rewrite rule
“IsDESKey(x)→ true if x ∈ KDES” permits checking if a message x is a name
that can be used as key for the symmetric encryption algorithm DES.

Note that since theories are defined by a finite set of rewrite rules, the set
of names has a finite partitioning into equivalence classes with respect to these
rules, so exhaustive enumerations can work modulo this equivalence without
any impact on decidability properties.

In what follows, we will assume that ≡E is decidable; this is notably the
case if the rewrite system→E is confluent and terminating. For these (conver-
gent) rewrite systems, we write t↓ for the unique term such that t→∗E t↓ 6→E.

2.2 Frames and Operations

The most important dynamic characteristic of a Dolev-Yao adversary is the
set of messages that it has learned by communicating with the legitimate par-
ticipants of the protocol. This message set is the only information needed
to verify if the adversary knows a particular (confidential) datum. For the
indistinguishability-based approach we want to compare results of correspond-
ing operations on the knowledge of two adversaries, so we need some way of
relating corresponding messages. One way of modelling this, used in [8] for
the spi calculus, is to represent the attacker knowledge as a substitution.

As usual, the adversary can apply any combination of cryptographic func-
tions to the messages he possesses. He can also freshly generate names (nonces,
keys, ...), that are different from all other names in the system. In order to
preserve this distinction, we augment the substitution representing attacker
knowledge with a tuple of names that cannot be freshly generated. This aug-
mented knowledge is called a frame, following [1].

3

46

Borgström

Definition 2.3 A frame is a pair (νN)σ, where N ⊂ N is finite and
σ : V ⇀ T cΣ is partial with finite domain. We let bn((νN)σ) := N .

The frame (νN)σ can primitively generate the message (term) t, written
(νN)σ `p t, if there is t′ such that n(t′) ∩N = ∅, v(t′) ⊆ dom(σ) and t′σ = t.
Given an equational theory E, (νN)σ generates t in E, written (νN)σ `E t,
if there is t′ such that (νN)σ `p t′ and t′ ≡E t.

The disclosure-based definition of secrecy corresponds to asking whether, after
a completed run of the protocol, the frame representing the adversary knowl-
edge can generate the value of the secret parameter. For the indistinguishability-
based definition we ask whether one can notice any difference, using only ≡E,
when studying pairs of messages generated simultaneously.

Definition 2.4 Two frames (νN1)σ1 and (νN2)σ2 where dom(σ1) = dom(σ2)
are indistinguishable, written (νN1)σ1 ≈s (νN2)σ2, if for all t, u such that
(n(t)∪n(u))∩ (N1∪N2) = ∅ and (v(t)∪v(u)) ⊆ dom(σ1), we have tσ1 ≡E uσ1

iff tσ2 ≡E uσ2.

In regard to automated verification, since TΣ is enumerable we immediately
get that the message construction problem is semidecidable and the indistin-
guishability problem is co-semidecidable (assuming that ≡E is decidable). An
important question for automated verification is for which message algebras
these problems are decidable. In [1], the authors proved that in message al-
gebras with the encryption rule mentioned above, decidability of ≈s implies
decidability of `. Moreover, they gave an example of a convergent rewrite sys-
tem with ` decidable but ≈s undecidable. In this paper, we exhibit another
rewrite system with the same properties but in a simpler setting (context-free
grammars versus Turing machines), and develop a full proof.

3 Reduction of Ambiguity to Static Equivalence

Our example message algebra, where deduction is decidable but static equiv-
alence is not, is based on leftmost derivations of context-free grammars in
Chomsky normal form. We first recall some definitions for such grammars.

3.1 Context-free grammars

A context-free grammar G = (AG, XG, sG, TG ∪NG) in Chomsky normal form
(CNF) consists of terminal symbols AG, non-terminal symbols XG

(with AG ∩XG = ∅), an initial symbol sG ∈ XG, and two kinds of derivation
rules: terminal and non-terminal rules. Terminal rules (n → t) ∈ TG take
a non-terminal symbol n to a terminal symbol t, whereas non-terminal rules
(n→ n1n2) ∈ NG take a non-terminal symbol to two non-terminal symbols.

A leftmost derivation of w̃ ∈ A∗GX
∗
G is a word r1 · · · rk ∈ (TG ∪ NG)∗

where there exist words ã0, ã1, . . . , ãk ∈ A∗G and x̃0, x̃1, . . . , x̃k ∈ X∗G such
that ã0x̃0 = sG, ãkx̃k = w̃ and for all i = 1, . . . , k we have that either

4

47

Borgström

ri = (n → t) ∈ TG, ãi = ãi−1t and nx̃i = x̃i−1, or ri = (n → n1n2) ∈ NG,
ãi = ãi−1 and x̃i = nỹ and x̃i−1 = n1n2ỹ for some ỹ. It is easy to show that k
above (the length of the derivation) is equal to |w̃|+ |ãn|−1. Such a derivation
is called partial if w̃ 6∈ A∗G. The language of a grammar L(G) is the set of
words over AG that have a leftmost derivation. Additionally, a grammar in
CNF has no useless non-terminals, in the following sense.

∀x ∈ XG. (L(AG, XG, x, TG ∪NG) 6= ∅
∧ ∃w̃1, w̃2, r̃. r̃ is a leftmost derivation of w̃1xw̃2)

A grammar G is ambiguous if there exists a word w̃ ∈ L(G) that has two
different leftmost derivations. A standard result in formal language theory
is that it is undecidable whether a given context-free grammar (in CNF) is
ambiguous. In what follows, we define a rewrite system such that this problem
is equivalent to the indistinguishability problem for a particular frame pair.

3.2 Message algebra

We begin by introducing a message algebra intended to model leftmost deriva-
tion according to the rules of a context-free grammar in Chomsky normal form.
Let Σ be the following signature.

Symbol Arity Intuitive meaning

Nil 0 Nil

id 1 Identifier

(· . ·) 2 Pair

OK 2 Name type check

T 2 Terminal grammar rule

N 3 Non-terminal grammar rule

dc 5 Derivation context

The five arguments of the derivation context (dc) have the following meanings:

1 The symbol with which a derivation started.

2 (Ensures that rewriting does not reduce the size of terms.)

3 A list of terminals forming a prefix of the word that is derived.

4 A list of the non-terminals that remain to be rewritten.

5 A list of the derivation rules that have not yet been applied.

5

48

Borgström

Let E be the equational theory on Σ induced by the following rewrite rules:

dc(Nil, Nil, Nil, Nil, (T(y, t) . u))→
dc(y, (OK(Nil, Nil) . Nil), (t . Nil), Nil, u) (1)

dc(Nil, Nil, Nil, Nil, (N(y, t1, t2) . u))→
dc(y, (OK(Nil, Nil) . Nil), Nil, (t1 . (t2 . Nil)), u) (2)

dc(v, w, x, (y . z), (T(y, t) . u)) → dc(v, (OK(y, y) . w), (t . x), z, u) (3)

dc(v, w, x, (y . z), (N(y, t1, t2) . u))→
dc(v, (OK(y, y) . w), x, (t1 . (t2 . z)), u) (4)

OK(m,n)→ OK(Nil, Nil) when m,n ∈ N (5)

Note that these rules are terminating and confluent when oriented left to right,
so the equality problem is clearly decidable. Intuitively, the rules denote the
following operations related to leftmost derivations:

(1) Initial derivation step, using a terminal rule.

(2) Initial derivation step, using a nonterminal rule.

(3) Subsequent derivation step, using a terminal rule.

(4) Subsequent derivation step, using a nonterminal rule.

(5) Hiding of the non-terminal that is discharged (iff it is a name).

Theorem 3.1 The deduction problem for E is decidable.

Proof. By inspection, the rewrite rules have the property that T → T ′ implies
that |T | ≤ |T ′|, so no term is of greater syntactic size than its normal form.
Thus, all equivalence classes are finite modulo injective renaming. To check
deducibility, we check if any of a finite (modulo injective renaming as above)
number of terms can be primitively generated, which clearly is decidable. 2

3.3 Translation

Given the rewrite system above and a context-free grammar, we look for a pair
of frames that are indistinguishable if and only if the grammar is unambiguous.

Definition 3.2 If G := (AG, XG, sG, TG∪NG) is in CNF where AG∪XG ⊂ N ,
and fx : N×N → x and gx : N×N×N → x are families of injective functions
with range(fx) ∩ range(gx) = ∅ for x = V ,N , then we let

T1(G) := (νAG ∪XG)
({[

T(a,b)/fV (a.b)

] ∣∣ (a→ b) ∈ TG
}

∪
{[

N(a,b,c)/gV (a,b,c)

] ∣∣ (a→ bc) ∈ NG

})
,

T2(G) := (ν n(range(T2(G))))
({[

id(fN (a,b))/fV (a.b)

] ∣∣ (a→ b) ∈ TG
}

∪
{[

id(gN (a,b,c))/gV (a,b,c)

] ∣∣ (a→ bc) ∈ NG

})
6

49

Borgström

At the corresponding point in the proof of [2] (Proposition 5, page 17) the
authors conclude: “Then we can verify that [an undecidable property holds]
if and only if [the two frames are statically equivalent].” However, they say
nothing of how to verify that. To clarify this for ourselves and others, we
devote the remainder of this paper to a proof of this proposition in our setting.

3.4 Derivations

In what follows, we assume a fixed context-free grammar G in CNF where
G := (AG, XG, sG, TG ∪NG). The following lemma shows that partial deriva-
tions of G can be simulated by the rewrite system. In order to state the
lemma, we first need some auxiliary definitions.

Definition 3.3 We define the following shorthand notations for terms.

list Let [ε] := Nil and [w̃v] := (v . [w̃]).

derivation length Let dl(0) := Nil and dl(n+ 1) := (OK(Nil, Nil) . dl(n)).

rule Let rule(k → lm) := N(k, l,m) and rule(n→ a) := T(n, a).

derivation Let derx(ε) := x and derx(r1r̃
′) := (rule(r1) . derx(r̃′)).

We can then state the lemma.

Lemma 3.4 Let tailk(w̃) := wk+1 . . . w|w|. Then sG →k
G ãñ using the partial

leftmost derivation r̃ := r1r2 . . . rk, where ã ∈ A∗G and ñ ∈ X∗G, iff for any x,

dc(Nil, Nil, Nil, Nil, derx(r̃))→2k−1

dc(sG, dl(k), [ã], [ñ], derx(tailk(r̃))).

Proof. By induction on k. 2

Example 3.5 As an example, let us consider a context-free grammar for
a parenthesis language. Let G := ({l, r, a}, {S, S′, L, R}, S, TG ∪ NG) where
TG := {S → a, L → l, R → r} and NG := {S → SS, S → LS′, S′ → SR}. It is
straightforward to verify that G is in CNF.

Numbering the rules from 1 to 6 according to the order of appearance
above, a leftmost derivation of the word lara is given by r̃ := 4, 5, 2, 6, 1, 3, 1
(i.e., S→ SS→ LS′S→ lS′S→ lSRS→ laRS→ larS→ lara). Moreover,

dc(Nil, Nil, Nil, Nil, derNil(r̃))

= dc(Nil, Nil, Nil, Nil, (N(S, S, S) . derNil(tail1(r̃))))

→ dc(S, dl(1), Nil, (S . (S . Nil)), (N(S, L, S′) . derNil(tail2(r̃))))

→ dc(S, (OK(S, S) . dl(1)), Nil, (L . (S′ . (S . Nil))), derNil(tail2(r̃)))

→ dc(S, dl(2), Nil, (L . (S′ . (S . Nil))), (T(L, l) . derNil(tail3(r̃))))

→ dc(S, (OK(L, L) . dl(2)), (l . Nil), (S′ . (S . Nil)), derNil(tail3(r̃)))

→ · · · → dc(S, dl(7), (a . (r . (a . (l . Nil)))), Nil, Nil).

7

50

Borgström

This lemma can be generalized to show that T1(G) `E accurately models
leftmost derivations of the grammar G.

Proposition 3.6 If w ∈ A∗G then w ∈ L(G) iff
T1(G) `E dc(sG, dl(1 + 2|w|), [w], Nil, Nil).

Proof.

⇒ Assume that w ∈ L(G). Then there exists a leftmost derivation sG →∗ w
described by the tuple r̃ := r1r2 . . . r2|w|−1. By Lemma 3.4 we have

dc(Nil, Nil, Nil, Nil, derNil(r̃))→4|w|−3

dc(sG, dl(1 + 2|w|), [w], Nil, Nil).

Clearly T1(G) `p dc(Nil, Nil, Nil, Nil, derNil(r̃)).

⇐ Assume that T1(G) `E U := dc(sG, dl(1 + 2|w|), [w], Nil, Nil). Then
there exists U ′ ≡E U such that T1(G) `p U ′. Note that no rule creates a
dc function symbol at the top level if there was not already one. Thus,
since the frame does not contain any dc symbols, at the top level of U ′

there must be a dc function application.
By inspection of the grammar rules, and since all letters of w are re-

stricted in the frame, no subterm of [w] except for Nil is deducible. Thus,
by inspection of the rewrite rules, the subterm [w] of U must have been
generated by repeated application of rule (1) or (3).

Note that all terms in the frame T1(G) are in normal form. Since
no rewrite rule introduces a T function symbol, and all terminal and
nonterminal symbols of the grammar are restricted in the frame, T(x, t)
terms where t ∈ AG can only be deduced using a single application of the
frame lookup rule, and thus x ∈ XG.

Thus, whenever the third argument to the top-level dc function symbol
grows (rules (1) and (3)), it is by using a terminal rule of G. Since the
fourth argument only shrinks by application of rule (3), we can conclude
that it always is a list of non-terminal symbols of the grammar.

By a similar argument, whenever the fourth argument to the top-level
dc function symbol grows (rules (2) and (4)), it is by using a non-terminal
rule of G. From this follows that there must exist r̃ such that the last
argument of the top-level dc function symbol of U ′ is equal to derNil(r̃).

By the restriction on the frame, the subterm sG of U is not deducible.
By inspection of the rules, it must have been generated using rule (1) or
(2). Thus, U ′ = dc(Nil, Nil, Nil, Nil, derNil(r̃)), so by Lemma 3.4
sG →∗ w.

2

Our main technical lemma is a full characterization of the set of terms that can
be derived by T1(G), in the case where G is unambiguous. In this case, when
starting from a primitively generated term that was in normal form before

8

51

Borgström

applying the substitution, rewrite rules can only be applied as intended, i.e.,
extending partial derivations of the grammar G. To show this, we need to
find a deterministic rewrite strategy and prove it to be injective for this class
of initial terms (L0 below).

Lemma 3.7 Let G be fixed as above, and assume that G is unambiguous. Let
L′0 be the set of (possibly open) terms in normal form that do not contain any
name in AG ∪XG. Let D0(x) := {dc(Nil, Nil, Nil, Nil, x)} and for k > 0

Dk(x) := {dc(n, dl(k), [ã], [ñ], x) | ã ∈ A∗G ∧ ñ ∈ X∗G ∧
n→k

G ãñ using a leftmost partial derivation}

Let the sets L′k for k > 0 be the smallest sets satisfying this inference rule.

(der)
U ∈ L′k

U
[
W/x

]
∈ L′k+l·|U |x

if

V ∈ L′0
W ∈ Dl(V)

k ≥ 0, l > 0

Let Lk := {UT1(G) | U ∈ L′k ∧ v(U) ⊆ dom(T1(G))} and L := ∪k∈NLk.
We then have:

(i) If T1(G) ` U with U in normal form, then U ∈ L.

(ii) If U,U ′ ∈ L0 and U ≡E U ′, then U = U ′.

Proof. Assume a well-ordering on contexts compatible with the partial well-
ordering induced by the depth of the hole, and let be rewriting where the
redex with the greatest context is always chosen. Note that this strategy is
deterministic and complete.

To compare terms in different stages of -rewriting, we let∼=C for a context
C relate terms (or contexts) that coincide down to (exclusive) the depth of
the “hole” in C and on the contents (or position) of the “hole”.

Note that the Lk are disjoint for different k.

Since equivalence is based on a convergent rewrite system and preserved
by arbitrary substitution of terms for variables, we have that T1(G) ` U ′ iff
there is U ∈ L0 such that U ′ ≡E U .

Let P (i) be the following predicate:

(I) If U0 ∈ L0 and U0 ∗ Ui ∈ Li where Ui then one of (a) to (d) holds.
(a) Ui (1) Ui+1 ∈ Li+1 by some D0((T(y, t) . u)) 3 U →h

(1)∈ D1(u)

where T(y, t) ∈ range(T1(G)); or
(b) Ui (2) Ui+1 ∈ Li+1 by some D0(N(y, t1, t2)) 3 U →h

(2)∈ D1(u) where

N(y, t1, t2) ∈ range(T1(G)); or
(c) Ui (3) Ui.5 (5) Ui+1 ∈ Li+1 by some Dj((T(y, t) . u)) 3 U →h

(3)→∈
Dj+1(u) where T(y, t) ∈ range(T1(G)); or

(d) Ui (4) Ui.5 (5) Ui+1 ∈ Li+1 by some Dj((N(y, t1, t2) . u)) 3
9

52

Borgström

U →h
(4)→∈ Dj+1(u) where N(y, t1, t2) ∈ range(T1(G)).

(II) Moreover, for each U ′0 ∈ L0 such that U ′0 ∗ U ′i ∈ Li and Ui ∗ U ′i+1 ∈
Li+1 as above, we have that U ′i+1 = Ui+1 implies U ′0 = U0.

The proof that ∀i ∈ N. P (i) is omitted from this version of the paper due to
space constraints. Given this, the statement of the lemma follows quickly.

(i) Assume that T1(G) ` U with U in normal form. Since equality is based
on a convergent rewrite system and preserved by arbitrary substitution
of terms for variables, we have that T1(G) ` U iff there is U ′ ∈ L0 such
that U ≡E U ′. By ∀i ∈ N. P (i), U ′↓ ∈ L, so U ∈ L by confluence.

(ii) Assume that U1, U2 ∈ L0 and U1 ≡E U2. By definition there is V such
that V 6→, and U1 ∗ V and U2 ∗ V . By ∀i ∈ N. P (i) there is k such
that V ∈ Lk, and U1 ∗ V as by P . Since the Lk are disjoint for different
k, we also have U2 ∗ V as by P . P (k − 1) then yields U1 = U2.

2

Note that the statement of this lemma does not hold if G is ambiguous since
in that case, two different elements in L0 can rewrite to the same term. For
this reason, a similar characterization is hard to find in the general case. As
an aside, in the setting of [2] we also have that two different terms (in the
counterpart to our L0) can rewrite to the same term, making it more difficult
to fully characterize the set of terms that can be generated.

3.5 Reduction

We now know in sufficient detail how the grammar G relates to T1(G), and
can proceed to the main result of this paper:

Theorem 3.8 A grammar G in CNF is unambiguous iff T1(G) ≈sE T2(G).

Proof. As above, we write G := (AG, XG, sG, TG ∪NG).

⇐ We prove the contrapositive of the implication from right to left. As-
sume that G is ambiguous. Then there exists w ∈ A∗G with two differ-
ent leftmost derivations r̃1 and r̃2. Let varOf(k → lm) := gV(k, l,m),
varOf(n → a) := fV(n, a) and ti := dc(Nil, Nil, Nil, Nil, [varOf(r̃i)])
for i = 1, 2. By Lemma 3.4, we have that

t1T1(G)→∗ dc(sG, dl(1 + 2|w|), [w], Nil, Nil) and

t2T1(G)→∗ dc(sG, dl(1 + 2|w|), [w], Nil, Nil),

so t1T1(G) = t2T1(G). By inspection, t1T2(G) 6→ and t2T2(G) 6→, so
t1T2(G) 6= t2T2(G). Thus T1(G) and T2(G) are not statically equivalent.

⇒ Assume that G is unambiguous. Let M and N be terms in normal form
such that (n(M) ∪ n(N)) ∩ (bn(T1(G)) ∪ bn(T2(G))) = ∅ and
(v(M) ∪ v(N)) ⊆ dom(T2(G)). Let M1 := MT1(G), M2 := MT2(G),
N1 := NT1(G), and N2 := NT2(G).

10

53

Borgström

• Since T2(G) is injective, range(T2(G)) is in normal form,
N ∩ range(T2(G)) = ∅, n(T2(G)) \ bn(T2(G)) = ∅, and range(T2(G))
does not contain any function symbols that appear in rewrite rules, we
have that M2 and N2 are in normal form. Then, by the injectivity of
T2(G), M2 ≡E N2 implies that M = N , so M1 ≡E N1.

• Assume instead that M2 6≡E N2. Then M 6= N , so by the injectivity of
T1(G), we do not have M1 = N1. By Lemma 3.7, M1 6≡E N1.

2

Corollary 3.9 Since the ambiguity problem for context-free grammars is un-
decidable, ≈s is undecidable for ≡E.

4 Conclusions

In conclusion, we have showed that there exists a message language where the
construction problem is decidable but the indistinguishability problem is not.
Since `E can be reduced to ≈s in the presence of encryption [1], this means
that there is a price to pay for the more sophisticated indistinguishability-
based definition of secrecy: Static equivalence is harder than knowledge!

Since the adversary can apply any combination of cryptographic operations
in the course of a man-in-the-middle attack, the state-space of cryptographic
protocols is infinitely branching on protocol input. Bounding the number of
operations reduces the branching factor to finite but often intractable levels.
The standard solution to this problem is to switch to symbolic semantics,
where each input only gives raise to one (constrained) variable. Finding suit-
able classes of rewrite systems that yield decidable static equivalence and
knowledge problems in this setting is an interesting possible topic for further
work; the STA tool [7] already implements a decision procedure for adversary
knowledge under any image-finite message algebra.

Acknowledgments

Many thanks to Mart́ın Abadi, who introduced me to this subject and encour-
aged me to complete a detailed proof of this result. Thanks also to Véronique
Cortier, who commented on an early draft of this paper, and Uwe Nestmann,
who pinpointed some problematic parts.

References

[1] Abadi, M. and V. Cortier, Deciding knowledge in security protocols under
equational theories, in: Proceedings of ICALP ’04, Lecture Notes in Computer
Science 3142 (2004).

[2] Abadi, M. and V. Cortier, Deciding knowledge in security protocols under
equational theories, Technical Report RR-5169, INRIA (2004).

11

54

Borgström

[3] Abadi, M. and V. Cortier, Deciding knowledge in security protocols under (many
more) equational theories, in: Proceedings of CSFW’05 (2005).

[4] Abadi, M. and C. Fournet, Mobile values, new names, and secure
communication, in: Proceedings of POPL ’01, ACM, 2001, pp. 104–115.

[5] Abadi, M. and A. D. Gordon, A calculus for cryptographic protocols: The Spi
calculus, Information and Computation 148 (1999), pp. 1–70.

[6] Blanchet, B., An efficient cryptographic protocol verifier based on Prolog rules,
in: Proceedings of CSFW’01 (2001).

[7] Boreale, M. and M. G. Buscemi, A method for symbolic analysis of security
protocols, Theoretical Computer Science 338 (2005), pp. 393–425.

[8] Boreale, M., R. De Nicola and R. Pugliese, Proof techniques for cryptographic
processes, SIAM Journal on Computing 31 (2002), pp. 947–986.

[9] Chevalier, Y., R. Küsters, M. Rusinowitch and M. Turuani, Deciding the
security of protocols with Diffie-Hellman exponentiation and products in
exponents, in: Proceedings of FSTTCS ’03, Lecture Notes in Computer Science
2914 (2003).

[10] Cortier, V., S. Delaune and P. Lafourcade, A survey of algebraic properties used
in cryptographic protocols, Journal of Computer Security (2005), to appear.

[11] Dolev, D. and A. C. Yao, On the security of public key protocols, IEEE
Transactions on Information Theory 29 (1983), pp. 198–208.

[12] Goldwasser, S. and S. Micali, Probabilistic encryption, JCSS 28 (1984), pp. 270–
299.

[13] Kemmerer, R., C. Meadows and J. Millen, Three systems for cryptographic
protocol analysis, Journal of Cryptology 7 (1994), pp. 79–130.

[14] Kremer, S. and M. D. Ryan, Analysing the vulnerability of protocols to
produce known-pair and chosen-text attacks, ENTCS 128 (2004), pp. 87–104,
proceedings of SecCo ’04.

[15] Lowe, G., Breaking and fixing the Needham-Schroeder public-key protocol using
FDR, in: Proceedings of TACAS ’96, Lecture Notes in Computer Science 1055
(1996), pp. 147–166.

[16] Mitchell, J. C., Probabilistic polynomial-time process calculus and security
protocol analysis, in: D. Sands, editor, Proceedings of ESOP 2001, Lecture Notes
in Computer Science 2028 (2001), pp. 23–29.

[17] Schneider, S., Security properties and CSP, in: SP ’96: Proceedings of the 1996
IEEE Symposium on Security and Privacy (1996), p. 174.

12

55

EXPRESS 2005 Preliminary Version

Processes as Games

Thomas A. Henzinger 1

School of Computer and Communication Sciences
EPFL

Lausanne, Switzerland

We view processes as games between an input player and an output player.
This view has important rami�cations on the design of a process algebra.
First, it naturally supports a de�nition of process composition that preserves
deadlock-freedom. Second, it leads to a de�nition of process re�nement that
is based on alternating simulation.

More precisely, a process is well-formed if the input player has a strategy
to avoid deadlocks. A well-formed process encodes a design-time assumption
about the inputs that the environment will provide to the process, namely,
the assumption that the process will be deployed only in contexts that avoid
deadlocks (well-formedness guarantees that at least one such context exists).
Two processes, then, are compatible if their product is well-formed; that is, if
they can be put together in an environment that ensures that they satisfy each
other’s input assumptions. Furthermore, the composition of two compatible
processes must represent the weakest assumptions that are necessary about
such an environment.

In alternating simulation, inputs of the speci�cation process must be match-
able by the implementation process, and outputs of the implementation must
be matchable by the speci�cation. Using such an alternating notion of re-
�nement, we obtain the substitutivity of implementations: if two processes A
and B are compatible, and A is implemented by A’, then A’ and B are still
compatible, and their composition implements the composition of A and B.
This property allows the re�nement of a process independent of its context.

This talk is based on joint work with Luca de Alfaro.

1 Email: tah@epfl.ch
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

56

EXPRESS 2005 Preliminary Version

A short visit to the STS hierarchy 3

Nathalie Bertrand 1 and Philippe Schnoebelen 2

Lab. Spécification & Vérification, CNRS & ENS de Cachan,
61, av. Pdt. Wilson, 94235 Cachan Cedex France

Abstract

The hierarchy of Symbolic Transition Systems, introduced by Henzinger, Majum-
dar and Raskin, is an elegant classification tool for some families of infinite-state
operational models that support some variants of a symbolic “backward closure”
verification algorithm. It was first used and illustrated with families of hybrid sys-
tems.

In this paper we investigate whether the STS hierarchy can account for classical
families of infinite-state systems outside of timed or hybrid systems.

Key words: Symbolic transition systems, well-structured
transition systems, STS hierarchy.

1 Introduction

Verification of infinite-state systems is a very active field of research where one
studies how the algorithmic techniques that underly the successful technology
of model checking for finite-state systems can be extended to more expressive
computational models [BCMS01]. Many different models have been studied,
ranging from infinite-data models (like channel systems) to infinite-control
models (like process algebras), including timed automata and hybrid systems.
General undecidability results are worked around by discovering special re-
stricted subclasses where decidability can be recovered for specific verification
problems, and our understanding of the compromises between expressivity
and tractability improves regularly.

There have been some attempts at bringing some order inside the existing
plethora of scattered results. One way to do this is to discover conditions
that (1) support some generic verification algorithms, and (2) can account

1 Email: bertrand@lsv.ens-cachan.fr
2 Email: phs@lsv.ens-cachan.fr
3 This research was supported by Persée, a project funded by the ACI Sécurité Informa-
tique of the French Ministry for Scientific Research.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

57

Bertrand and Schnoebelen

for a rich enough variety of models. The well-structured transition systems
(WSTS) of [AČJT00,FS01] are one such attempt, where the key notion is
the existence of a well-quasi-order between configurations that is compatible
with transitions. The WSTS idea applies widely, and instances exist in many
classes of models [FS01].

The symbolic transition systems (STS) of [HMR05] are another attempt.
Actually [HMR05] defines a hierarchy of five different levels: STS1 to STS5.
All levels are defined in the same way: a system is STSk iff its set of con-
figurations yields a finite quotient modulo ≈k, an equivalence relation that
relates states with similar “behavior”. The equivalences from ≈1 to ≈5 are
coarser and coarser, and systems in the STSk class are also in STS(k + 1).
Additionally, five variants of a generic symbolic closure algorithm are given,
one for each class, allowing verification of properties ranging from µ-calculus
model checking (for the class STS1) to reachability properties (for the class
STS5).

While the STS idea is illuminating, its weak point is that it is not widely
applicable. In [HMR05], all the given examples of classes STS1 to STS5 are
some restricted families of hybrid systems. And no instance of STS4 systems
is given. As a consequence it is not clear whether the classification has any
impact beyond hybrid and timed systems.

Our contribution. We look at well-known families of models for which veri-
fication results exist, and that are not related to hybrid systems: Petri nets,
pushdown systems, and channel systems. In particular, we consider several
variants of lossy channel systems [AJ96,CFP96]. For these families, a natural
question is whether they give rise to systems sitting inside some level of the
STS hierarchy.

Here we are only considering semantical issues: we ask whether a given
system model with a given set of observable properties gives rise to STSk

transition systems. We are not concerned with algorithmic issues and symbolic
verification, even though the STS hierarchy meets its purpose when systems
can be equipped with a working region algebra [HMR05].

A general outcome of our investigation is that only systems that are well-
structured in the sense of [FS01] can fit in the STS hierarchy, at level STS5 (or,
sometimes, STS4). Indeed, [HMR05] uses the name “well-structured systems”
for its STS5. We argue that the close links between the two notions do not
provide a perfect fit.

2 The STS hierarchy

Henzinger, Majumdar and Raskin introduced symbolic transition systems
(STS) in [HMR05]. These are labeled transition systems equipped with a
region algebra. However, since we do not consider algorithmic issues or sym-
bolic verification in this paper, we will work with a simplified definition.

2

58

Bertrand and Schnoebelen

Definition 2.1 A labeled transition system (LTS) is a tuple S = 〈S,→, P 〉
where S is a (possibly infinite) set of states, → ⊆ S × S is a transition
relation, and P ⊆ 2S is a finite set of observable properties (or observables)
that covers the state space: S =

⋃

p∈P p.

An observation is a set of observables. The observation P (σ) of a state σ is
{p ∈ P | σ ∈ p}.

Classically we write σ → σ′ rather than (σ, σ′) ∈→, and say that σ′ is one
of the successors of σ. σ is a deadlock state if it has no successors. A (finite)
path in S is a sequence of states σ1, · · · , σn such that for all i, σi → σi+1.

The STS hierarchy is based on well-known notions of simulations and traces
(see, e.g., [Gla01]).

We recall the definitions for simulations. Let S = 〈S,→, P 〉 be a LTS. A
binary relation R ⊆ S × S is a simulation on S if σRτ entails:

(i) ∀p ∈ P , σ ∈ p ⇔ τ ∈ p,

(ii) ∀σ → σ′, ∃τ → τ ′ s.t. σ′Rτ ′.

σ and τ are bisimilar –denoted by σ ∼=S
1 τ– if there is a symmetric simulation

R such that σRτ .

They are simulation-equivalent –denoted by σ ∼=S
2 τ– if there are two sim-

ulations R1 and R2 such that σR1τ and τR2σ.

It is well-known that bisimilarity and simulation-equivalence are equiva-
lence relations.

We now recall the definitions for traces. Let S = 〈S,→, P 〉 be a LTS. A
trace from state σ is the observation of a path originating from σ. Formally it
is a sequence P1 · · ·Pn of observations such that there exists a path σ1 · · · σn

with σ1 = σ and Pi = P (σi) for i = 1, . . . , n. Any p in Pn, the last observation
along the trace, is called a target of the trace and we write σ

n−→ p when such
a trace exists.

Two states σ and τ are trace-equivalent –denoted by σ ∼=S
3 τ– if every trace

from σ is a trace from τ , and vice-versa.

They are distance-equivalent, –denoted by σ ∼=S
4 τ– if for every trace from

σ with length n and target p there is a trace from τ of length n and target p,
and vice versa.

They are bounded-reach equivalent –denoted by σ ∼=S
5 τ– if for every trace

from σ with length n and target p there is a trace from τ with length at most
n and target p, and vice versa.

Clearly, trace equivalence, distance equivalence, and bounded-reach equiv-
alence are equivalence relations.

Definition 2.2 (The STS hierarchy) [HMR05].
A labeled transition system S = 〈S,→, P 〉 belongs to the class STSk (for
1 ≤ k ≤ 5) iff the relation ∼=S

k has finite index (i.e., induces a finite number

3

59

Bertrand and Schnoebelen

of equivalence classes in S).

Some immediate properties of STS classes are:

Hierarchy: If S is in STSk, it is in STS(k + 1).

Finite systems: If S = 〈S,→, P 〉 has finite S, then S is in STS1.

Trivial observables: If S = 〈S,→, P 〉 has P = {S}, then S is in STS5. If
no state is S is a deadlock state, then S is even in STS1.

Monotonicity w.r.t. observables: If S = 〈S,→, P 〉 and S ′ = 〈S,→, P ′〉
only differ by P ′ ⊆ P (i.e., S has more observable properties than S ′), and
S is in STSk, then S ′ too is in STSk.

3 Well-structured transition systems and the STS hi-
erarchy

In [HMR05] the class STS5 is said to coincide with well-structured transition
systems, a class of infinite-state transition systems supporting generic verifi-
cation algorithms [Fin87,AČJT00,FS01]. This claim is supported by an alter-
native characterization of STS5 systems, using well-quasi-orderings [HMR05,
Theorem 5A]. However, the link with WSTS is not made more explicit.

In this section we show that WSTS are in STS5 and consider the converse
question: can any STS5 transition system be turned into a WSTS by equipping
it with a “compatible” well-quasi-ordering?

We recall that a well-quasi-ordering (wqo) is a reflexive and transitive
relation ≤ (over some set S) such that for any infinite sequence x0, x1, · · · in
S, there exists indexes i < j with xi ≤ xj. As a consequence, a wqo is well-
founded and only admits finitely many minimal elements. (In the sequel we
often write, as we just did, that a set has finitely many minimal elements when
we really mean “finitely many distinct minimal elements up to the equivalence
induced by the wqo”. This nuance is not required when the wqo is a partial
ordering, i.e., is antisymmetric.)

Definition 3.1 (Well-Structured Transition Systems) [FS01].
A Well-Structured Transition System is a transition system S = 〈S,→,≤〉
equipped with a relation ≤ ⊆ S × S which is a well-quasi-ordering (upward-)
compatible with →, i.e., for all σ1 ≤ τ1 and σ1 → σ2 there exists τ1 → τ2 with
σ2 ≤ τ2.

This notion of compatibility is called strong compatibility in [FS01]. We say
S = 〈S,→,≤〉 has reflexive compatibility if for all σ1 ≤ τ1 and σ1 → σ2, there

exists τ2 ≥ σ2 with either τ2 = τ1 or τ1 → τ2 (which is denoted τ1

0/1−→ τ2 in
the sequel). It is immediate that a given WSTS with strong compatibility has
also reflexive compatibility.

Petri nets with k places equipped with the partial order on N
k are an

example of well-structured transition systems (with strong compatibility), see

4

60

Bertrand and Schnoebelen

section 4.2. Another example is the class of lossy channel systems using the
subword ordering on channel contents, see section 4.3.

Definition 3.1 does not coincide with the definition used in Theorem 5A
of [HMR05]. There, a well-structured system is a LTS that can be equipped
with a wqo ≤ on the states such that for all observable properties p and d ∈ N,
the set of states that can reach p in less than d steps is upward-closed (a set
S ′ ⊆ S is upward-closed if σ ∈ S ′ and σ ≤ τ entail τ ∈ S ′). This is shown to
coincide with STS5 systems.

Let us consider a WSTS S = 〈S,→,≤〉 and ask whether there is a set P

of observables that turn S into an STS5 system. Of course, setting P = {S}
works, but this does not exploit the fact that S is well-structured. It turns out
that any set P of upward-closed observables will work, and this holds even if
S has reflexive compatibility.

Theorem 3.2 Let S = 〈S,→,≤〉 be a WSTS with reflexive compatibility, and
P be a finite set of upward-closed observables that covers S. Then 〈S,→, P 〉,
denoted SP , is in STS5.

Since [HMR05] uses a different definition, our proof of Theorem 3.2 is not
a copy of the proof of [HMR05, Theorem 5A]. Moreover it is also a more
direct proof since we do not deal with algorithmic aspects of predecessors
computation.

Proof. For an observable p ∈ P , we let Orig(p) denote the set of pairs (σ, n) ∈
S × N such that σ can reach p within n steps: Orig(p)

def
= {(σ, n) | σ

n−→ p}.
The canonical product wqo on S × N is defined by

(σ, n) v (τ,m)
def⇔

(

σ ≤ τ and n ≤ m
)

.

Let MinOrig(p) be the set of minimal elements in Orig(p): MinOrig(p) is
finite since v is a wqo. We define ≈⊆ S × S with:

σ ≈ σ′ def⇔ ∀p ∈ P, ∀(τ,m) ∈ MinOrig(p), τ ≤ σ ⇔ τ ≤ σ′ (1)

and claim it is a bounded-reach equivalence of finite index. That ≈ has finite
index comes from the finiteness of MinOrig(p). To see that it is a bounded-
reach equivalence, assume σ ≈ σ′ and σ

n−→ p for some n ∈ N and p ∈ P .
Then (σ, n) ∈ Orig(p) and there is some (τ,m) ∈ MinOrig(p) with τ ≤ σ and
m ≤ n. From (1), we deduce τ ≤ σ′.

Now pick a path τ → τ1 → · · · → τm with τm ∈ p. By induction on m,
and using the reflexive compatibility of S, we show that there exist states

σ′
1 · · · σ′

m such that σ′ 0/1−→ σ′
1

0/1−→ · · · 0/1−→ σ′
m and τi ≤ σ′

i for i = 1, . . . ,m.
(Fig. 1 illustrates the proof.) Since p is upward-closed, τm ∈ p implies σ′

m ∈ p.

Thus we have found a path witnessing σ′ m′

−→ p for some m′ ≤ m ≤ n. Hence
≈ is a bounded-reach equivalence and SP is in STS5. 2

5

61

Bertrand and Schnoebelen

⇒
σ σ′

p

≈

τ

τ1

...

p 3 τm

σ′

σ′
1

...

σ′
m

≤

≤

≤

n

0/1

0/1

0/1

Fig. 1. ≈ is a bounded reach equivalence

Note that, since reflexive compatibility is more general than strong compat-
ibility, Theorem 3.2 shows a more general connection between STS5 systems
and WSTS’s.

A converse problem is to consider a LTS S = 〈S,→, P 〉 in STS5, and try to
find a well-quasi-ordering ≤ on S such that 〈S,→,≤〉 is a WSTS. Since Finkel
and Schnoebelen showed that any (finitely branching) transition system could
be equipped with a well-quasi-ordering ≤ to get a well-structured transition
system [FS01], this can always be done.

However we would appreciate if the wqo that turns S into a WSTS were
“compatible” with P . For example it would be nice if the observables in P

become upward-closed sets w.r.t. the wqo since this is how P is defined in the
proof of Theorem 3.2. We do not know if such a wqo can be defined for all S
in STS5 and must leave this question open for the moment.

Remark 3.3 Given S = 〈S,→, P 〉 in STS5, [HMR05] proves that there exists

a wqo on S such that, for all p ∈ P and d ∈ N, the set {σ | σ
≤d−→ p} is upward-

closed. Hence in particular every p is upward-closed (pick d = 0). However,
the wqo they define is in general not compatible with transitions and hence
does not transform S into a WSTS in the sense of [FS01].

4 Looking at classical infinite-state models

All the examples of STS systems in [HMR05] are hybrid systems: timed au-
tomata, two-dimensional rectangular automata, networks of timed automata,
etc. Here we study classical infinite-state systems such as pushdown automata,
Petri nets and lossy channel systems and consider whether they give rise to
systems in one of the STSk classes.

4.1 Pushdown automata

Pushdown automata are systems with finite control and a pushdown stack.

Formally, a pushdown automaton PD = 〈Q, Γ, ∆〉 is composed of a finite
set of locations Q, a stack alphabet Γ and a finite set of transition rules ∆. The

rules in ∆ are of the form l
pop a−−−→ l′ or l

push a−−−→ l′ for l, l′ locations and a ∈ Γ.
The operational semantics of PD is given as a transition system SPD where

6

62

Bertrand and Schnoebelen

a state (or configuration) has the form σ = 〈l, w〉 with l ∈ Q a location and
w ∈ Γ∗ a stack contents. We omit the obvious definition for the transitions
σ → σ′ (see for example [BEF+00]).

Pushdown automata are a family of infinite-state systems for which verifi-
cation is relatively easy in the sense that the iterated successor relation

∗−→ is
recognizable and can be described by a finite transducer effectively derivable
from PD [Cau92]. Of course there exist questions, e.g., trace equivalence, that
are undecidable for these systems.

One obtains LTS’s from pushdown automata by equipping the transition
systems they induce with some sets of observables.

Assume PD = 〈Q, Γ, ∆〉 is a pushdown automaton. The simplest and most
natural observable properties are based on the locations: for each location

l ∈ Q, let pl
def
= {〈l, w〉 | w ∈ Γ∗} and P

def
= {pl | l ∈ Q}. We write PD

l

for the class of LTS’s obtained from pushdown automata with locations for
observable properties.

Another option is to look at the stack and distinguish the states depending
on the emptiness (or non-emptiness) of the stack. In this case there are two

observable properties: pempty
def
= {〈l, ε〉 | l ∈ Q} and pnempty

def
= S \ pempty.

This gives rise to a class of LTS’s we denote PD
s. Finally, we write PD

l,s for
the class of LTS’s one obtains by considering both types of observables.

Theorem 4.1 The classes PD
l, PD

s and PD
l,s give rise to LTS’s that are not

in STS5 in general.

Proof. We only prove the result for PD
l since similar arguments work for PD

s

(and PD
l,s is dealt with using monotonicity of observables).

Consider PD0, the pushdown automaton depicted in Fig. 2. Here from

l1 l2
pop b

pop a

b

a

a

a

...

Fig. 2. PD0, a simple pushdown automaton

location l1, one must pop all a’s before a move to location l2 is allowed. Hence
two states 〈l1, anb〉 and 〈l1, amb〉 are not bounded-reach equivalent unless n =
m (since from 〈l1, anb〉 one can only reach target l2 in n + 1 steps). Therefore
bounded-reach equivalence does not have finite index, and the STS associated
with PD0 in PD

l is not in STS5. 2

4.2 Petri nets

We do not recall here the definition of Petri nets (see [Esp98]). Let PN be
a Petri net with k places. Its operational semantics is given by a transition

7

63

Bertrand and Schnoebelen

system where the states (or markings) are tuples from N
k. Markings are

partially ordered by the product ordering (N,≤)k, or, formally

〈x1, . . . , xk〉 ≤ 〈y1, . . . , yk〉 def⇔ x1 ≤ y1 ∧ · · · ∧ xk ≤ yk.

That ≤ is a wqo on N
k is known as Dickson’s Lemma [Dic13]. For observables

we consider the set of all upward closures ↑m def
= {m′ | m ≤ m′} where m is

a marking in {0, 1}k. Hence an observation sees whether a place is marked
or not, but does not see how many tokens are in a given place. Note that P

covers S since S = ↑〈0, . . . , 0〉. We denote by PN the class of LTS’s obtained
from Petri nets with the observable properties defined above.

Theorem 4.2 The class PN gives rise to LTS’s that are in STS5 but not in
STS4 in general.

Proof. Petri nets with ≤ are WSTS with strong compatibility (see [FS01] for
example). A direct consequence of Theorem 3.2 is that they are STS5.

To see that they are not in STS4 in general, consider the Petri net with a
single place and a single transition described in Fig. 3. Starting with n tokens,

•••

Fig. 3. A simple Petri net

the longest trace has exactly length n. Hence two different markings cannot
be distance-equivalent and the distance equivalence does not have finite index
on this system. 2

4.3 Lossy channel systems

Several different definitions for Lossy Channel Systems (LCS) can be found in
the literature: see, e.g., [Fin94,CFP96,AJ96]. In this paper we will follow the
approach of Abdulla and Jonsson [AJ96] which works smoothly and is more
commonly cited. For this model we introduce two variants (allowing idling or
not) and consider different cases for the observables.

Definition 4.3 (LCS’s).
A lossy channel system L = (Q, C, M, ∆) is composed of a finite set of locations
Q, a finite set of channels C, a finite alphabet M and a finite set of transition
rules ∆. The rules have the form q

op−→ q′ where q and q′ are locations, and op
is an operation of the form:

send: c!m writing message m to channel c;

receive: c?m reading message m from channel c;

internal action:
√

(no input/output operation).

8

64

Bertrand and Schnoebelen

Operational semantics. The operational semantics of L = (Q, C, M, ∆) is
given by a transition system where a state (or a configuration) is a pair 〈q, w〉
composed of a location q and a mapping w : C → M∗ describing the channels
contents.

The effect of an operation op on a channel contents w, denoted op(w), is
the channel contents w′ such that:

op = c!m: then w′(c) = w(c).m and w′(c′) = w(c′) for c′ 6= c;

op = c?m: then m.w′(c) = w(c) and w′(c′) = w(c′) for c′ 6= c;

op =
√

: then w′(c) = w(c) for all c ∈ C.

We observe that op(w) is not defined when op = c?m and w(c) does not start
with m.

The perfect steps between configurations are all pairs 〈q, w〉 →perf 〈q′, w′〉
such that there is a rule q

op−→ q′ in ∆ with w′ = op(w).

Given two channels contents w and w′, we write w v w′ if w can be
obtained from w′ by deleting messages (whatever their place in w′). This is
extended to states as follows:

〈q, w〉 v 〈q′, w′〉 def⇔ q = q′ and w v w′.

This is a wqo between states (by Higman’s Lemma [Hig52]).

What we are really interested in are the lossy steps, obtained from perfect
steps by preceding and following them by arbitrary message losses (possibly
none). Formally:

σ →loss τ
def⇔ ∃σ′,∃τ ′ s.t. σ w σ′ ∧ σ′ →perf τ ′ ∧ τ ′ w τ.

Idling. Starting with this definition, a natural variant is to enable idling in
all configurations [BS03]. This assumption, which amounts to adding all pairs
σ → σ on top of lossy steps, is a way of getting rid of deadlock states.

Observables. Natural observable properties for LCS’s are associated with
the locations (exactly as with pushdown automata) and we let S l

L (“l” for
“locations”) denote the LTS associated in such a way with LCS L.

One may prefer to observe the contents of the channels but this requires
some care in order to obtain upward-closed observables. A simple solution
is to only consider upward-closed and location-independent properties, i.e.,
properties p such that for all q, q′ ∈ Q and all w v w′, 〈q, w〉 ∈ p implies

〈q′, w′〉 ∈ p. For every c ∈ C, one such property is pc
def
= {〈q, w〉 | w(c) 6= ε},

that allows to observe (non-)emptiness of c. One obtains a set of observables
that covers S by letting P = {pc | c ∈ C} ∪ {S} and we write Sc

L (“c” for
“channels”) for the resulting LTS. One can also mix the two approaches and
observe both locations and channels, giving rise to LTS’s denoted S l,c

L .

9

65

Bertrand and Schnoebelen

Finally, we write S l,i
L (“i” for “idling”) and, respectively, Sc,i

L , or S l,c,i
L , for

the variant STS’s obtained by considering idling steps in the transition rela-
tion. For a nonempty α ⊆ {i, c, l}, we write LCS

α for the class of all Sα
L .

Observe that all variants of Lossy Channel Systems are WSTS’s with
strong compatibility when equipped with v as a wqo between states. There-
fore they are in STS5 by Theorem 3.2.

In the next theorem we give tight results for all variants of lossy channel
systems. When idling is allowed, LCS’s are in STS4, otherwise they are in
STS5, whatever the observable properties.

Theorem 4.4 • The class LCS
l gives rise to LTS’s that are in STS5 but not

in STS4 in general.

• The class LCS
i,l gives rise to LTS’s that are in STS4 but not in STS3 in

general.

Proof.

LCS
l: Let us give a counter-example to show that LCS’s with locations as ob-

servable properties are not in STS4 in general. Consider the simple LCS L1

in the left of Fig. 4 with only one rule l
?a−→ l (the name of the single channel

is irrelevant). Starting from a configuration with n a’s in the channel, a

l ?a l l′
?a

?a
L1 : L2 :

Fig. 4. Two simple LCS’s

trace of length n is possible but no longer trace is. As a consequence, trace
equivalence does not have finite index and S l

L1
is not in STS4.

LCS
i,l: We first show that LCS’s with idling are in STS4. To see this we

consider the ≈ relation defined in the proof of Theorem 3.2: in the case of
LCS

i,l, the proof that ≈ is a bounded-reach equivalence can be continued
and, using idling steps, one shows that it is a distance equivalence.

For showing that in general LCS
i,l does not give rise to systems in STS3,

we consider the LCS L2 in the right of Fig. 4. Starting from 〈l, an〉 there
is a trace pl, pl′ , pl, pl′ , · · · of length n but no such trace longer than n (that
is, longer traces must use idling steps and cannot alternate between pl and
pl′). Hence trace equivalence does not have finite index and S i,l

L2
is not in

STS3.

2

Theorem 4.5 • The class LCS
c gives rise to LTS’s that are in STS5 but not

in STS4 in general.

• The class LCS
i,c gives rise to LTS’s that are in STS4 but not in STS3 in

general.

10

66

Bertrand and Schnoebelen

• The class LCS
l,c gives rise to LTS’s that are in STS5 but not in STS4 in

general.

• The class LCS
i,l,c gives rise to LTS’s that are in STS4 but not in STS3 in

general.

The proofs for these assertions (both positive parts and counter-examples)
are very similar to the proof of Theorem 4.4 and are left to the reader.

5 Concluding remarks

We considered the STS hierarchy as a potential classification tool for various
families of infinite-state models of systems. Given a class SC of systems (with
its operational semantics), it is natural to ask the question of where the sys-
tems in SC fit in the STS hierarchy. This is a semantical question that can
be answered independently of whether some region algebra and the associated
algorithmics are available for class SC.

All previously known examples for levels STS1 to STS5 were some classes of
hybrid or timed systems [HMR05]. We considered classical families of systems
outside the world of timed/hybrid systems (Petri nets, pushdown systems,
lossy channel systems) that support verification techniques. It turns out that
only well-structured systems can fit in the STS hierarchy, and at the weakest
levels (i.e., STS4 and STS5). As a side effect, we clarified the links between
level STS5 and the well-structured systems of [FS01].

We are left with the conclusion that, at the moment, the STS hierarchy
does not appear very enlightening outside the world of timed/hybrid systems
or well-structured systems.

Acknowledgments

We thanks the anonymous referees for their many useful remarks and sugges-
tions.

References

[AČJT00] P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic
analysis of programs with well quasi-ordered domains. Information and
Computation, 160(1/2):109–127, 2000.

[AJ96] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable
channels. Information and Computation, 127(2):91–101, 1996.

[BCMS01] O. Bukart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors,
Handbook of Process Algebra, chapter 9, pages 545–623. Elsevier Science,
2001.

11

67

Bertrand and Schnoebelen

[BEF+00] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith,
B. Willems, and P. Wolper. An efficient automata approach to some
problems on context-free grammars. Information Processing Letters,
74(5–6):221–227, 2000.

[BS03] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels
systems is probably decidable. In Proc. 6th Int. Conf. Foundations
of Software Science and Computation Structures (FOSSACS 2003),
Warsaw, Poland, Apr. 2003, volume 2620 of Lecture Notes in Computer
Science, pages 120–135. Springer, 2003.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61–86, 1992.

[CFP96] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Information and Computation,
124(1):20–31, 1996.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with r distinct prime factors. Amer. Journal Math., 35:413–
422, 1913.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an
introduction. In Advances in Petri Nets 1998, volume 1491 of Lecture
Notes in Computer Science, pages 374–428. Springer, 1998.

[Fin87] A. Finkel. A generalization of the procedure of Karp and Miller to
well structured transition systems. In Proc. 14th Int. Coll. Automata,
Languages, and Programming (ICALP ’87), Karlsruhe, FRG, July 1987,
volume 267 of Lecture Notes in Computer Science, pages 499–508.
Springer, 1987.

[Fin94] Alain Finkel. Decidability of the termination problem for completely
specified protocols. Distributed Computing, 7(3):129–135, 1994.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1–2):63–92, 2001.

[Gla01] R. J. van Glabbeek. The linear time – branching time spectrum I. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier Science, 2001.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2(7):326–336, 1952.

[HMR05] T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of
symbolic transition systems. ACM Trans. Computational Logic, 6(1):1–
32, 2005.

12

68

EXPRESS 2005 Preliminary Version

A Petri net semantics of a simple process
algebra for mobility

Raymond Devillers 1

D¶epartement d’Informatique, Universit¶e Libre de Bruxelles
CP212, B-1050 Bruxelles, Belgium

Hanna Klaudel 2

LaMI UMR 8042 CNRS, Universit¶e Evry-Val d’Essonne
523, Place des Terrasses 91000 Evry, France

Maciej Koutny 3

School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, United Kingdom

Abstract

In this paper, we propose a structural translation of terms from a simple variant of
the Klaim process algebra into behaviourally equivalent flnite high level Petri nets.
This yields a formal semantics for mobility allowing one to deal directly with con-
currency and causality. Moreover, the equivalence results provide a characterisation
of the expressivity of the class of Petri nets we use.

Key words: Petri nets, process algebras, mobility, recursion.

1 Introduction

In this paper, we propose a structural and compositional translation of terms
from ToyKlaim, which is a simple variant of the Klaim process algebra
(designed, in particular, to represent mobility) into behaviourally equivalent
flnite high level Petri nets. This yields a formal semantics for mobility allowing
one to deal directly with concurrency and causality. The new representation
may also be used for automatically verifying liveness or reachability properties
using model-checking.
1 Email: rdevil@ulb.ac.be
2 Email: klaudel@lami.univ-evry.fr
3 Email: Maciej.Koutny@newcastle.ac.uk

This is a preliminary version. The flnal version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

69

Devillers, Klaudel and Koutny

The paper is structured in the following way. We flrst introduce the syntax
and semantics of ToyKlaim. After that we outline the net algebra used in
our translation from ToyKlaim to Petri nets. We do not detail the basic
concepts of high-level Petri nets; however, we provide intuition in order to
keep the paper accessible to readers not very familiar with that fleld.

2 A simple process algebra

We start by deflning ToyKlaim which is basically cKlaim [3] extended with
a few features taken from OpenKlaim [3] and StockKlaim [5].

We assume that L is a set of localities ranged over by l; l0; l1; : : : and U is
a disjoint set of locality variables ranged over by u; v; w; u0; v0; w0; u1; v1; w1; : : :
Their union, together with the distinguished name self, forms the set of
names ranged over by n; n0; n0; n1; : : : In addition, A = fA1; : : : ; AKg is a
flnite set of process identiflers, each identifler A 2 A having an arity mA ‚ 0.

The syntax of toyKlaim is given below:

networks N ::= l :: P j l :: hli j N k N

actions a ::= out(n)@n j newloc(u) j in(T)@n jeval(A(n1; : : : ; nmA))@n

processes P ::= nil j A(n1; : : : ; nmA) j a : P j P + P j P jP
templates T ::= n j !u

For each A 2 A, there is exactly one deflnition of the form A(u1; : : : ; umA) df=
PA, where ui 6= uj for i 6= j. It is assumed that such a deflnition is global.
A structural equivalence on networks is the smallest congruence such that the
following hold (below fn1=u1; : : : ; nmA=umAg denotes substitution):

(Com) N1 k N2 · N1 k N2 (Assoc) (N1 k N2) k N3 · N1 k (N2 k N3)

(Abs) l :: P · l :: (P jnil) (Clone) l :: (P1jP2) · l :: P1 k l :: P2

(PrInv) l :: A(n1; : : : ; nmA) · l :: fn1=u1; : : : ; nmA=umAgPA

Networks. These are flnite (°at, due to the rules Com and Assoc) collec-
tions of computational nodes, where data and processes can be located. Each
node consists of a locality l identifying it and a process or a datum (itself
a locality in this simple presentation). There can be several nodes with the
same locality part. Efiectively, one may think of a network as a collection
of uniquely named nodes, each node comprising its own data space and a
possibly concurrent process which runs there (see the Clone rule).
Actions. These are the basic (atomic) operations which can be executed by
processes: (i) out(n0)@n deposits a fresh copy of the locality denoted by n0

inside the locality addressed by n; (ii) in(T)@n retrieves an item matching
the template T from the locality addressed by n; (iii) eval(A(n1; : : : ; nmA))@n

2

70

Devillers, Klaudel and Koutny

launches a new instance of the process identifled by A in the locality n; and
(iv) newloc(u) creates a fresh network node whose address is passed to the
system using the locality variable u. Note that the special meaning of the
distinguished name self is that it refers to the node address at which an
action is executed, and that instantiating a process in an arbitrary locality
allows one to model mobility.
Processes. These are the only computational units, acting upon the data
stored at various nodes, creating new locations and spawning new processes.
The algebra of processes is built upon the (hanging) process nil and three
composition operators: preflxing by an action (a : P); choice (P1 + P2); and
parallel composition (P1jP2).
Well-formedness. The action preflxes in (sub-)processes newloc(u) : P and
in(!u)@n : P (i.e., location creation and input) bind the locality variable u
within P , and we then denote by fv(P) the free variables of P (and similarly
for networks). For the process deflnition as above, we assume that fv(PA) µ
fu1; : : : ; umAg, so that the free variables of PA are in fact parameter bound.

As usual, processes are deflned up to the alpha-conversion, meaning that
bound variables may be coherently renamed avoiding potential clashes. More-
over, fu=u0; : : :gP is obtained from P by replacing all free occurrences of u0

by u, etc, possibly after alpha-converting P in order to avoid clashes; e.g.,
fv=v0; u=u0gin(!u)@v0 : out(u)@w : A(u0) = in(!u00)@v : out(u00)@w : A(u).

Given a network N , one can apply alpha-conversion so as to obtain a well-
formed system deflnition. By this we mean that no variable across the network
and process deflnitions is both free and bound, and no variable ever generates
more than one binding. Moreover, we assume that there are no free variables
in the network (a variable u may only yield evolutions if it occurs under the
scope of an in(!u) or newloc(u), or as a formal parameter 4).
Semantics. The operational semantics of networks and processes is detailed
in tables 1 and 2. It is based on the structural equivalence deflned above (see
the Struct rule) and labelled transition rules augmented with an explicit
information about known localities (the sets L; L0 ‰ L):

L ‘ N
act

¡¡¡¡¡! L0 ‘ N 0

where act is the record of an execution of a preflx and loc(N) µ L µ L0 ¶
loc(N 0), and where loc(N) (resp. loc(N 0)) denote the set of localities present in
N (resp. in N 0). The act can be o(l; l00; l0) or i(l; l00; l0) or c(l; A(l1; : : : ; lmA); l0)
or n(l; l0), where the initial symbol identifles the type of action, l the node
where the action is executed, l0 identifles the node where the action takes
efiect, and l00 is an optional parameter (argument of the action).
Example. We will use the Simple Mobile Robot example (SMR). Its intended
behavior can be understood as the following indeflnite loop:

input locality u; output the current locality; move to u

4 E.g., l :: in(!u)@u : out(u)@l0 : A() is not well-formed (as u is both bound and free).

3

71

Devillers, Klaudel and Koutny

(Out)

if n0 = self then l0 = l else l0 = n0;

if n1 = self then l00 = l else l00 = n1

L ‘ l :: out(n1)@n0 : P
o(l;l00;l0)

¡¡¡¡¡¡¡¡! L ‘ l :: P k l0 :: hl00i

(Par)
L ‘ N

act
¡¡¡¡¡! L0 ‘ N 0

L ‘ N k N 00 act
¡¡¡¡¡! L0 ‘ N 0 k N 00

(Sum1)

L ‘ l :: P
act

¡¡¡¡¡! L0 ‘ N 0

L ‘ l :: P + P 0 act
¡¡¡¡¡! L0 ‘ N 0

L ‘ l :: P 0 + P
act

¡¡¡¡¡! L0 ‘ N 0

(Sum2)

L ‘ l :: P k l0 :: hl00i
act

¡¡¡¡¡! L0 ‘ N 0

L ‘ l :: P + P 0 k l0 :: hl00i
act

¡¡¡¡¡! L0 ‘ N 0

L ‘ l :: P 0 + P k l0 :: hl00i
act

¡¡¡¡¡! L0 ‘ N 0

(Struct)
N · N1 L ‘ N1

act
¡¡¡¡¡! L0 ‘ N2 N2 · N 0

L ‘ N
act

¡¡¡¡¡! L0 ‘ N 0

Table 1
Operational semantics rules I.

Using ToyKlaim’s syntax and 0; 1; 2 as localities, we model SMR as:

0 :: eval(SMR(0))@1 : nil k 0 :: h1i k 1 :: h2i k 2 :: h0i

with the recursive process deflnition given by:

SMR(u1) df= in(!u)@self : out(u1)@self : eval(SMR(self))@u : nil.

Then, the beginning of its execution sequence is:

[1 : 2 : 0]
c(0;SMR(0);1)
¡¡¡¡¡¡¡¡! [1 : 2 : 0]

i(1;2;1)
¡¡¡¡¡! [1 : : 0]

o(1;0;1)
¡¡¡¡¡! [1 : 0 : 0]

c(1;SMR(1);2)
¡¡¡¡¡¡¡¡!

[1 : 0 : 0]
i(2;0;2)
¡¡¡¡¡! [1 : 0 :]

o(2;1;2)
¡¡¡¡¡! [1 : 0 : 1]

c(2;SMR(2);0)
¡¡¡¡¡¡¡¡! [1 : 0 : 1],

where the notation for the intermediate states means

[data in location 0: data in location 1: data in location 2]

and the process part of a state as well as the (unchanging) set of known
localities are omitted.

4

72

Devillers, Klaudel and Koutny

(Eval)

if n0 = self then l0 = l else l0 = n0;

if ni = self then l00
i = l else l00

i = ni (i = 1; : : : ; mA)

L ‘ l :: eval(A(: : : ni : : :))@n0 : P
c(l;A(:::l00i :::);l0)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡! L ‘ l :: P k l0 :: f: : : l00

i =ui : : :gPA

(InVar)
if n0 = self then l0 = l else l0 = n0

L ‘ l :: in(!u)@n0 : P k l0 :: hl00i
i(l;l00;l0)

¡¡¡¡¡¡¡¡! L ‘ l :: fl00=ugP k l0 :: nil

(InLoc)

if n0 = self then l0 = l else l0 = n0;

if n1 = self then l00 = l else l00 = n1

L ‘ l :: in(n1)@n0 : P k l0 :: hl00i
i(l;l00;l0)

¡¡¡¡¡¡¡¡! L ‘ l :: P k l0 :: nil

(New)
l0 =2 L

L ‘ l :: newloc(u) : P
n(l;l0)

¡¡¡¡¡¡¡¡! L [fl0g ‘ l :: fl0=ugP k l0 :: nil

Table 2
Operational semantics rules II.

3 An algebra of nets

The development of our Petri net model, called klaim-nets, has been inspired
by the box algebra [1,2,7] and by the rp-net algebra used in [6] to translate
…-calculus terms. In particular, we use coloured tokens and read-arcs (allow-
ing any number of transitions to simultaneously check for the presence of a
resource stored in a place [4]). Transitions in klaim-nets have the following
labels: (i) o to denote outputting of data to data spaces; (ii) i to denote re-
trieving of data from data spaces; (iii) n to denote creating of new nodes; (iv)
cA to denote a creation of an instance of the process A; and (v) ¿ to denote
silent transitions.

A key idea behind our translation is to view the system as consisting
of a main program together with a number of procedure declarations. We
represent the control structure of the main program and the procedures using
disjoint unmarked nets, one for the main program and each of the procedure
declarations. The program is executed once, while each procedure can be
invoked several times (even concurrently), each such invocation being uniquely
identifled by a structured token which corresponds to the sequence of recursive

5

73

Devillers, Klaudel and Koutny

calls along the execution path leading to that invocation 5 . With this in mind,
we use the notion of a trail ¾ to denote a flnite (possibly empty) sequence of
hierarchical transitions (i.e., those labelled by cA and ¿) of a klaim-net. The
places of the nets which are responsible for control °ow carry tokens which
are trails. (The empty trail †, used for the main program, will be treated as
the usual ‘black’ token.) Procedure invocation is then possible if each of the
input places of a transition t labelled with cA contains the same trail token ¾.
These tokens are then removed and a new token ¾t is inserted in each initial
(entry) place of the net representing the process PA deflning A(: : :), together
with other tokens representing the actual parameters.
Places in klaim-nets are labelled in ways re°ecting their intended role:
† Control °ow places: These model control °ow and are labelled by their

status symbols (internal places by i, and interface places by e and x, for
entry and exit, respectively). The tokens they carry are simply the trails ¾.

† Locality places (or loc-places): These carry structured tokens representing
localities known and used by the main program and procedure invocations.
Each such token, called a trailed locality, is of the form ¾:l where ¾ is a trail
and l is a locality in L. Intuitively, ¾ identifles the invocation in which the
token is available, while l provides its value. In the diagrams, locality places
have thick borders and are labelled by the localities, locality variables and
distinguished names. For example, if a loc-place u contains a trailed locality
¾:l then this means that some procedure invocation corresponding to trail ¾
has the value of its locality variable u set to l. Loc-places labelled by self
indicate where processes are executed (and when they are executed).

† Data-place: This is a distinguished place, labelled by DS, used to represent
data stored at various locations. It will store structured tokens of the form
l :: hl0i, each such token corresponding to l :: hl0i in the process algebra.

† Name-place: This again is a distinguished place, labelled by FN and con-
taining all fresh (i.e., unused) localities which can then be picked up by the
n-labelled transitions in order to incarnate new network nodes.

Directed arcs and read arcs are labelled by (one or many) annotations of the
kind !, !:z, !t, !t:x, x, x :: hyi, where !, x, y, z are (high-level net) variables
and t is a (Petri net) transition name.
Dynamics and bindings. A transition may be executed under a binding
mapping [assigning values to the variables occurring around it. The transition
then has to \check for the presence of" or \absorb" or \produce tokens" of
the kind [(!), [(!):[(z), [(!)t, [(!)t:[(x), [(x), [(x) :: h[(y)i, respectively.

For instance, in flgure 2, transition t1 may be executed under the binding
! 7! †, x 7! 1, x1 7! 0, z 7! 0. Its flring consumes the †-token in the entry
place, checks the presence of tokens †:0, †:1 and †:0 in the loc-places self1,

5 That this path is su–cient to identify an invocation follows from the fact that a given
transition may be activated many times, but each time with a difierent path.

6

74

Devillers, Klaudel and Koutny

1 and 0, respectively, and produces: †-token in the leftmost internal place,
t1-token in the upper internal place, t1:1-token in the place selfSMR, and
t1:0-token in the place u1.

4 Translating networks into klaim-nets

We assume that the following well-formed network is to be translated:

L ‘
¡
kh

i=1li :: Pi
¢

k
¡
kk

j=1l0
j :: hl00

j i
¢

together with the necessary process identifler deflnitions; we also assume that
li 6= lj, for i 6= j. The translation for the basic actions of toyKlaim is given
in flgure 1:
Input actions. We have two difierent translations, depending on the form
of the template used.
The flrst one, K(in(n0)@n), has to flnd in the data-place DS a matching pair
corresponding to the current values of n and n0, for the considered trail, and
only then the action can be executed (the efiect is that the matched pair
disappears from the data-place). We do not assume that n0, n and self are
distinct, and if some of them are the same, we collapse the corresponding
loc-places, and gather together the annotations of read arcs. In the extreme
case, for K(in(self)@self), the three loc-places are collapsed into a single
one, labelled self, and the read-arc linking it with the only transition is
annotated by !:x, !:y and !:z.
The second translation, K(in(!u)@n), where u is a variable, works similarly,
except that (one of) the value(s) corresponding in the data-place DS to the
locality observed in n for the considered trail is deposited in the loc-place u.
We do not assume that n and self are distinct, and if they are the same, we
collapse the corresponding loc-places, and gather together the annotations of
read arcs.
When executed under a binding [, in both cases, the translation generates the
visible label i([(z); [(y); [(x)).
Output actions. In K(out(n0)@n), we do not assume that n0, n and self
are distinct, and if some of them are the same, we collapse the corresponding
loc-places, and gather together the annotations of read arcs. When executed
under a binding [, the net generates the visible label o([(z), [(y), [(x)).
New location. In K(newloc(u)), executing the transition under a binding
[generates the visible label n([(z); [(x)).
Process creation. The translationK(eval(A(n1; : : : ; nmA))@n) assumes that
the deflning equation for A is A(u1; : : : ; umA) df= PA. We do not assume that
self, n and n1; : : : ; nmA are difierent, and if some of them are the same, we
collapse the corresponding loc-places, and gather together the annotations of
read arcs. On the other hand, selfA, u1; : : : ; umA , and eA are all distinct. In
the extreme case, for K(eval(A(self; : : : ; self))@self), the mA+2 loc-places

7

75

Devillers, Klaudel and Koutny

e

i

xn0

n

self

DS
!

!

x ::hyi!:x

!:y !:z

K(in (n0)@n)

e

i

xu

n DS

self

!

!

x ::hyi!:x

!:y !:z

K(in (!u)@n)

e

o

xn0

n DS

self

!

!

x ::hyi!:x

!:y !:z

K(out (n0)@n)

e

n

x

u
FN

self

!

!

x
!:x

!:z

K(newloc (u))

e

cA

t

x

n1

nmA

n self A

u1

umA

eAself

...
...

!

!

! t :x

! t :x1

! t :xm A

!:x

!:x 1

!:x m A

!:z ! t

K(eval (A(n1; : : : ; nmA))@n), with A(u1; :::; umA) df= PA

e

x

self

K(nil)

Figure 1. Translations for the basic actions.

on the left are collapsed into a single one, labelled self, and the read-arc link-
ing it with the only transition is annotated by !:z, !:x, !:x1; : : : ; !:xmA .
The idea of process creation is to spawn a new thread of activity within the
sub-net corresponding to the process identifler deflnition. In particular, the
parameters u1; : : : ; umA are assigned values corresponding to the current lo-
cality values of l1; : : : ; lmA (notice that the newness of the thread is captured
by extending the trails of tokens residing in the places on the left of t to make
them distinct from any other tokens). Moreover, the auxiliary place labelled
by eA will later be used to start-ofi the °ow of control in the sub-net corre-
sponding to the process identifler deflnition. When executed under a binding
[, the translation generates the visible label c([(z), A([(x1); : : :, [(xmA)), [(x)).
Nil process. The translation, K(nil), without any transitions, has three
places common to all the elementary translations.
Composition operators. For syntax driven translation we need operators
corresponding to those in ToyKlaim, allowing one to construct klaim-nets

8

76

Devillers, Klaudel and Koutny

compositionally. These operators are preflxing (R : R0), choice (R + R0) and
parallel composition (RjR0). All three operators merge the non-control places
(i.e., loc-places, DS and FN) with the same label; this corresponds to the
asynchronous links used in [7]. For two operand nets, their transitions and
control °ow places are made disjoint before applying a composition operator
in order to allow to properly handle the cases when, e.g., R = R0.
In the choice composition, similar to the choice operation in the box alge-
bra [1], the entry and exit places of R and R0 are combined together through
a cartesian product. This has the following efiect: if we start from a situation
where each entry place contains a copy of a common trail token ¾, then either
R or R0 can be executed.
The preflxing operator combines the exit place of the preflx R with the entry
places of R0 into internal places, and the efiect is that the execution of R after
reaching the terminal marking, where the only exit place is marked, is followed
by that of R0.
The parallel composition of R and R0 puts them side by side allowing to
execute both parts in parallel.
Main translation. It proceeds in the following three phases:
Phase I. For each i • h, hence for each li :: Pi component, we flrst translate
Pi compositionally (i.e., homomorphically) into K(Pi). Notice that, while e
denotes control places, eA does not and is therefore subject to merging in the
various net constructions. After that, we change the (unique) loc-place label
self into selfi. The result is denoted K(li :: Pi).
Phase II. For each process deflnition A(u1; : : : ; umA) df= PA, we flrst translate
compositionally PA into K(PA). After that, we add loc-places labelled ui for
each i • mA, unless such a place is already present. Finally, we re-label the
only self loc-place to selfA, and if there is another loc-place selfA present
(due to direct recursions), we merge them. The result is denoted K(A).
Phase III. We take the parallel composition of the K(A)’s and K(li :: Pi)’s;
then, if K(A) has r entry places, we create r copies of the (unique) eA-labelled
place and identify them with the entry places of K(A) (with the same input
arcs as the eA-labelled place and the same output arcs as the entry places of
K(A)). We then turn the entry and exit places of K(A) into internal places.
After that we set the initial marking as follows: for i • h, we insert †:li into
the selfi-labelled place († denoting the empty trail); each place labelled by
a locality l 2 L (we assume that selfi 62 L [U for each i) receives a single
†:l-token; each entry place receives a single †-token; for each l 2 LnL we insert
a single l-token into the FN-labelled place (if present); and for each j • k, we
insert a single (l0

j :: hl00
j i)-token into the DS-labelled place.

Example. In the case of the Simple Mobile Robot system, we get the net
represented in flgure 2, and it may easily be checked that the evolutions men-
tioned above for this system are also valid for the corresponding net.

For speciflcations without direct procedure calls (i.e., no usage of processes
of the kind A(n1; : : : ; nmA); only actions eval(A(n1; : : : ; nmA))@n are allowed),

9

77

Devillers, Klaudel and Koutny

� e

cSMRt 1

i

x

�: 0

self 1

�: 0

0

�: 1

1

self SMR

u1

i

i

i

i

i

u

0::h1i
1::h2i
2::h0i

DS

cSMR

t 2

i

o

!

!

! t 1 :x

! t 1 :x1

! t 1

!:x

!:x 1

!:z

!

!

!

!

!

!

!:y

!:x

!:x
!:z

!:x

!:z

!:z
!:x 1

! t 2 :x1

!:y! t 2 :x

! t 2

x::hyi

x::hyi

Figure 2. Translation of the Simple Mobile Robot system.

our translation yields a (sequential) Petri net semantics which coincides with
the original ToyKlaim operational semantics.

Proposition 4.1 For speciflcations without direct procedure calls, the labelled
transition system generated by the above translation corresponds in an opera-
tionally strong way to the one generated by the rules in tables 1 and 2 for the
original network.

The precise formulation and proof of this (and subsequent) results can be
found in [8]. Note also that the above translation allows for direct concurrency
and causality analyses.

5 Direct procedure calls

In order to translate direct procedure calls, we have a choice between at least
two difierent approaches which, though up to a certain extent equivalent, still
exhibit subtle difierences.

The flrst one is to use translation similar to that for procedure invocations
in flgure 1, as shown in flgure 3. The t transition is a silent procedure call
activating the body of the process and transmitting the parameters. It may
happen, however, that PA cannot perform anything and the call occurs in a
choice fi+A(: : :); hence it is necessary to roll back the call. This is realised by
the ‘inverse’ transition, t¡1, acting as a silent uncall 6 . Note that in ToyK-
laim’s syntax directs calls are processes which, like nil, never terminate. As

6 If a direct call is guarded (preceded by a preflx), then the uncall transition is not necessary
and the net may be simplifled.

10

78

Devillers, Klaudel and Koutny

a consequence, the call and uncall transitions do not need to be connected to
the exit place.

e

�

t

x

n1

nmA

self self A

u1

umA

eA

�

t � 1

...
...

!
! t :x

! t :x1

! t :xm A

!:x

!:x 1

!:x m A

! t

Figure 3. General translation K(A(n1; : : : ; nmA)) of a direct call (simplifled by
using a single annotation for pairs of arcs attached to the same place).

Proposition 5.1 The labelled transition system generated by the above trans-
lation corresponds in an operationally weak way to the one generated by the
rules in tables 1 and 2 for the original network.

The second approach consists in deflning an equivalence on markings gen-
erated by the ¿ -labelled transitions, which efiectively are no longer needed.
This amounts to considering the equivalence generated by the following re-
lations: for any marking M , for any process identifler A, for any call-like
transition t of A, and for any trail ¾,

M ' ¾:Mt
R ' Mt

¾ · M ' ¾:Mt
R ' MA

¾t ' ¾t:Mt
O

where ' denotes the (multiset) sum of markings and:
† Mt

R is any marking of the loc-places checked by t,
† ¾:M is the marking obtained by preflxing each token of M by \¾:",
† Mt

¾ is the marking with a token ¾ in each input place of t,
† MA

¾t is the marking with a token ¾t in each entry place of K(A), and
† Mt

O is the marking of the output loc-places of t corresponding to Mt
R.

Proposition 5.2 The labelled transition system generated by the above trans-
lation (up to the ·-equivalence classes of markings) corresponds in an opera-
tionally srong way to the one generated by the rules in tables 1 and 2 for the
original network.

The above translation also allows for causality and concurrency analyses,
but it uses a non-standard Petri Net transition system.

11

79

Devillers, Klaudel and Koutny

6 Conclusions

We succeeded in translating ToyKlaim speciflcations into the class of klaim-
nets, thus showing the expressive power of this class of Petri nets. Other
Klaim features, like tuple spaces, could easily be modelled as well.

This new semantics expresses in a natural way the concurrency and the
causality features and allows to apply model checking techniques to verify
their behavioural properties.

7 Acknowledgements

We would like to thank the anonymous referees for their helpful and construc-
tive comments. This research was supported by the EC IST grant 511599
(Rodin).

References

[1] E.Best, R.Devillers and M.Koutny: Petri Net Algebra. EATCS Monographs on
TCS, Springer (2001).

[2] E.Best, W.Fraczak, R.P.Hopkins, H.Klaudel and E.Pelz: M-nets: an Algebra
of High Level Petri Nets, with an Application to the Semantics of Concurrent
Programming Languages. Acta Informatica 35 (1998) 813{857.

[3] L. Bettini et al.: The KLAIM Project: Theory and Practice.. Proc. of Global
Computing: Programming Environments, Languages, Security and Analysis of
Systems, Springer, LNCS 2874 (2003) 88{150.

[4] S.Christensen and N.D.Hansen: Coloured Petri Nets Extended with Place
Capacities, Test Arcs and Inhibitor Arcs. Proc. of ICATPN’93, Springer, LNCS
691 (1993) 186{205.

[5] R. De Nicola, D. Latella, M. Massink: Formal modeling and quantitive analysis
of KLAIM-based mobile systems.. Proc. of Applied Computing, Association for
Computing Machinery (2005) 428{435.

[6] R.Devillers, H.Klaudel and M.Koutny: Petri Net Semantics of the Finite …-
Calculus. Proc. of FORTE 2004, Springer, LNCS 3235 (2004) 309{325.

[7] R.Devillers, H.Klaudel, M.Koutny and F.Pommereau: Asynchronous Box
Calculus. Fundamenta Informaticae 54 (2003) 295{344.

[8] R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple
Process Algebra for Mobility. Technical Report CS-TR-912, University of
Newcastle (2005).

12

80

EXPRESS 2005 Preliminary Version

Separation of synchronous and asynchronous
communication via testing

Diletta Cacciagrano 1, Flavio Corradini 2

Dipartimento di Matematica e Informatica
Universit�a degli Studi di Camerino, Italy

Catuscia Palamidessi 3

INRIA Futurs Saclay and LIX
�Ecole Polytechnique, France

Abstract

One of the early results about the asynchronous �-calculus which signi�cantly con-
tributed to its popularity is the capability of encoding the output pre�x of the
(choiceless) �-calculus in a natural and elegant way. Encodings of this kind were
proposed by Honda and Tokoro, and (independently) by Boudol. We investigate
whether the above encodings preserve De Nicola and Hennessy’s testing semantics.
In this sense, it turns out that those encodings are incorrect, and, more interest-
ingly, under some fairly general conditions no encoding of output pre�x is able to
preserve the must testing. This negative result is due to (a) the non atomicity of
the sequences of steps which are necessary in the asynchronous �-calculus to mimic
synchronous communication, and (b) testing semantics’s sensitivity to divergence.

Key words: Pi-Calculus, Asynchronous Pi-Calculus, Synchronous Communication,
Asynchronous Communication, Testing Semantics.

1 Introduction

In recent years, the asynchronous communication paradigm has become more
and more popular in the process calculi community. Reasons include the facts
that it is easy to implement in a distributed system and that it naturally
represents the basic communication mechanism of most Internet and Web
applications.

1 Email: diletta.cacciagrano@unicam.it
2 Email: flavio.corradini@unicam.it
3 Email: catuscia@lix.polytechnique.fr

This is a preliminary version. The �nal version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

81

Cacciagrano, Corradini, Palamidessi

One of the most popular asynchronous calculi is probably the asynchronous
�-calculus [12,2]. This is a proper subset of the �-calculus [14], the main
di�erences being the absence of the output pre�x and of the choice operator.
It is in particular the (absence of) output pre�x which is important. In fact,
this construct allows us to express directly that when a process performs an
output it suspends until the partner performs the complementary input.

Naturally, the relation between the expressive power of the two calculi has
attracted the attention of many researchers. Since the �-calculus contains the
asynchronous �-calculus, it is obviously at least as expressive. As for the other
direction, the third author has shown a separation result, based on the fact
that the choice operator, in combination with synchronous communication,
allows to solve certain problems of distributed agreement that cannot be solved
with the asynchronous �-calculus [17].

If we consider the choiceless �-calculus, however, things are less clear.
The result in [17] does not say anything concerning the presence/absence of
output pre�x alone. On the other hand, Honda and Tokoro [12] and, indepen-
dently, Boudol [2] have proposed (di�erent) encodings of the output pre�x in
the asynchronous �-calculus, thus justifying the claim that synchronous com-
munication can be \implemented" via asynchronous communication. In both
cases the idea is to represent a synchronization via a sequence of asynchronous
steps executing a \mutual inclusion" protocol, which involves an exchange of
acknowledgement messages.

These encodings signi�cantly contributed to the popularity of the the asyn-
chronous �-calculus, but only some correctness result was provided for them.
(Boudol proved, for his encoding, only an adequacy result w.r.t. the Morris
preorder, which is a fairly weak relation [2].)

In this paper we show that the situation is more complicated than expected.
In fact, we prove that the encodings by Honda, Tokoro and Boudol do not
preserve De Nicola and Hennessy’s testing semantics, meaning that if P and
Q are �-calculus processes, [[�]] is one of the mappings mentioned above, and
R is an equivalence generated by a testing semantics, then

P R Q if and only if [[P]] R [[Q]](1)

does not hold in general.
In order to better explain our contributions and discuss related work, let us

briey recall some concepts behind De Nicola and Hennessy’s testing semantics
[9,10,1,7]. They resort on a set of processes to be tested and a set of test
environments (processes with the ability to perform a special action to report
success). A process P is embedded into a test environment o via parallel
composition. Then, we say that P mayo if there exists a successful computation
between P and o, P must o if every computation between P and o is successful
and P fair o (proposed in [4,16]) if each state of every computation between P
and o leads to success after �nitely many interactions. Each criterion allows
the natural de�nition of a preorder relation over processes: For any process P

2

82

Cacciagrano, Corradini, Palamidessi

and Q, P vO
sat Q if and only if for each test o 2 O, P sat o implies Q sat o,

where sat stands for may , must or fair .
The �rst two authors started to investigate the properties of Boudol’s en-

coding w.r.t. various testing theories in [5]. They were particularly interested
in establishing conditions on [[�]] and on R so that (1) would hold. They re-
alized however that the only-if part of (1) cannot hold for testing theories for
the reason that the processes which are mappings of some �-calculus process
are a strict subset of the asynchronous �-calculus. Thus testing a process [[P]]
with a test which is not the coding of any process in the �-calculus means
testing [[P]] over a set of tests which is \more powerful" than that of P . In
fact, a test which is not the result of an encoding in general does not follow
the \rules of the game" w.r.t. the communication protocol, and can interact
with it in strange ways.

In [5] the �rst two authors proposed a re�nement of the testing theories
by considering only encoded tests on the right hand side, and proved that
Boudol’s encoding [[�]] satis�es the following:

(i) P vOmay Q i� [[P]] v[[O]]
may [[Q]];

(ii) P vO
fair Q i� [[P]] v[[O]]

fair [[Q]].

The key idea for proving (i) and (ii) is given by the following statement:

P sat o i� [[P]] sat [[o]](2)

where sat is either may or fair . For the must preorder (2) is not valid;
indeed, we gave examples showing that P must o does not imply [[P]] must [[o]].

In this paper we further investigate on the must preorder. We focus on the
condition that would imply the if and only if version of Property (3), that is:

P must o i� [[P]] must [[o]](3)

We call this condition preservation of must testing.
We consider general encodings [[�]] of the (choiceless) �-calculus into the

asynchronous �-calculus. We prove that, under some fairly general conditions
(which include the cases of Boudol’s encoding, but also Honda and Tokoro’s
one) namely compositionality w.r.t. pre�xes and existence of a diverging en-
coded term, [[�]] cannot preserve must testing.

The source of the problem is that an (atomic) synchronous communication
between a sender and a receiver can be simulated in the asynchronous world
but there is no way to guarantee that sender and a receiver will be resumed
(after communication) at the same time. More precisely, it could be the case
that when the sender is ready to proceed the receiver is still engaged in some
parts of the protocol, or vice versa. Therefore, there are unfair computations in
which one partner is never resumed, and a test based on the interaction, after
the communication, with that partner, would not succeed. This is of course
not a problem in the synchronous world where the communication partners
resume simultaneously.

3

83

Cacciagrano, Corradini, Palamidessi

The fact that our result holds for a general class of encodings points out,
to our opinion, an inherent shortcoming of asynchronous communication with
respect to the synchronous one.

The rest of the paper is organized as follows. Section 2 presents the �-
calculus and the asynchronous �-calculus. Section 3 formally de�nes the must
testing. Section 4 recalls some basic de�nitions about encodings. Section 5
shows our main result and Section 6 investigates some consequences of it. Due
to space limitation most of the proofs have been omitted; they are reported
in the full version of the paper [6].

2 The pi-calculus and the asynchronous pi-calculus

In this section we briey recall the basic notions about the (choiceless) �-
calculus and the asynchronous �-calculus.

2.1 The pi-calculus

Let N (ranged over by x; y; z; : : :) be a set of names. The set Ps (ranged over
by P; Q; R; : : :) of processes is generated by the following grammar:

P ::= 0 x(y):P �:P �xy:P P j P (�x)P ! P

The input pre�x y(x):P , and the restriction (�x)P , act as name binders for
the name x in P . The free names fn(P) and the bound names bn(P) of P are
de�ned as usual. The set of names of P is de�ned as n(P) = fn(P) [bn(P).
Whenever fn(P) = ;, P is said closed.

The operational semantics of processes is given via a labelled transition
system, whose states are the process themselves. The labels (ranged over by
�; ; : : :) correspond to pre�xes, input xhyi, output �xy and tau � , and to the
bounded output �xhyi (which models scope extrusion). If � = xhyi or � = �xy
or � = �xhyi we de�ne sub(�) = x and obj(�) = y. The functions fn, bn and
n are extended to cope with labels as follows:

bn(xhyi) = fyg bn(�xhyi) = fyg bn(�xy) = ; bn(�) = ;

fn(xhyi) = fxg fn(�xhyi) = fxg fn(�xy) = fx; yg fn(�) = ;

The transition relation is given in Table 2.1. The symbol � used in Rule Cong
stands for the structural congruence. This is the smallest congruence over the
set Ps induced by the axioms in Table 2.

De�nition 2.1 (Weak transitions) Let P and Q be Ps processes. Then:

- P "=) Q if and only if there exist P0; P1; : : : ; Pn 2 Ps, n � 0, such that

P = P0
��! P1

��! : : : ��! Pn = Q ;

4

84

Cacciagrano, Corradini, Palamidessi

Input x(y):P
xhzi
�! Pfz=yg where x; y 2 N

Output/Tau �:P ��! P where � = �xy or � = �

Open
P �xy�! P 0

(�y)P
�xhyi
�! P 0

x 6= y Res
P ��! P 0

(�y)P ��! (�y)P 0
y 62 n(�)

Par
P ��! P 0

P j Q ��! P 0 j Q
bn(�) \ fn(Q) = ;

Com
P

xhyi
�! P 0; Q �xy�! Q0

P j Q ��! P 0 j Q0
Close

P
xhyi
�! P 0; Q

�xhyi
�! Q0

P j Q ��! (�y)(P 0 j Q0)

Bang
P ��! P 0

!P ��! P 0 j !P
Cong

P � P 0 P 0 ��! Q0 Q0 � Q

P ��! Q

Table 1
Early operational semantics for Ps terms.

a1) P � Q i� Q can be obtained from P by alpha-renaming

a2) (Ps=�; j ; 0) is a commutative monoid

a3) ((�x)P j Q) � (�x)(P j Q); if x 62 fn(Q)

a4) (�x)P � P; if x 62 fn(P)

a5) (�x)(�y)P � (�y)(�x)P

Table 2
The structural congruence.

- P �=) Q if and only if there exist P1, P2 2 Ps such that

P "=) P1
��! P2

"=) Q :

Notation 2.1 Sometimes we write P ��! (P �=)) to mean that there exists
P 0 such that P ��! P 0 (P �=) P 0) and we write P "=) ��! to mean that there
are P 0 and Q such that P "=) P 0 and P 0 ��! Q. We say that P diverges,
notation P ", if there exists an in�nite sequence of � transitions from P , i.e.
P = P0

��! P1
��! : : : Pi

��! Pi+1
��! : : : for some P0; P1; : : : Pi; Pi+1; : : :. In

the opposite case, i.e. if P6 ", we say that P converges, notation P #.

5

85

Cacciagrano, Corradini, Palamidessi

2.2 The asynchronous pi-calculus

The set Pa of processes of the asynchronous �-calculus is generated by the
following grammar:

P ::= 0 x(y):P �:P �xy P j P (�x)P ! P

The operational semantics of Pa is given by the rules in Table 2.1, with
the rule Output/Tau replaced by the rules Output and Tau in Table 3. The
axioms de�ning the structural congruence are the same as the ones in Table
2.

Output �xy �xy�! 0 Tau �:P ��! P

Table 3
The rules for Output and Tau in Pa.

The de�nitions and notation given in the synchronous setting are assumed
in the asynchronous one as well. Note that the asynchronous �-calculus is a
sub-set of the �-calculus. Indeed, the output-action process �xy can be thought
as the special case of output pre�x �xy:0.

3 Must preorder

In this section we briey summarize the basic de�nitions behind the testing
machinery for the �-calculi. In the following, P will denote either Ps or Pa.

De�nition 3.1 (Observers)

- Let N 0 = N [f!g be the set of names. By convention we let fn(!) = f!g,
bn(!) = ; and sub(!) = !. The action ! is used to report success.

- The set O (ranged over by o; o0; o00; : : :) of observers is de�ned like P , where
the grammar is extended with the production P ::= !:P .

- The operational semantics of P is extended to O by adding !:o !�! o :

In the following we will use hP i to denote some restricted version of P , i.e.
any process of the form (�x1)(�x2) : : : (�xn)P , for some x1; : : : ; xn 2 fn(P).

De�nition 3.2 (Maximal computations) Given P 2 P and o 2 O, a maxi-
mal computation from P j o is either an in�nite sequence

P j o = hP0 j o0i ��! hP1 j o1i ��! hP2 j o2i ��! : : :

or a �nite sequence

P j o = hP0 j o0i ��! hP1 j o1i ��! : : : ��! hPn j oni 6 ��! :

We are now ready to present the de�nition of must testing preorder.

6

86

Cacciagrano, Corradini, Palamidessi

De�nition 3.3 (Must relation) Given a process P 2 P and an observer o 2
O, de�ne P must o if and only if for every maximal computation P j o =
hP0 j o0i ��! hP1 j o1i ��! : : : hPn j oni [��! : : :] there exists i � 0 such that
hPi j oii

!�!.

De�nition 3.4 (Must preorder) Given two processes P; Q 2 P and a set of
observers O, de�ne: P vO

must Q if and only if for every o 2 O, P must o
implies Q must o.

Note that, by De�nition 3.3 and by the operational rule for a test !:o, for
every P 2 P and o 2 O we have P must !:o.

4 Encodings of the pi-calculus into the asynchronous
pi-calculus

In this section we recall some notions about encodings. In general an encoding
is simply a syntactic transformation between languages. We will focus on
encodings of the �-calculus into the asynchronous �- calculus, and we will use
the notation [[�]] : Ps ! Pa to represent one such transformation. In general a
\good" encoding satis�es some additional properties, but there is no agreement
on a general notion of \good" encoding. Perhaps indeed there should not be a
unique notion, but several, depending on the purpose. Anyway, in this paper
we focus on the most common requirements, which are the homomorphism
or (weaker) the compositionality w.r.t. certain operators, and the correctness
w.r.t. a given semantics.

De�nition 4.1 (Homomorphism w.r.t. an operator) Let [[�]] be an encoding.
Let op be an n-ary operator of both Ps and Pa. We say that [[�]] is homomorphic
w.r.t. op if and only if

[[op(P1; :::; Pn)]] = op([[P1]]; :::; [[Pn]]):

Usually the homomorphism is required only for certain operators (typically,
in distributed languages, it is required for the parallel construct) while for the
others we simply require a compositional translation. To describe this notion
we use contexts C[], which are terms in Pa with one or more \holes" []. Given
P1; : : : ; Pn 2 Pa and a context C[] with n holes, C[P1; : : : ; Pn] denotes the term
in Pa obtained by replacing the occurrences of [] by P1; : : : ; Pn respectively.

De�nition 4.2 (Compositionality w.r.t. an operator) Let op be an n-ary
operator of Ps. We say that an encoding [[�]] is compositional w.r.t. op if and
only if there exists a context Cop[] in Pa such that

[[op(P1; : : : ; Pn)]] = Cop[[[P1]]; : : : ; [[Pn]]]:

Concerning semantic correctness, we consider preservation of must testing:

7

87

Cacciagrano, Corradini, Palamidessi

De�nition 4.3 (Soundness, completeness and must-preserving) Let [[�]] be an
encoding from Ps to Pa, We say that [[�]] is:

- sound w.r.t. must i� 8 P 2 Ps; 8 o 2 O, [[P]] must [[o]] implies P must o;
- complete w.r.t. must i� 8 P 2 Ps; 8 o 2 O, P must o implies [[P]] must [[o]];
- must-preserving i� [[�]] is sound and complete w.r.t. must .

5 Non existence of a must-preserving encoding

This section is the core of the paper. We prove a general negative result for
a large class of encodings of the �-calculus into the asynchronous �-calculus,
which includes the ones of Boudol, but also of Honda and Tokoro. More
speci�cally, our result, Theorem 5.3, states that any encoding [[�]] that is com-
positional w.r.t. input and output pre�xes and for which there exists P 2 Ps
such that [[P]] ", cannot be must -preserving. We start with two key (nice)
properties of our encodings:

Lemma 5.1 Let [[�]] be an encoding must -preserving. If there exists P 2 Ps
such that [[P]] ", then [[!:0]] !�!.

Proof. Let P 2 Ps such that [[P]] ". Since P must !:0 and the encoding [[�]]
is must -preserving, then [[P]] must [[!:0]]. Since [[P]] ", we have [[!:0]] !�!. 2

Lemma 5.2 Let [[�]] be an encoding that satis�es:

1. compositionality w.r.t. input and output pre�xes,
2. must -preservation,
3. 9P 2 Ps such that [[P]] ".

Then each [] in Cx(y)[] and C�xy[] is guarded, i.e. it occurs after an input or �
pre�x.

We are now ready to state our main result. It is worth of noting that The-
orem 5.3 does not apply to any hypothesis of homomorphism w.r.t. parallel
operator.

Theorem 5.3 Let [[�]] be an encoding that satis�es:

1. compositionality w.r.t. input and output pre�xes,
2. 9P 2 Ps such that [[P]] ".

Then [[�]] is not must -preserving.

6 Other impossibility results

The existence of a divergent process in the target language of the encod-
ings, which is one of the hypotheses of Theorem 5.3, can be guaranteed by
suitable assumptions on the encoding itself and the preservation of the must

8

88

Cacciagrano, Corradini, Palamidessi

testing. This section investigates conditions as weak as possible on the encod-
ings which, under the hypothesis of must-preservation, ensure the existence of
such divergent terms and therefore, together with the compositionality w.r.t.
the input and output pre�xes, imply the non existence of a must-preserving
encoding. The proofs can be found in the appendix.

The following theorem states that the existence of a divergent and a con-
vergent term in the source language whose encodings do not interact with the
context is a su�cient condition.

Theorem 6.1 Let [[�]] be an encoding that satis�es:

1. compositionality w.r.t. input and output pre�xes,
2. 9Q 2 Ps such that Q " and fn([[Q]]) = ;,
3. 9R 2 Ps such that R # and fn([[R]]) = ;.

Then [[�]] is not must -preserving.

The following theorem states that for the impossibility result it is also
su�cient to have homomorphism w.r.t. � -pre�xes. Note that we don’t require
homomorphism w.r.t. the ! operator. The homomorphism w.r.t. both � -
pre�xes and ! would imply immediately the existence of a divergent process
in the target language.

Theorem 6.2 Let [[�]] be an encoding that satis�es:

1. compositionality w.r.t. input and output pre�xes,
2. homomorphism w.r.t. � -pre�x,

Then [[�]] is not must -preserving.

The next result is, to our opinion, the most surprising. It states that a
compositional encoding cannot be must-preserving if the encodings of �:[] and
0 do not interact with the environment.

Theorem 6.3 Let [[�]] be an encoding that satis�es:

1. compositionality w.r.t. input, output, and � pre�xes,
2. fn([[�:[]]]) = fn([[0]]) = ;.

Then [[�]] is not must -preserving.

7 Related and future work

In this section we provide a brief introduction of those papers that are close
to our study and discuss possible future work.

An interesting paper that aims at studying the relationships between syn-
chronous and asynchronous communication is certainly [18]. The authors
consider the polyadic �-calculus and the asynchronous version of the monadic
�-calculus as base languages, Boudol’s encoding from the former to the latter

9

89

Cacciagrano, Corradini, Palamidessi

language and barbed congruence as the semantics to be preserved by the map-
ping. Some of the ideas exploited in [5] are also present in [18]. By relying
on a type system for processes, the authors restrict the asynchronous tests
(contexts in their setting) to those which are mapping of synchronous tests.
In such a way they get a full abstraction result for barbed congruence. How-
ever, we know that such a condition is necessary but not su�cient to get full
abstraction for every semantic theory. In [5] it has been proven a similar result
for may and fair testing but not for must. The proof technique in [5] still work
when their barbed congruence is considered (and, actually, also when Morris’
testing preorder is taken into account).

Another very interesting paper is [17]. Also this paper is concerned with
the attempt of solving or, at least, clarify how these two communication mech-
anisms (synchronous and asynchronous) can be implemented one into the
other. The �-calculus and the asynchronous �-calculus are the considered
languages together with their own transitional semantics. It has been shown
that it is not possible to map the �-calculus in the asynchronous �-calculus
for every possible \uniform" encoding (it is compositional w.r.t. parallel com-
position and \behaves well" w.r.t. renamings) and for every \reasonable"
semantics (it distinguishes two processes P and Q whenever in some compu-
tation of P the actions on certain intended channels are di�erent from those
of any computation of Q) which one wants to preserve. We cannot exploit
Palamidessi’s result to justify our negative result with the must preorder be-
cause her proof technique strongly relies on the presence of mixed choices
(input and output pre�xes in alternative composition) in the �-calculus while
we do not have explicit non deterministic compositions in our source language.

Another work with similar issues of ours is [11]. Honda concentrates on
the �-calculus, a subset of the asynchronous �-calculus, where only input
guarded terms can be in the scope of the bang operator (notice that this is
not a real restriction, since this kind of replicator is as expressive as the full
bang operator [15]). He considers two operational semantics: the �rst one,
called \synchronous", relies on the standard input-pre�x rule, while the latter
one, called \asynchronous", relies on a new input-pre�x rule, which allows
any process to perform an input action, also when not syntactically speci�ed.
Hence he proves soundness and completeness, w.r.t. a weak bisimulation, of
a mapping within the same language, when equipped by the two di�erent
semantics (the synchronous and asynchronous ones). It is worth of noting
that his synchronous semantics is our asynchronous semantics, a part from
the di�erent syntax, of course; his asynchronous semantics is a new one.

In [12] Honda and Tokoro concentrate on the �-calculus without sum and
bounded output and provide terms of this algebra with two transitional se-
mantics: one describes processes with a synchronous communication and the
other as the asynchronous semantics in [11]. The former transitional semantics
is standard. Then, various observational semantics based on trace, failure and
bisimulation, are de�ned on the top of the considered transitional semantics.

10

90

Cacciagrano, Corradini, Palamidessi

The relationships between the synchronous bisimulation and its asynchronous
counterpart are investigated. The main result of this study shows that the
latter relation is strictly weaker than the former one. Similar results hold
for trace and failure-based semantics. To obtain full abstraction results, they
introduce the notion of I completion. This is a mapping from a term inter-
preted asynchronously into a term interpreted synchronously. Any target term
is able to mimic all the asynchronous transitions via synchronous transitions.
They do not mention, however, to full abstraction results for the opposite
mapping; i.e., how to implement synchronous communication in terms of the
asynchronous one which, instead, is the main purpose of the current work.

Another interesting work is [8]. In this paper the authors study the expres-
sive power of variants of Klaim (a language with programming constructs for
global computing) and for assessing the expressiveness of the various languages
they exploit the idea of \mapped tests" in the target language.

As a future work, we plan to investigate the possibility of positive results
under some \fair" scheduling assumption. The idea of trying the fairness
assumption comes from the observation that the negative result for the must
testing is essentially due to divergent components and unfair scheduling strate-
gies. Of course, if we impose fairness on all parts of the computations, then we
have to impose it on both the source and the target languages in order for the
encoding to preserve the semantics. This in a sense weakens the intended re-
sult. To avoid this problem, we plan to impose fairness only on asynchronous
computations and, more speci�cally, only on those actions which belong to
simulations. We would like to check whether our results scale to versions of
�-calculus with mixed choice by exploiting the results and some non-uniform
encodings [Nes97].

It is also interesting to proceed in a similar way, comparing other communi-
cation mechanisms (for example, broadcasting vs peer to peer), and to import
the ideas developed for testing in a bisimulation scenario (for this latter line of
research it seems that [12] can provide a valid support to this investigation).

References

[1] M. Boreale, R. De Nicola, Testing Equivalence for Mobile Processes, Information
and Computation, 120, pp. 279-303, 1995.

[2] G. Boudol, Asynchrony and the �-calculus, Technical Report 1702, INRIA,
Sophia-Antipolis, 1992.

[3] F.S.de Boer, J.W.Klop, C.Palamidessi, Asynchronous Communication in
Process Algebra, Proc. of LICS’92, pp. 137-147, 1992.

[4] E. Brinksma, A. Rensink, W. Vogler, Fair Testing, Proc. of CONCUR’95,
LNCS, 962, pp. 313-327, 1995.

11

91

Cacciagrano, Corradini, Palamidessi

[5] D. Cacciagrano, F. Corradini, On Synchronous and Asynchronous
Communication Paradigms, Proc. of ICTCS ’01, LNCS, 2202, pp. 256-268,
2001.

[6] D. Cacciagrano, F. Corradini, C. Palamidessi, Separation of Synchronous and
Asynchronous Communication via Testing, Full Version, Avalilable on line at
http://www.cs.unicam.it/docenti/avio.corradini

[7] I. Castellani, M. Hennessy, Testing Theories for Asynchronous Languages, In
Proc. FSTTCS’98, LNCS, 1530, pp. 90-101, 1998.

[8] R. De Nicola, D. Gorla, R. Pugliese, On the expressive power of KLAIM-based
calculi, In Proc. of EXPRESS04, ENTCS, Elsevier, 2004.

[9] R. De Nicola, M. Hennessy, Testing Equivalence for Processes, Theoretical
Computers Science, 34, pp. 83-133, 1984.

[10] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, 1988.

[11] K.Honda, Two Bisimilarities in �-calculus, Keio CS report 92-002, Department
of Computer Science, Keio University, 1992.

[12] K. Honda, M. Tokoro, An Object calculus for Asynchronous Communication,
Proc. of ECOOP’91, LNCS, 512, pp. 133-147, 1991.

[13] R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.

[14] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes, Part I and II,
Information and Computation, 100, pp. 1-78, 1992.

[15] M. Merro, D. Sangiorgi, On asynchrony in name-passing calculi, Proc. of ICALP
’98, LNCS, 1443, 1998.

[16] V. Natarajan, R. Cleaveland, Divergence and Fair Testing, Proc. of ICALP’95,
LNCS, 944, pp. 648-659, 1995.

[Nes97] U. Nestmann, What is a ‘Good’ Encoding of Guarded Choice?, Proc. of
EXPRESS’97, ENTCS, 7, pp. 243-264, 1997.

[17] C. Palamidessi, Comparing the Expressive Power of the Synchronous and
Asynchronous �-calculus, Mathematical Structures in Computer Science, 13(5),
pp. 685-719, 2003. A preliminary version appeared in the proceedings of
POPL’97.

[18] P. Quaglia, D. Walker, On Synchronous and A synchronous Mobile Processes,
Proc. of FOSSACS 2000, LNCS, 1784, pp. 283-296, 2000.

12

92

EXPRESS 2005 Preliminary Version

Open bisimulation, revisited ?

Sébastien Briais ?? Uwe Nestmann

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract

In the context of the π-calculus, open bisimulation is prominent and popular due to
its congruence properties and its easy implementability. Motivated by the attempt
to generalise it to the spi-calculus, we offer a new, more refined definition and show
in how far it coincides with the original one.

1 Introduction

Open bisimulation, as introduced by Sangiorgi [San96] is an attractive candi-
date notion of bisimulation for the π-calculus for a number of different reasons.
First, it constitutes a reasonably full congruence, i.e., it is preserved by all op-
erators including input prefix. Second, it allows for simple axiomatizations
(for finite terms). Third, it is rather straightforward to build tools that check
open bisimilarity (see the MWB [Vic94] or the ABC [Bri03]).

The current paper arose from our attempt to “smoothly” generalise the
definition of open bisimulation from the π-calculus to the spi-calculus, an ex-
tension of the former by cryptographic primitives to be used in the description
of security protocols. It turns out that this is not easily doable, for reasons
that we try to explain in the remainder of this Introduction. Driven by the
quest for a meaningful definition of open-style bisimulation for the spi-calculus,
we came up with a proposal that we then observed can also be meaningfully
projected down to the case of the π-calculus. The resulting notion and its
comparison to the original definition is the main contribution of this paper.

The flurry of notions of bisimulation for the π-calculus 1 , ranging from
ground over early and late to open, results mainly from the different possible
treatments of simulated symbolic input transitions, e.g., when

simulating P
a(x)
−−→ P ′ by Q

a(x)
−−→ Q′.

? A long version is found at http://lamp.epfl.ch/~sbriais/.
??Supported by the Swiss National Science Foundation, grant No. 21-65180.1
1 Luckily, all of these notions collapse in certain sub-calculi, for example like the asyn-
chronous π-calculus, that are still expressive enough for most practical purposes.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

93

Briais, Nestmann

The problem is that after the execution of a symbolic input on channel a,
the input variable 2 x becomes free in the resulting continuation processes P ′
and Q′. Considering the possible instantiations of this input variable by re-
ceived messages can be done either not at all (as in ground), or (as in early)
before the simulating transition is chosen, or (as in late) right afterwards—or
(as in open) considering all possible substitutions (not only affecting the just
freed input variable) even before starting any bisimulation game. The latter
case can also be seen as “very late” or “lazy” since all possible instantiations
of the input variable will be checked the next time we try to continue with
the bisimulation game with P ′ and Q′.

For clarity of the following explanations, in an application P{M/x} of a
substitution, where M replaces all (free) occurrences of x in P , let us use the
terms substitution subject for x and substitution object for M .

What do we actually mean by all possible instantiations? By definition,
only free names can ever be affected as substitution subjects. In a process,
there are three kinds of free name. A free name may be free because:

(i) either it was already initially free,
(ii) or it has become free after having done an input (or been substituted),

(iii) or it has become free after having been created as a local name, and
afterwards output to some observing process.

We argue 3 that names of the latter kind are constant, i.e., they should not be
considered as substitution subjects, because they were created freshly and thus
appropriately chosen. (We formally support this point of view in Lemma 3.6,
and show that it gives rise to an equivalent freshness-aware notion of bisimula-
tion.) In contrast, the first two kinds shall be considered. On the other hand,
also not all substitution objects may be acceptable. More precisely: depending
on the history of the ongoing bisimulation game, certain instantiations may
sometimes be forbidden. There may be two different reasons for this.

The first reason concerns names names of kind (i) or (ii), say a, that
were free in a process before another name, say b, got freshly created and
extruded. Due to the freshness, any subsequent substitution for subject a must
not mention b as substitution object, so not to retrospectively invalidate this
freshness property. In open bisimulation, represented by an indexed family
of binary relations, the indexing component is precisely a structure called
distinction that keeps track of inequalities like a 6= b, as required above.

The second reason concerns only names of kind (ii) and resides on the intu-
ition that substitution objects represent messages that may be sent from the
observer to the observed process. In the π-calculus, there is no limitation be-
yond the above distinctions: the observer may send any name that it may have

2 Note that we do not introduce different syntactic categories for (constant) names and
variables. It is only for convenience of the explanation that we call receiving names in
bound input position “input variables”.
3 And here we slightly differ from Sangiorgi’s definition of open bisimulation.

2

94

Briais, Nestmann

received earlier, or it may simply invent names on its own. However, it is pre-
cisely here that severe difficulties arise when moving to the spi-calculus. The
main reason there is the presence of complex messages Ekn(· · ·Ek1(M) · · ·),
which may dispose of some deeply nested structure that involves so-called en-
cryption keys k1 . . . kn. Substitution objects are then all messages that the
observer (potentially a malicious attacker) could possibly have generated at
the moment the message was input. This generation is not arbitrary; it is con-
strained by the knowledge that the observer has acquired up to the moment
of interaction. For example, consider the spi-calculus process

P def= (νk) (νm) a〈Ek(m)〉.a(x).a〈k〉.[x=m]a〈a〉.0

where (νk) denotes the generation of a fresh name, a〈k〉 the sending of name k
over channel name a, a(x) the reception of a message over channel name a
with input variable x, Ek(m) the previously mentioned encryption of datum m
with key k, and [x=m] a test of equality of names. Intuitively, the output
a〈a〉 is impossible, because it would require that x could have been substituted
by m, which is itself impossible, because the private datum m was passed on
to the observer only within message Ek(m) encrypted with the private key k;
however, this key was unknown to the observer when it sent the message that
got received by a(x) — it was published only afterwards.

Here, a simple distinction k 6= m is not sufficient to characterise disallowed
substitutions because neitherm, nor Eb(m), nor Ek(Eb(m)), etc., are permitted
substitution objects. In contrast, the message Ek(m) that the observer learnt
in the first exchange could have been sent back to the process.

The study of other notions of bisimulation for the spi-calculus (see an
overview in [BN02]) resulted in careful analyses of observer (attacker) knowl-
edge and various kinds of data structures for the representation of such knowl-
edge. Typically, all messages that were emitted by an observed process in the
course of a bisimulation game are stored. Likewise, in particular in the pro-
posal of symbolic bisimulation of [BBN04], some timing or ordering informa-
tion is stored that keeps track of which messages were known to the observer
at the moment of the reception of a message by a process.

Together with the above-mentioned freshness-awareness, we choose to rep-
resent the observer knowledge for our new notion of open bisimulation by
triples of the form (O, V ,≺), where ≺ ⊆ O × V . O is the set of the emit-
ted messages, while V is the set of the substitutable names. Note that the
freshly created and subsequently extruded names are C = n(O) \ n(V) and
we add the condition that O ∩ V = ∅. The relation ≺ indicates for each
substitutable variable x ∈ V , which part of O was known when x was input.
Thus, in bisimulation games, this kind of environment structure permits to
treat substitutable names of the kinds (i) and (ii) in the same way.

While the above motivated way to characterise permissible substitutions
was driven by an analysis of spi-calculus phenomena, it also makes sense to
apply it to the much simpler π-calculus, which is the goal of this paper. In

3

95

Briais, Nestmann

P,Q ::= 0 E(x).P E〈F 〉.P φP P |Q P + Q !P (νx)P

Table 1
Syntax of processes P

M,N ::= a (messages M)
E,F ::= a (expressions E)
φ, ψ ::= tt φ∧ψ [E=F] (formulae F)

Table 2
Syntax of messages, expressions and formulae for the π-calculus

M,N ::= a EN(M) (messages M)
E,F ::= a EF (E) DF (E) (expressions E)
φ, ψ ::= tt φ∧ψ [E=F] [E :N] (formulae F)

Table 3
Syntax of messages, expressions and formulae for the spi-calculus

§2, we recall the original definition of open bisimulation in the π-calculus, for
which we use a unified presentation of the π-calculus and the spi-calculus. In
§3, we develop the details of our new proposal and prove its coincidence with
the original notion. In §4, we comment on the advantages of our new notion.

2 Open bisimulation

2.1 Syntax of the π-calculus and the spi-calculus

A countably infinite set a, b, c, . . . , k, l,m, n, . . . , x, y, z, . . . of names N is pre-
supposed. In the following, we write z̃ for a (possibly empty) finite sequence
of names z1, z2, . . . , zn. If z̃ is such a sequence, then we write {z̃} for the set of
names appearing in the sequence z̃. In order to unify the presentation of the
π-calculus and the spi-calculus, we have parametrised the syntax of processes
Table 1 by messages, expressions and formulae. Table 2 read in conjunction
with Table 1 gives the syntax of the π-calculus, whereas for the spi-calculus,
Table 3 and Table 1 should be considered.

The set of names appearing in a message M is written n(M). In the case of
the π-calculus, it is simply the singleton set containing M (since M is a name).
Similarly, the set of the names appearing in an expression E is written n(E)
and the set of the names appearing in a formula φ is written n(φ). Finally, the
set of free names fn(P) and bound names bn(P) of a process P are defined
as usual taking into account that the name x is bound in P by the constructs
E(x).P and (νx)P . These notions are straightforwardly lifted to sets.

4

96

Briais, Nestmann

Definition of J·K : E →M∪ {⊥}

JaK def= a

JEF (E)K def= EN(M) if JEK = M ∈M and JF K = N ∈M

JDF (E)K def= M if JEK = EN(M) ∈M and JF K = N ∈M

JEK def= ⊥ in all other cases

Definition of J·K : F → {true, false}

JttK def= true

Jφ∧ψK def= JφK and JψK

J[E=F]K def= true if JEK = JF K = M ∈M

J[E :N]K def= true if JEK = a ∈ N

JφK def= false in all other cases

Definition of c(·) : F → 2M∪{⊥}

c(tt) def= ∅

c(φ∧ψ) def= c(φ) ∪ c(ψ)

c([E=F]) def= ∅

c([E :N]) def= {JEK}

Table 4
Evaluation of expressions and formulae

2.2 Labelled (late) semantics

Table 4 defines the straightforward evaluation of expressions and formulae, as
well as some name constraints of a given formula. Table 5 defines a labelled
transition P µ−→S P ′ where µ is an action and S is a set of names. The set
S collects the names that should be names in order for the transition to be
enabled. In the π-calculus, where only names are considered, it can be simply
ignored but it is useful for the case of spi-calculus. These names are those
that are used as channels or that are assumed to be names by formulae.

Upon this transition system, the late semantics of the π-calculus and the
spi-calculus is given by: P µ−→ P ′ if and only if there is S such that P µ−→S P ′.

The syntax of actions µ is given by:

µ ::= τ a(x) (νz̃) aM (actions)

The bound output actions (νz̃) aM are such that {z̃} ⊆ n(M). In the case
of the π-calculus, since messages M are reduced to names, we have two cases:

5

97

Briais, Nestmann

Input
JEK = a ∈ N

E(x).P
a(x)
−−→{a} P

Output
JEK = a ∈ N JF K = M ∈M

E〈F 〉.P aM−−→{a} P

Close-l
P

a(x)
−−→S P ′ Q

(νz̃) aM
−−−−→S′ Q′

P |Q τ−→S∪S′ (νz̃) (P ′{M/x} |Q′)
{z̃} ∩ fn(P) = ∅

Open
P

(νz̃) aM
−−−−→S P ′

(νz′)P
(νz′z̃) aM
−−−−−−→S\{z′} P ′

z′ ∈ n(M) \ {a, z̃}

Res
P µ−→S P ′

(νz)P µ−→S\{z} (νz)P ′
z 6∈ n(µ) Guard

P µ−→S P ′

φP µ−→S∪c(φ) P ′
JφK = true

Par-l
P µ−→S P ′

P |Q µ−→S P ′ |Q
bn(µ) ∩ fn(Q) = ∅ Sum-l

P µ−→S P ′

P + Q µ−→S P ′

Rep
P | !P µ−→S P ′

!P µ−→S P ′
Alpha

P =α P ′ P ′ µ−→S P ′′

P µ−→S P ′′

Table 5
The late semantics of the π-calculus

either z̃ is the empty sequence and (νz̃) aM is simply written aM or z̃ = M
and the bound output action is simply (νz) a z where z = M .

The set of names n(µ) is defined by:

n(τ) := ∅, n(a(x)) := {a, x}, n((νz̃) aM) := {a, z̃} ∪ n(M).

The set of bound names bn(µ) of µ is defined by:

bn(τ) := ∅, bn(a(x)) := {x}, bn((νz̃) aM) := {z̃}.

Moreover, if µ = a(x) or µ = (νz̃) aM , we define ch(µ) def= a.

2.3 Open bisimulation in the π-calculus

As mentioned in the Introduction, open bisimulation was introduced by San-
giorgi [San96]. It relies on the notion of distinction to keep track of inequalities
of names in order to constrain the set of substitutions to be considered in the
respective bisimulation game.

Definition 2.1 (distinction) A binary relation D ⊆ N × N on names is
called distinction if it is finite, symmetric, and irreflexive.

By n(D) we denote the set of names contained in D.

6

98

Briais, Nestmann

If A, B are two sets of names, we define the distinction A ⊗ B to be
{(x, y) ∈ A×B ∪B × A | x 6= y}. A 6= abbreviates A⊗ A.

Definition 2.2 (substitution) A substitution σ is a total function N →M
such that its support supp(σ) := {x | xσ 6= x} is a finite set.

The co-support of σ is cosupp(σ) := {xσ | x ∈ supp(σ)}.
The set of names of σ is n(σ) := supp(σ) ∪ n(cosupp(σ)).

As said previously, distinctions are to prevent substitutions to fuse two
names that were assumed to be different at some point. Hence the definition
of so-called respectful substitutions.

Definition 2.3 (respectfulness) Let D be a distinction, σ a substitution.
σ respects D, written σ . D, if and only if xσ 6= yσ for all (x, y) ∈ D.
If σ respects D, then Dσ is defined as {(xσ, yσ) | (x, y) ∈ D}.

Note that sinceM = N in the case of the π-calculus, Dσ is itself a distinction.
An open bisimulation is a distinction-indexed family of symmetric relations

between processes that satisfies some condition.

Definition 2.4 (open bisimulation) The family (RD)D∈D (where D is a
set of distinctions) of symmetric relations is an open bisimulation if for all
D ∈ D, for all substitutions σ such that σ . D, for all (P,Q) ∈ RD, whenever
Pσ µ−→ P ′ (with bn(µ) fresh), there exists Q′ such that Qσ µ−→ Q′ and
• if µ = (νz) a z for some a and z, D′ ∈ D and (P ′, Q′) ∈ RD′

where D′ = Dσ ∪ {z} ⊗ (fn((P + Q)σ) ∪ n(Dσ))
• otherwise, Dσ ∈ D and (P ′, Q′) ∈ RDσ.

The induced equivalence is defined as usual, modulo the indexing component.

Definition 2.5 (open bisimilarity) Let P,Q ∈ P and D a distinction. We
say that P and Q are open D-bisimilar—written P ≈DO Q—if there exists an
open bisimulation (RD)D∈D such that D ∈ D and (P,Q) ∈ RD.

Instead of families of binary relations between processes we may also use
ternary relations, which is often done in the context of the spi-calculus. Thus,
instead of (P,Q) ∈ RD, we then write (D,P,Q) ∈ R, where D is usually called
environment, and the ternary relation is called environment-sensitive. It is
mainly for easier readability that we adopt the ternary style in the following,
although a bit of care needs to be taken to lift the three equivalence properties
to the ternary format. For example, a ternary environment-sensitive relation
is called symmetric if and only if (e, P,Q) ∈ R ⇔ (e,Q, P) ∈ R.

3 Open bisimulation, reloaded

Before proceeding to our new proposal to define open-style bisimulation, we
provide a slightly different, but equivalent variant of the previously given
standard notion. This variant will make it easier to relate to our new proposal.

7

99

Briais, Nestmann

3.1 A freshness-aware variant of open bisimulation

In this section, we define the notion of F-open bisimulation. The simple idea
is, as we mentioned already in the Introduction, to prevent names that were
previously (in the course of a bisimulation game) created freshly from being
considered as permissible substitution subjects.

The knowledgeable reader may be reminded of the notion of quasi-open
bisimulation, proposed by Sangiorgi and Walker [SW01b], and later on revis-
ited by Fu [Fu05]. There, the use of distinctions as environments was adapted
to the use of a simple set of names that were once freshly created and therefore
deemed to remain constant. The resulting quasi-open bisimulation was recog-
nised as being strictly weaker than open bisimulation. Sangiorgi and Walker
intuitively summarised this difference as: “In open bisimilarity, when a name
z is sent in a bound-output action, the distinction is enlarged to ensure that z
is never identified with any name that is free in the processes that send it. In
quasi-open bisimilarity, in contrast, at no point after the scope of z is extruded
can a substitution be applied that identifies z with any other name.” [SW01b].

Like quasi-open bisimulation, the following definition also explicitly keeps
track of previously freshly created names. However, it does not use this infor-
mation to prevent the fusion of such fresh names like quasi-open bisimulation
does. It only use this information to implement the idea that fresh names can
be considered as constant names once chosen, such that they should afterwards
never be used as substitution subjects. In fact, Lemmas 3.6 and 3.7 show that
this change still faithfully retains the equational power of open bisimulation.

Definition 3.1 (F-environment) The pair (D,C) where D is a distinction
and C is a finite subset of names is a F-environment if C 6= ⊆ D. The set of
all F-environments is written F .

The distinction D plays the same role as in open bisimulation, while the
set C indicates which names can be considered as constant names. It is used
to refine the notion of respectfulness, as follows.

Definition 3.2 (respectful substitution)
Let (D,C) be a F-environment and σ a substitution. We say that σ respects
(D,C) – written σ I (D,C) – if σ . D and supp(σ) ∩ C = ∅.

Definition 3.3 (F-relation) A F-relation R is a subset of F × P × P.

Definition 3.4 (F-open bisimulation) A symmetric F-relation R is a F-
open bisimulation, if for all ((D,C), P,Q) ∈ R and for all substitutions σ
such that σ I (D,C), whenever Pσ µ−→ P ′ (with bn(µ) fresh), there exists Q′

such that Qσ µ−→ Q′ and
• if µ = (νz) a z for some a and z, ((D′, C ∪ {z}), P ′, Q′) ∈ R

where D′ = Dσ ∪ {z} ⊗ (fn((P+Q)σ) ∪ n(Dσ))
• otherwise, ((Dσ,C), P ′, Q′) ∈ R

The two only differences compared to open bisimulation is, first, that the

8

100

Briais, Nestmann

notion of respectfulness is slightly modified such that it takes into account the
constant names of a F-environment and, second, that the extruded names are
being accumulated in the pool of constant names of F-environments.

Definition 3.5 (F-open bisimilarity) Let P,Q ∈ P and (D,C) ∈ F .
P and Q are F-open (D,C)-bisimilar, written P ≈(D,C)

F Q, if there is a
F-open bisimulation R such that ((D,C), P,Q) ∈ R.

The two notions of bisimilarity are equivalent in the following sense.

Lemma 3.6 Let P,Q ∈ P and (D,C) ∈ F .
If P ≈(D,C)

F Q, then P ≈DO Q.

Proof. The key of the proof is that it is possible, if σ . D and C 6= ⊆ D, to
find a substitution σ′ and a bijective substitution θ such that σ = σ′θ and
σ′ I (D,C).

Lemma 3.7 Let P,Q ∈ P and D a distinction.
If P ≈DO Q, then ∀C : C 6= ⊆ D ⇒ P ≈(D,C)

F Q.

Proof. This result is obvious because σ I (D,C) implies σ . D.

3.2 A knowledge-aware variant of open bisimulation

As motivated in the Introduction, we propose a bisimulation that makes ex-
plicit the attacker who plays against the two players P and Q involved in the
bisimulation game. The knowledge of the attacker is stored in K-environments
of the form (O, V ,≺). The set of names V represents all the substitutable free
names (those that were initially free or become free after an input action).
The set of messages O contains all the messages that were emitted by P and
Q, except the names of V . Finally, the relation ≺ indicates for each sub-
stitutable name x the available knowledge acquired by the attacker at the
moment the name x was input. This relation characterises the admissible
messages received from the attacker.

Definition 3.8 (K-environment) A K-environment is a triple (O, V ,≺) such
that O ∪ V is a finite subset of N , O ∩ V = ∅ and ≺ ⊆ O× V . The set of all
K-environments is K.

If E is a K-environment, and n ∈ N , it is possible to extend E with n in
two ways. Either n is meant to be an emitted name and it is added to the
constant part of E, or n is meant to be a received name and it is added to the
variable part of E and put in relation with all already emitted names. If n is
already contained in E, its addition to E has no effect.

Definition 3.9 (Extension of a K-environment) Let E = (O, V ,≺) be a
K-environment and n ∈ N . We define

(i) E⊕On
def= (O′, V ,≺) where O′ def= O∪{n} if n 6∈ V and O′ def= O otherwise.

(ii) if n 6∈ O ∪ V , E ⊕V n
def= (O, V ∪ {n} ,≺′) where ≺′ def= ≺ ∪O × {n}.

9

101

Briais, Nestmann

Keeping in mind that a substitution represents the potential inputs the
attacker could have generated, we define the set of respectful substitutions.
A substitution σ respects a K-environment E = (O, V,≺) if it affects only
substitutable names (those in V) and if for each x ∈ V , it takes only values
that were generatable at the moment when x was input. This means that such
a name x can use any name in V (this corresponds to fusing two substitutable
names), or use any name in O that was known by the attacker when x was
input (this is indicated by the relation ≺) or use any new fresh name not
contained in E (this corresponds to the creation of free names by the attacker).
In the π-calculus, since a substitution replaces a name by a name, this can be
easily and concisely expressed by:

Definition 3.10 (respectful substitution)
A substitution σ respects a K-environment E = (O, V ,≺), written σ II E, if:

(i) supp(σ) ⊆ V
(ii) ∀x ∈ V : xσ ∈ O ⇒ xσ ≺ x

Roughly speaking, in spi-calculus, xσ is built using names from V , the mes-
sages from O that are permitted by ≺ and some freshly generated names. In
π-calculus, this is simplified to xσ ≺ x because xσ ∈ N .

Any K-environment E = (O, V ,≺) may, under the impact of some a re-
spectful substitution σ, be straightforwardly updated to Eσ. In general, the
knowledge contained in O should be updated to Oσ. However, in the π-
calculus, substitution deals only with names, and since O ∩ V = ∅ we have
Oσ = O. The set V of substitutable names should keep all the names that
were not affected by σ, and in addition list all the new names that were created
by the attacker, as visible in the substitution objects. 4 Particular care must
be taken when computing the new relation ≺′ because of the possibility that
σ fuses two names of V . Fusing two names x and y (by xσ = yσ) corresponds
to a voluntary loss of power of the attacker: the only admissible values for the
fused name are those that were admissible for both x and y.

Definition 3.11 (K-environment updating)
Let E = (O, V ,≺) be a K-environment and σ a substitution such that σ II E.
The updated environment is Eσ def= (O′, V ′,≺′) of E by σ where

V ′ def= (V \ supp(σ)) ∪ {xσ | x ∈ supp(σ) ∧ xσ 6∈ O}
≺′ def= {(n, x′) | ∀x ∈ V : x′ ∈ n(xσ)⇒ n ≺ x}

Definition 3.12 (K-relation) A K-relation R is a subset of K×P×P such
that ∀((O, V ,≺), P,Q) ∈ R : fn(P+Q) ⊆ O ∪ V .

The new variant of open bisimulation now simply keeps track of whether
dynamically freed names are substitutable or not. If they are, then we explic-

4 The fact that we put the names created by the environment in the substitutable part gives
a “lazy” flavour to our definition, because it allows the attacker to uncover itself gradually.

10

102

Briais, Nestmann

itly state that previously created names may be used in future substitutions.
Names that will be created later on—by the process—will not be permitted.

Definition 3.13 (K-open bisimulation) A symmetric K-relation R is a
K-open bisimulation, if for all (E,P,Q) ∈ R and for all substitutions σ such
that σ II E, whenever Pσ µ−→ P ′ (with bn(µ) fresh), there exists Q′ such that
Qσ µ−→ Q′ and
• if µ = τ , then (Eσ, P ′, Q′) ∈ R
• if µ = a(x) then (Eσ ⊕V x, P ′, Q′) ∈ R
• if µ = (νz) a z or µ = a z then (Eσ ⊕O z, P ′, Q′) ∈ R

We see in this definition that indeed O collects all the messages emitted by P
and Q (but the addition Eσ⊕O z has only effect when µ = (νz) a z because E
contains all free names of P and Q) and V collects all substitutable names.

Definition 3.14 (K-open bisimilarity) Let P,Q ∈ P and E ∈ K.
P and Q are K-open E-bisimilar, written P ≈EK Q, if there is a K-open

bisimulation R such that (E,P,Q) ∈ R.

In the π-calculus, it is possible to represent any K-environment by some F-
environment. The idea is that all names in O should be kept pairwise distinct
(they were fresh names) and for all (n, x) ∈ O ∪ V , if n cannot be used to
generate x (i.e. ¬n ≺ x), then n and x should be distinct (n 6= x).

Definition 3.15 (F-environment of a K-environment)
Let E = (O, V ,≺) be a K-environment. We define f(E) = (D,O) where
D = O 6= ∪

S
n∈O∧x∈V ∧¬n≺x {(n, x), (x, n)}. Clearly, f(E) ∈ F .

The K-open bisimilarity is sound with respect to F-open bisimilarity.

Lemma 3.16 Let P,Q ∈ P and (O, V ,≺) ∈ K such that fn(P+Q) ⊆ O ∪ V .
Then we have:

P ≈(O,V ,≺)
K Q⇒ P ≈f((O,V ,≺))

F Q

Under the condition that the F-environment (D,C) is representable by a
K-environment E, F-open (D,C)-bisimilarity is sound with respect to K-open
E-bisimilarity.

Lemma 3.17 Let P,Q ∈ P and (D,C) ∈ F . Then we have

P ≈(D,C)
F Q⇒

0

@∀V ,≺ :
C ∩ V = ∅

∧ fn(P+Q) ⊆ C ∪ V
∧ (D,C) = f((C, V ,≺))

⇒ P ≈(C,V ,≺)
K Q

1

A

The proof of this lemma also shows that F-environments that are not repre-
sentable by any corresponding K-environment are negligible.

It is known that open D-bisimilarity is a D-congruence, i.e., it is preserved
by all contexts in which the occurrence of the hole is not underneath an input
prefix binding a name in D (cf. [SW01a]). We conjecture that, based on our
new notion of K-open-bisimilarity and with respect to (D,C) = f((C, V ,≺)),

11

103

Briais, Nestmann

we can define a bigger classes of contexts that preserve open bisimilarity. The
idea is (1) to admit contexts with the same above condition w.r.t. names C as
D-congruence imposes w.r.t. D, and furthermore (2) to admit contexts where
the hole occurs underneath an input prefix that binds a name x of V , but
only if, in addition, every name of {n ∈ C | ¬n ≺ x} appears underneath a
respective restriction on the “path” from the hole-binding input prefix for x
to the hole. We leave a formal treatment of this issue for future work, and
just explain the conjecture by means of a simple example.

Example 3.18 Let P = x | y and Q = x.y + y.x.
It is known and easily verifiable that P ≈DO Q with D = {(x, y), (y, x)}.
Let C = {y} and V = {x}, and note that (D,C) = f((C, V, ∅)).
Observe that P ≈(C,V ,≺)

K Q.
Now, let us regard the context X[·] = a(x).(νy) [·].
Then X[P] ≈∅O X[Q], although X[·] is not considered by D-congruence.
However, X[·] follows our above informal rule of admissible contexts.
Finally, just note that also X[P] ≈(∅,{a},∅)

K X[Q].

In summary, we can conclude from the previous results our new notion of
open-style bisimilarity semantically coincides with the original style.

Theorem 3.19 P ≈∅O Q⇔ P ≈(∅,∅)
F Q⇔ P ≈(∅,fn(P+Q),∅)

K Q

4 Conclusion and future work

The main contribution of this paper is the definition of a new notion of open-
style bisimulation in the π-calculus guided by knowledge-sensitive notions of
bisimulation that arose in the context of the spi-calculus. We have proved
that the new notion corresponds to the original open bisimilarity in a precise
and informative way that indicates improved congruence properties.

The new definition of open-style bisimulation can now indeed be smoothly
extended in the spi-calculus (a first proposal is given in appendix but we
can mention close work such as [Bri02] or [BBN04]). Our proposal in spi-
calculus uses the same environment shape as our proposal in π-calculus. But
it is necessary, as noticed by Abadi and Gordon in [AG98], to introduce also a
notion of indistinguishability. Some type constraints should also be ensured: a
free name used as a channel should never be substituted by anything else than
a name. Hence, the environment we propose for spi-calculus are quadruple
(h, v, ≺ , γ) where h stores all the emitted messages and moreover implements
this notion of indistinguishability, v contains all the substitutable names, ≺
governs which messages can be used to generate inputs for names in v and γ
stores which names should keep the type of names.

Next, we plan to study congruence properties of our K-open bisimilarity.
We will do the same for our extension to the spi-calculus and also study its
relation to symbolic bisimilarity as defined in [BBN04].

12

104

Briais, Nestmann

References

[AG98] M. Abadi and A. D. Gordon. A Bisimulation Method for Cryptographic
Protocols. Nordic Journal of Computing, 5(4):267–303, Winter 1998. An
extended abstract appeared in the Proceedings of ESOP ’98, LNCS 1381,
pages 12–26.

[BBN04] J. Borgström, S. Briais and U. Nestmann. Symbolic Bisimulation in the
Spi Calculus. In P. Gardner and N. Yoshida, eds, Proceedings of CONCUR
2004, volume 3170 of LNCS, pages 161–176. Springer Verlag, Sept. 2004.

[BN02] J. Borgström and U. Nestmann. On Bisimulations for the Spi Calculus.
In H. Kirchner and C. Ringeissen, eds, Proc. AMAST’02, volume 2422 of
Lecture Notes in Computer Science, pages 287–303. Springer, 2002. Long
version to appear in Mathematical Structures in Computer Science.

[Bri02] S. Briais. Towards open bisimulation in the spi calculus. Mémoire de
D.E.A., Université Paris VII - Denis Diderot, 2002.

[Bri03] S. Briais. ABC Bisimulation Checker. EPFL, 2003. Available from http:
//lamp.epfl.ch/~sbriais/abc/abc.html.

[Fu05] Y. Fu. On Quasi-Open Bisimulation. Theoretical Computer Science,
338:96–126, 2005.

[San96] D. Sangiorgi. A Theory of Bisimulation for the π-calculus. Acta
Informatica, 33:69–97, 1996. Earlier version published as Report ECS-
LFCS-93-270, University of Edinburgh. An extended abstract appeared in
the Proceedings of CONCUR ’93, LNCS 715.

[SW01a] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[SW01b] D. Sangiorgi and D. Walker. Some results on barbed equivalences in pi-
calculus. In Proc. CONCUR ’01, volume 2154 of LNCS. Springer Verlag,
2001.

[Vic94] B. Victor. A Verification Tool for the Polyadic π-Calculus. Licentiate
thesis, Department of Computer Systems, Uppsala University, Sweden,
May c© 1994. Available as report DoCS 94/50.

13

105

http://lamp.epfl.ch/~sbriais/abc/abc.html
http://lamp.epfl.ch/~sbriais/abc/abc.html

	1030a - I01-308488741.pdf
	Relating Causal Trees to Other Models for Concurrency
	Bisimulation from Open Maps
	P-bisimilarity

	Conclusions
	References

	1030b - I01-1844739264.pdf
	Introduction
	Background

	1030c - I01-1939921763.pdf
	Introduction

	1030d - I01-2002830849.pdf
	1500 - BerSch-express05.pdf
	Introduction

	1600c - I01-200124584.pdf
	Introduction
	The pi-calculus and the asynchronous pi-calculus

	1600d - I01-1592611437.pdf
	Introduction
	Open bisimulation
	Syntax of the -calculus and the spi-calculus

	Open bisimulation, reloaded
	Conclusion and future work
	References

