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Abstract

We study static repair priorities in a system consisting of one repair shop and one stockpoint,

where spare parts of multiple repairables are kept on stock to serve an installed base of technical

systems. Demands for ready-for-use parts occur according to Poisson processes, and are accom-

panied by returns of failed parts. The demands are met from stock if possible, and otherwise

they are backordered and fulfilled as soon as possible. Returned failed parts are immediately sent

into repair. The repairables are assigned to static priority classes. The repair shop is modelled

as a single-server queue, where the failed parts are served according to these priority classes. We

show that under a given assignment of repairables to priority classes, optimal circulation stock

levels follow from Newsboy-type equations. Next, we develop fast and effective heuristics for the

assignment of repairables to priority classes. Subsequently, we compare the performance of the

system under these static priorities to the case with a First-Come First-Served (FCFS) service

discipline. We show that in many cases static priorities reduce total inventory holding and back-

ordering costs by more than 40%. Finally, we analyse the effect of the number of priority classes.

We show that 2 priority classes suffice to obtain 90% of the maximal savings via static priorities.

Keywords: inventory/production control, spare parts, static priorities, system-focussed per-

formance measures.
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1 Introduction

In this paper, we study the provisioning of spare parts for advanced technical equipment, such

as military equipment, airplanes, large computer systems, medical equipment, baggage handling

systems, and so on. Such equipment is often part of primary processes of their users, and down-times

of such systems may halt large parts of these primary processes. Therefore, in many industries, high

fractions of up-time are required by users, and professional service organizations are responsible

for realizing those up-times. Such a service organization may be a separate department within the

same company as where the systems are used (e.g., in military organizations and companies that

are large enough to organize this support by themselves), a department of the Original Equipment

Manufacturer (this is common in the high-tech industry), or a third party. Resources are people

for call handling and remote service, service engineers, spare parts, and service tools. For high-tech

systems, in general a large part (30% or more, say) of the total support costs consists of spare parts

costs. This is for spare parts usage, for having spare parts on stock in locations at close distance

of the installed systems, for repair of spare parts, and for transportation of the parts by fast and

slower transportation modes.

The inventory control for spare parts may have a large effect on total spare parts costs. What

has been studied extensively is the so-called system approach, in which the inventory control is

directly focussed on availability of systems instead of target service levels for individual Stock

Keeping Units (SKU-s). This has been studied in single-location and multi-echelon settings, and it

has been shown that, in comparison to a straightforward item approach, the system approach may

lead to large reductions (typically 20-50%) in inventory holding costs for spare parts; see Sherbrooke

(2004), Thonemann et al. (2002), and Rustenburg et al. (2003). In these comparisons, leadtimes

for procurement of new parts or repair of repairable parts are considered as given. Obviously,

optimal total costs decrease when these leadtimes are decreased, but reducing leadtimes for all

SKU-s may also require additional investments.

The goal of this paper is to study the effect of static repair priorities on the total system

performance. We study a spare parts supply system consisting of one repair shop, one stockpoint,

and multiple repairable SKU-s. Ready-for-use parts are kept on stock in the stockpoint to serve

an installed base of technical systems. When a part of one of the technical systems fails, the failed

part is immediately sent to the repair shop and at the same time a ready-for-use part is requested

at the stockpoint. Such a request is fulfilled immediately if there is a part of the requested SKU on

stock and otherwise the request is backordered and fulfilled as soon as possible. Each backordered

request corresponds to a technical system that is down. The objective of our model is to minimize

the average total inventory holding costs of spare parts and costs for down-time of technical systems
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over an infinite horizon. This is similar to the system-focussed objective functions that have led to

the system approach as discussed above. In our model, we use the FCFS discipline as the standard

rule for the repair of failed parts, as FCFS reflects the common way of working in practice. By

using static priorities instead of FCFS, we can decrease repair leadtimes for expensive SKU-s (by

assigning them to high priority classes), which may lead to strong reduction of their circulation

stocks. At the same time, repair leadtimes for cheaper SKU-s increase (if they are assigned to

lower priority classes), the effect of which are higher circulation stocks. However, because these

SKU-s are cheaper the latter effect may be much smaller in terms of money than the effect for

the expensive SKU-s. Notice that static priorities do not require additional investments in repair

capacity.

In our model, the optimization variables are the circulation stocks and the assignment of SKU-s

to priority classes. To obtain representative data for the various input parameters, we collected

data at the Royal Netherlands Navy. They work with specialized groups of repairman that execute

preventive and corrective maintenance and repair failed parts for subsystems of technical systems

such as radar systems, goalkeepers, and diesel engines. We collected data at 4 such groups. Those

data will be used in our numerical experiments. With respect to the numbers of SKU-s that are

repaired by one group, we observed that they varied from 13 to 99 among those 4 groups. To be

able to handle those numbers, and also because priority systems are hard to analyze in general, we

are forced to make some simplifying assumptions. We model the repair shop as a single exponential

server and we assume that all SKU-s have exponential repair times with the same mean. Under

these assumptions, we are able to optimize systems with 2 priority classes and 15 SKU-s in an exact

way. Based on those instances, we test 4 different heuristic optimization algorithms. The best of

these heuristics has an optimality gap of 1.1%, and this heuristic is used for larger instances with

up to 5 priority classes and 50 SKU-s to compare system performance under static priorities and

FCFS. This shows that static priorities may easily lead to total cost reductions of 40% or more.

We also show how these savings depend on input parameters. Although these results are obtained

under the simplifying assumptions, they suggest that, also under more realistic circumstances, use

of static priorities may lead to substantial cost savings. Notice that the simplifying assumptions

in the present paper are common in the field of capacitated production/inventory systems where

capacities are modelled as queues; see e.g. Buzacott and Shantikumar (1993).

Our work contributes to a rich literature on spare parts inventory models. One stream of

work started with the seminal paper of Sherbrooke (1968) on the METRIC model. In this stream

ample repair capacities are assumed, the models are focussed on optimal control for multiple items

in multi-echelon systems, targets are typically set in terms of system availability, and they allow
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the assumption of multi-indenture structures for the technical systems. The first models in this

stream were inspired by military applications. For an overview of this stream, see the references in

Sherbrooke (2004) and Rustenburg et al. (2003).

The assumption of ample repair capacities in the first stream facilitates the analysis and enables

that systems with many SKU-s can be optimized. But, the assumption of ample capacity is not

always justified. It can lead to a poor estimation of system performance and a poor allocation of

stocks in systems with highly utilized repair shops and no flexibility options to control leadtimes

(cf. Van Harten and Sleptchenko, 2003, and Sleptchenko et al., 2002). Therefore, in a second

stream of literature, various ways to model finite repair capacities have been studied. Most papers

in this stream are based on queueing type models with exponential servers; see Gross et al. (1983),

Albright and Gupta (1993), Gupta and Albright (1992), Avsar and Zijm (2002), Zijm and Avsar

(2003). Other interesting contributions in this stream have been made by Aboud (1996), Diaz and

Fu (1997), and Perlman et al. (2001). In much of this work, the focus is on the development

of approximate evaluation algorithms, and if optimization is applied, this is generally limited to

systems with limited numbers of SKU-s.

In a third stream, the effect of repair priorities has been studied. This stream consists of a few

papers only, which seems to be due to the fact that priority systems are hard to analyze in general.

The use of emergency repairs in case stock levels are lower than some critical level has been studied

by Verrijdt et al. (1998), while Perlman et al. (2001) considered emergency repairs under predefined

probabilities. Both models assume that the normal and emergency repair facilities are separated.

Hausman and Scudder (1982) and Pyke (1990) studied repair priorities in systems with limited

numbers of SKU-s via simulation. These studies show that static priority rules are outperformed

by dynamic rules, and that priority rules may lead to significant cost savings, especially under

high workloads at the repair facility. As stated above, optimization of the repair priorities via

simulation models is time consuming and practically impossible for systems with many SKU-s. A

model similar to the one studied in the present paper was developed by Sleptchenko et al, 2005a.

They considered a two-echelon, two-indenture system with multi-server, two-priority repair shops.

Based on an approximate evaluation of a multi-class, multi-server queue with two priority classes

(cf. Sleptchenko et al., 2005b, and Van der Heijden et al., 2004), they developed heuristics for the

optimization of circulation stocks and the assignment of repair priorities, and they showed that

static priorities may lead to significant cost reductions in comparison to FCFS. As indicated, their

analysis was limited to two priority classes. Moreover, due to complexity of their model, only

systems with a limited number of SKU-s (up to 9 SKU-s that share the same repair capacity, and

up to 28 SKU-s in total) could be analyzed.
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An interesting recent contribution has been made by Caggiano et al. (2006), who developed

an integrated model for real-time capacity and inventory allocation in a two-echelon repairable

spare parts system with one central repair shop (see also Muckstadt, 2005). That model is a

finite-horizon, periodic-review, mathematical programming model and is appropriate to support

operational decisions for repairable spare parts in the exploitation phase of technical systems.

Their model implicitly uses dynamic priorities for their repair shop, as SKU-s with a low actual

on-hand stock of ready-for-use parts receive priority over SKU-s with high actual on-hand stocks.

Our model may be seen as a complementary model to their model, as it generates insights for

the initial supply of repairable spare parts at the beginning of the exploitation phase, i.e., at the

moment that new technical systems are installed.

Our work fits in the third stream of research, and our main contribution consists of three parts.

First, we formulate a clean model that allows exact evaluation, and we develop efficient and effective

heuristics for the optimization of circulation stocks and assignment of static repair priorities. In

fact, we show that under a given assignment of repair priorities, optimal circulation stocks follow

from Newsboy-type equations, and next the repair priorities are optimized heuristically. For our

most effective heuristic, which consists of enumeration among so-called ordered priority assignments

followed by local search, an optimality gap of 1.1% is found in a test bed of 108 instances with 2

priority classes and 15 SKU-s. Second, via this effective heuristic and a test bed of 1296 instances

with up to 5 priority classes and 50 SKU-s, we show that by the use of static repair priorities total

costs are reduced by 40% or more in the majority of the instances, and we give insights into the

parameters by which these savings are mainly determined. Third, we show that 2 priority classes

suffice to obtain 90% of the maximal savings via static priorities. This result is important from a

practical point of view, because priority systems with 2 classes will be much easier to implement

than systems with more than 2 classes. To the best of our knowledge, this insight has not been

established before in the literature.

The organization of this paper is as follows. In Section 2, we formulate our model. Next,

in Section 3, we show how circulation stocks are optimized under a given assignment of repair

priorities, and we formulate heuristics for the optimization of the repair priorities. In Section 4, the

heuristics are tested, and we study the savings obtained by repair priorities. After that, in Section

5, we apply our heuristics to stylized cases based on data from the Royal Netherlands Navy. Finally,

we conclude in Section 6.
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2 Model

In this section we first describe the spare part supply system and formulate our model. Then,

we show how the objective function is evaluated for given basestock levels and a given priority

assignment.

2.1 System description

We consider a single location with one repair shop and one stockpoint, where spare parts of multiple

repairables are kept on stock to serve an installed base of technical systems (see Figure 1). We

distinguish N (∈ N0 := N∪{0}) repairables or SKU-s, which are numbered 1, . . . , N . These SKU-s

occur in the configurations of the technical systems and are subject to failures. When a part fails in

one of the technical systems, immediately a demand is placed for a ready-for-use part of the same

SKU at the stockpoint and the failed part is sent to the repair shop. If the requested part is on

stock, then the demand is immediately fulfilled. Otherwise the demand is backordered and fulfilled

as soon as a ready-for-use part of the requested SKU becomes available. We assume that, for the

total installed base, failures of an SKU occur according to a Poisson process with a constant rate.

This assumption is justified if the installed base is sufficiently large, or if the installed base is not

that large but down-times of systems are relatively short (e.g., because of a high service level at

the stockpoint). The total failure rate for SKU n is given by λn (> 0).

We assume that all parts can be repaired. This implies that the inventory positions of all SKU-s

are kept at a constant level, or, in other words, that there is a constant circulation stock for each

SKU. The constant level for the inventory position of SKU n is denoted by Sn (∈ N0); we refer to

these levels as basestock levels.

The repair shop is modelled as a single exponential server, which repairs the failed parts of all

SKU-s. All repair times are exponentially distributed and mutually independent. For all SKU-s, we

assume the same service rate µ. To obtain a stable system, we assume µ >
∑N

n=1 λn. The SKU-s

are divided over M (∈ N) priority classes. These classes are numbered 1, . . . , M . The smaller the

class number, the higher its priority. Further, we assume preemption, i.e., the repair of a failed

part is interrupted as soon as a failed part of a higher priority arrives at the repair shop. The

assignment of SKU-s to priority classes is described by a matrix X of size N ×M . The (n,m)-th

element of this matrix is denoted by xn,m and

xn,m =





1 if SKU n is assigned to priority class m;

0 otherwise

We also use the notation mn to denote the class m to which SKU n has been assigned; i.e., mn is
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Figure 1: The spare parts supply system and its interaction with the installed base.
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Figure 2: The repair shop: A priority queueing system.

the unique class index m for which xn,m = 1. The repair shop is visualized in Figure 2, in which

queue m corresponds to priority class m.

Under the above assumptions, the control of the repair shop is independent of actual on-hand

stocks and of the basestock levels Sn. The repair shop has a steady-state behavior that is equivalent

to the behavior of a priority queueing system. In general, for these priority systems, it is hard to

derive steady-state distributions for the numbers of jobs of the various types. Our assumptions with

respect to the repair shop and the repairs of failed parts are chosen such that an efficient evaluation

of these steady-state distributions is possible. Obviously, these assumptions do not reflect reality,

but they do capture the essential feature that different SKU-s compete for the same repair capacity.

For the costs, we distinguish inventory holding costs and backordering costs. For the circulation

stock of SKU n, we pay inventory holding costs hn (> 0) per time unit per part; i.e., the inven-

tory holding costs for SKU n are equal to hnSn. We assume that different backordered demands

correspond to different technical systems. This is realistic for the same situations as needed for

the Poisson failure processes with a constant rate. We pay a penalty cost b for each backordered

demand per time unit, which is equivalent to paying b (> 0) per time unit per technical system

that is down because of a lack of spare parts. This type of penalty costs is thus system-oriented.

Let EBOn(Sn,X) denote the mean number of backordered demands of SKU n in steady state; this
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mean only depends on the steady-state number of failed parts of SKU n in the repair shop, which

is determined by X, and the basestock level Sn. Then the average backordering costs for SKU n

are equal to bEBOn(Sn,X).

Our objective is to choose the basestock levels Sn and the priority assignment X such that the

total average costs are minimized. The mathematical formulation of this optimization problem is

as follows:

(P )





min
Sn,X

N∑
n=1

[hnSn + bEBOn(Sn,X)]

s.t.
M∑

m=1
xm

n = 1, n = 1, . . . , N,

xm
n ∈ {0, 1}, n = 1, . . . , N, m = 1, . . . , M,

Sn ∈ N0, n = 1, . . . , N.

This is a non-linear integer optimization problem. An underlying problem for this optimization

problem is the evaluation of the EBOn(Sn,X) for given basestock levels Sn and a given priority

assignment X. This is discussed in the next subsection.

2.2 Evaluation of the expected numbers of backorders

To obtain the mean numbers of backordered parts EBOn(Sn,X) per SKU, we first determine the

steady-state distributions for the numbers of parts per priority class in the repair shop and for the

numbers of parts per SKU.

Let pm
j be the probability that the number of parts in priority class m = 1, . . . , M equals j ∈ N0

at an arbitrary moment. The corresponding mean number of parts of priority class m is denoted by

Lm. Because all service times are identically distributed and our priority rule is preemptive, from

the perspective of priority class m, all classes with a higher priority may be seen as one aggregated

class (notice that there are no higher classes for m = 1) and the classes with lower priority can be

ignored. For priority class 1, there are no higher classes, and its behavior follows from the classical

M/M/1 queueing system. The probabilities p1
j , j ∈ N0, are equal to

p1
j = (1− ρ1)ρ

j
1, (1)

where

ρ1 =
1
µ

N∑

n=1

xn,1λn.

Further, L1 = ρ1/(1− ρ1).

For the lower priority groups (m > 1), we obtain a two-queue preemptive priority model as

solved by Miller (1981), and the expressions for their probabilities pm
j can be found as follows. We
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first derive probabilities gm
i , i ∈ N0; gm

i represents the probability that the queue of priority class m

increases with i parts while the total amount of parts of higher priority decreases with 1. Denoting

the total workload of priority class m as ρm = 1
µ

∑N
n=1 xn,mλn and the total workload of higher

priority classes as ρh
m = 1

µ

∑N
n=1

∑m−1
l=1 xn,lλn, we find (following the formulas of Sleptchenko et al.,

2004, in which systems with two or more priority classes have been solved):

gm
0 =

(1 + ρh
m + ρm)−

√
(1 + ρh

m + ρm)2 − 4ρh
m

2ρh
m

, (2)

gm
i+1 =

ρmgm
i + ρh

m

∑i
j=1 gm

j gm
i+1−j

(1 + ρh
m + ρm)− 2ρh

mgm
0

, i ∈ N0, (3)

where, by convention,
∑i

j=1 gm
j gm

i+1−j = 0 for i = 0. Next, the probabilities pm
j are obtained by the

following recursive formulas:

pm
0 = (1− ρh

m − ρm) +
ρh

m

ρm
(1− ρh

m − ρm) (1− gm
0 ) , (4)

pm
j = ρmpm

j−1 + ρh
m

j−1∑

i=0

[
pm

j−1−i

(
1−

i∑

v=0

gm
v

)]

+
ρh

m

ρm
(1− ρh

m − ρm)

(
1−

j∑

v=0

gm
v

)
, j ∈ N, (5)

where pm
−1 := 0. For Lm, it holds that

Lm =
ρm

(1− ρh
m)(1− (ρh

m + ρm))
.

In these formulas, both ρh
m and ρm are assumed to be positive. If ρh

m = 0, then there are no higher

priority jobs and thus the steady-state probabilities and Lm are as in an M/M/1 system (cf. (1)).

If ρh
m > 0 and ρm = 0, then it simply holds that pm

0 = 1 and pm
j = 0 for all j > 0 (which also

follows from (4)-(5) when taking ρm ↓ 0), and Lm = 0.

Next, we determine the distributions for the numbers of parts in the repair shop per SKU. Define

Pn
j (X) as the probability that j parts of SKU n are present in the repair shop; we now explicitly

denote that these probabilities depend on X because they are used in later sections. Recall that

mn denotes the class to which SKU n has been assigned. For priority class mn, the total stream

of arriving parts is a Poisson process that is constituted by Poisson arrival streams of all SKU-s

l that are assigned to class mn (i.e., for which xl,mn = 1). The intensity of the total stream is
∑N

l=1 xl,mnλl. Because all parts arrive according to Poisson streams, each part of class mn in the

repair shop has a probability λn/(
∑N

l=1 xl,mnλl) that the part is of SKU n and the part is of one

of the other SKU-s in class mn otherwise. Based on this property, we find that

Pn
j (X) =



∞∑

k=j

(
k

j

) (
λn∑N

l=1 xl,mnλl

)j (
1− λn∑N

l=1 xl,mnλl

)k−j

pmn
k


 , j ∈ N0. (6)
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For each SKU n, the number of backorders is equal to the number of parts in the repair shop

minus the basestock level Sn if this leads to a positive number and the number of backorders equals

0 otherwise. Hence,

EBOn(Sn,X) =
∞∑

j=Sn+1

(j − Sn)Pn
j (X)

=

(
λn∑N

l=1 xl,mnλl

)
Lmn − Sn +

Sn∑

j=0

(Sn − j)Pn
j (X), Sn ∈ N0. (7)

This completes the description of how to determine all EBOn(Sn,X) for given basestock levels and

a given priority assignment. They are obtained via the (recursive) formulas (1)-(7).

3 Analysis of Problem (P)

In this section, we describe optimization methods for Problem (P). First, in Subsection 3.1, we

reduce Problem (P) to a pure priority assignment problem by deriving how the basestock levels

are optimized under a given priority assignment. Next, in Subsection 3.2, we formulate various

algorithms for the optimization of the priority assignment. The first of these algorithms is an

enumeration algorithm and is exact. The other four algorithms are heuristics.

3.1 Optimization of the basestock levels

Suppose that a priority assignment X is given. Then Problem (P ) becomes a multi-dimensional

optimization problem for the basestock levels Sn only:

(P (X))





min
Sn

N∑
n=1

[hnSn + bEBOn(Sn,X)]

s.t. Sn ∈ N0, n = 1, . . . , N.

This problem decomposes into one-dimensional optimization problems (Pn(X)) per SKU n:

(Pn(X)) min
Sn∈N0

[hnSn + bEBOn(Sn,X)] , n = 1, . . . , N.

Below we show that these problems can be solved along the same lines as a Newsboy problem.

We denote the objective function of Problem (Pn(X)) by fn(Sn) = hnSn + bEBOn(Sn,X),

Sn ∈ N0. By (7), we find that the first order difference function ∆fn(Sn) := fn(Sn + 1)− fn(Sn) is

equal to

∆fn(Sn) = hn + b


−(Sn + 1) + Sn +

Sn+1∑

j=0

(Sn + 1− j)Pn
j (X)−

Sn∑

j=0

(Sn − j)Pn
j (X)




= −(b− hn) + b

Sn∑

j=0

Pn
j (X), Sn ∈ N0.
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This shows that ∆fn(Sn) is increasing on its whole domain, and thus fn(Sn) is convex. Hence,

fn(Sn) is minimized at the first point where ∆fn(Sn) ≥ 0, i.e., at the smallest Sn ∈ N0 for which

Sn∑

j=0

Pn
j (X) ≥ b− hn

b
. (8)

This optimal point is denoted by S∗n(X). The ratio b−hn
b is the Newsboy ratio for our problem; this

ratio is different from the common ratio b
b+h because in our problem also holding costs are paid for

parts in repair. The sum
∑Sn

j=0 Pn
j (X) is the fraction of time that there is no backlog for SKU n

(also denoted as the α-service level, cf. Van Houtum and Zijm, 2000). Notice that S∗n(X) = 0 if

hn ≥ b, and S∗n(X) →∞ if hn ↓ 0.

By substitution of the optimal basestock levels S∗n(X) for the Sn in Problem (P ), Problem (P )

reduces to the following optimization problem for the priority assignments X:

(P ′)





min
X

N∑
n=1

[hnS∗n(X) + bEBOn(S∗n(X),X)]

s.t.
M∑

m=1
xn,m = 1, n = 1, . . . , N,

xn,m ∈ {0, 1}, n = 1, . . . , N, m = 1, . . . , M.

3.2 Optimization of the priority assignment

Exact optimization of the assignment of the repair priorities is obtained by checking all possible

priority assignments, i.e., by total enumeration. Each evaluation of a given assignment requires

that the distributions Pn
j (X), the optimal basestock levels S∗n(X), and expected numbers of back-

orders EBOn(S∗n(X),X) are determined via the formulas of Subsections 2.2 and 3.1. Since we

have N SKU-s that are assigned to M priority classes, the total solution space consists of MN

different solutions (some solutions in the solution space are equivalent to others, but that is only a

small fraction). This implies that the order of the computation for enumeration is MN , which is

exponential as a function of N . Hence, enumeration will quickly result into too large computation

times, and it makes sense to develop heuristics with polynomial computation times, so that also

instances with many SKU-s can be solved. Below, we develop these heuristics, and the enumeration

algorithm will be used to study the optimality gap of these heuristics. We refer to the enumeration

algorithm as Algorithm 1.

Many studies on optimal priority assignments in production systems (cf. Buzacott and Shan-

thikumar, 1993) suggest that SKU-s with higher costs should have higher priority than the ones

with lower costs. This seems also logical for our problem, as higher priorities for expensive SKU-s

are expected to lead to lower basestock levels and thus significantly lower inventory holding costs.
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At the same time, lower priorities for cheap SKU-s will lead to higher basestock levels for them, but

that will have only a limited effect on the inventory holding costs. This leads to the formulation

of the first heuristic, called Algorithm 2. From now on, w.l.o.g., we assume that the SKU-s are

ordered such that h1 ≥ h2 ≥ . . . ≥ hN . Next, we define an ordered assignment as an assignment

under which m1 ≤ m2 ≤ . . . ≤ mN ; i.e., for each pair of SKU-s n and ñ with n < ñ it holds that

SKU n is assigned to the same or a higher priority class than SKU ñ. Algorithm 2 evaluates all

ordered assignments and selects the best ordered assignment. Each ordered assignments is found

by placing M − 1 gates in a row consisting of all SKU-s 1, . . . , N ; the SKU-s left of the first gate

belong to class 1, the SKU-s between the first and second gate belong to class 2, and so on. Hence,

the number of ordered assignments is equal to
(

N + M − 1
M − 1

)
=

(N + M − 1) · (N + M − 2) · . . . · (N + 1)
(M − 1)!

.

As a result, under a given M , Algorithm 2 is polynomial in N and the order of the computation

time is O(NM−1).

A faster variant of Algorithm 2 is Algorithm 3, which is a local search algorithm within the

class of all ordered assignments. Initially, we assign all SKU-s to priority class 1. In each iteration

step, we consider neighbors obtained by moving the SKU with the highest index in a non-empty

class m < M to class m + 1. Hence, each iteration requires ≤ M − 1 evaluations of neighbors. The

number of iterations is bounded from above by (M − 1)N as the number of times to move a given

SKU to the next priority class is at most M − 1. Therefore, the order of computation time for

Algorithm 3 is (M − 1)2N . This order is linear in N for any given M , while Algorithm 2 has only

a linear computation time for M = 2.

The following example shows that the optimal priority assignment also depends on the workloads

of the SKU-s, to some extent, and that therefore Algorithms 2 and 3 may lead to suboptimal

solutions.

Example 1. Consider a system with N = 2 SKU-s, M = 2 priority classes, and:

• λ1 = 0.75, λ2 = 0.15, µ = 1

• h1 = 0.51, h2 = 0.49, b = 1.

In this case 4 different solutions exist, which we denote as X1,X2,X3,X4. For these solutions the

optimal basestock levels and costs are given in Table 1. Notice that under X3 and X4, both SKU-s

are in the same priority class; these solutions are equivalent and they imply that the repair shop

follows a FCFS discipline.

12



Priority assignm. X1 =

(
1 0
0 1

)
X2 =

(
0 1
1 0

)
X3 =

(
1 0
1 0

)
X4 =

(
0 1
0 1

)

(S∗1 (Xi), S∗2 (Xi)) (2,3) (6,0) (5,1) (5,1)
Total costs 8.22 7.91 7.95 7.95

Table 1: Numerical results for Example 1.

The results in Table 1 show that priority assignment X2 is the unique optimal solution, but

this solution is not an ordered assignment. Hence, Algorithms 2 and 3 would lead to suboptimal

solutions in this case (Algorithm 2 would produce X3 or X4 as solution and Algorithm 3 would

lead to X3). Apparently, in this example, it is optimal to place the SKU with the lowest workload

(= lowest arrival intensity) in the highest priority class instead of the most expensive SKU. As we

know from the theory of priority queues that has little effect on the mean repair leadtime for the

SKU with the high workload, while it has a strong reducing effect on the mean repair leadtime for

the SKU with the low workload. ¤
Based on the above insights we define improved versions of Algorithms 2 and 3. To both

algorithms, we add a local search, in which we also allow non-ordered assignments. In this local

search, we distinguish two types of neighbors:

• We allow that an SKU n is moved from its current priority class mn to class mn − 1 (only if

mn > 1) or to class mn + 1 (only if mn < M);

• We allow that two SKU-s n and ñ with priority classes mn and mñ > mn are swapped if mn

and mñ are so-called neighboring classes, i.e., if mñ = mn + 1, or if mñ > mn + 1 and all

priority classes m, mn < m < mñ, are empty.

Algorithm 4 consists of Algorithm 2 followed by this local search procedure. Similarly, Algorithm 5

consists of Algorithm 3 followed by this local search procedure. In this local search procedure the

number of neighbors can be shown to be bounded by N + 1
4N2 (N for the first type of neighbors

and 1
4N2 for the second type of neighbors). However, there is no tight bound for the number of

iterations. Hence, for the orders of computation time for Algorithms 4 and 5, we only know that

they are equal to or larger than the orders of computation time of the Algorithms 2 and 3.

When comparing the Algorithms 2-5 to each other with respect to accuracy, we know that

Algorithm 2 dominates Algorithm 3. I.e., in all instances, the solution generated by Algorithm

2 will be at least equally good as the solution generated by Algorithm 3. Further, Algorithm 4

dominates Algorithms 2 and 3, and Algorithm 5 dominates Algorithm 3.
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4 Numerical experiments

In this section, we define a large test bed in Subsection 4.1. Next, in Subsection 4.2, we present

results for the optimality gap of the Algorithms 2-5 for instances with 15 SKU-s and 2 priority

classes. In Subsection 4.3, we compare the performance of the Algorithms 2-5 for larger instances

with up to 50 SKU-s and 5 priority classes. Finally, in Subsection 4.4, we investigate the cost

savings that are obtained by using static priorities instead of the FCFS service discipline.

4.1 Test bed

We use a factorial design for our test bed. The number of SKU-s is chosen equal to 15, 25, and

50, and we have 2, 3, 4, and 5 priority classes. Next, regarding the holding cost, we fix the highest

holding cost (hmax) at 1000. The lowest holding cost (hmin) is taken equal to 1, 10, and 100. Hence

the ratio of highest and lowest inventory holding cost varies from 10 to 1000, which are common

ratios for spare parts (see also Section 5). The dependence between the inventory holding cost

parameters and demands rates for the SKU-s is another factor taken into account. We test three

different variants for this dependence. In all three variants, we choose the demand rates λn for all

SKU-s as independent samples from a uniform distribution on [1,100]. Then, in the first variant,

the holding cost parameters and demand rates are chosen independently. In this case, the holding

cost parameters are picked as independent samples from a uniform distribution on [hmin, hmax] (see

Figure 3A). In the second variant, we assume a hyperbolic relation between demand rates and

holding cost parameters (see Figure 3B), as this reflects what one typically sees in practice. The

holding cost parameters hn are obtained by the following function:

hn = max
{

hmin, a
1

cλn + d
+ b + ξn

}
. (9)

In this function, c and d are such that 0.1 ≤ cλ + d ≤ 1 for all λ ∈ [1, 100], a and b are such that

a 1
c+d + b = hmin and a 1

100c+d + b = hmax, and ξn ∈ U [−v, v] with v = 0.025(hmax − hmin). In the

third variant, we assume the same relation as in the second variant, but we include some SKU-s

that are picked differently. For most of the SKU-s (2
3N), we assume the hyperbolic dependence as

in the second variant (cf. (9)), for some of the SKU-s (2
9N) we take low demand rates and low

inventory holding cost parameters, and for some SKU-s (1
9N) we take high demand rates and high

inventory holding cost parameters (see Figure 3C). Further, the mean repair time is chosen such

that the utilization rate of the repair shop is equal to 0.7, 0.82, 0.9, and 0.95, respectively. Finally,

for the penalty cost parameter b, we choose the values 1000, 10000, and 100000. In Table 2, we

summarize our choices for all parameters.
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Figure 3: Relations between holding costs and demands relations.

No. of

Name of parameter values Values

No. of SKU-s (N) 3 15, 25, 50

No. of priority classes (M) 4 2, 3, 4, 5

Lowest holding cost (hmin) 3 1, 10, 100

Highest holding cost (hmax) 1 1000

Demand rates (λn)

Holding costs (hn)

}
3





1) λn ∈ U [1, 100], hn ∈ U [hmin, hmax],

2) λn ∈ U [1, 100], hn = h(λn) (see (9)),

3)





λn ∈ U [1, 100], hn = h(λn), 1 ≤ n ≤ 2
3
N

λn ∈ U [1, 10], hn ∈ U [hmin, hmin + v], 2
3
N < n ≤ 8

9
N

λn ∈ U [90, 100], hn ∈ U [hmax − v, hmax], 8
9
N < n ≤ N

Utilization rate (ρ) 4 0.7, 0.82, 0.9, 0.95

Penalty cost (b) 3 1000, 10000, 100000

Table 2: Parameter choices for the test bed.

The total number of all possible combinations for these parameters is 3×4×3×1×3×4×3 = 1296.

In addition, for each of the three variants for the λn and hn we generated 5 sets of values as there

are uniform distributions involved in the generation of these values (notice that optimal solutions

may be very sensitive for small changes in input parameters as we are dealing with an integer

optimization problem). This gives us in total 1296× 5 = 6480 instances.

4.2 Optimality gap of the heuristic algorithms

Algorithms 2-5 generate heuristic solutions, and their quality may be tested by comparison of their

costs to the optimal costs. For sufficiently small values of M and N , the optimal costs may be

obtained by Algorithm 1. We applied all 5 algorithms to all instances with N = 15 SKU-s and

M = 2 priority classes. Per instance we computed the optimality gap as the relative distance of the

costs of the heuristic solutions to the optimal costs. The averages over different subsets of instances

for these optimality gaps are listed in Table 3. E.g., in part (a) of this table, the average optimality

gaps for all instances with hmin = 1, 10, and 100 are given in the second, third, and fourth column,
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(a) Aver. opt. gaps as a function of hmin (b) Aver. opt. gaps as a function of λn / hn

1 10 100 Case 1. Case 2. Case 3.
Algorithm 2 5.1% 5.4% 5.9% Algorithm 2 5.6% 5.0% 5.8%
Algorithm 3 23.3% 24.7% 19.7% Algorithm 3 13.8% 26.7% 27.2%
Algorithm 4 1.1% 1.3% 0.9% Algorithm 4 1.0% 1.5% 0.8%
Algorithm 5 9.7% 9.4% 7.9% Algorithm 5 5.0% 11.6% 10.4%

(c) Aver. opt. gaps as a function of ρ (d) Aver. opt. gaps as a function of b

0.7 0.82 0.9 0.95 1000 10000 100000
Algorithm 2 10.8% 5.7% 3.6% 1.8% Algorithm 2 0.8% 4.7% 10.9%
Algorithm 3 35.8% 27.8% 18.8% 7.9% Algorithm 3 5.9% 27.8% 34.0%
Algorithm 4 1.8% 1.0% 1.1% 0.5% Algorithm 4 0.0% 0.3% 3.0%
Algorithm 5 9.5% 13.6% 9.8% 3.1% Algorithm 5 1.4% 10.5% 15.1%

(e) Aver. opt. gaps over all instances
Algorithm 2 5.5%
Algorithm 3 22.6%
Algorithm 4 1.1%
Algorithm 5 9.0%

Table 3: Average optimality gaps (for the test bed limited to N = 15 and M = 2).

respectively. This shows how the optimality gap depends on the choice for hmin. In the last part

of the table, part (e), the averages over all instances are given.

The results in part (e) show that Algorithm 4 has the best performance. This algorithm performs

very well with an average optimality gap of 1.1%. Algorithms 2 and 5 perform reasonably, and the

performance of Algorithm 3 is relatively bad. When we look into further detail in the parts (a)-(d),

we observe that the gap for Algorithm 4 is not so sensitive for the choice of the lowest inventory

holding cost hmin. It is somewhat sensitive for the relation that is assumed between the demand

rates and inventory holding cost parameters. Further, the gap decreases significantly for increasing

workloads ρ, and increases significantly for increasing values of the penalty cost parameter b. For

the Algorithms 2, 3, and 5, we see similar behavior in the parts (a), (c), and (d), while the picture

in part (b) is more mixed.

In Figure 4, the distribution of the optimality gaps over all instances is depicted for the Al-

gorithms 2-5. In this figure, we see e.g. that Algorithm 5 had an optimality gap of 0% (i.e., an

optimal solution was found) in 55% of all instances. Algorithm 4 had an optimality gap of 0%

in 80% of all instances, and an optimality gap of at most 7% in 95% of all instances. Also from

this figure, we clearly see that Algorithm 4 is the best one. The average computation times per

instance for the Algorithms 2-5 were equal to 0.15, 0.07, 1.47, and 1.43 seconds, respectively. So,
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Figure 4: Statistics for the optimality gaps (for the test bed limited to N = 15 and M = 2).

these times were small for all instances.

4.3 Comparison of the heuristics for large instances

In this subsection, we compare the performance of the Algorithms 2-5 for the full test bed. This

time we cannot compare to Algorithm 1, since enumeration requires too much computation time

for the instances with large N or M . Because in the previous subsection Algorithm 4 was the best

algorithm, here the performance of the other three algorithms is expressed relative to Algorithm 4.

Per instance, we compute the relative distance of the costs of the heuristic solution generated by

Algorithm 2 to the costs of the heuristic solution generated by Algorithm 4; and, similarly for the

Algorithms 3 and 5. By definition, nonnegative relative differences are obtained for the Algorithms

2 and 3 as these algorithms are dominated by Algorithm 4. In the case of Algorithm 5, also negative

relative differences may be obtained. The results are listed in Table 4, where again averages over

different subsets of instances are listed.

We see that the performance of Algorithm 4 is on average only 5.1% worse relative to Algorithm

2, Algorithm 5 is 25.9% worse, and Algorithm 3 is 46.0% worse (see part (g)). Although Algorithm 5

is much worse than Algorithm 4 on average, Algorithm 5 generated a better solution than Algorithm

4 in 8% of all instances. The performance of Algorithm 2 is rather stable when input parameters

are varied. The performance of the Algorithms 3 and 5 strongly depends on various parameter,

among which the number of SKU-s.

In Figure 5, the distribution of the relative differences over all instances is given for the Al-

gorithms 2, 3, and 5. This shows that large differences (of 100% and more) may occur for the

performance of the Algorithms 3 and 5 relative to Algorithm 4, while the relative difference be-

tween Algorithm 2 and 4 does not become large in general. In 95% of all instances it is less than
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(a) Rel. diff. as a function of hmin (b) Rel. diff. as a function of λn / hn

1 10 100 Case 1. Case 2. Case 3.
Alg.2 vs. Alg.4 5.4 % 5.8 % 4.2 % Alg.2 vs. Alg.4 5.7 % 2.4 % 7.3 %
Alg.3 vs. Alg.4 54.6 % 50.5 % 33.0 % Alg.3 vs. Alg.4 31.5 % 57.7 % 48.9 %
Alg.5 vs. Alg.4 30.7 % 28.2 % 18.8 % Alg.5 vs. Alg.4 16.0 % 38.7 % 22.9 %

(c) Rel. diff. as a function of ρ (d) Rel. diff. as a function of b

0.7 0.82 0.9 0.95 1000 10000 100000
Alg.2 vs. Alg.4 6.3 % 5.6 % 4.5 % 4.1 % Alg.2 vs. Alg.4 0.9 % 3.2 % 11.2 %
Alg.3 vs. Alg.4 43.5 % 48.1 % 46.5 % 46.0 % Alg.3 vs. Alg.4 12.0 % 63.9 % 62.2 %
Alg.5 vs. Alg.4 16.8 % 26.6 % 29.4 % 30.7 % Alg.5 vs. Alg.4 4.0 % 35.9 % 37.7 %

(e) Rel. diff. as a function of M (f) Rel. diff. as a function of N

2 3 4 5 15 25 50
Alg.2 vs. Alg.4 6.0 % 5.8 % 5.4 % 5.1 % Alg.2 vs. Alg.4 2.7 % 6.2 % 6.5 %
Alg.3 vs. Alg.4 35.9 % 45.6 % 46.2 % 46.0 % Alg.3 vs. Alg.4 33.7 % 44.8 % 59.6 %
Alg.5 vs. Alg.4 18.4 % 25.5 % 26.0 % 25.9 % Alg.5 vs. Alg.4 18.0 % 25.3 % 34.4 %

(g) Aver. rel. differences over all instances
Algorithm 2 vs. Algorithm 4 5.1 %
Algorithm 3 vs. Algorithm 4 46.0 %
Algorithm 5 vs. Algorithm 4 25.9 %

Table 4: Relative difference between total costs obtained by different heuristics.

20%.

Table 5 shows the computation times (in seconds) of the Algorithms 2-5 executed on a PC with

a PIII-1000MHz processor. It shows that Algorithm 2 and Algorithm 4 have limited computation

times for instances with M = 2 or 3 priority classes, and the computation times become much

larger for M = 4 and 5. Algorithms 3 and 5 have small computation times for all M .

From the above results for our full test bed, we conclude that Algorithm 4 is most appropriate, at

least for instances with 2 or 3 priority classes. Algorithm 5 may constitute an attractive alternative

if computation times for Algorithm 4 become too large (this also applies when we would relax the

assumptions of a single exponential server and equal mean repair times for all SKU-s, in which case

simulation would be needed for the evaluation of a given priority assignment).

4.4 Cost savings relative to FCFS

In this subsection, we investigate the cost savings that are obtained via the use of priority classes.

We take again the full test bed, and for all instances, we apply our best heuristic, Algorithm 4

(recall that our experiment in Subsection 4.2 showed a small optimality gap of 1.1%), and we
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(a) Algorithm 2 (b) Algorithm 3
N = 15 N = 25 N = 50 N = 15 N = 25 N = 50

M = 2 0.15 0.28 0.69 M = 2 0.07 0.10 0.17
M = 3 1.17 3.83 18.34 M = 3 0.12 0.18 0.30
M = 4 6.75 37.74 367.70 M = 4 0.17 0.25 0.42
M = 5 26.59 268.10 5520.94 M = 5 0.22 0.32 0.54

(c) Algorithm 4 (d) Algorithm 5
N = 15 N = 25 N = 50 N = 15 N = 25 N = 50

M = 2 1.47 4.75 29.25 M = 2 1.43 3.77 19.19
M = 3 3.12 10.97 66.72 M = 3 2.10 5.57 25.99
M = 4 9.13 46.47 429.54 M = 4 2.26 5.72 26.51
M = 5 29.36 278.73 5360.88 M = 5 2.31 5.79 26.73

Table 5: Average computation times (in seconds) of the Algorithms 2-5.

determine the optimal costs that are obtained if the FCFS service discipline is used in the repair

shop. The latter case corresponds to using only one priority class, which is a special case of our

model; notice that then only the basestock levels have to be optimized (cf. Subsection 3.1). By

definition, the costs obtained via Algorithm 2 are lower than or equal to the optimal costs under

the FCFS discipline, and we study the relative savings in costs that are obtained via the heuristic

solution of Algorithm 2. These number denote how profitable it may be to work with static priority

classes. The results are listed in Table 6.

From Table 6, we draw the following conclusions:

1. First of all, from part (f), we conclude that the average relative savings are more than 40%.
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(a) Rel. savings as a function of hmin (b) Rel. savings as a function of λn / hn

1 10 100 Case 1. Case 2. Case 3.
M = 2 49.2% 46.0% 33.1% M = 2 32.2% 45.9% 50.2%
M = 3 54.2% 49.8% 34.8% M = 3 35.9% 50.1% 52.9%
M = 4 54.5% 50.1% 34.8% M = 4 36.2% 50.3% 52.9%
M = 5 54.5% 50.1% 34.8% M = 5 36.2% 50.4% 52.9%

(c) Rel. savings as a function of ρ (d) Rel. savings as a function of b

0.7 0.82 0.9 0.95 1000 10000 100000
M = 2 39.0% 41.4% 44.1% 46.5% M = 2 39.9% 49.1% 39.2%
M = 3 40.2% 44.1% 48.0% 52.9% M = 3 41.6% 52.9% 44.4%
M = 4 40.2% 44.1% 48.4% 53.2% M = 4 41.7% 53.1% 44.6%
M = 5 40.2% 44.1% 48.4% 53.2% M = 5 41.7% 53.1% 44.6%

(e) Rel. savings as a function of N

15 25 50 (f) Rel. savings over all instances
M = 2 38.9% 42.4% 46.9% M = 2 42.8%
M = 3 43.2% 46.2% 49.5% M = 3 46.2%
M = 4 43.6% 46.4% 49.4% M = 4 46.5%
M = 5 43.6% 46.4% 49.4% M = 5 46.5%

Table 6: Relative savings in total system costs via static priorities.

In 42% of the instances, the savings were between 40% and 60%, and in 24% they were even

more than 60%. These percentages imply that static priorities may lead to enormous cost

savings in absolute terms for real-life situations (see also Section 5).

2. Second, the results in part (f) show that, for an average instance, the maximal savings are

around 46.5%, and these savings are reached at 4 priority classes. More than 90% of the

maximal savings is already obtained when one works with 2 priority classes (42.6% for M = 2

vs. 46.5% as maximum). And, via 3 priority classes almost 100% of the maximal savings is

obtained. This is an important observation from both an algorithmic and practical point of

view. It implies that effective and efficient heuristics are only needed for systems with 2 or 3

priority classes, and Algorithm 4 meets this requirement. Further, in practice, implementing

priority control rules with 2 or 3 priority classes will be much easier than rules with 4 or more

priority classes.

3. Third, the parts (a)-(e) show how the relative savings depend on the various input parameters.

They strongly increase for increasing cost differences in inventory holding cost parameters

(part (a)) and for increasing workloads (part (c)). Further, correlated demand rates and
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inventory holding cost parameters, as common in practice, lead to significantly larger savings

than when these parameters are not correlated; see Cases 2 and 3 vs. Case 1 in part (b) of

the table. Part (d) shows that savings first increase and then decrease for increasing penalty

costs. From part (e), we learn that the savings slightly increase as a function of the number

of SKU-s.

5 Stylized Cases

Based on the insights of the previous section, we executed an additional experiment with real

life data of the Royal Netherlands Navy. We obtained data of so-called capacity groups that are

responsible for preventive and corrective maintenance and for the repair of spare parts for different

subsystems of technical systems installed at frigates. Reliable data that we could collect from their

information systems were for the numbers of SKU-s that were handled per capacity group, the

prices of these SKU-s (which we could easily translate to inventory holding cost parameters), and

the total demand rates. No reliable data were available on (mean) repair times for SKU-s. We

therefore constructed one stylized case per capacity group. We pretend that at each capacity group

there is a separate group of engineers that only works on repairs of spare parts, and further we

make the same assumptions as in our model. Per case, we chose the N , λn, and hn according to

the above data. The mean repair time was chosen such that the workload was equal to 0.8 and 0.9,

respectively. We considered both the use of FCFS and the use of static priorities with 2 priority

classes for the repair shop. We limited ourselves to 2 priority groups as that brings most of the

maximal possible savings (cf. Subsection 4.4). The optimization of the system with static priorities

was solved via Algorithm 4. Per case, the penalty cost parameter was tuned such that under the

FCFS service discipline an aggregate fill rate AFRFCFS of 90% was obtained. It holds that

AFRFCFS =
N∑

n=1


 λn∑N

l=1 λl

Sn−1∑

j=0

Pn
j (j,XFCFS)


 ,

where XFCFS corresponds to a priority assignment in which all SKU-s are assigned to the same

priority class. The larger the b is chosen, the larger the optimal basestock levels will be (cf. (8)),

and thus the larger AFRFCFS (see also Theorem 2 of Van Houtum and Zijm, 2000). We chose b

as the lowest value for which AFRFCFS ≥ 0.90.

In Table 7, the number of SKU-s per case is found back. In Figure 6, the data the inventory

holding cost parameters and demand rates are plotted (for the lists with all values, see Dirkzwager,

2004). For the Cases 1-3, we see similar patterns as in the cases 2 and 3 of the test bed of Section

4. For Case 4, we see a rare pattern, with several SKU-s that have high inventory holding costs
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Figure 6: Holding cost parameters (in EURO-s/year) and yearly demand rates for Cases 1-4.

and high demand rates, and there no SKU-s with low inventory holding costs and high demand

rates. Also, in Cases 1-3, we see a large ratio between the highest and lowest inventory holding

cost parameter (the ratio is 1138 for Case 1, 457 for Case 2, and 458 for Case 3). In Case 4, this

ratio is small (equal to 5).

The main results for these cases are also presented in Table 7. In the fourth column, the tuned

penalty cost parameter b is given. In the fifth and sixth column, we have listed the costs under

FCFS and the use of 2 priority classes, respectively (these costs are include penalty costs). The

cost reduction obtained via priority classes is given in the last column.

We find that large cost reductions are obtained for the Cases 1-3, with percentages varying

from 39% to 55%. For workloads of 90%, the savings are significantly larger than for workloads of

80%. For Case 4, the cost reductions are relatively small. This is due to the small ratio between

the highest and lowest inventory holding cost parameter.

6 Conclusions

We studied the use of static priority classes in a repairable spare parts system consisting of one repair

shop and one stockpoint. We made simplifying assumptions for the repair shop and repair times.
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N Util. rate Penalty (b) TCFCFS TCPrior Reduction

Case 1 67
0.8 3596 3239 1723 47 %
0.9 2406 4507 2007 55 %

Case 2 99
0.8 13958 25701 15612 39 %
0.9 23427 32052 16612 48 %

Case 3 29
0.8 124624 124694 69975 44 %
0.9 66657 158011 70619 55 %

Case 4 13
0.8 136249 196215 176989 10 %
0.9 106656 333435 271821 18 %

Table 7: Overview of the results for the Royal Netherlands Navy for M = 2.

We showed that under a given assignment of SKU-s to priority classes, optimal basestock levels

follow from Newsboy equations, which reduced our full optimization problem to an optimization

problem for the priority assignments (this reduction also holds under relaxed assumptions for the

repair shop and repair times). We developed one heuristic, called Algorithm 4, that was effective

(an optimality gap of 1.1% was measured in an experiment with 15 SKU-s and 2 priority classes)

and efficient for 2 or 3 priority classes. The latter is sufficient, as we also observed that having

4 or more priority classes instead of 2 or 3 classes does not lead to much lower optimal costs.

The basic ideas behind Algorithm 4 are simple (enumeration among so-called ordered assignments,

followed by local search), and thus it would not be hard to extend the algorithm for systems with

relaxed assumptions (the definition of ordered assignments has to be extended as well, which may

be less straightforward). Finally, we investigated the costs savings that one may obtain by the use

of static priorities instead of the FCFS service discipline. Savings of 40-60% are possible in many

cases, among which in 3 of 4 stylized cases with real-life data. As investments in repairable spare

parts are huge in many companies (tens or hundreds of million EURO-s), this suggests that many

companies could save a lot of money via static priorities.
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