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This article aims to link the mainstream subject of chain-folded polymer crystallization with the 
rather speciality field of extended-chain crystallization, the latter typified by the crystallization of 
polyethylene (PE) under pressure. Issues of wider generality are also raised for crystal growth, and 
beyond for phase transformations. The underlying new experimental material comprises the 
prominent role of metastable phases, specifically the mobile hexagonal phase in polyethylene 
which can arise in preference to the orthorhombic phase in the phase regime where the latter is the 
stable regime, and the recognition of "thickening growth" as a primary growth process, as 
opposed to the traditionally considered secondary process of thickening. The scheme relies on 
considerations of crystal size as a thermodynamic variable, namely on melting-point depression, 
which is, in general, different for different polymorphs. It is shown that under specifiable 
conditions phase stabilities can invert with size; that is a phase which is metastable for infinite size 
can become the stable phase when the crystal is sufficiently small. As applied to crystal growth, it 
follows that a crystal can appear and grow in a phase that is different from that in its state of 
ultimate stability, maintaining this in a metastable form when it may or may not transform into the 
ultimate stable state in the course of growth according to circumstances. For polymers this 
intermediate initial state is one with high-chain mobility capable of "thickening growth" which in 
turn ceases (or slows down) upon transformation, when and if such occurs, thus "locking i n "  
a finite lamellar thickness. The complete situation can be represented by a P, 7", 1 /1( I -  crystal 
thickness) phase-stability diagram which, coupled with kinetic considerations, embodies all 
recognized modes of crystallization including chain-folded and extended-chain type ones. The 
task that remains is to assess which applies under given conditions of Pand T. A numerical 
assessment of the most widely explored case of crystallization of PE under atmospheric pressure 
indicates that there is a strong likelihood (critically dependent on the choice of input parameters) 
that crystallization may proceed via a metastable, mobile, hexagonal phase, which is transiently 
stable at the smallest size where the crystal first appears, with potentially profound consequences 
for the current picture of such crystallization. Crystallization of PE from solution, however, would, 
by such computations, proceed directly into the final stage of stability, upholding the validity of 
the existing treatments of chain-folded crystallization. The above treatment, in its wider 
applicability, provides a previously unsuspected thermodynamic foundation of Ostwald's rule of 
stages by stating that phase transformation will always start with the phase (polymorph) which is 
stable down to the smallest size, irrespective of whether this is stable or metastable when fully 
grown. In the case where the phase transformation is nucleation controlled, a ready connection 
between the kinetic and thermodynamic considerations presents itself, including previously 
invoked kinetic explanations of the stage rule. To justify the statement that the crystal size can 
control the transformation between two polymorphs, a recent result on 1 -4-poly-trans-butadiene 
is invoked. Furthermore, phase-stability conditions for wedge-shaped geometries are considered, 
as raised by current experimental material on PE. It is found that inversion of phase stabilities (as 
compared to the conditions pertaining for parallel-sided systems) can arise, with consequences for 
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our scheme of polymer crystallization and with wider implications for phase transformations in 
tapering spaces in general. In addition, in two of the Appendices two themes of overall generality 
(arising from present considerations for polymers) are developed analytically; namely, the 
competition of nucleation-controlled phase growth of polymorphs as a function of input 
parameters, and the effect of phase size on the triple point in phase diagrams. The latter case leads, 
inter alia to the recognition of previously unsuspected singularities, with consequences which are 
yet to be assessed. 

1. In troduct ion  
1.1. Mot iva t ion  and  s c o p e  
In this paper we present a scheme prompted by recent 
experimental studies on polymer crystallization under 
hydrostatic pressure - initiated by one of us (MH) in 
Tokyo (and currently in Yamagata) and subsequently 
extended by association with our Bristol Laboratory. 
The factual material is in the process of being reported 
separately elsewhere [1-4].  As such, new experimental 
results will not be reported nor any new theory per se, 
but this paper is meant to serve as a map for tracing 
the course of phase transformations in general and the 
course of chain-folded-polymer crystal growth in par- 
ticular. Some links, hitherto unnoticed, between the 
thermodynamics and kinetics of phase transforma- 
tions have been recognized, which we believe will be of 
wide-ranging relevance. Specifically, two factors have 
emerged in the course of the experimental works refer- 
red to above which were found to have a controlling 
influence on the crystallization processes in those 
experiments: metastable phases as the primary pro- 
ducts of crystallization, and the size dependence of 
phase stability. Neither of these are new in themselves, 
yet their combination leads to new considerations, 
which (following the preliminary announcement in 
a conference paper [5]) are the subject of this paper. 
These two factors are taken in turn. 

The role of metastability in phase transformations 
was recognized in the last century, and it is embodied 
in Ostwald's rule of stages, which states that phase 
transformations will always proceed through stages of 
metastable states whenever such metastable states 
exist. This rule is empirical, yet it is widely observed in 
phase transformations. In fact it also emerges from the 
data by Bassett and Turner [6, 7] who first observed 
that polyethylene (PE) can pass through a metastable 
phase first, when crystallized under elevated pressure. 
This latter effect has re-emerged even more forcibly in 
our own renewed works on this subject, placing the 
whole issue of the importance of the role of metastabil- 
ity in a rather heightened profile. 

The second factor, the role of the phase size, is of 
course long familiar in the form of boiling-point and 
melting-point depressions etc. due to limited phase 
dimensions, and it is expressed quantitatively by the 
Thomson-Gibbs equation. Accordingly, a phase of 
small dimensions is less stable than one of larger size 
which is of otherwise identical internal structure. It 
follows that in this case we have size-determined meta- 
stability also applying to phase types which, for infi- 
nite size, would be in a state of absolute stability. In 
this case there will be a trend for redistribution 
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(growth) of phase sizes embodied by the concept of 
Ostwald ripening. Again, the role of this size-deter- 
mined metastability, and specifically the size-induced 
depression of phase transition, has taken on a special 
significance in our latest experimental works on pres- 
sure-induced polymer crystallization. When applying 
such considerations, not only to one particular phase, 
but also to polymorphic phases which are in kinetic 
competition with each other, new interrelations were 
perceived, which proved helpful in the interpretation 
of our crystal-growth results, and offered some new 
prospects, we maintain, for visualizing phase trans- 
formations generally. It is to be noted that given two 
or several polymorphs, only one can be stable, in 
general all the others must be metastable. The two 
issues, the role of "true" metastability and that of 
size-dependent stability merge at this point. This join- 
ing up of the two issues, each separately familiar has 
been the motivation for the scheme presented in this 
paper. 

For the polymer-crystallization field itself, the 
scheme should serve a special unifying function. 
Namely, in the case of PE the most widely studied 
substance serving as model for polymer crystalliza- 
tion, the subject has so far been subdivided into two 
streams. (i) Chain-folded crystallization from melts 
and solutions under atmospheric pressure, which we 
would term the mainstream; and (ii) chain-extended 
crystallization occurring under elevated pressure, 
which we would here term the 'speciality stream'. 
There are only rather tenuous connections between (i) 
and (ii). The scheme presented in this paper should 
help to provide a unifying umbrella by creating a map 
in which both of these so far largely separate streams 
have their assigned place. Further, and even more 
importantly, this "map" should help in the search for 
both the boundaries and interconnections between the 
two areas of crystallization behaviour. A specific nu- 
merical computation has been added to show the 
way. 

While within the above framework of the combined 
effects of phase-size determined and "true" metastabil- 
ity we shall also be invoking special shapes, such as the 
wedge shape impressed upon us by observation. This, 
as shown, leads us to some rather unexpected insights 
which are likely to be of wider relevance to phase 
transformations within confined tapering spaces. 

A brief inclusion of experimental material on 
a polymer other than PE, poly-l-4-trans-butadiene, 
should set an example for the usefulness of the scheme 
to an as yet new situation involving the effect of size (in 
fact, a direct demonstration of the effect of size on 



crystal-crystal transformation) and not necessarily re- 
quiring pressure for its own sake. 

Finally, in the light of all the above, a previously 
unnoticed, but in retrospect self-evident, connection 
between thermodynamics (stability) and kinetics (rate) 
has become apparent which, amongst much else, has 
enabled the original Ostwald stage rule to be 
reassessed from a more timely and comprehensive 
perspective. 

1.2. Experimental background for polymer 
crystallization 

For self-contained reading the relevant experimental 
findings, together with its essential precedents from 
[1-4] will be briefly summarized. 

As is known, PE normally crystallizes in the ortho- 
rhombic (o) crystal structure forming chain-folded 
lamellae of thickness, (/), remaining constant during 
continuing lateral growth; this is the principal feature 
of all mainstream crystallization studies. Under eleva- 
ted pressure, P, a new stable hexagonal (h) crystal 
structure appears. In this phase regime the chains in 
the crystals become extended, or at any rate they tend 
towards chain extension. In addition to these long 
established facts, we identified unrestrained "thicken- 
ing growth" in isolated crystals where the crystals keep 
growing continuously in the thickness directions, not 
only until full chain extension but also beyond, while 
in the h-phase [-3, 4]. This, concurrently with lateral 
growth, then leads to wedge-shaped crystals (this is the 
reason for giving attention to the wedge shape). All the 
above take place in the h-phase only. However, the 
h-phase (as first described by Bassett and Turner 
I-6, 7]) is not confined to the h-stability regime but 
arises also in the o-stability regime where the h-phase 
is thus metastable; in this case the h-crystals may 
transform to the stable o-crystals at a certain stage of 
growth. We find that, at least within the P- and T- 
regimes explored in [1-4], all crystallization takes 
place in the h-phase; thus the h-phase is a prerequisite 
for crystallization (hence the role and significance of 
"true" metastability). Within the o-stability regime, at 
a certain stage of growth (both thickening and lateral 
growth), the metastable h-phase transforms into the 
stable o-phase, when as we have observed, all growth 
(that is, thickening and lateral) stops or slows down 
drastically. The latter therefore means that the crystal 
thickness becomes locked in by the h ~ o transforma- 
tion, which is a new, hitherto unsuspected origin of 
limited lamellar thickness. This lamellar thickness, 
here resulting from arrested thickening growth, has its 
own thermodynamic stability criteria both for the h- 
and o-crystal structures, (hence the significance of size 
dependence). It is implied further by all the above that 
the chains in the h-phase are mobile, allowing lamellar 
thickening from the folded configuration, and, in gen- 
eral, thickening growth as a principal growth mechan- 
ism. This forms the basis of a theoretical approach by 
one of us (MH) [8, 9]. All the above makes the mobile 
h-phase of special significance in polymer crystalliza- 
tion. 

2. Free-energy considerations 
To evolve the concept of phase-size-induced stability 
inversion in phase diagrams we shall resort to the 
scheme used by one of us elsewhere (in cooperation 
with Ungar and Percec [10 12]). There it was used to 
visualize the stability conditions of the liquid-crystal- 
line state, but it could be regarded as more general, 
being applicable to any state, with a stability inter- 
mediate between the stablest crystal (C) and liquid (L), 
as referred to infinite size, this intermediate state being 
denoted as M (mesophase) in what follows. Subscripts 
C, L, M attached to other symbols to be used will refer 
to the respective phases. 

As in [10-12], we start with a schematic free- 
energy, G, versus temperature plot for a system ca- 
pable of displaying the C-, M- and L-phases. (Figs 1, 
2 and 3). As before, we adopt the gross simplications of 
taking the G versus T lines as straight and without 
a change in direction on intersection; this, however, 
should not affect the validity of the arguments. We 
start with the situation where the M-phase is unstable; 
that is, GM is higher than either Gc or GL over the 
entire temperature range. Fig. 1 illustrates such 
a case. Here the appropriate intersections define the 
corresponding melting and transition temperatures, 
(T~)c, (Tm)M and Tt~. These temperatures correspond 
to a transformation between two stable phases, (T~)c, 
between a stable and metastable phase, (T~)~, in the 
temperature range concerned, while Tt~ is altogether 
unrealizable (virtual). The symbol ~ denotes infinite 
size throughout. 

It will be clear that to realize M as a stable phase the 
relative positions G will need to be changed so as to 
bring at least one portion of the GM curve below both 
Gc and GL. Following the argument in [10-12] Such 
an "uncovering" of the M-phase can be most conveni- 
ently visualized in physical terms by taking two ex- 
treme cases, namely, where the principal change is that 
in GL, or alternatively that in Gc, with the smaller 
changes in GM disregarded in both cases. As seen from 
Figs 2 and 3, the M-phase can be uncovered if either 
GL (Fig. 2) or Gc (Fig. 3) is raised. (For simplicity, this 
is done solely by displacement with an unaltered 
gradient. Strictly, this cannot be correct yet, since over 
a limited T-range and at temperatures far above 0 K 
the mean vertical displacements will hardly be affected 
by inclusion of a change in gradient; such changes will 
be disregarded). 

In both cases, Fig. 2 and Fig. 3, the intersections of 
the various G are marked on the T-axis. It is to be 
noted in the first place that Tt% has now become real, 
falling below both (T~)M and (Tm~)c; in both cases, this 
is consistent with the existence of a stable M-phase. 
There is, however, an important difference between 
Fig. 2 and Fig. 3. In Fig. 2 the relevant melting and 
transformation temperatures have moved upwards, 
while in Fig. 3 they moved downwards along the T- 
axis in comparison to their positions in Fig. 1. In other 
words, the two procedures of uncovering the meta- 
stable phase in Fig. 2 and Fig. 3 lead to respective 
elevation and depression of the relevant melting and 
transition temperatures. 

As broad guidelines we may attach the following 
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Figure 1 Schematic free energy versus temperature plot illustrating 
the situation where M-phase is metastable over the whole temper- 
ature range. 
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Figure 2 Schematic free energy versus temperature plot illustrating 
the situation where M-phase has a stable region achieved by raising 
the melt free energy, GL. 

pressure will have such an effect, and in most (even if 
not all) cases this influence is to a much greater extent 
on the L- than on the C-phases (or the M-phase). The 
raising of the crystal melting points, with the resulting 
uncovering of the M-phase, in our case for PE, and the 
whole subject of pressure-induced crystallization in 
polymers in general, is the direct consequence of such 
a raising of GL (see also [13]). Further, there are 
a number of other ways in which the entropy of the 
melt may be specifically reduced, leading to a situation 
as that in Fig. 2, such as stiffening of the chain by 
physical or chemical means. The introduction of me- 
sogenic groups and the resulting promotion of 
a liquid-crystal phase is a familiar example of the 
latter. Orienting the melt phase, or preventing dis- 
orientation on melting of an oriented solid through 
externally applied constraints, will have an effect in 
the same direction; this is documented by numerous 
examples in [10]. When a situation, such as in Fig. 1, 
applies to the monomeric state, an increase in chain 
length on polymerization can provoke a change-over 
to a situation such as that shown in Fig. 2, and hence 
it can lead to liquid crystals (the polymer effect, 
see [11]). 

The situation embodied by Fig. 3 corresponds to 
the impairing of crystal perfection. Again, this can 
arise, through physical or chemical means; chemical 
imperfections in an otherwise regular chain giving rise 
to lattice defects is an example of a chemical influence. 
This is consistent with the general experience that less 
perfectly and/or less readily crystallizable substances 
are more prone to give rise to mesophases, and liquid 
crystals in particular; this theme is enlarged in [10]. 
The raising of Gc, however, will arise not only through 
impaired lattice order but also through an increase in 
specific surface of the otherwise perfectly ordered crys- 
tal, that is through reduction in crystal size. This 
particular point will be the centre piece of the argu- 
ment in what follows. 

GL 

r GM 

LL 

Tr (Tin% 
Temperature, T 

Figure 3 Free energy versus temperature plot illustrating the situ- 
ation where M-phase has a stable temperature region achieved by 
raising the crystal free energy, Gc. 

physical meaning to situations corresponding to Figs 
2 and 3. The raising of GL in Fig. 2 implies either the 
raising of H (the enthalpy) or of the lowering of S (the 
entropy), or a combination of both. Application of 
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3. Size-dependent phase stability 
3.1. Graphica l  representat ion 
That size affects the stability of phases is of course 
well-known. It manifests itself by depression of the 
pertinent phase-transition temperatures. Our present 
addition to this subject is the extension to systems 
which can have various polymorphs (only one of 
which can be stable at a particular temperature except 
for the phase line itself); and we draw attention to the 
fact that, in general, the size dependence of the phase 
transition will be different for the different poly- 
morphs, which can, in turn, have conspicuous con- 
sequences. It is to such situations that we shall 
draw attention in this paper. 

For the purpose stated, we take the G versus T dia- 
gram as our starting point and consider the situation 
shown in Fig. 1, where the M-phase is metastable (the 
solid lines in Fig. 4). According to the preceding con- 
siderations, by decreasing the crystal size, l, we are 
raising Gc (dashed lines) in two successive stages, 11 
and 12 (at this stage the size parameter, l, is quite 
general, later we shall identify it with the lamellar 
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Figure 4 A schematic free energy, G versus temperature, T, plot (as 
in Fig. 3), for two successive stages of raising Gc, (and GM). The 
elevation of Gc corresponds to a successive decrease in the crystal 
size, l, from l~ to 12 where l~ > 11 > 12. This rise in G, here asso- 
ciated with a decreasing crystal size, is taken to be much smaller for 
GM than for Gc, with a consequent crossing over of the relative 
stabilities of the C- and M-phases with size, (as drawn, for size 
11 -= lQ at the temperature TQ). For the still smaller size/2, there is 
a finite temperature interval [12(Tm)M - 12 (T~,)] where the M-phase 
is the stable phase. 

thickness of a polymer crystal). We note that the 
intersections with GL shift to successively lower T(that 
is, eventually to 12 (Tm)c in Fig. 4); in other words, the 
melting point becomes successively more depressed. 
The same will apply to the M-phase. Here, however, 
we consider the situation that the effect of size on GM is 

smaller than on Gc; that is GM is being raised by 
smaller increments for identical size reductions. This, 
as seen in Fig. 4, has the consequence that, at a certain 
reduced /-value, Gc "overtakes" GM, hence the M- 
phase becomes stable. In terms of Tm this means that 
(T~,)c decreases faster than (Tm)M with decreasing l, so 
that at a specific l - IQ one has (Tin) C = (Tm) M = Tt, 
where now Tt, is real, and at l < l q  one has 
(Tm)c < (Tm)M; that is, the M-phase becomes stable. 

The above situation is best represented by plotting 
the various intersections along the T-axis in Fig. 4 
against 1/1. This is shown by Fig. 5 displaying (Tm)c 
(solid line), (Tm)~ (dashed line) and Ttr (dotted line), 
which can be considered as a temperature-size phase- 
stability diagram. (Here the designation phase-stabil- 
ity diagram is adopted so that the term phase diagram 
can be reserved for infinite phases as is usual in 
thermodynamics). The heavy lines define the stable 
phase boundaries in the (T, I//)-plane, i.e. they define 
the equilibrium phase-stability diagram. The regions 
with the different hatchings define the phase regimes 
C and M. Each can be present in a stable and in 
a metastable form; the corresponding regions can be 
identified by the key in Fig. 5. The principal message 
of this phase-stability diagram is that the M-phase, 
metastable for infinite size, can be the stable phase 
when l is sufficiently small; the region of stability is 
defined in Fig. 5. Other features to note are the 'exist- 
ence of a triple point, Q, where all three phases 
(L, C and M) can coexist, and the limits of metastabil- 
ity of each of the solid phases, C and M. Of special 
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Figure 5 Temperature, T versus reciprocal size, 1/l, phase-stability diagram obtained by plotting the temperatures of intersection of G in 
a free energy versus size construction (such as in Fig. 4) displaying the crossing over of the phase stability with decreasing size. ( - - )  C-phase 
melting, ( - - - )  M-phase melting, ( . . )  C ---, M transformation. The intersection of the phase lines defines a triple point, Q, where all three 
phases (L, C and M) can co-exist as stable phases. The different hatchings, heavy for stable, light for metastable, denote the phase regimes 
where the C- and M-phases can exist either as stable or as metastable phases. 
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interest is the situation 1/l = 0 (that is, infinite phase 
size), where the M-phase is metastable throughout up 
to (T~)M; beyond this temperature it cannot exist even 
in a metastable state. This leads to a temperature 
interval, (T~)c-(T~)M, where the C-phase alone is 
possible; for 1/1 > 0 this "C alone" zone gradually 
narrows down to the triple point. Finally, Tt~ is virtual 
for all sizes larger than lQ. 

3.2. Analytical representation 
The conditions in Fig. 5 can be readily expressed ana- 
lytically. The dependence of the phase-transition tem- 
perature, Tx (where x specifies the type of transition), 
on the size of the phase is given by the Gibbs-Thom- 
pson relation 

Tx = T~,(1 Vx(~)x~ 
l(AH)x ] (1) 

Where T~ denotes the infinite phase size, AH is the 
heat of the phase transformation (per unit mass), cy is 
the mean surface free energy, Vx the specific volume 
and/ i s  again the dimension of the phase (as character- 
ized by a single parameter). Writing Equation 1 spe- 
cifically for the phase changes of our concern 

(rm)C = (~;o)C(1 I(AH)c/V~(~)c) 

(Tm) M = (TIn)M(1 VM ((Y)M ~ t(AH)M/ (2) 

r,, = rt; 1 I(AH),, ] 

where the meaning of the symbols is self-explanatory 
(CYc-M and VC-M denote the respective differences in 
the surface free energies and specific volumes between 
the C- and M-phases). Equation 2 expresses the de- 
pressions of the three transformation temperatures 
due to a decreasing phase size. 

It will be apparent that the gradients of the three 
lines in Fig. 5 are given by the respective values of 
Vcy/AH. It follows that the precondition for an inter- 
section of the lines, and hence for a triple point, is 

V~M V~ 
- -  < ( 3 )  
(AH), (AH)c 

which, accordingly, is the condition for an inversion of 
phase stability with phase size, which is, in turn, one of 
the central themes in this paper. 

3.3. M o d e s  of crystal g rowth  
In what follows we shall assume that the inequality in 
Equation 3, (hence the phase-stability conditions, such 
as those in Fig. 5) 1 hold (for a discussion see later) and 
consider the implications for the growth of a new 
phase. While in principle pertinent to any phase trans- 

formation, we shall refer specifically to crystal growth 
with the solid (crystal) phase capable of having vari- 
ants C and M. 

In Fig. 6 the stable-phase lines (heavy lines in Fig. 5) 
are denoted by heavy solid lines with the metastable- 
phase lines denoted by light dashed lines and consider 
that crystallization is proceeding isothermally. As any 
new crystal phase will have to start from the smallest 
possible size, and then proceed to increase in size, the 
growth pathway at any given temperature of crystalli- 
zation, To, will be along horizontal arrows such as 
those in Fig. 6. In the L-phase region any crystal that 
may appear would only be a transient fluctuation 
( ~ L) until a stable liquid-solid phase line is reached. 
This will occur when ! reaches the size of the pertinent 
critical nucleus, l*, beyond which the crystal will be 
able to grow as a stable phase. 

It can be seen from Fig. 6 that there are two regions 
of To above (A) or below (B) the triple-point temper- 
ature, TQ. 

(A) Tc > TQ. Here the crystal can, or needs to, 
appear and grow directly into the crystal phase of 
ultimate stability (+--CA). Region A is divided into 
two zones. A1 comprises the temperature region. 
(T~,)c-(T~)M. Here the M-phase cannot exist at all. 
Growth, if it occurs ( ~ CA), will necessarily be in the 
C-phase only. A2 comprises the temperature region 
(Tm)M TQ. Here, the stable end state is still the C- 
phase, yet growth may pass through the M-phase, 
which for all I remains metastable. While this subdivi- 
sion of A into A1 and A 2 is significant in principle 
from the point of view of thermodynamics, it has only 
a limited effect on the phase transformation itself (see 
Section 7). Consequently, we shall not emphasize this 
further here. 

(B) Tc < TQ. Here crystals will need to pass through 
the M-phase first, a phase which will be the most 
stable one for small sizes, specifically when l <  IQ. 
Following ~ LB, l exceeds the critical nucleus at l~. 
The M-crystal will then grow in the M-phase ( +- M) 
until the M-C transition line is reached corresponding 
to l*. Beyond that, growth will continue in the C- 
stability region ( ~ C,) during which an M ~ C trans- 
formation may occur. Note that the critical stable 
nucleus size for the C-phase, (l*,) is reached before 
that stage, but the corresponding C-phase will be 
metastable (that is stable with respect to L but unsta- 
ble with respect to M). Within the whole T range over 
B we can have two situations. (1) The growing crystal 
passing through the M-C stability divide (along 

CB) remains untransformed, and the final product 
remains in the M-form. In this case we have a meta- 
stable end state which can thus be clearly registered as 
such. (2) The growing crystal does transform into the 
stable C-form. In this case the final product will reveal 
nothing of its past history, in particular, whether or 
not it has passed through a different phase during its 
growth; the size dependent aspect of its phase history 

1 Fig. 5 uses the three relations in Equation 2 independently. For a rigorous treatment the system would need to be considered as consisting of 
three components  in fact is done for the triple point in Appendix I. The approximation in Fig. 5 would not affect the trends in the present 

scheme. 
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Figure 6 Phase (crystal) growth as a temperature, T, versus reciprocal size, 1/l, phase-stability diagram, as in Fig. 5. ( ) Stable-phase 
demarcation lines, ( - - - )  metastable-phase demarcation lines. ( ~ )  Pointing towards l/l~ denotes isothermal-growth pathways at the 
selected (crystallization) temperatures, T~. Two such pathways are indicated, one above and one below the triple-point temperature, T o (( Tc)A 
and (T~) B which are representative of the growth regimes A and B, respectively), l* refers to the sizes of limiting stability (critical nuclei) of 
the respective phases. Schematic molecular illustration are given of growth pathways for chain-folded polymer crystallization in (i) regime A, 
and (ii) regime B. Here (i) corresponds to the traditionally envisaged mode of growth, which is exclusively lateral at a fixed, kinetically 
determined thickness l*, where l* > l~, but it is now confined to region A; (ii) corresponds to simultaneous growth both in the lateral and the 
thickness directions (thickening growth), the latter is terminated by the C ~ M transformation somewhere along the arrow CB in the 
C stability regime. The necessity of this mode arises in the newly recognized region B. 

is thus obliterated. Nevertheless, even in this case, the 
phase history should still be reflected by the kinetiizs of 
the growth process if followed during the initial stages 
of growth. This issue, to our knowledge has never been 
addressed; we shall return to it later with reference to 
polymer crystals. 

The above argument is based purely on thermo- 
dynamics. Whether both modes A and B will occur in 
the same system will depend on additional kinetic 
factors. Thus, if the interval (T~)c-(T~)M is narrow, 
then Tc will be confined to low supercoolings for 
crystallization by mode A, where crystallization may 
be too slow for this mode-A to appear in practice. 
Alternatively, if the (T~)c-(Tm)M interval is very wide 
then mode-B can only take over at a value of Tc 
corresponding to high supercoolings. As the system 
will always need to be cooled from a T-value lying 
above (T~)c to To, in this latter case crystallization in 
mode A may well set in along the long cooling path- 
way before the intended Tc is reached, in which case 
mode B would not be attainable in practice. This 
distinction, namely, whether only A or only B is realiz- 
able in practice, could be an important divide between 
materials, and so far to our knowledge has remained 
unenunciated. 

4. Appl icat ion to chain- folded 
polymer crystal l izat ion 

The above considerations can be readily transferred to 
the situation of chain-folded lamellar crystal growth. 
Accordingly, Equation 2 will read 

2(Oe)c 
(rm)c = (T ; )c  I /(A/-/)cJ 

2(Oo)M 
(Tm)  M = (Tin)  M 1 I(AH)M} 

Ttr = T~r ( 1 2 (O 'e )c -n '~  
/ ( A H ) t r  J 

(4) 

where 1 denotes the lamellar thickness, % denotes the 
surface free energy of the basal planes (fold surfaces). 
Equation 3 thus acquires the form given by Hoffman 
and Weeks for the melting points [14] 2 . 

Here the special polymeric feature is constituted by 
the fact that the limiting phase size is the lamellar 
thickness and the relevant growth direction is the 
process of lamellar thickening growth when it occurs, 
(see [2-4]). Of course the lamellae also grow laterally 
[1, 2J, but here the dimensional range where the size 
has any effect on the phase stability is soon exceeded, 

2 Although not usually pointed out, passing from Equation 2 to Equation 4 implies the following changes in the definition of the symbols and 
in the restrictions. (i) AH here refers to a unit volume of the transforming phase. (ii) This allows for differences in specific volumes of the 
alternative phases, hence the absence of the V terms in Equation 4. (iii) Volume changes are only due to changes in l; (iv) There is no difference 
in the amount  of material along l in the alternative phases (this arises from the fact that the chains are straight in both the alternative phases 
with only negligible length differences). 
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leaving the lamellar thickness as the dimension deter- 
mining the phase stability. Traditionally, polymer 
crystallization is envisaged as being confined within 
range A, (ignoring at this point the subdivision into A1 
and A2, see Section 7); this is treated by the extensive 
literature on polymer crystallization. As seen, this is 
only a small portion of all possible crystal-growth 
modes, the totality of which include growth pathways 
via an M-phase in range B. The introduction of mode 
B is new, and it has been prompted by the experi- 
mental observations in [1-4]. To give this widened 
scope explicit meaning we need to specify the nature of 
the M-phase first. 

At this point we can link up with the extensive past 
works on PE in general, and with our preceding 
papers [1 4] in particular. Namely, we know that PE 
can have a phase, the hexagonal (h) phase, which is 
intermediate between the commonly stable ortho- 
rhombic (o) phase and the liquid melt (L) [6, 7]. As is 
well known, this mesomorphic h-phase is realizable as 
a stable phase under pressure (shown schematically in 
Fig. 7) where the chains are highly mobile, so that they 
can refold readily towards full chain extension - from 
an initially highly folded conformation in the course of 
crystal growth - which is the commonly perceived 
source of the extended-chain-type crystal morphology 
[15, 16]. As a consequence of the above, studied exten- 
sively in [1-4], an isolated crystal lamella, when in the 
h-phase, grows simultaneously in the lateral and 
thickness directions (the newly defined thickening 
growth); this is in contrast to the conventionally en- 
visaged lamellar growth, where the lamellae grow only 
laterally with unaltered crystal thicknesses (except for 
some slow or belated lamellar thickening a second- 
ary crystallization process referred to in the past as 
isothermal thickening). All the above knowledge of the 
h-phase was gained in experiments at elevated pres- 
sure. Without some special measures (see, for example, 
[10]) the h-phase is normally unrealizable at atmo- 
spheric pressures, since it is metastable with free-en- 
ergy relations as in Fig. 1. 

In view of the above, the phase relations in Fig. 5 
could conceivably apply at atmospheric pressure, pro- 
vided the inequality in Equation 3 holds when applied 
to the PE system. Namely 

(~e)h (~o)o < (5) 
(AH)h (AH)o 

This would mean that, for a sufficiently small size, l, 
the h-phase would be the thermodynamically stable 
phase, creating a stable h-regime in the ~I/l phase- 
stability diagram. 

The above would further imply the applicability of 
the crystal-growth scheme in Fig. 6. Accordingly, we 
would have modes A and B. Mode A would be as 
traditionally conceived, (Fig. 6i), namely, crystals nu- 
cleate and grow in the o-phase throughout. This 
would occur with a constant thickness, l~, as denoted 
by the present models of chain-folded crystal growth 
where l* > l*, the critical nucleus length for the 
o-phase (with l~ - lo* small, see Fig. 6i). In contrast, 
mode B brings in new considerations as schematically 
indicated by Fig. 6ii. Accordingly, the crystal starts life 
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in the h-phase with rapid thickening growth, as along 
*--M in Fig. 6ii, to follow. On traversing the stable 

h - o  boundary, which in Fig. 6 would correspond to 
the M - C  boundary, the h-phase could transform into 
the new stable o-phase. From previous experiments 
[1-4], at this stage of transformation (somewhere 
along *-- CB in Fig. 6) thickening growth would stop 
(or slow down drastically), thus lockin9 in the lamellar 
thickness appropriate to the stage of thickening 
growth where this transformation takes place. Thus 
mode B, as applied to the chain-folded crystallization 
of polymers, with appropriately mobile intermediate 
phases, would provide a new, previously unrecognized 
source for the finite lamellar thickness, which is the 
principal characteristic of polymer crystals. 

5. Combining pressure and size 
dependence: a unified presentat ion 
of possible crysta l -growth paths 

In region B in Fig. 6, we placed a new growth mechan- 
ism for chain-folded crystals on the map; this arose 
from the combination of the new thermodynamic con- 
siderations with sliding diffusion in the mobile phase, 
where the mobile phase may only possess a transient 
size-determined stability. We shall now proceed to 
place this potential mode of crystal growth in the 
context of other possible growth pathways, such as 
would arise from a complete (P, T, l/l) phase diagram, 
and this will be linked, wherever possible, with known 
experience. 

Fig. 7 is a schematic representation of a (P, T)- 
phase diagram for a crystal of infinite size which 
should be familiar from traditional studies of crystalli- 
zation under pressure [6,7, 13, 16]. It displays the 
well-established h-phase regime beyond the triple 
point, which is our source of knowledge of the me- 
sophase on which the present argument is based. We 
shall assume that this is the same h-phase which was 
invoked in Fig. 6, resulting from the limited crystal 

- I  
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Liquid Q ~ s e  
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Figure 7 A temperature pressure, T-P, phase diagram (referred to 
infinite phase size) of the kind observed for PE [16] displaying 
orthorhombic (o) and hexagonal (h) crystal phases (corresponding 
to C and M respectively in Figs 1-3). Beyond PQ (the triple point) 
there is a stable hexagonal regime even for infinite phase size. 






































